
CADP MANUAL PAGES PIC2LNT(LOCAL)

NAME
pic2lnt − translator of the applied pi-calculus to LOTOS NT

SYNOPSIS
pic2lnt [−pidlist] [−root instantiation] [−silent | −verbose] [−version] filename[.pic]

DESCRIPTION
The pi-calculus [MPW92] is a specification formalism for concurrent processes involving mobile commu-
nication. LOTOS NT is an imperatively styled specification language for concurrent processes.The
applied pi-calculus (hereafter noted PIC) is an extension of the polyadic pi-calculus with the data types,
functions, and expressions of LOTOS NT. The pic2lnt program translates a PIC specification into a
LOTOS NT specification. The translation implemented bypic2lnt generalizes the approach proposed in
[MS10] for translating polyadic pi-calculus into LOTOS NT.

The input topic2lnt is a PIC file, which must have the extension.pic. If the user does not specify the
extension.pic on the command line, it will be appended automatically andpic2lnt will read file-
name.pic as input.

The data types and functions used in a PIC specification must be defined in external LOTOS NT files
.lib, which must be included in the PIC file (see SPECIFICATION below).

The output ofpic2lnt is a LOTOS NT specification. Thename of the input file is used to construct the
name of the output file. For an input file example.pic, pic2lnt creates the LOTOS NT specification
example.lnt.

OPTIONS
−pidlist List the names of all processes without parameters that occur in the input file and exit. In other

words, list all processes that can be used as main process (by instantiation with the−root option).

−root instantiation
Use the processinstantiation as the main process, meaning that the generated LOTOS NT specifi-
cation has the behaviour of the main process. Theinstantiation is the identifier of a PIC process
having no parameters.If this option is absent, the PIC specification must contain a process with-
out parameters, named MAIN (letter case is not relevant), which is the default main process.

−version
Display the tool version and exit.

APPLIED PI-CALCULUS
The PIC language is an extension of the polyadic pi-calculus with the data types, functions, and expressions
of LOTOS NT.

An overview of PIC is given below. The abstract syntax of PIC is defined by an extended BNF (EBNF)
grammar and the semantics of each PIC construct is defined informally. The EBNF grammar uses the fol-
lowing conventions: PIC keywords are enclosed between double quotes; a list ofn elements is noted
ELEM1 ... ELEMn; a list indexed from 0 (e.g.,X0, ..., Xn) has at least one element; a list indexed from 1
(e.g.,X1, ..., Xn) may have 0 elements; optional constructs are enclosed between square brackets.

The symbols of the PIC grammar are listed in the table below. The axiom of the grammar is theSPEC
symbol.

+--------+---------------------------------+
| Symbol | Description |

+----------+--------+---------------------------------+
	SPEC	specification
Non-	PROC	process definition
terminal	DE CL	channel or variable declaration

(C) INRIA Last change: 12/10/12 1

CADP MANUAL PAGES PIC2LNT(LOCAL)

| | B | behaviour |
+----------+--------+---------------------------------+
	M	LOTOS NT module
	C	channel
	X	variable
Terminal	F	function
	OP	operator
	T	type
	K	constant
+----------+--------+---------------------------------+

Identifiers are built from letters, digits, and underscores (beginning with a letter or an underscore).
Ke ywords must be written in lowercase. Commentsare enclosed between "(∗ " and "∗)" and may not be
nested.pic2lnt is case-sensitive.

VALUE EXPRESSIONS
The syntax of PIC value expressions is defined by the following grammar:

E ::= C

| X

| K

| F ["(" E1 "," ... "," En ")"]

| OP E

| E1 OP E2

| E "of" T

| E "." X

| E "." "{" X0 "=>" E0, ..., Xn "=>" En "}"

| E1 "[" E2 "]"

| "(" E ")"

The semantics of PIC value expressions is defined informally below.

C

is an occurrence of a channel nameC. As in standard pi-calculus, channel occurrences can be
eitherbound (i.e., corresponding to channel namesC defined by an enclosing reception or a "new"
operator, see BEHAVIOURS below) orfree.

Channel namesC are equipped with the standard comparison operators "=" and "<>".

X

is a use occurrence of a data variable previously defined in the PIC specification.

K

is a constant. The syntax of numerical, character, and string constants in PIC is identical to that of
LOTOS NT (e.g.,13, -1, 1.618, ’a’, ’\007’, ’\n’, "hello world\n").

(C) INRIA Last change: 12/10/12 2

CADP MANUAL PAGES PIC2LNT(LOCAL)

F [" (" E1 "," ... "," En ")"]

is the call of functionF having as arguments the values of expressionsE1, ..., En. The arguments
must correspond in number and types to the formal parameters given in the definition ofF (which
must be present in some external LOTOS NT module, see SPECIFICATION below). Function
calls with no arguments can be written either without parentheses (e.g.,F), or with parentheses
(e.g.,F ()).

Note: If a nameF without parentheses occurs in an expression, two cases are possible:

- If the nameF does not correspond to a data variable previously declared, thenF is interpreted as
the free occurrence of a channel. If the nameF denotes a function without arguments defined in
some LOTOS NT library, then it must be written using parentheses (i.e.,F ()) in order to avoid its
interpretation as a free channel occurrence.

- If the nameF corresponds both to a data variableand to a bound channel previously declared,
thenF is interpreted as a use occurrence of the data variable. If the nameF must be interpreted as
a channel name, then the name of the channel must be changed in order to avoid the clash with the
name of the data variable.

OP E

E1 OP E2

are calls to unary (prefixed) and binary (infixed) operators, respectively. Standard arithmetic and
relational operators are allowed (e.g., "-", "+", "∗ ", "<=", etc.).

Syntactically, all binary operators are left-associative and have the same precedence (hence, one
should explicitly add parentheses around subexpressions to ensure a desired evaluation order, e.g.,
write "x + (y ∗ z)" instead of "x + y ∗ z", which would be evaluated by default as "(x +
y) ∗ z"). All unary operators have the same precedence, which is higher than the precedence of
binary operators.

E "of" T

is the explicit typing operator, which indicates that expressionE is of typeT. This operator is use-
ful for disambiguating certain value expressions containing overloaded LOTOS NT functions.

E "." X

is the field selection operator. It denotes the value of field X of the record value produced by evalu-
ating expressionE (which must be of record type containing a fieldX).

E "." "{" X0 "=>" E0 "," ... "," Xn "=>" En "}"

is the field updating operator. It denotes the value of expressionE (which must be of record type
containing the fieldsX0, ..., Xn) in which the fieldsX0, ..., Xn have been replaced with the values
of expressionsE0, ..., En, respectively.

E1 "[" E2 "]"

is the array element operator, which denotes the element stored at the index obtained by evaluating
expressionE2 of the array obtained by evaluating expressionE1. ExpressionE1 must be of array
type and expressionE2 must be of typeNat, which is predefined in LOTOS NT.

"(" E ")"

has the same meaning as expressionE. Parentheses are useful for imposing an evaluation order of
subexpressions different from the order given by the associativity and precedence of operators.

(C) INRIA Last change: 12/10/12 3

CADP MANUAL PAGES PIC2LNT(LOCAL)

DECLARATIONS
Similarly to classical programming languages, PIC provides mechanisms for declaring channels and data
variables. Thesyntax of PIC declarations (without initialization) is defined by the following grammar:

DE CL ::= C

| X ":" T

Variable declarations have also a generalized form:

X01 "," ... "," X0m0 ":" T0
"," ... ","
Xn1 "," ... "," Xnmn ":" Tn

which declares the data variablesXi1, ..., Ximi of typeTi for each 0 <=i <= n. This general form of declara-
tion is equivalent to the simplified form below, which will be used in the remainder of this manual page:

X01 ":" T0 "," ... "," X0m0 ":" T0
"," ... ","
Xn1 ":" Tn "," ... "," Xnmn ":" Tn

In the same way, variable declarations with initialization have the following general form:

X01 "," ... "," X0m0 ":" T0 ":=" E0
"," ... ","
Xn1 "," ... "," Xnmn ":" Tn ":=" En

which declares the data variablesXi1, ..., Ximi of typeTi and initializes them with the value of the expres-
sionEi for each 0 <=i <= n. This general form of declaration with initialization is equivalent to the simpli-
fied form below, which will be used in the remainder of this manual page:

X01 ":" T0 ":=" E0 "," ... "," X0m0 ":" T0 ":=" E0
"," ... ","
Xn1 ":" Tn ":=" En "," ... "," Xnmn ":" Tn ":=" En

BEHAVIOURS
Concurrent processes in PIC can manipulate data values in addition to communication channels. Their be-
haviour is described using (generalizations of) the polyadic pi-calculus operators and some data-handling
constructs inherited from LOTOS NT. The syntax of PIC behaviours is defined by the following grammar:

B ::= "nil"

| P [" (" E0 "," ... "," En ")"]

| " tau" "." B

| " ’" C [" <" E1 "," ... "," En ">"] "." B

| C [" (" DE CL1 "," ... "," DE CLn ")"] "." B

| " [" E "]" B

| " !" [K] B

| " (" "new" C0 "," ... "," Cn ")" B

(C) INRIA Last change: 12/10/12 4

CADP MANUAL PAGES PIC2LNT(LOCAL)

| " var" X0 ":" T0 ":=" E0 "," ... "," Xn ":" Tn ":=" En "in"
B

"end" "var"

| B1 "+" B2

| B1 "|" B2

| " (" B ")"

Syntactically, all binary operators are left-associative. Unary operators (".", "[...]", "!", "new") have the
highest precedence, followed by "|", followed by "+".

The semantics of a PIC behaviour B is given by a Labeled Transition System (LTS) M = < S, A, T, s0 >,
where:S is the set of states;A is the set of actions;T included inS ∗ A ∗ S is the transition relation; ands0
in S is the initial state. An actiona of A is either the silent actioni (this is the LOTOS NT notation, since
the LTS denoting the semantics of a PIC behaviour is produced from the corresponding LOTOS NT code
generated bypic2lnt), or it has the formc v1 ... vn, wherec is a channel name andv1, ..., vn is a (possibly
empty) list of channel names or data values exchanged during the rendezvous communication on channelc.
This form of action corresponds to theearly operational semantics of the pi-calculus (see, e.g.,
[MP95,Par01]). A transition (s1, a, s2) of T (also noteds1-a->s2) means that the system can move from
states1 to states2 by performing actiona.

The semantics of PIC behaviours is described informally below.

"nil"

is the empty behaviour (deadlock), which does not perform any action.

P [" (" E0 "," ... "," En ")"]

is a call to processP having as arguments the values of expressionsE0, ..., En. The arguments
must correspond in number and types to the formal parameters given in the definition of processP
(see PROCESS DEFINITIONS below). This behaviour corresponds to the body of processP, in
which the formal parameters have been replaced by the argumentsE0, ..., En, respectively.

"tau" "." B

is the silent prefix operator. It performs a transition labeled by the silent action (notedi in LOTOS
NT) and continues with the behaviourB.

"’" C ["<" E1 "," ... "," En ">"] "." B

is the emission on channelC of the channel names or valuesv1, ..., vn obtained by evaluating the
expressionsE1, ..., En. It performs a transition labeled by an action of the formC v1 ... vn and
continues with the behaviourB.

C [" (" DECL1 "," ... "," DECLn ")"] "." B

is the reception on channelC of n channel names or valuesv1, ..., vn, the types of which must cor-
respond to the declarationsDECL1, ..., DECLn, respectively. If a declarationDECLi denotes a
channel nameCi, then a channel nameCi’ is expected to be received at position i and is stored in
Ci. If a declarationDECLj denotes a variableXi of typeTi, then a valuevi of typeTi is expected to
be received at position j and is stored inXi. It performs a transition labeled by an action of the
form C v1 ... vn and continues with the behaviourB.

All channel names and variables declared byDECL1, ..., DECLn are visible inB.

"[" E "]" B

is the guard operator. It has the behaviour B if the boolean conditionE evaluates to true and is
equivalent to "nil" otherwise. The guard operator of PIC accepts any boolean expressionE,

(C) INRIA Last change: 12/10/12 5

CADP MANUAL PAGES PIC2LNT(LOCAL)

whereas the guard operator of standard pi-calculus allows only the equality test between channel
names. The "if-then-else" conditional behaviour can be simulated by using the selection operator
and mutually exclusive guard operators as follows [Par01]:

if E then B1 else B2 = [E] B1 + [not (E)] B2

"!" [K] B

is the bounded replication operator. It is a shorthand notation for the behaviour "B | ... | B", where
B occursK times, whereK>=1 is a constant value of typeNat. If K is absent, it has the default
value 1, meaning that the bounded replication operator is a shorthand forB.

"(" "new" C0 "," ... "," Cn ")" B

is the channel creation operator. It defines the "fresh" channel namesC0, ..., Cn, which are visible
in B. These channel names areprivate, meaning that they cannot be used for communication
betweenB and another behaviour B’ unless they are communicated byB to B’ on some other chan-
nel name known by bothB andB’ (in this case, a channelCk sent byB to B’ becomes visible inB’
by scope extrusion).

"var" X0 ":" T0 ":=" E0 "," ... "," Xn ":" Tn ":=" En "in"
B

"end" "var"

is the variable definition operator. It declares the variablesX0, ..., Xn and initializes them with the
result of evaluating the expressionsE0, ..., En, which must be of typeT0, ..., Tn, respectively.

The variablesX0, ..., Xn are visible inB.

B1 "+" B2

is the choice operator. It performs either an action ofB1 and continues with the behaviour ofB1,
or an action ofB2 and continues with the behaviour ofB2.

B1 "|" B2

is the parallel composition operator. It produces the interleaved execution of the behavioursB1 and
B2 according to the early operational semantics of pi-calculus [MP95,Par01].

"(" B ")"

has the same meaning as behaviour B. Parentheses are useful for imposing an evaluation order of
behaviours different from the order given by the associativity and precedence of operators.

PROCESS DEFINITIONS
Concurrent behaviours can be encapsulated into processes parameterized by channel names and data val-
ues, which can be instantiated multiple times in a PIC specification. The syntax of PIC process definitions
is defined by the following grammar:

PROC ::= P [" (" DE CL1 "," ... "," DE CLn ")"] "=" B

This defines the processP, equipped with the optional (channel or variable) parameters declared by
DECL1, ..., DECLn. The parameters are visible in the behaviour B, which is the body of processP. A
processP without parameters can be called using the syntaxP or P(). Processes can be mutually recursive.

Note: The current version ofpic2lnt handles only PIC specifications satisfying thefinite control property
[Dam94], which forbids recursive process calls through the parallel composition operator. This hypothesis
was used in the translation from polyadic pi-calculus to LOTOS NT [MS10] and was maintained for the
translation from PIC to LOTOS NT.

For example, the process definition below does not satisfy the finite control property:

(C) INRIA Last change: 12/10/12 6

CADP MANUAL PAGES PIC2LNT(LOCAL)

P = P | (a . nil)

Note: Recursive process calls through the channel creation operator are permitted. For instance, the follow-
ing process definition is handled bypic2lnt:

Q = (new b) (b . Q)

A call to process Q yields an infinite LTS, because each recursive call will generate a new transition labeled
by a fresh channel name "b (n)" for n >= 0. Therefore, trying to generate the LTS of a call to process Q
will exhaust the memory available on the host computer.

SPECIFICATION
A PIC specification consists of a list of process definitions possibly preceded by the declaration of external
LOTOS NT modules. Thesyntax of a PIC specification is defined by the grammar below:

SPEC ::= ["library" M0 "," ..."," Mm "end" "library"]
PROC 0 ... PROC n

If present, the module identifiers M0, ..., Mm must correspond to LOTOS NT files namedM0.lib, ...,
Mm.lib present in the current directory (letter case is not significant). TheLOTOS NT modulesM0, ...,
Mm must define all the data types and functions used in the process definitions PROC0, ..., PROCn. If the
"library" clause is absent, the PIC specification is dataless, i.e., it contains only polyadic pi-calculus agent
definitions.

LABELED TRANSITION SYSTEM
For technical reasons, the translation from PIC to LOTOS NT adds extra information on the actions (transi-
tion labels) of the LTS w.r.t. the original early operational semantics of the pi-calculus [MP95,Par01]. This
extra information regards two aspects:

- Channel names. All channel names occurring in the PIC specification are converted to uppercase.
To bring the PIC behaviours to normal form (i.e., to avoid that the same channel name has both
free and bound occurrences in the same PIC behaviour), each channel name is postfixed by "_k",
wherek is a natural number unique for each channel name. For example, a channel name "a"
present in the PIC specification is translated into "A_k" for somek. Public (resp. private) channel
names are encapsulated into a "PUB" (resp. "PRIV") constructor. Moreover, private channel names
have a natural number parameter allowing to generate fresh private channel names during the
execution of the PIC specification. For example, a public channel name "b" present in the PIC
specification will be translated into "PUB (B_k)" for somek, and a private channel name "c" will
be translated into "PRIV (C_k (j))" for somek andj.

- Communication. All visible actions in the LTS take place on a special channel named "PUBLIC".
The first value exchanged on each action is the name of the PIC channel on which the communica-
tion takes place in the PIC specification. The other values are those communicated by the PIC
action. In addition, there is a last boolean value added on each LTS action to indicate whether the
corresponding PIC action is an emission (value TRUE) or a reception (value FALSE). According
to the LOTOS NT and LOTOS semantics conventions, all values exchanged on channel "PUBLIC"
are preceded by ’!’.For example, an emission of the form "’a < b, c, 3 of Nat >", wherea, b are
public channels andc is a private channel (i.e., defined by a "new" operator), will yield an LTS
transition labeled by the following action:

PUBLIC !PUB (A_0) !PUB (B_0) !PRIV (C_1 (1)) !3 !TRUE

Starting from a PIC specification filename.pic, the corresponding LTS can be produced by applying
pic2lnt and then generating the LTS filename.bcg, encoded in the BCG file format, of the resulting
LOTOS NT specification. This LTS can be made compatible with the original pi-calculus semantics by
renaming its actions usingbcg_labels(LOCAL) and the renaming files present in $PIC/incl as follows:

(C) INRIA Last change: 12/10/12 7

CADP MANUAL PAGES PIC2LNT(LOCAL)

bcg_labels -rename -multiple $PIC/incl/pic_renaming_1.ren
-rename -multiple $PIC/incl/pic_renaming_2.ren
-rename $PIC/incl/pic_renaming_3.ren
filename.bcg

Note: this renaming does not delete the suffixes "_k" of the channel names, in order to facilitate the under-
standing of the PIC behaviours that are not in normal form (i.e., contain both free and bound occurrences of
the same channel name(s)).

SYNTACTIC COMPATIBILITY
For compatibility with the Mobility Workbench (MWB) [VM94], the alternative syntax below is also
accepted bypic2lnt for the polyadic pi-calculus constructs:

+-----------------+---+
| pi-calculus | Mobility Workbench (MWB) |
| construct | syntax |
+=================+===+
| empty |"0" |
+-----------------+---+
| silent prefix | "t" "." B |
+-----------------+---+
| emission |"’" C "<" C1 ... Cn ">" "." B |
+-----------------+---+
| reception |C "(" C1 ... Cn ")" "." B |
+-----------------+---+
channel	"(" "new" C0 ... Cn ")" B
creation	"(" "ˆ" C0 ... Cn ")" B
	"(" "ˆ" C0 "," ... "," Cn ")" B
+-----------------+---+	
process (agent)	"agent"P [" (" C0 "," ... "," Cn ")"]
definition	"=" B
+-----------------+---+

OPERANDS
filename.pic PIC specification (input)
module.lib LOTOS NT code for data types and functions (input)
filename.lnt LOTOS NT code (output)

ENVIRONMENT VARIABLES
$PIC Name of the directory wherepic2lnt is installed.

FILES
$PIC/incl/pic_renaming_{1,2,3}.ren

Renaming files for converting the LTS labels according to the original
semantics of the polyadic pi-calculus.

$PIC/incl/pic2lnt_dyn.tnt Auxiliary file necessary for compiling the LOTOS NT specification file-
name.lnt produced as output bypic2lnt. To compile filename.lnt using
lnt2lotos(LOCAL) or lnt.open(LOCAL), the file $PIC/incl/pic2lnt_dyn.tnt
should be copied in the current directory and renamed intofilename.tnt.

EXIT STATUS
If the translation was successful the exit status is 0, even if warnings were issued during the execution. If
any error occurred during translation, the exit status is 1.

(C) INRIA Last change: 12/10/12 8

CADP MANUAL PAGES PIC2LNT(LOCAL)

BIBLIOGRAPHY
[Dam94]

M. Dam. "Model Checking Mobile Processes." Research Report RR 94:1, Swedish Institute of
Computer Science, Kista, Sweden, 1994.

[MP95] U. Montanari and M. Pistore."Checking Bisimilarity for Finitary Pi-Calculus." Proceedings of
CONCUR’95, LNCS v. 962, p. 42-56, 1995.

[MS10] R. Mateescu and G. Salaun."Translating Pi-Calculus to LOTOS NT." Proceedings of IFM’10,
LNCS v. 6396, p. 229-244, 2010.

[Par01] J. Parrow. "An Introduction to the Pi-Calculus." Handbook of Process Algebra, chap. 8, p.
479-544, North-Holland, 2001.

[VM94] B. Victor and F. Moller. "The Mobility Workbench: A Tool for the Pi-Calculus."Proceedings of
CAV’94, LNCS v. 818, p. 428-440, 1994.

[MPW92]
R. Milner, J. Parrow, and D. Walker. "A Calculus of Mobile Processes." Information and Compu-
tation 100(1):1-77, 1992.

AUTHORS
Gwen Salaun (Grenoble INP) and Radu Mateescu (INRIA Grenoble - Rhone−Alpes).

SEE ALSO
lnt.open(LOCAL), bcg(LOCAL), bcg_labels(LOCAL). For a complete description of LOTOS NT, see the
lnt2lotos reference manual.

BUGS
Please report any mistranslations or other problems withpic2lnt to cadp@inria.fr

(C) INRIA Last change: 12/10/12 9

