
CADP MANUAL PAGES GRL( LOCAL )

NAME
grl − specification language for globally asynchronous locally synchronous system

DESCRIPTION
GRL (GALS Representation Language) is a formal imperatively styled specification language for GALS
systems.

LEXICAL ELEMENTS
An identifier is defined by a letter followed by a possibly empty series of letters, digits and underscores.
GRL prohibits that an identifier starts or ends with an underscore.

Identifiers are case sensitive, so that all occurrences of the same identifier must use exactly the same case,
i.e., lower-case and upper-case characters have to be respected. For instance, if a variable has identifier
XyZ, then all its occurrences must have the same identifier XyZ, but neitherxyz nor Xyz. Howev er, to
avoid confusion, GRL forbids declaring in the same scope identifiers of the same nature (e.g., variables,
constructors, functions, etc.) differing only by their case. Therefore identifiers are not considered as distinct
if they differ only by their case.

Comments can be both:

- single line ’-- <text>’

- multi-line ’( ∗ <text> ∗ )’

Ke ywords must be written in lowercase. Reserved words can not be used as identifiers in GRL programs.
They are listed below.

abs alias and any
as array block bool
by case char const
else elsif enable end
environment enum equ false
for from if implies
in int int8 int16
int32 is list loop
medium module nat nat8
nat16 nat32 not null
of or out range
receive record select send
static string system then
true to type var
when where while xor

SYNTAX DESCRIPTION
The syntax of GRL is described using Bachus-Naur Form (BNF) notations.

- Non-terminal symbols are written in italic (e.g.,type_def).

- Keywords are written using lowercase characters and between double quotes (e.g., "module",
"static", "if", etc.).
Ke y symbols are written between double quotes (e.g., "|", "(", "[", "∗ ", etc.).

- Optional sequences of symbols are written between square brackets.

- Star (∗ ) denotes repetition zero or more times of the preceding expression.
Plus (+) denotes repetition one or more times of the preceding expression.

(C) INRIA Last change: 16/02/12 1



CADP MANUAL PAGES GRL( LOCAL )

The following table summarizes the generic terminal symbols and the most frequently used non-terminal
symbols and their meaning.

+--------+------------------------------+
| Symbol | Description |

+----------+--------+------------------------------+
| | P | module |
| | S | system |
| | B | block |
| | B i | block instance |
| | N | environment |
| | N i | environment instance |
| Terminal | M | medium |
| | Mi | medium instance |
| | F | function |
| | X ,  Y | variables |
| | T | user defined type identifier |
| | t y p e | type identifier |
| | C | type constructor |
| | f | record field |
| | L | library |
+----------+--------+------------------------------+
| | I | statement |
| Non- | E | expression |
| terminal | V | pattern |
| | K | literal constant |
+----------+--------+------------------------------+

SYNTAX OF MODULES
A module is the highest level syntactic construct. It contains the definition of lower level constructs. A GRL
fi le contains exactly one module definition. Thismodule has the same name as the file containing it.

A moduleP can import libraries. Each library can be:

- another modulePi. Therefore, the definitions of the imported module are visible in the main mod-
uleP. Note that circular definitions are not allowed.

- a LNT modulemodule. The file has extension lnt. See section external code for more informa-
tion.

- a C filenamefilename. The file has extension c. See section external code for more informa-
tion.

p r gm_ d e f ::= "module"P [ " (" L ( "," L )∗ ")" ] "is"
( t y p e _ d e  f
| c o n s  t a n  t  _ d e f
| b l o c k _ d  e f
| e n v i  r o nme n t _ d e  f
| me d i um_ d e f
| s y s  t em_ d  e f )∗

"end" "module"

SYNTAX OF TYPES

(C) INRIA Last change: 16/02/12 2



CADP MANUAL PAGES GRL( LOCAL )

t y p e ::= "bool"
| "nat" | "nat16" | "nat32"
| "int" | "int16" | "int32"
| "char" | "string"
| T

t y p e _ d e  f ::= "type" T "is"
t y p e _ e  x p r

"end" "type"

t y p e _ e  x p r ::= "array" "[" m "..." n "]" "of" t y p e
| "range"m "..." n
| "record" f ":" t y p e ( "," f ":" t y p e )∗
| "enum"C ( "," C )∗

User-defined types are the following:

- The array type, defined using the keyword array, denotes a fixed-size set of elements indexed
by natural numbers ranging fromm to n. Wherem andn are literal naturals.

- The range type, defined using the keyword range, denotes a finite interval of numbers ranging
from m to n. Wherem andn are literal naturals.

- The record type, defined using the keyword record, denotes a fixed-size tuple of elements
indexed by field namesf0, ..., fn.

- The enumerated type, defined using the keyword enum, denotes a finite and ordered set of sym-
bolic values (identifiers)C0, ..., Cn.

- The external type, defined in an imported LNT library, denotes any LNT type. An external type
can be used in GRL modules.

Example

type T_Array is
array [0 ... 3] of bool

end type

type T_Range is
range -1 ... 1

end type

type T_Record is
record f1 : nat, f2 : bool

end type

type T_Enum is
enum a, b, c, d, e, f

end type

SYNTAX OF LITERAL CONSTANTS
Literal constants may be either integer numbers, boolean constants, string constants or values of enumer-
ated types.

K ::= i n t
| b o o  l
| s t r i n g
| C

(C) INRIA Last change: 16/02/12 3



CADP MANUAL PAGES GRL( LOCAL )

SYNTAX OF OPERATORS
u n a  r y _ o p ::= "+" | "-" | "not" | "abs"

| "nat" | "nat16" | "nat32"
| "int" | "int16" | "int32"

b i n a r  y _ o p ::= "and" | "or" | "xor" | "implies" | "equ"
| "+" | "-" | "%" | "ˆ" | "∗ " | "/"
| "!=" | "==" | "<" | ">" | "<=" | ">="

SYNTAX OF EXPRESSIONS
E ::= X

| "(" E ")"

| E"." f

| E "[" E "]"

| u n a  r y _ o p  E

| E b i n a r  y _ o p  E

| K [ "of" t y p e ]

| F "(" E ( "," E )∗ ")"

SYNTAX OF PATTERNS
Patterns may be either a literal constant or a wildcard.

V ::= K | "any"

SYNTAX OF PREDEFINED FUNCTIONS
Predefined functions are unary operations, binary operations, type conversion functions, functions on
arrays, functions on records, and constructor of external types.

- Type conversion functions, denotedT (E), convert an expressionE from one numerical data
type to another numerical data typeT. Numerical data types are:nat, nat16, nat32, int,
int16, int32, and all the range types. An exception is raised if the value ofE does not belong
to the typeT.

- Giv en an array type defined by type T is array [m ... n] of Tarr
end type, two predefined functions T: Tarrˆ(n-m+1) -> Tand T: Tarr -> T are automatically
generated (those two functions coincide into one single function if m = n). The call
T (Em, ..., En) builds an arrayX in which each elementX[i] is set to the value of
expressionEi. The callT (E0) builds an arrayX in which all elementsX[i] are set to the
value of expressionE0.

- Giv en a record type defined by type T is
record f0 : Trec0, ..., fn : Trecn end type, a predefined function
T : Trec0 x ... x Trecn -> T is automatically generated. The callT (E0, ..., En) returns a
record in which each fieldfi is set to the value of expressionEi.

SYNTAX OF STATEMENTS

(C) INRIA Last change: 16/02/12 4



CADP MANUAL PAGES GRL( LOCAL )

I ::= "null"

| X ":=" E

| X "[" E "]" ":=" E

| X"." f ":=" E

| I ";" I

| "if" E "then" I
( "elsif" E "then" I )∗
[ "else" I ]
"end" "if"

| "while" E "loop"
I

"end" "loop"

| "for" I "while" E "by" I "loop"
I

"end" "loop"

| "case"E ( "," E )∗ "is"
V ( "," V )∗ "->" I
( "|" V ( "," V )∗ "->" I )∗

"end" "case"

| "select"
I ( "[]" I )∗

"end" "select"

| X ":=" "any" t y p e [ "where"E ]

| "when" ["?"]X "->" I

| "when" ["?"] "<" X ( "," X )∗ ">" "->" I

| "enable"X

| B i [ " {" a r g _  l i s t "}" ] "(" a r g _  l i s t ")"

SYNTAX OF CONSTANTS
The keyword constant is used to define a variable whose value, once initialized, can not be changed. A
constant is visible and can be called by all other entities defined in the module.

c o n s  t a n  t  _ d e f ::= "const"v a  r  _ l i s t ":" t y p e ":=" E

Example

const C_Max : nat16 := 4

(C) INRIA Last change: 16/02/12 5



CADP MANUAL PAGES GRL( LOCAL )

SYNTAX OF VARIABLE DECLARATIONS
d e  c l _ l  i s t ::= v a  r  _ d e  c l ( "," v a  r  _ d e  c l )∗
v a  r  _ d e  c l ::= v a  r  _ l i s t ":" t y p e [ " :=" E ]
d e  c l _ l  i s t _ n o n _  i  n  i t ::= v a  r  _ d e  c l _ n o n _  i  n  i t

( "," v a  r  _ d e  c l _ n o n _  i  n  i t )∗
v a  r  _ d e  c l _ n o n _  i  n  i t ::= v a  r  _ l i s t ":" t y p e
v a  r  _ l i s t ::= X ( "," X )∗

Permanent variables, defined after the keywords static var, hav e a lifetime extending across the
entire execution of the program, whereas variables defined after the keyword var are temporary.

l o c a  l  _ v a r s ::= "static" "var"d e  c l _ l  i s t
| "var" d e  c l _ l  i s t

SYNTAX OF FORMAL PARAMETERS
Formal parameters are classified as follows.

- Constant parameters are user-fixed parameters defined as a set of variable declarations inside{
and}. No value should be assigned to such parameters after their definition.

c o n s  t _ p a  r am ::= d e  c l _ l  i s t

- Input/Output parameters are defined as a set of variable declarations preceded by the keywordsin
or out.

i n o u  t  _ p a r am ::= "in" d e  c l _ l  i s t
| "out" d e  c l _ l  i s t _ n o n _  i  n  i t

i n o u  t  _ p a r am_ n o n _ i n i  t ::= "in" d e  c l _ l  i s t _ n o n _  i  n  i t
| "out" d e  c l _ l  i s t _ n o n _  i  n  i t

- Communication parameters are defined as a set of variable declarations preceded by the keywords
receive or send.

c om_ p a r am ::= "receive" d e  c l _ l  i s t _ n o n _  i  n  i t
| "send"d e  c l _ l  i s t _ n o n _  i  n  i t

- Activation parameters are defined as a variable preceded by the keyword block.

a c  t i v e _ p a  r am ::= "block" X ( "," X )∗

SYNTAX OF BLOCKS
Blocks represent the synchronous part, which is inspired by synchronous dataflow languages based on the
block-diagram model. Following the definition of synchronous programs, all subblocks called in a block
are governed by the clock this block.
Subblocks can be aliased to increase readability using keyword alias. Constant parameters, if any, are
mandatory when aliasing a block.

b l o c k _ d  e f ::=
"block" B [ " {" c o n s  t _ p a  r am "}" ]

[ " (" i n o u  t  _ p a r am ( "," i n o u  t  _ p a r am )∗ ")" ]
[ " [" c om_ p a r am ( "," c om_ p a r am )∗ "]" ] "is"

[ "alias" b l o c k _ a  l l o c ( "," b l o c k _ a  l l o c )∗ ]
[ l o c a  l  _ v a r s ( "," l o c a  l  _ v a r s )∗ ]
I

"end" "block"

(C) INRIA Last change: 16/02/12 6



CADP MANUAL PAGES GRL( LOCAL )

| "block" B [ " {" c o n s  t _ p a  r am "}" ]
"(" i n o u  t  _ p a r am ( "," i n o u  t  _ p a r am )∗ ")" "is"

"!c" s t r i n g | "!lnt" s t r i n g
"end" "block"

A block definition can be either user-defined or included from an external code written in C or LNT lan-
guage. An external block should not have receive nor send parameters and its body consists of a "pragma"
denoting the language from which the external block is imported, followed by the name of the function
implementing the block. See section external code for more information.

Example

The first example is a basic block allocating no other block, the second one connects several block
instances together.

block B {c : nat}
(in i : bool, j : nat, in k : bool, out o : nat) is

if (i or k)
then

o := j
else

o := c
end if

end block

block B (in i : bool, j : nat, in k : bool, out o : nat) is
alias B1 as Bi1; Bi2,

B2 {true} as Bi3,
B3 {_, _} as Bi4

var c1, c3 : bool,
c2 : nat

Bi1 (i, j, ?c1);
Bi3 (k, ?c2);
Bi2 (c1, c2, ?c3);
Bi4 (c3, ?o)

end block

SYNTAX OF ENVIRONMENTS
Environments represents the behaviour of the environment surrounding a network of blocks. They allow to
constrain either inputs of separate blocks or the relative order and frequency of block executions within a
network. They make possible the description of the common environment in the case of parallel systems
distributed on a single platform as well as a set of separate environments in the case of geographically dis-
tributed systems.

e n v _ p a  r am ::= a c  t i v e _ p a  r am | i n o u  t  _ p a r am_ n o n _ i n i  t
e n v i  r o nme n t _ d e  f ::=

"environment"N [ " {" c o n s  t _ p a  r am "}" ]
"(" e n v _ p a  r am ( "," e n v _ p a  r am )∗ ")" "is"

[ "alias" b l o c k _ a  l l o c ( "," b l o c k _ a  l l o c )∗ ]
[ l o c a  l  _ v a r s ( "," l o c a  l  _ v a r s )∗ ]
I

"end" "environment"

An environmentN interacts with blocks by connecting its input (resp., output) parameters to output (resp.,
input) parameters of blocks. Its body should define (or not) the behaviour of the environment when an inter-
action via a formal parameter list occurs. A signal of the formwhen ?<X0, ..., Xn> -> I defines

(C) INRIA Last change: 16/02/12 7



CADP MANUAL PAGES GRL( LOCAL )

the behaviour ofN that corresponds to the parameter listin X0 : T0, ..., Xn : Tn whereas a
signal of the formwhen <Y0, ..., Yn> -> I defines the behaviour ofN that corresponds to the
parameter listout Y0 : T0, ..., Ym : Tm.

Example

The first environment computes one output using global constantC_Max andC_Init. The second one
computes an output using local constants and the value given by the input. The third one is an activation
environment containing block instancesA andB.

environment E {Step : nat16 := 1} (out No : nat16) is
static var Last_No : nat16 := C_Init
when No -> if ((Last_No + Step) <= C_Max)

then
No := Last_No + Step

else
No := C_Init

end if;
Last_No := No

end environment

environment E {Min : nat16 := 0,
Max : nat16 := 30,
Offset : nat16 := 3}

(in X : nat16, out Y : nat16) is
static var Last_X : nat16 := 0
select

when ?X -> Last_X := X
[]

when Y -> select
Y := Last_X

[]
if (Last_X <= (Max - Step))
then

No := Last_X + Step
else

No := Last_X
end if

[]
if (Last_X >= (Min + Step))
then

No := Last_X - Step
else

No := Last_X
end if

end select;
end select

end environment

environment E (block A, block B) is
static var Last_Act_A : bool := false
if (Last_Act_A)
then

enable B
else

(C) INRIA Last change: 16/02/12 8



CADP MANUAL PAGES GRL( LOCAL )

enable A
end if;
Last_Act_A := not (Last_Act_A)

end environment

SYNTAX OF MEDIUMS
Mediums represents the behaviour of communication mediums and enables a clean description of asyn-
chronous interactions within a network of blocks. They enable the explicit description of the communica-
tion protocol and the rigorous design of networks whatever their topologies (star, bus, ring, etc.) and their
means of communication (point-to-point, multipoint, etc.) are.

me d i um_ d e f ::=
"medium"M [ " {" c o n s  t _ p a  r am "}" ]

"[" c om_ p a r am ( "," c om_ p a r am )∗ "]" "is"
[ "alias" b l o c k _ a  l l o c ( "," b l o c k _ a  l l o c )∗ ]
[ l o c a  l  _ v a r s ( "," l o c a  l  _ v a r s )∗ ]
I

"end" "medium"

| "medium"M [ " {" c o n s  t _ p a  r am "}" ]
[ " [" c om_ p a r am ( "," c om_ p a r am )∗ "]" ] "is"

( "from" "?" "<" v a  r  _ l i s t ">" "to" "<" v a  r  _ l i s t ">" )+
"end" "medium"

A medium interacts with blocks by connecting its receive (resp., send) parameters to send (resp., receive)
parameters of blocks. Its behaviour is the same as environments.

For short mediums, from ?<X0, ..., Xn> should correspond to the parameter list
in X0 : T0, ..., Xn : Tn whereasto <Y0, ..., Yn> should corresponds to the parame-
ter listout Y0 : T0, ..., Yn : Tn.

Example

The first medium is a single buffer. The second medium is the short syntax for this buffer.

medium M [receive a : bool, c : bool,
send b : bool, d : bool] is

static var p : bool := false
q : bool := false

select
when ?<a, c> -> p := a;

q := c
[]

when <b, d> -> b := p;
d := q

end select
end medium

medium M [receive a : bool, c : bool,
send b : bool, d : bool] is

from ?<a, c> to <b, d>
end medium

(C) INRIA Last change: 16/02/12 9



CADP MANUAL PAGES GRL( LOCAL )

SYNTAX OF INVOCATION
Actual parameters, formally defined below, denote parameters passed to an instance at invocation time.

- The corresponding formal parameter of an actual parameter denotes the formal parameter that has
the same position (as the actual parameter) in the actor definition.

- An actual parameter is at constant position (respectively at input position, at output position, at
receive position, and at send position) if its corresponding formal parameter is defined inside{
and} (respectively after keywordsin, out, receive, andsend).

There are two types of actual parameters, the first one are used in systems and the second ones in other
entities.

- In system, an actual parameter can have different forms according to its position. A question mark
precedes both actual parameters at output and send positions. An underscore is used for uncon-
nected parameters. An actual parameter of the formany type assigns the corresponding formal
parameters an arbitrary value of typetype.

c h a n _ a  r g _  l i s t ::= c h a n _ a  r g ( "," c h a n _ a  r g s )∗

c h a n _ a  r g _  l i s t ::= c h a n _ a  r g s ( "," c h a n _ a  r g s )∗

c h a n _ a  r g s ::= "<" c h a n _ a  r g ( "," c h a n _ a  r g )∗ ">"

c h a n _ a  r g ::= ["?"] X | ["?"]_ | "any" t y p e

- In other entities, an actual parameter can have different forms according to its position. A question
mark precedes actual parameters at output positions. An underscore is used for unconnected
parameters. An actual parameter of the formany type assigns the corresponding formal
parameters an arbitrary value of typetype.

a r g _  l i s t ::= a r g ( "," a r g )∗

a r g ::= "?" X | ["?"]_ | E | "any" t y p e

Instances can be allocated before being invoked. Actual parameters at constant position should be fixed at
allocation time as follows.

b l o c k _ a  l l o c ::= B [ " {" a r g _  l i s t "}" ] "as" B i ( ";" B i )∗

a l  l o c ::= b l o c k _ a  l l o c
| N [ " {" a r g _  l i s t "}" ] "as" N i ( ";" N i )∗
|M [ " {" a r g _  l i s t "}" ] "as" Mi ( ";" Mi )∗

Instances can be invoked as follows. If instance has been allocated constant arguments are not allowed, else
actual parameters at constant position should be fixed at invocation time.

b l o c k _ i n s t ::= B i [ " {" a r g _  l i s t "}" ] "(" c h a n _ a  r g _  l i s t ")"
| B i [ " {" a r g _  l i s t "}" ]

[ " (" c h a n _ a  r g _  l i s t ")" ]
[ " [" c h a n _ a  r g _  l i s t "]" ]

e n v i  r o nme n t _ i n s t ::= N i [ " {" a r g _  l i s t "}" ]
"(" c h a n _ a  r g _  l i s t ")"

me d i um_ i n s t ::= Mi [ " {" a r g _  l i s t "}" ]
"[" c h a n _ a  r g _  l i s t "]"

(C) INRIA Last change: 16/02/12 10



CADP MANUAL PAGES GRL( LOCAL )

SYNTAX OF SYSTEMS
A system specifies a network of synchronous blocks. Those blocks are constrained by a set of environments
and interact asynchronously via a set of mediums.

s y s  t em_ d  e f ::=
"system"S [ " {" c o n s  t _ p a  r am "}" ]

[ " (" d e  c l _ l  i s t _ n o n _  i  n  i t ")" ] "is"
[ "alias" a l  l o c ( "," a l  l o c )∗ ]
[ "var" d e  c l _ l  i s t _ n o n _  i  n  i t ]
"block" "list"

b l o c k _ i n s t ( "," b l o c k _ i n s t )∗
[ "environment" "list"

e n v i  r o nme n t _ i n s t ( "," e n v i  r o nme n t _ i n s t )∗ ]
[ "medium" "list"

me d i um_ i n s t ( "," me d i um_ i n s t )∗ ]
"end" "system"

The first listdecl_list_non_init defines the parameters that are visible from the external world whereas the
second listdecl_list_non_init, after keyword var, defines the invisible parameters.

Note that activated block must be aliased before activated.

Example

system Main {cst : nat16}
(a, a2, b : int32, c : bool, d : nat) is

alias B1 {cst} as Bi1,
B2 {cst} as Bi2,
E1 {_, 4} as Ei1,
E2 {true, false} as Ei2,
M1 as Mi1

var w : nat16, x : nat16, y : nat16, z : nat16
block list

Bi1 (<a, a2>, ?<b>) [<w>, ?<x>],
Bi2 (c, ?d) [y, ?z]

environment list
Ei1 (?<a, a2>),
Ei2 (?c)

medium list
Mi1 [<x>, z, ?<w>, ?y]

end system

system Main {cst : nat16}
(a, a2, b : int32, c : bool, d : nat) is

var w : nat16, x : nat16, y : nat16, z : nat16
block list

B1 {cst} (<a, a2>, ?<b>) [<w>, ?<x>],
B2 {cst} (c, ?d) [y, ?z]

environment list
E1 {_, 4} (?<a, a2>),
E2 {true, false} (?c)

medium list
M1 [<x>, z, ?<w>, ?y]

end system

system Main (a, b, c, d : bool) is

(C) INRIA Last change: 16/02/12 11



CADP MANUAL PAGES GRL( LOCAL )

alias B1 as Bi1, B2 as Bi2
block list

Bi1 (a, ?b),
Bi2 (c, ?d)

environment list
E (Bi1, Bi2)

end system

EXTERNAL CODE
External code can be either LNT code or C code.

LNT CODE
External LNT code should be written into .lnt files. A external block should be represented by a function in
LNT code, following some rules.

- The number of parameters of the LNT functions and the block are the same.

- Input and constant parameters are represented by thein LNT keyword.
Output parameters are represented by theout LNT keyword.

- Each LNT parameter should be typed using the equivalent LNT type. The following LNT types
Bool, Nat8, Nat16, Nat, Int8, Int16, Int, char, string are respec-
tively equivalent to the following typesbool, nat, nat16, nat32, int, int16,
int32, char, string.
Note that user types keep the same name in the LNT code. And user LNT types can used in GRL
modules.

Example

The following code gives the block and its LNT implementation.

block EXT (in a : int16, in a2 : int16,
out b : int16, out b2 : int16) is

!lnt "EXT_LNT"
end block

function EXT_LNT (in a : Int16, in a2 : Int16,
out b : Int16, out b2 : Int16) is

b := a + a2;
b2 := a - a2

end function

C CODE
External C code should be written into .c files. A external block should be represented by a function in C
code, following some rules.

- The C function should have no side effect.

- The number of parameters of the C functions and the block are the same.

- Input and constant parameters are represented by C value parameters.
Output parameters are represented by C pointer parameters.

- Each C parameter should be typed using the equivalent C type. The following C types
GRL_BOOL, GRL_NAT, GRL_NAT16, GRL_NAT32, GRL_INT, GRL_INT16,
GRL_INT, GRL_CHAR, GRL_STRING are respectively equivalent to the following types

(C) INRIA Last change: 16/02/12 12



CADP MANUAL PAGES GRL( LOCAL )

bool, nat, nat16, nat32, int, int16, int32, char, string.
Note that user types are prefixed with the string "GRL_" and uppercase. For example the C type
GRL_TYPE_A is equivalent to the typetype_a.

- It is recommended to use conversion functions (e.g.,GRL_TYPE1_TO_TYPE2) at the begin-
ning and at the end of each C function to interface safely with the GRL code. Each function con-
verts the given value to the required type and checks that there is no overflow.

Example

The following code gives the block and its C implementation.

block EXT (in a : int16, in a2 : int16,
out b : int16, out b2 : int16) is

!c "EXT_C"
end block

void EXT_C (GRL_INT16 a, GRL_INT16 a2,
GRL_INT16 ∗ b, GRL_INT16 ∗ b2)

{
signed short arg_a = GRL_INT16_TO_SIGNED_SHORT (a);
signed short arg_a2 = GRL_INT16_TO_SIGNED_SHORT (a2);

signed int res1 = arg_a + arg_a2;
signed int res2 = arg_a - arg_a2;

∗ b = GRL_SIGNED_INT_TO_INT16 (res1);
∗ b2 = GRL_SIGNED_INT_TO_INT16 (res2);

}

AUTHORS
Eric Leo (version 2).
Eric Leo (version 1).
Eric Leo (initial draft, based on Fatma Jebali’s definition of GRL).

SEE ALSO
For a complete description of GRL, see thegrl2lnt reference manual. Otherwise see also the following
man pages:
grl.open(LOCAL), grl2lnt(LOCAL).

Additional information is available from the CADP Web page located at http://cadp.inria.fr

BUGS
Please report any bug to cadp@inria.fr

(C) INRIA Last change: 16/02/12 13


