
appeared in the Pro
. of WFLP 2001A Component-Based Approa
h toCon
urrent De
larative ProgrammingRa
hid E
hahed and Wendelin SerweLaboratoire LEIBNIZ � Institut IMAG, CNRS46, avenue Felix Viallet, F-38031 Grenoble, Fran
eTel: (+33) 4 76 57 48 91; Fax: (+33) 4 76 57 46 02Ra
hid.E
hahed�imag.fr Wendelin.Serwe�imag.frAbstra
t. In this paper we present a
omponent-based approa
h tomobile
on
urrent de
larative programming, where we model systems assets of intera
ting
omponents. We �rst give a de�nition of a
omponentand its di�erent
onstituents. Finally, we brie�y present a prototypeimplementation through an example.1 Introdu
tionClassi
al de
larative languages, i.e., fun
tional, logi
 and fun
tional-logi
 lan-guages, aim at providing high-level des
riptions of systems. These languageshave well-known ni
e features, su
h as abstra
tion, readability,
ompilation te
h-niques, proof methods et
. However, the
on
epts of fun
tions and predi
ates,underlying
lassi
al fun
tional-logi
 languages, are not su�
ient to
apture thewhole
omplexity of real-world appli
ations where intera
tivity,
on
urren
y anddistributivity are needed [29℄.On the other hand,
omponent models, as for instan
e [5, 11, 17℄, allow the
onstru
tion of
omplex (software) systems by assembling
omponents whi
hare
hara
terised by their interfa
e through whi
h they
an intera
t with theirenvironment, e.g., other
omponents or the user. While these models seem toallow short development times and high degrees of reuse, we are not aware ofany
ommon formal de�nition of a
omponent.In this paper we present a
omponent-based approa
h to mobile
on
urrentde
larative programming. We propose a de�nition of a
omponent, extendingthe framework of [9℄ to several intera
ting
omponents that may be written indi�erent languages.We model a system as a set of intera
ting
omponents, whi
h may be dis-tributed over a network or reside on a single
omputer. Ea
h
omponent will beidenti�ed by a
omponent-name s. Internally, a
omponent is organised as a setof pro
esses pi, i.e., a
on
urrent program, and a set of formulæ F , i.e., a tradi-tional de
larative program,
alled store. Hen
e, the exe
ution model of a system
an be pi
tured as in Fig. 1. Pro
esses (pi)
ommuni
ate by modifying the stores,i.e., by altering, in a non-monotoni
 way, the
urrent theories des
ribed by thestores, for example by simply rede�ning
onstants (e.g., assignment of a newvalue) or by adding or deleting formulæ in F .1

A Component-Based Approa
h to Con
urrent De
larative Programming
s1

s3
s2

p1

F

p4

p3 p2

p5

predicates
functions actions

P

processes

F A

component−name

I
import
export

translations

TFig. 1. Exe
ution Model of a System Fig. 2. A Programmer'sView of a ComponentAll the
hanges of the stores are the result of the exe
ution of a
tions. Roughlyspeaking, an a
tion {s � a} is a pair of an elementary a
tion a and a storename
s denoting the store F on whi
h the a
tion is to be exe
uted. Examples ofa
tions are {s �
 := v}, to
hange the de�nition of the (variable)
onstant
(whi
h is de�ned in the store named s) to the value v and {Display � (print'hello')} to print the string hello on the display Display.Orthogonally to the exe
ution of a
tions by pro
esses, the stores of the
om-ponents
an be used as usual, i.e., for goal solving or the evaluation of expressions(to normal-form). This shows that our framework is a
onservative extension ofde
larative programming, sin
e a
omponent without any pro
esses
orrespondsto a de
larative program in the
lassi
al sense.As we fo
us in this paper on the des
ription and de�nition of
omponents,i.e., their internal stru
ture, we make some simplifying assumptions about the
ommuni
ation between
omponents. For example, we suppose that the under-lying
ommuni
ation network is fault-free, that is to say, that all messages sentarrive eventually, in the order they have been sent and without dupli
ation.The rest of this paper is organised as follows. In the next se
tion we give thede�nition of a
omponent and illustrate its di�erent
onstituents. Then we brie�ypresent the prin
iples of a prototype implementation and give an example of aprogram. We
ompare our framework to some related work in se
tion 5. Finally,se
tion 6
on
ludes. For the rest of the paper, we assume the reader is familiarwith
lassi
al notions of rewriting [8, 16℄ as well as pro
ess algebra [3℄.2 ComponentsBesides the (initial) store or de
larative program and the de�nition of pro
esses, a
omponent will be
hara
terised, on the one hand, by the set of a
tions whi
h
anbe used for the modi�
ation of its store and, on the other hand, by its interfa
eto the environment. Thus, we get the following de�nition of a
omponent whi
his symbolized in Fig. 2.De�nition 1. A
omponent (identi�ed by a (
omponent-) or (store-) name) sis spe
i�ed by �ve di�erent (but interdependent) parts, namelyF the (initial) store or de
larative program,P the de�nitions of pro
esses, together with the initial pro
ess term,2

R. E
hahed & W. Serwe, WFLP 2001A the de�nitions of the a
tions that are exe
utable on the store F ,T the de�nitions of translations for
ommuni
ating values of the store to otherstores that are possibly written in a di�erent language andI the imported (respe
tively, exported) de�nitions from (respe
tively, to) theenvironment, i.e., other
omponents of the system.In addition to these �ve parts, a
omponent has also a mailbox, asso
iatedto it that is used for the intera
tion between
omponents. In fa
t, the a
tions tobe exe
uted on a remote
omponent are sent (via the
ommuni
ation networkwhi
h we assume to be fault-free) to its mailbox. It is then up to the remote
omponent to ensure the exe
ution of these a
tions. Thus this mailbox is handledby the implementation and thus transparent for the programmer. Noti
e thatany of the parts of a
omponent may be missing. For instan
e, a pure de
larativeprogram or
omponent will need neither pro
esses, nor intera
tion with other
omponents.In the following, we will detail the
ontents of the parts one by one, usingas a running example a system of multiple
ounters inspired from [14℄. Theappli
ation starts by
reating a window (as shown in Fig. 3) representing a
ounter whi
h
an be in
remented manually. In the
ounter window, a
opy-button and a link-button allow one to
reate new
ounter windows: the former
reates an independent
ounter (with an asso
iated new window) and initialisesit with the
urrent value of the
ounter being
opied and the latter
reates anew view (i.e., a new window) of the same
ounter. All views of a same
ountershould behave identi
ally, e.g., they in
rease the
ounter at the same time.This example illustrates some of the di�
ulties related to
on
urrent pro-
esses, su
h as dynami

reation of new
onstants (e.g.,
ounters, windows andthe asso
iated
hannels) or resour
es shared by several pro
esses. Obviously, weneed to extend a pure de
larative language to
ope with this intera
tive appli-
ation. This has also been noted in the literature on de
larative programming:�Some intera
tions appear most straightforward to express in an imperative style,and we should not hesitate to do so� [28℄. Our solution uses two
omponents, onefor the
ounters, with storename (or
omponent name)
ounters, and anotherfor the window system with storename X11. In this se
tion, we present (partsof) the de�nition of the
omponent
ounters.2.1 F � StoreAs mentioned in se
tion 1, the store of a
omponent is a
lassi
al de
larativeprogram. In this paper, we
onsider a simple fun
tional-logi
 language based on
onstru
tor-based
onditional term rewriting systems. For the examples, we willuse a syntax similar to Curry [6℄. Thus, a program is a pair of a signature and aset of (
onditional) rewrite rules. A signature is a pair of a set of sorts (in
luding
Bool, the sort of boolean values) and a family of sorted fun
tions . We distinguishbetween
onstru
tors, i.e., operations whi
h are used to
onstru
t data terms,and de�ned fun
tions or operations that operate on data terms. Predi
ates aremodeled as fun
tions yielding the prede�ned type Bool. A (
onditional) rewrite3

A Component-Based Approa
h to Con
urrent De
larative Programmingrule is a triple �lhs |
ond = rhs�, where lhs is a linear pattern, i.e., an op-eration rooted term in whi
h any variable o

urs at most on
e, rhs is a termand the (optional)
ondition
ond is a boolean valued term. We require that thefree variables of rhs and
ond are in
luded in the free variables of lhs. The op-erational semanti
s of programs is de�ned by the evaluation strategy of weaklyneeded narrowing [1℄.Considering our example, we model a
ounter as a pair of its
urrent valueand a list of windows asso
iated to it. Thus the store for the
ounters de�nesa data type of
ounters, i.e., a pair of the
urrent value and a list of identi�ersof asso
iated windows, represented as strings. Additionally, we de�ne a datatype of messages
orresponding to the messages sent when a user
li
ks on thebuttons of a
ounter window1. Sin
e
onstru
tors are not de�ned by rules, theyare de
lared along with the de
laration of the
orresponding data type.data msg = in
r | link |
opy | quit.data
ounter =
nt natural [string℄.value ::
ounter -> naturalvalue (
nt v a l) = vwindows ::
ounter -> [string℄windows (
nt v a l) = l2.2 A � A
tionsThe a
tions that
an be used (by the pro
esses or the environment) to modifythe store of a
omponent are de�ned in this part, using a spe
ial language,
alleda
tion des
ription language (ADL) [10℄. A natural
andidate for an ADL is thelanguage in whi
h the de
larative language is implemented, sin
e an abstra
tdata type (ADT) representing programs already exists. We
all this ADT ofprograms store. In our implementation of the de
larative language in o
aml,an (elementary) a
tion
an be de�ned as an o
aml-fun
tion of the type:type elementary_a
tion_
ode = parameter list -> store -> storeDue to spa
e limitations, we
annot present store, the ADT of programs,
ompletely, nor
an we give detailed examples of de�nitions of a
tions. Theinterested reader may
onsult [10℄ for more details. Some
lassi
al a
tions arefor instan
e tell, del, :=, enq and deq.Informally, the a
tion (tell (lhs = rhs)) adds the rule lhs↓ = rhs↓ (here,term↓ stands for the normal-form of the term term) to the store, whereas (delpattern) removes all rules whose left-hand side mat
h pattern from the store.In the sequel we will abbreviate (tell (term = true)) for boolean terms to(tell term). Certainly the most
ommon elementary a
tion is assignment
:= v, whi
h takes two parameters: the name
 of a
onstant (traditionally
on-sidered as a variable) and a (new) value v. Noti
e the need for introdu
ing anew parameterised type Name(t) to denote the type of the name of a symbol of1 We suppose prede�ned the types strings, natural numbers and polymorphi
 listswith elements of type t, written as [t℄.4

R. E
hahed & W. Serwe, WFLP 2001type t. If
 is of type Name(t), we denote by !
 the asso
iated symbol of typet. Exe
uting (enq q m) puts the message m into the queue named q, and theexe
ution of (deq q) removes the head of the queue named q.Another important elementary a
tion handles the
reation of new symbols:(new s t) introdu
es two new symbols in the store, namely s of type Name(t)and !s of type t. s stands for the name of (or a referen
e to) the symbol !s. Thiselementary a
tion together with the parameterised type Name(t) allows mod-eling mobility in the same way as the π-
al
ulus [18℄. In the multiple
ountersexample, new allows the
reation of new
ounters and the asso
iated
ommuni-
ation
hannels with the window-system.2.3 I � Imports and ExportsWe distinguish di�erent levels of imports (respe
tively, exports). For instan
e,the de
larative program des
ribing a store may itself be a
olle
tion of �les ormodules. This is to be distinguished from the import (respe
tively, export) ofde
larations of a store or de
larations of a
tions from one
omponent to another.The former is a fa
ility to stru
ture the program forming a store, whereas thelatter is ne
essary for intera
tion between
omponents, sin
e a
omponent mustbe able, for example, to
onstru
t the parameters of an a
tion to be exe
uted ona remote store.Intera
tion between
omponents in our framework is based upon the exe
u-tion of a
tion on the stores of remote
omponents. Hen
e, a
omponent needsto import the a
tions whi
h
an be exe
uted on the stores of other
omponents.Sin
e these a
tions take parameters that are related to the store of the remote
omponent, the asso
iated de
larations of the store, e.g., sorts, fun
tions andpredi
ates, have to be imported. To avoid name-
lashes, the �names� of the de
-larations
ould be pre�xed with the name of the
omponent they are de�ned in,similar to the pre�xing of the module name in o
aml for example.The a
tions imported from the
omponent X11 in
harge of the graphi
aluser interfa
e (GUI) for the example of the multiple
ounters are spe
i�ed asfollows:COMPONENT X11a
tion new_window ::int -> Name(
ounter) -> storename -> Name([msg℄) -> store -> store.a
tion refresh_windows :: int -> [window℄ -> store -> store.ENDThe a
tion new_window takes the name of a
ounter and its
urrent value, thename of a message-queue (to whi
h the messages
orresponding to
li
ks on thebuttons in a window should be sent) and the storename of the store of the
oun-ters and has as e�e
t the
reation of a new window for the
ounter, displayingits
urrent value. refresh_windows takes the
urrent value of a
ounter and alist of windows (asso
iated to the
onsidered
ounter) and refreshes the valuedisplayed in all the windows.The exported de
larations of a
omponent are those whi
h
an be used byother
omponents. Obviously they
onstitute a subset of the de
larations of the
omponent. 5

A Component-Based Approa
h to Con
urrent De
larative Programming2.4 T � TranslationsConsider a system of several
omponents the stores of whi
h are written indi�erent de
larative languages. When the pro
esses of su
h a system are tointera
t, the values sent from one (store) to another (store) have to be translated,i.e., values of one language have to be transformed into values of the other. Herewe mean by values ground
onstru
tor terms, i.e., terms in normal-form. It seemsnatural to require a translation to be a total re
ursive fun
tion, sin
e to any valuethat is to be
ommuni
ated has to
orrespond a unique translation whi
h shouldbe
omputable.Note that these translation fun
tions
annot be part of one of the stores in-volved, sin
e they de�ne relations between obje
ts in both of the languages. Infa
t, they
an be seen as fun
tions in a �union-language� that
ombines bothstores, i.e., two programs written in di�erent languages. Furthermore, a trans-lation may need to use the operational semanti
s of the de
larative languages,in order to redu
e terms to normal-forms before and after the translation, ifne
essary.We suggest to spe
ify translations (from language L1 to language L2
2) viaa
onstru
tor-based term rewriting system, and to separate a translation intothree steps. First, the term to be translated is redu
ed to normal-form (using theoperational semanti
s of language L1). Then a
orresponding expression is gen-erated, by appli
ation of a spe
ial translation fun
tion. Finally the expression isredu
ed to normal-form (using the operational semanti
s of language L2) yield-ing the translation of the original term. The motivation of this separation is tolet a programmer just spe
ify the translation fun
tions, and put the handling ofthe other phases into the implementation. Thus a translation fun
tion asso
iatesto a ground term t in normal-form a term t' whose normal-form
orrespondsto the translation of the term t.A simplisti
 translation of the type of natural numbers whi
h
an be de�nedas data natural = z | s natural to the int's of o
aml is(int_of_natural z) = 0(int_of_natural (s x)) = ((+) (int_of_natural x) 1)Another possibility for intera
tion between
omponents written in di�erentlanguages is to suppose that both
omponents understand a
ommon language,and to provide built-in translations for the elements of this third language. Ex-amples for this approa
h are, e.g., the Interfa
e De�nition Language (IDL) ofthe Common Obje
t Request Broker Ar
hite
ture (
orba) [20℄ or the interfa
ebetween o
aml and C.2.5 P � Pro
essesIn our framework, pro
esses are de�ned in the style of a pro
ess algebra (see,e.g., [3℄). In this se
tion, we restri
t ourselves to the syntax of the
urrent pro-totype implementation whi
h we will present in se
tion 3. For more details onthe de�nition of pro
esses, we refer the interested reader to [9℄.2 Noti
e that when L1 and L2 are the same language, a translation
an be used tobridge between di�erent (internal) in the two
omponents involved.6

R. E
hahed & W. Serwe, WFLP 2001A pro
ess term p is a well-typed expression de�ned by the following grammar:
p ::= success (q t1 ... tn) p; p p || pThe basi
 pro
ess terms of our framework are
alls to pro
esses (q t1 ... tn).The pro
ess success represents the pro
ess whi
h terminates su

essfully. Pro-
ess terms
an be
omposed sequentially (;) or in parallel (||). Pro
esses arede�ned by a set of bodies ordered by priority. Ea
h body
onsists of a guarded a
-tion and a pro
ess term. A guarded a
tion [g => {s1 � a1}; ...; {sn � an}℄is
omposed of a guard g, i.e., a
onjun
tion of atoms or boolean expression, anda sequen
e of pairs {si � ai} of a storename si and an elementary a
tion ai tobe exe
uted on the store si. The exe
ution of a guarded a
tion is lo
ally atomi
,i.e., the
he
k of validity of the guard together with the sequen
e of a
tions forthe lo
al store are to be exe
uted atomi
ally, and all (sub-)sequen
es of a
tionsfor a given (remote) storename are to be exe
uted atomi
ally when they arere
eived at the remote store.Ea
h
ounter window is
ontrolled by a pro
ess
nt_
trl. It has two param-eters: the name
 of the asso
iated
ounter and the name e of the event-queueto whi
h all the events o

urring in the window are sent. Thus
nt_
trl takesthe events o

urring in the window it
ontrols one by one from the queue e andrea
ts a

ordingly. The de�nition of
nt_
trl is as follows:pro
ess
nt_
trl
 e :-[(head !e) == in
r =>{
ounters � (deq e)};{
ounters �
 := (
nt ((value !
) + 1) (windows !
))};{X11 � (refresh_windows (int_of_natural (value !
))(list_of_winlist (windows !
))})℄;(
nt_
trl
 e),[(head !e) == link =>{
ounters � (deq e)};{
ounters � (new e1 [msg℄)}; {
ounters � e1 := nil};{X11 � (new_window (int_of_natural (value !
))

ounters e1)}℄;(
nt_
trl
 e)[(head !e) ==
opy =>{
ounters � (deq e)};{
ounters � (new
2
ounter)}; {
ounters �
2 := (
nt (value !
) nil)};{
ounters � (new e2 [msg℄)}; {
ounters � e2 := nil};{X11 � (new_window (int_of_natural (value !
2))
2
ounters e2)}℄;(
nt_
trl
 e)endFor instan
e,
nt_
trl will rea
t to a
li
k on the
opy-button by
reatinga new
ounter
2 and a new event-queue e2, initialising these new
onstantsappropriately,
reating a window for the new
ounter and laun
hing a
on
urrentpro
ess handling the new window for the new
ounter
2. Noti
e that not allparameters of the a
tions exe
uted on the store X11 have to be translated. Infa
t, we suppose that all
omponents share a
ommon �pro
ess language�. Forinstan
e, we do not need to translate storenames.7

A Component-Based Approa
h to Con
urrent De
larative Programming
input
output

5. process defs
initial process

4. translations

3. imported defs
exported defs

2. action defs

1. function defs
initial store

pocesses
store/functions
actions

global analyses

"compiler"

program

"abstract forest"
"interpreter"Fig. 3. A Counter Window Fig. 4. Global Vision of the InterpretationPro
ess of a Component in SabirBesides the de�nitions of the pro
ess abstra
tions, this part
ontains also theinitial pro
ess term, i.e., the pro
ess whi
h will be exe
uted when the programis started. Note that the initial pro
ess term may be a
all to the spe
ial pro
ess

success, whi
h means that no pro
esses are to be exe
uted. In the example ofthe
ounters, the initial pro
ess term is a
all to a (parameterless) pro
ess start,whi
h
reates a new
ounter, a new message queue and a
orresponding window,and then starts a pro
ess for
ontrolling the
ounter-window.3 A Prototype ImplementationThe general s
heme of the interpretation pro
ess for a single
omponent in ourprototype, whi
h we
all Sabir, is shown in Fig. 4. For ea
h
omponent in thesystem, an interpreter has to be started separately (where the addresses of themailboxes of the di�erent
omponent are mutually known). In this paper we givejust a brief overview of the ar
hite
ture of the prototype implementation. For ades
ription of the operational semanti
s of a
omponent we refer the reader to[9℄. In Sabir, a
omponent is des
ribed by a set of �ve separate �les
orrespond-ing to the di�erent parts. The names of the �les are obtained by adding di�erentsu�xes to the storename of the
omponent. These �les are pro
essed by the�
ompiler�, in the order indi
ated by the numbers in Fig. 4. Using all this in-formation, the �
ompiler� produ
es an �abstra
t forest� (or parse-tree), i.e., aninternal, intermediate representation of the
omponent. Finally, the �interpreter�exe
utes the
omponent using this internal representation, that is to say, a han-dler for the mail-box is set up, the
onne
tions to the other
omponents areestablished, the exe
ution of the initial pro
ess is started and two (intera
tive)interpreters are laun
hed. The �rst is an interpreter of the de
larative languagefor the store and the se
ond is an interpreter for the intera
tive exe
ution ofa
tions on the store. The former
an be used for intera
tive use of the theorydes
ribed by the store, and the se
ond allows a user to update the theory (orprogram) remotely, similar to the primitives for ex
hanging the
ode of modulesin Erlang [2℄.To simplify the implementation, all de
larations of stores are
onsidered asimported (respe
tively, exported) in Sabir (we just have to read the �le de�n-8

R. E
hahed & W. Serwe, WFLP 2001ing the initial program of the remote
omponent). However, the set of a
tionsexe
utable on the remote store have to be mentioned expli
itly.To allow for a more e�
ient exe
ution of a
tions during interpretation ofa
omponent, a
tions are used in form of
ompiled o
aml-fun
tions that are(dynami
ally) linked to the interpreter. Thus, before the interpretation of a
omponent, the de�nitions of a
tions have to be
ompiled using the standardo
aml-
ompiler and a library
ontaining the ne
essary de�nitions of Sabir.4 Example of a Lift ControllerConsider a building with m �oors in whi
h a system of n lifts is installed. Onevery �oor there is a button for requesting a lift, and ea
h lift is equipped withbuttons for ordering the lift to stop at a given level. Suppose we are to model thissystem, i.e.,
ontrol the lifts, ensuring that all orders and requests are eventuallyhandled. For simpli
ity, we do not
onsider the
apa
ity of the lifts, assumingthat it is always su�
ient for the requests to handle.Roughly speaking we will model the lifts as independent pro
esses that sharethe information of requests
oming from the �oors. Hen
e, our model does notdepend on the numbers of �oors and lifts, and we
an, for instan
e, easily add anauxiliary lift. This feature might
ome in handy when we want to use the modelfor the evaluation of the number of lifts a
tually needed for the building. In thefollowing we give some samples of the des
ription of the
omponent modelingthe lifts. Due to spa
e limitations, we do not show the
omplete
omponent, butgive only a sample of the most interesting parts.As in the
ounters example, we suppose that we have a se
ond
omponent,namely X11, whi
h is used to display a GUI for the lifts. The a
tions exe
utableon the
omponent X11 are the following:a
tion move_to_floor :: Name(lift) -> int -> store -> store.a
tion open_doors :: Name(lift) -> int -> store -> store.a
tion
lose_doors :: Name(lift) -> int -> store -> store.Their �rst parameter denotes the (name of the) lift, and the se
ond the
urrentlevel of this lift. We also use the translation int_of_natural of the
ounters,presented in se
tion 2.4. Figure 5 shows a sample of the store for the lifts andFig. 6 gives the de�nition of the lift-
ontrol pro
ess lift_
trl.The intuitive idea of our model is as follows. We distinguish between therequests issued by the buttons on the �oors whi
h
an be handled by any ofthe lifts and orders whi
h have to be handled by a given lift. orders are eitherissued by the buttons inside the lift or requests that have been assigned to thelift. In order to optimise the assignment of requests to lifts, we will try to makethe lifts move as long as possible in one dire
tion, i.e., either up or down. Thus we
an model a lift as a triple (L dir pos orders)
ontaining its
urrent level orposition (represented by a natural), its
urrent dire
tion and a list of ordersto handle, represented as a list of �oors-numbers. Orders from the buttons insidea lift are dire
tly put in the list of orders of the lift, while requests on the �oorsare put into a list requests shared by all lifts. A pro
ess
ontrolling the lift9

A Component-Based Approa
h to Con
urrent De
larative Programmingdata dire
tion = up | down.data lift = L dire
tion natural [natural℄.order_to_handle (L d p (
ons x xs)) = (member p (
ons x xs))order_to_handle (L d p nil) = (member p requests)rm_request p nil = nilrm_request p (
ons x xs) | p == x = (rm_request p xs)rm_request p (
ons x xs) | p < x = (
ons p (rm_request p xs))rm_request p (
ons x xs) | x < p = (
ons p (rm_request p xs))rm_order (L d p r) = (L d p (rm_request p r))request_in_dir (L up p o) | (nearest p (head requests)) =p <= (head requests)request_in_dir (L down p o) | (nearest p (head requests)) =(head requests) <= pnearest p r = (all_above (dist p r) (get_dists r lifts_pos))all_above x nil = trueall_above x (
ons y ys) | x <= y = (all_above x ys)get_dists x nil = nilget_dists x (
ons y ys) = (
ons (dist x y) (get_dists x ys))dist z z = zdist z (s x) = (s x)dist (s x) z = (s x)dist (s x) (s y) = (dist x y)next x up | x < top = (s x)next (s x) down = xnext_floor (L d p r) = (L d (next p d) r)Fig. 5. Sample of the store for the lifts exampleln moves a request from the list requests into the list of orders of ln, if therequest is in the
urrent dire
tion of lnand if ln is among the lifts that arenearest to the request. Whenever a lift handles an order all requests for thesame �oor are handled as well.A de�nition for the pro
ess lift_
trl
ontrolling a lift named ln is shownin Fig. 6 (where we denote by s� the name of a symbol s). The pro
ess is de�nedby four �rules�. The guard of the �rst rule, i.e., (order_to_handle !ln),
he
ksif there is an order (or request) to handle on the
urrent �oor (of the lift ln).Handling an order (and/or request) means to remove it from the lists of orders(and/or requests). The third a
tion displays the handling in the GUI by exe
ut-ing the a
tion open_doors on the
omponent X11. After exe
uting the a
tions,the pro
esses
alls the spe
ial pro
ess wait whi
h waits a
ertain time. Finallythe pro
ess handle is
alled,
losing the doors and reentering the handling loop.The se
ond rule of the pro
ess lift_
trl des
ribes the transformation of the�rst request of the list requests into an order of the lift. The third rule movesthe lift, if it has pending orders in its
urrent dire
tion. Finally, the last rule10

R. E
hahed & W. Serwe, WFLP 2001pro
ess lift_
trl ln :-[(order_to_handle !ln) =>{lifts � ln := (rm_order !ln)};{lifts � requests� := (rm_request (pos !ln) requests)};{X11 � (open_doors ln (int_of_natural (pos !ln)))}℄;wait; (handle ln),[(request_in_dir !ln) =>{lifts � ln := (add_lift_requests (head requests) !ln)};{lifts � requests� := (tail requests)}℄;(lift_
trl ln),[(order_in_dir !ln) =>{lifts � lifts_pos� := (rm_first (pos !ln) lifts_pos)};{lifts � ln := (next_floor !ln)};{lifts � lifts_pos� := (pos !ln) :: lifts_pos};{X11 � (move_to_floor ln (int_of_natural (pos !ln)))}℄;(lift_
trl ln),[(further_requests !ln) => {lifts � ln := (opposite !ln)};(lift_
trl ln)endpro
ess handle ln :-[true => {X11 � (
lose_doors ln (int_of_natural (pos !ln)))}℄;(lift_
trl ln)end Fig. 6. Pro
esses for the lifts example
hanges the dire
tion of the lift, if it has orders in the opposite dire
tion. If noneof the guards applies, the lift just waits, sin
e there are no orders or requests forit to handle.Some of the fun
tions used for the des
ription of the pro
ess are shown inthe sample of the store in Fig. 5. A

essing the �elds or
onstituents of a lift ispossible by means of the fun
tions dir, pos and orders. Informally, there is anorder (or request) to handle for a lift, whenever the
urrent position of the liftis a member of the list of orders of the lift or of the list of global requests. Thede�nition of order_to_handle re�e
ts this intuition. The fun
tion rm_request(respe
tively, rm_first) takes a request, i.e., natural number n, and a list of nat-urals nat_list and returns a list of naturals whi
h is obtained from nat_listlby removing all (respe
tively, the �rst) o

urren
es of n. rm_order removes the
urrent position from the list of orders of a lift. All these removal fun
tionsbehave as the identity fun
tion when the list does not
ontain the position tobe removed. When assigning requests to lifts we
hoose a lift (at position p)whi
h is among the nearest ones to the request r using lifts_pos, a list of the
urrent positions of all lifts. Noti
e that this list is also modi�ed when moving alift. The next �oor of a lift is des
ribed by the fun
tion next_floor, where topdenotes the top �oor of the building. 11

A Component-Based Approa
h to Con
urrent De
larative ProgrammingUsing a similar programming style as in the example of the multiple
ounters,we
an easily extend our program to allow the dynami

reation of lifts. Whilethis feature may seem not very realisti
, it might be useful when the program isto be used as a simulation to determine the number of lifts a
tually needed in abuilding. For this purpose, we have simply to add a pro
ess that adds requestsa

ording to a sto
hasti
 distribution, and to observe the evolution of the numberof outstanding requests.5 Related WorkMost existing
on
urrent extensions of de
larative languages, e.g., [2, 7, 15, 21,23�25, 27℄, do not distinguish
learly between the di�erent
onstituents of a
om-ponent. In these languages, pro
esses are rather en
oded in terms of the
on
eptsunderlying the de
larative language, a
tions are �built-in�, and intera
tion andtranslations are hidden or intertwined with the store. As an example,
onsiderthe pro
ess s
ripts of CML [23℄ or the behaviour-expressions of Fa
ile [27℄, whi
hallow fun
tions and pro
esses to
all one another mutually, making di�
ult toreason about these two
on
epts separately. Thus these extant approa
hes seemto be tailored to a spe
i�
 language hindering a straightforward extension to ageneral framework.Similar to
on
urrent extensions of de
larative languages, where pro
esseshave to be en
oded as, e.g., fun
tions or predi
ates, programming languagesuniquely based on pro
ess
al
uli en
ode the notions of fun
tions and predi
atesvia pro
esses [12, 22℄.Coordination languages, e.g., [4, 13, 19℄, model the intera
tion between pro-
esses, most of them following the model of Linda [13℄, where pro
esses
ommu-ni
ate via a (hierar
hy of) shared tuple spa
e, using several primitive a
tions,namely primitives for adding, reading and removing tuples. Our approa
h is moregeneral sin
e we avoid the need to en
ode
omplex
ommuni
ation stru
tures byusing use (de
larative) programs instead of simple tuples spa
es. Furthermore,in our framework the set of a
tion
an be de�ned by the programmer, whereasthe set of Linda-operations is �xed.The
urrent popular
omponent models, as for instan
e the (Distributed)Component Obje
t Model ((D)COM) [17℄ or JavaBeans [11℄, fo
us mainly onthe
omposition of systems using
omponents as basi
 building blo
ks of
ompo-nents and systems. These approa
hes regard
omponents as �bla
k-boxes�, thestru
ture of whi
h is left unspe
i�ed, sin
e the essential properties for a user ofa
omponent is its interfa
e [26℄. This implies that, in order to build any system,a set of prede�ned or built-in
omponents has to be provided, for instan
e inform of a
omponent library. The only de�nition of a
omponent we are awareof is given in [5℄, where a
omponent is
hara
terised by a fun
tion mappinginput streams to output streams. Hen
e this de�nition also
onsiders merely theinput/output behaviour and negle
ts the internal stru
ture of a
omponent.In
ontrary, we have given in this paper a des
ription of
omponents in-
luding their stru
ture (and semanti
s) in the domain of
on
urrent de
larative12

R. E
hahed & W. Serwe, WFLP 2001programming. Thus our approa
h allows the de�nition of the atomi
 built-in
omponents ne
essary for the approa
hes mentioned before. This
ombinationof the
omposition prin
iples, as in the
urrent
omponent models, with thede�nition of
omponents, as in our approa
h, seems to be a promising �eld ofresear
h.6 Con
lusion and Future WorkIn this paper we have presented a
omponent-based approa
h to
on
urrentde
larative programming. In this framework,
omponents are de�ned by meansof �ve di�erent parts and may be written in di�erent languages. Intera
tion isbased on the modi�
ation of de
larative programs using user-de�nable a
tions.We have illustrated the prin
iples by a short presentation of a prototypi
al im-plementation of an interpreter and some examples of programs.Extension of our approa
h to imperative stores is possible. However, thesemanti
s of the framework risks to be
ome hard to understand if the imperativelanguage is used in an unrestri
ted manner, e.g., side-e�e
ts (assignments ofglobal �variables�) during the evaluation of a guard.Currently, we plan to several further additions to the framework and theirimplementation, namely the introdu
tion of notions related to time and the
ombination with dedi
ated
onstraint solving algorithms.Referen
es1. S. Antoy, R. E
hahed, and M. Hanus. Parallel evaluation strategies for fun
tionallogi
 languages. In Pro
. of ICLP '97, pp. 138�152, 1997. The MIT Press.2. J. Armstrong, R. Virding, and M. Williams. Con
urrent Programming in ER-LANG. Prenti
e Hall, 1993.3. J. C. M. Baeten and W. P. Weijland. Pro
ess Algebra. Number 18 in CambridgeTra
ts in Theoreti
al Computer S
ien
e. Cambridge University Press, 1990.4. J.-P. Banâtre and D. L. Métayer. Programming by multiset transformation.CACM, 36(1):98�111, Jan. 1993.5. M. Broy. A uniform mathemati
al
on
ept of a
omponent. Software: Con
eptsand Tools, 19(1):57�59, 1998.6. Curry: An integrated fun
tional logi
 language. available athttp://www.informatik.uni-kiel.de/~mh/
urry/report.html.7. P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard, Referen
e Man-ual. Springer, 1996.8. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, ed-itor, Handbook of Theoreti
al Computer S
ien
e, Volume B: Formal Models andSemanti
s,
hap. 6, pp. 243�320. Elsevier, Amsterdam, 1990.9. R. E
hahed and W. Serwe. Combining mobile pro
esses and de
larative program-ming. In J. Lloyd et al., editors, Pro
. of CL 2000, vol. 1861 of LNAI, pp. 300�314,July 2000. Springer.10. R. E
hahed and W. Serwe. Integrating a
tion de�nitions into
on
urrent de
lara-tive programming. In Pro
. of WFLP 2001, Kiel, Sept. 2001. This volume.13

A Component-Based Approa
h to Con
urrent De
larative Programming11. R. Englander. Developing Java Beans. The Java Series. O'Reilly & Asso
iates,In
., June 1997.12. C. Fournet, F. L. Fessant, L. Maranget, and A. S
hmitt. The JoCaml language(beta release): Do
umentation and User's Manual. INRIA, Jan. 2001. available athttp://pauilla
.inria.fr/jo
aml/htmlman/index.html.13. D. Gelernter. Generative
ommuni
ation in Linda. ACM TOPLAS, 7(1):80�112,Jan. 1985.14. GUI Fest '95 Post-Challenge: Multiple
ounters. available athttp://www.
s.
halmers.se/~magnus/GuiFest-95/, July 1995. organized byS. Peyton Jones and P. Gray as part of the Glasgow Resear
h Festival.15. M. Hanus. Distributed programming in a multi-paradigm de
larative language. InG. Nadathur, editor, Pro
. of PPDP '99, vol. 1702 of LNCS, pp. 188�205, 1999.Springer.16. J. W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and Maibaum,editors, Handbook of Logi
 in Computer S
ien
e, Vol. II, pp. 1�112. Oxford Uni-versity Press, 1992.17. Mi
rosoft Corporation and Digital Equipment Corporation. The Component Obje
tModel Spe
i�
ation, O
t. 24, 1995. version 0.9, available athttp://www.mi
rosoft.
om/
om/resour
es/
omdo
s.asp.18. R. Milner. Communi
ating and Mobile Systems: the Pi-Cal
ulus. Cambridge Uni-versity Press, June 1999.19. R. D. Ni
ola, G. L. Ferrari, and R. Pugliese. KLAIM: A kernel language for agentsintera
tion and mobility. IEEE Transa
tions on Software Engineering, 24(5):315�330, May 1998.20. Obje
t Management Group. The Common Obje
t Request Broker: Ar
hite
tureand Spe
i�
ation, revision 2.4.2 edition, Feb. 2001. available athttp://www.omg.org/
gi-bin/do
?formal/01-02-33.21. S. L. Peyton Jones, A. D. Gordon, and S. Finne. Con
urrent Haskell. In Pro
. ofPOPL '96, pp. 295�308, St Petersburg Bea
h, Florida, Jan. 1996.22. B. C. Pier
e and D. N. Turner. Pi
t: A programming language based on the pi-
al
ulus. Te
hni
al Report 476, CSCI, Indiana University, Mar. 1997. Dedi
atedto Robin Milner on the o

asion of his 60
th birthday.23. J. H. Reppy. Con
urrent Programming in ML. Cambridge University Press, 1999.24. V. A. Saraswat. Con
urrent Constraint Programming. The MIT Press, 1993.25. G. Smolka. The Oz programming model. In J. van Leeuwen, editor, ComputerS
ien
e Today: Re
ent Trends and Developments, vol. 1000 of LNCS, pp. 324�343.Springer, 1995.26. C. A. Szyperski. Emerging
omponent software te
hnologies�a strategi

ompari-son. Software: Con
epts and Tools, 19(1):2�10, June 1998.27. B. Thomsen, L. Leth, and T.-M. Kuo. FACILE � from toy to tool. In F. Nielson,editor, ML with Con
urren
y: Design, Analysis, Implementation and Appli
ation,Monographs in Computer S
ien
e,
hap. 5, pp. 97�144. Springer, 1996.28. P. Wadler. How to de
lare an imperative. ACM Computing Surveys, 29(3):240�263,Sept. 1997.29. P. Wegner. Intera
tive foundations of
omputing. Theoreti
al Computer S
ien
e,192(2):315�351, Feb. 1998.

14

