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Abstract. In this paper we present a component-based approach to
mobile concurrent declarative programming, where we model systems as
sets of interacting components. We first give a definition of a component
and its different constituents. Finally, we briefly present a prototype
implementation through an example.

1 Introduction

Classical declarative languages, i.e., functional, logic and functional-logic lan-
guages, aim at providing high-level descriptions of systems. These languages
have well-known nice features, such as abstraction, readability, compilation tech-
niques, proof methods etc. However, the concepts of functions and predicates,
underlying classical functional-logic languages, are not sufficient to capture the
whole complexity of real-world applications where interactivity, concurrency and
distributivity are needed [29].

On the other hand, component models, as for instance [5,11,17], allow the
construction of complex (software) systems by assembling components which
are characterised by their interface through which they can interact with their
environment, e.g., other components or the user. While these models seem to
allow short development times and high degrees of reuse, we are not aware of
any common formal definition of a component.

In this paper we present a component-based approach to mobile concurrent
declarative programming. We propose a definition of a component, extending
the framework of [9] to several interacting components that may be written in
different languages.

We model a system as a set of interacting components, which may be dis-
tributed over a network or reside on a single computer. Each component will be
identified by a component-name s. Internally, a component is organised as a set
of processes p;, i.e., a concurrent program, and a set of formule F, i.e., a tradi-
tional declarative program, called store. Hence, the execution model of a system
can be pictured as in Fig. 1. Processes (p;) communicate by modifying the stores,
i.e., by altering, in a non-monotonic way, the current theories described by the
stores, for example by simply redefining constants (e.g., assignment of a new
value) or by adding or deleting formule in F.
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View of a Component

All the changes of the stores are the result of the execution of actions. Roughly
speaking, an action {s @ a} is a pair of an elementary action a and a storename
s denoting the store F' on which the action is to be executed. Examples of
actions are {s @ ¢ := v}, to change the definition of the (variable) constant c
(which is defined in the store named s) to the value v and {Display @ (print
’hello’)} to print the string hello on the display Display.

Orthogonally to the execution of actions by processes, the stores of the com-
ponents can be used as usual, i.e., for goal solving or the evaluation of expressions
(to normal-form). This shows that our framework is a conservative extension of
declarative programming, since a component without any processes corresponds
to a declarative program in the classical sense.

As we focus in this paper on the description and definition of components,
i.e., their internal structure, we make some simplifying assumptions about the
communication between components. For example, we suppose that the under-
lying communication network is fault-free, that is to say, that all messages sent
arrive eventually, in the order they have been sent and without duplication.

The rest of this paper is organised as follows. In the next section we give the
definition of a component and illustrate its different constituents. Then we briefly
present, the principles of a prototype implementation and give an example of a
program. We compare our framework to some related work in section 5. Finally,
section 6 concludes. For the rest of the paper, we assume the reader is familiar
with classical notions of rewriting [8, 16] as well as process algebra [3].

2 Components

Besides the (initial) store or declarative program and the definition of processes, a
component will be characterised, on the one hand, by the set of actions which can
be used for the modification of its store and, on the other hand, by its interface
to the environment. Thus, we get the following definition of a component which
is symbolized in Fig. 2.

Definition 1. A component (identified by a (component-) or (store-) name) s
is specified by five different (but interdependent) parts, namely

F the (initial) store or declarative program,
P the definitions of processes, together with the initial process term,
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the definitions of the actions that are executable on the store F,

the definitions of translations for communicating values of the store to other
stores that are possibly written in a different language and

I the imported (respectively, exported) definitions from (respectively, to) the
environment, i.e., other components of the system.

N

In addition to these five parts, a component has also a mailboz, associated
to it that is used for the interaction between components. In fact, the actions to
be executed on a remote component are sent (via the communication network
which we assume to be fault-free) to its mailbox. It is then up to the remote
component to ensure the execution of these actions. Thus this mailbox is handled
by the implementation and thus transparent for the programmer. Notice that
any of the parts of a component may be missing. For instance, a pure declarative
program or component will need neither processes, nor interaction with other
components.

In the following, we will detail the contents of the parts one by one, using
as a running example a system of multiple counters inspired from [14]. The
application starts by creating a window (as shown in Fig. 3) representing a
counter which can be incremented manually. In the counter window, a copy-
button and a link-button allow one to create new counter windows: the former
creates an independent counter (with an associated new window) and initialises
it with the current value of the counter being copied and the latter creates a
new view (i.e., a new window) of the same counter. All views of a same counter
should behave identically, e.g., they increase the counter at the same time.

This example illustrates some of the difficulties related to concurrent pro-
cesses, such as dynamic creation of new constants (e.g., counters, windows and
the associated channels) or resources shared by several processes. Obviously, we
need to extend a pure declarative language to cope with this interactive appli-
cation. This has also been noted in the literature on declarative programming:
“Some interactions appear most straightforward to express in an imperative style,
and we should not hesitate to do so” [28]. Our solution uses two components, one
for the counters, with storename (or component name) counters, and another
for the window system with storename X11. In this section, we present (parts
of) the definition of the component counters.

2.1 F — Store

As mentioned in section 1, the store of a component is a classical declarative
program. In this paper, we consider a simple functional-logic language based on
constructor-based conditional term rewriting systems. For the examples, we will
use a syntax similar to Curry [6]. Thus, a program is a pair of a signature and a
set of (conditional) rewrite rules. A signature is a pair of a set of sorts (including
Bool, the sort of boolean values) and a family of sorted functions. We distinguish
between constructors, i.e., operations which are used to construct data terms,
and defined functions or operations that operate on data terms. Predicates are
modeled as functions yielding the predefined type Bool. A (conditional) rewrite
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rule is a triple “lhs | cond = rhs”, where lhs is a linear pattern, i.e., an op-
eration rooted term in which any variable occurs at most once, rhs is a term
and the (optional) condition cond is a boolean valued term. We require that the
free variables of rhs and cond are included in the free variables of 1hs. The op-
erational semantics of programs is defined by the evaluation strategy of weakly
needed narrowing [1].

Considering our example, we model a counter as a pair of its current value
and a list of windows associated to it. Thus the store for the counters defines
a data type of counters, i.e., a pair of the current value and a list of identifiers
of associated windows, represented as strings. Additionally, we define a data
type of messages corresponding to the messages sent when a user clicks on the
buttons of a counter window'. Since constructors are not defined by rules, they
are declared along with the declaration of the corresponding data type.

data msg incr | link | copy | quit.
data counter = cnt natural [string].

value :: counter -> natural
value (cnt val) =v

windows :: counter -> [string]
windows (cnt va 1) =1

2.2 A — Actions

The actions that can be used (by the processes or the environment) to modify
the store of a component are defined in this part, using a special language, called
action description language (ADL) [10]. A natural candidate for an ADL is the
language in which the declarative language is implemented, since an abstract
data type (ADT) representing programs already exists. We call this ADT of
programs store. In our implementation of the declarative language in ocaml,
an (elementary) action can be defined as an ocaml-function of the type:

type elementary_action_code = parameter list -> store -> store

Due to space limitations, we cannot present store, the ADT of programs,
completely, nor can we give detailed examples of definitions of actions. The
interested reader may consult [10] for more details. Some classical actions are
for instance tell, del, :=, enq and deq.

Informally, the action (tell (lhs = rhs)) adds the rule 1hs| = rhs| (here,
term| stands for the normal-form of the term term) to the store, whereas (del
pattern) removes all rules whose left-hand side match pattern from the store.
In the sequel we will abbreviate (tell (term = true)) for boolean terms to
(tell term). Certainly the most common elementary action is assignment c
:= v, which takes two parameters: the name c of a constant (traditionally con-
sidered as a variable) and a (new) value v. Notice the need for introducing a
new parameterised type Name (t) to denote the type of the name of a symbol of

! We suppose predefined the types strings, natural numbers and polymorphic lists
with elements of type t, written as [t].
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type t. If c is of type Name(t), we denote by !c the associated symbol of type
t. Executing (enq q m) puts the message m into the queue named q, and the
execution of (deq q) removes the head of the queue named q.

Another important elementary action handles the creation of new symbols:
(new s t) introduces two new symbols in the store, namely s of type Name(t)
and !s of type t. s stands for the name of (or a reference to) the symbol !s. This
elementary action together with the parameterised type Name(t) allows mod-
eling mobility in the same way as the w-calculus [18]. In the multiple counters
example, new allows the creation of new counters and the associated communi-
cation channels with the window-system.

2.3 I — Imports and Exports

We distinguish different levels of imports (respectively, exports). For instance,
the declarative program describing a store may itself be a collection of files or
modules. This is to be distinguished from the import (respectively, export) of
declarations of a store or declarations of actions from one component to another.
The former is a facility to structure the program forming a store, whereas the
latter is necessary for interaction between components, since a component must
be able, for example, to construct the parameters of an action to be executed on
a remote store.

Interaction between components in our framework is based upon the execu-
tion of action on the stores of remote components. Hence, a component needs
to import the actions which can be executed on the stores of other components.
Since these actions take parameters that are related to the store of the remote
component, the associated declarations of the store, e.g., sorts, functions and
predicates, have to be imported. To avoid name-clashes, the “names” of the dec-
larations could be prefixed with the name of the component they are defined in,
similar to the prefixing of the module name in ocaml for example.

The actions imported from the component X11 in charge of the graphical
user interface (GUI) for the example of the multiple counters are specified as

follows:
COMPONENT X11

action new_window ::

int -> Name(counter) -> storename -> Name([msg]) -> store -> store.
action refresh_windows :: int -> [window] -> store -> store.
END
The action new_window takes the name of a counter and its current value, the
name of a message-queue (to which the messages corresponding to clicks on the
buttons in a window should be sent) and the storename of the store of the coun-
ters and has as effect the creation of a new window for the counter, displaying
its current value. refresh_windows takes the current value of a counter and a
list of windows (associated to the considered counter) and refreshes the value
displayed in all the windows.

The exported declarations of a component are those which can be used by
other components. Obviously they constitute a subset of the declarations of the
component.
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2.4 T — Translations

Consider a system of several components the stores of which are written in
different declarative languages. When the processes of such a system are to
interact, the values sent from one (store) to another (store) have to be translated,
i.e., values of one language have to be transformed into values of the other. Here
we mean by values ground constructor terms, i.e., terms in normal-form. It seems
natural to require a translation to be a total recursive function, since to any value
that is to be communicated has to correspond a unique translation which should
be computable.

Note that these translation functions cannot be part of one of the stores in-
volved, since they define relations between objects in both of the languages. In
fact, they can be seen as functions in a “union-language” that combines both
stores, i.e., two programs written in different languages. Furthermore, a trans-
lation may need to use the operational semantics of the declarative languages,
in order to reduce terms to normal-forms before and after the translation, if
necessary.

We suggest to specify translations (from language £; to language L22) via
a constructor-based term rewriting system, and to separate a translation into
three steps. First, the term to be translated is reduced to normal-form (using the
operational semantics of language £1). Then a corresponding expression is gen-
erated, by application of a special translation function. Finally the expression is
reduced to normal-form (using the operational semantics of language L2) yield-
ing the translation of the original term. The motivation of this separation is to
let a programmer just specify the translation functions, and put the handling of
the other phases into the implementation. Thus a translation function associates
to a ground term t in normal-form a term t’ whose normal-form corresponds
to the translation of the term t.

A simplistic translation of the type of natural numbers which can be defined
as data natural = z | s natural to the int’s of ocaml is
(int_of_natural z)=0
(int_of_natural (s x)) = ((+) (int_of_natural x) 1)

Another possibility for interaction between components written in different
languages is to suppose that both components understand a common language,
and to provide built-in translations for the elements of this third language. Ex-
amples for this approach are, e.g., the Interface Definition Language (IDL) of
the Common Object Request Broker Architecture (CORBA) [20] or the interface
between ocaml and C.

2.5 P — Processes

In our framework, processes are defined in the style of a process algebra (see,
e.g., [3]). In this section, we restrict ourselves to the syntax of the current pro-
totype implementation which we will present in section 3. For more details on
the definition of processes, we refer the interested reader to [9].

2 Notice that when £; and L2 are the same language, a translation can be used to
bridge between different (internal) in the two components involved.
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A process term p is a well-typed expression defined by the following grammar:
p ::= success | (q t1 ... ty) | P; P | pllp

The basic process terms of our framework are calls to processes (q t1 ... ty).
The process success represents the process which terminates successfully. Pro-
cess terms can be composed sequentially (;) or in parallel (|]). Processes are
defined by a set of bodies ordered by priority. Each body consists of a guarded ac-
tion and a process term. A guarded action [g => {s; @ a;}; ...; {s, @ a,}]
is composed of a guard g, i.e., a conjunction of atoms or boolean expression, and
a sequence of pairs {s; @ a;} of a storename s; and an elementary action a; to
be executed on the store s;. The execution of a guarded action is locally atomic,
i.e., the check of validity of the guard together with the sequence of actions for
the local store are to be executed atomically, and all (sub-)sequences of actions
for a given (remote) storename are to be executed atomically when they are
received at the remote store.

Each counter window is controlled by a process cnt_ctrl. It has two param-
eters: the name c of the associated counter and the name e of the event-queue
to which all the events occurring in the window are sent. Thus cnt_ctrl takes
the events occurring in the window it controls one by one from the queue e and
reacts accordingly. The definition of cnt_ctrl is as follows:
process cnt_ctrl c e :-

[(head 'e) == incr =>

{counters @ (deq e)};

{counters @ c := (cnt ((value !c) + 1) (windows !c))};

{X11 @ (refresh_windows (int_of_natural (value 'c))

(list_of_winlist (windows !c))})]1;
(cnt_ctrl c e),

[(head 'e) == link =>

{counters @ (deq e)};

{counters @ (new el [msgl)}; {counters @ el := nil};

{X11 @ (new_window (int_of_natural (value !c)) c counters el)}];
(cnt_ctrl c e)

[(head 'e) == copy =>
{counters @ (deq e)};

{counters @ (new c2 counter)}; {counters @ c2 := (cnt (value !c) nil)};
{counters @ (new e2 [msgl)}; {counters @ e2 := nil};
{X11 @ (new_window (int_of_natural (value !c2)) c2 counters e2)}];
(cnt_ctrl c e)

end

For instance, cnt_ctrl will react to a click on the copy-button by creating
a new counter c2 and a new event-queue e2, initialising these new constants
appropriately, creating a window for the new counter and launching a concurrent
process handling the new window for the new counter c2. Notice that not all
parameters of the actions executed on the store X11 have to be translated. In
fact, we suppose that all components share a common “process language”. For
instance, we do not need to translate storenames.
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Besides the definitions of the process abstractions, this part contains also the
initial process term, i.e., the process which will be executed when the program
is started. Note that the initial process term may be a call to the special process
success, which means that no processes are to be executed. In the example of
the counters, the initial process term is a call to a (parameterless) process start,
which creates a new counter, a new message queue and a corresponding window,
and then starts a process for controlling the counter-window.

3 A Prototype Implementation

The general scheme of the interpretation process for a single component in our
prototype, which we call Sabir, is shown in Fig. 4. For each component in the
system, an interpreter has to be started separately (where the addresses of the
mailboxes of the different component are mutually known). In this paper we give
just a brief overview of the architecture of the prototype implementation. For a
description of the operational semantics of a component we refer the reader to
[9].

In Sabir, a component is described by a set of five separate files correspond-
ing to the different parts. The names of the files are obtained by adding different
suffixes to the storename of the component. These files are processed by the
“compiler”, in the order indicated by the numbers in Fig. 4. Using all this in-
formation, the “compiler” produces an “abstract forest” (or parse-tree), i.e., an
internal, intermediate representation of the component. Finally, the “interpreter”
executes the component using this internal representation, that is to say, a han-
dler for the mail-box is set up, the connections to the other components are
established, the execution of the initial process is started and two (interactive)
interpreters are launched. The first is an interpreter of the declarative language
for the store and the second is an interpreter for the interactive execution of
actions on the store. The former can be used for interactive use of the theory
described by the store, and the second allows a user to update the theory (or
program) remotely, similar to the primitives for exchanging the code of modules
in Erlang [2].

To simplify the implementation, all declarations of stores are considered as
imported (respectively, exported) in Sabir (we just have to read the file defin-
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ing the initial program of the remote component). However, the set of actions
executable on the remote store have to be mentioned explicitly.

To allow for a more efficient execution of actions during interpretation of
a component, actions are used in form of compiled ocaml-functions that are
(dynamically) linked to the interpreter. Thus, before the interpretation of a
component, the definitions of actions have to be compiled using the standard
ocaml-compiler and a library containing the necessary definitions of Sabir.

4 Example of a Lift Controller

Consider a building with m floors in which a system of n lifts is installed. On
every floor there is a button for requesting a lift, and each lift is equipped with
buttons for ordering the lift to stop at a given level. Suppose we are to model this
system, i.e., control the lifts, ensuring that all orders and requests are eventually
handled. For simplicity, we do not consider the capacity of the lifts, assuming
that it is always sufficient for the requests to handle.

Roughly speaking we will model the lifts as independent processes that share
the information of requests coming from the floors. Hence, our model does not
depend on the numbers of floors and lifts, and we can, for instance, easily add an
auxiliary lift. This feature might come in handy when we want to use the model
for the evaluation of the number of lifts actually needed for the building. In the
following we give some samples of the description of the component modeling
the lifts. Due to space limitations, we do not show the complete component, but
give only a sample of the most interesting parts.

As in the counters example, we suppose that we have a second component,
namely X11, which is used to display a GUI for the lifts. The actions executable
on the component X11 are the following:

action move_to_floor :: Name(lift) -> int -> store -> store.
action open_doors :: Name(lift) -> int -> store -> store.
action close_doors :: Name(lift) -> int -> store -> store.

Their first parameter denotes the (name of the) lift, and the second the current
level of this lift. We also use the translation int_of_natural of the counters,
presented in section 2.4. Figure 5 shows a sample of the store for the 1ifts and
Fig. 6 gives the definition of the lift-control process 1ift_ctrl.

The intuitive idea of our model is as follows. We distinguish between the
requests issued by the buttons on the floors which can be handled by any of
the lifts and orders which have to be handled by a given lift. orders are either
issued by the buttons inside the lift or requests that have been assigned to the
lift. In order to optimise the assignment of requests to lifts, we will try to make
the lifts move as long as possible in one direction, i.e., either up or down. Thus we
can model a 1ift as a triple (L. dir pos orders) containing its current level or
position (represented by a natural), its current direction and a list of orders
to handle, represented as a list of floors-numbers. Orders from the buttons inside
a lift are directly put in the list of orders of the lift, while requests on the floors
are put into a list requests shared by all lifts. A process controlling the lift
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data direction = up | down.

data 1lift = L direction natural [natural].
order_to_handle (L d p (cons x xs)) = (member p (cons x xs))
order_to_handle (L d p nil) = (member p requests)
rm_request p nil = nil

rm_request p (cons x xs) | p == x = (rm_request p xs)
rm_request p (cons x xs) | p < x = (cons p (rm_request p xs))
rm_request p (cons x xs) | x < p = (cons p (rm_request p xs))

rm_order (L d p r) (L d p (rm_request p r))

request_in_dir (L up p o) | (nearest p (head requests))
p <= (head requests)
request_in_dir (L down p o) | (nearest p (head requests))
(head requests) <= p

nearest p r = (all_above (dist p r) (get_dists r lifts_pos))

all_above x nil = true

all_above x (cons y ys) | x <= y = (all_above x ys)

get_dists x nil nil

get_dists x (cons y ys)

(cons (dist x y) (get_dists x ys))

dist z z =z

dist z (s x) = (s x)

dist (s x) z = (s x)

dist (s x) (s y) = (dist x y)
next x up | x < top = (s x)
next (s x) down = X

next_floor (L dpr) = (L d (next p d) r)

Fig. 5. Sample of the store for the 1ifts example

1n moves a request from the list requests into the list of orders of 1n, if the
request is in the current direction of lnand if 1n is among the lifts that are
nearest to the request. Whenever a lift handles an order all requests for the
same floor are handled as well.

A definition for the process 1ift_ctrl controlling a lift named 1n is shown
in Fig. 6 (where we denote by s~ the name of a symbol s). The process is defined
by four “rules”. The guard of the first rule, i.e., (order_to_handle !1n), checks
if there is an order (or request) to handle on the current floor (of the lift 1n).
Handling an order (and/or request) means to remove it from the lists of orders
(and/or requests). The third action displays the handling in the GUI by execut-
ing the action open_doors on the component X11. After executing the actions,
the processes calls the special process wait which waits a certain time. Finally
the process handle is called, closing the doors and reentering the handling loop.
The second rule of the process lift_ctrl describes the transformation of the
first request of the list requests into an order of the lift. The third rule moves
the lift, if it has pending orders in its current direction. Finally, the last rule

10
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process lift_ctrl 1ln :-
[(order_to_handle !'1n) =>
{1lifts @ 1n := (rm_order '1n)};
{lifts @ requests” := (rm_request (pos !ln) requests)};
{X11 @ (open_doors 1ln (int_of_natural (pos !1n)))}];
wait; (handle 1n),

[(request_in_dir !1n) =>
{lifts @ 1n
{lifts @ requests” :
(lift_ctrl 1n),

(add_1lift_requests (head requests) !1ln)};
(tail requests)}];

[(order_in_dir '1n) =>
{lifts @ lifts_pos” := (rm_first (pos !1n) lifts_pos)};
{lifts @ 1n (next_floor !1n)};
{lifts @ lifts_pos” := (pos !1n) :: lifts_pos};
{X11 @ (move_to_floor ln (int_of_natural (pos !1n)))}];
(lift_ctrl 1n),

[(further_requests !1n) => {lifts @ ln := (opposite !ln)};
(lift_ctrl 1n)
end

process handle 1ln :-
[true => {X11 @ (close_doors ln (int_of_natural (pos !1n)))}];
(lift_ctrl 1n)

end

Fig. 6. Processes for the lifts example

changes the direction of the lift, if it has orders in the opposite direction. If none
of the guards applies, the lift just waits, since there are no orders or requests for
it to handle.

Some of the functions used for the description of the process are shown in
the sample of the store in Fig. 5. Accessing the fields or constituents of a 1ift is
possible by means of the functions dir, pos and orders. Informally, there is an
order (or request) to handle for a lift, whenever the current position of the lift
is a member of the list of orders of the lift or of the list of global requests. The
definition of order_to_handle reflects this intuition. The function rm_request
(respectively, rm_first) takes a request, i.e., natural number n, and a list of nat-
urals nat_list and returns a list of naturals which is obtained from nat_listl
by removing all (respectively, the first) occurrences of n. rm_order removes the
current position from the list of orders of a lift. All these removal functions
behave as the identity function when the list does not contain the position to
be removed. When assigning requests to lifts we choose a lift (at position p)
which is among the nearest ones to the request r using 1ifts_pos, a list of the
current positions of all lifts. Notice that this list is also modified when moving a
lift. The next floor of a lift is described by the function next_floor, where top
denotes the top floor of the building.

11
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Using a similar programming style as in the example of the multiple counters,
we can easily extend our program to allow the dynamic creation of lifts. While
this feature may seem not very realistic, it might be useful when the program is
to be used as a simulation to determine the number of lifts actually needed in a
building. For this purpose, we have simply to add a process that adds requests
according to a stochastic distribution, and to observe the evolution of the number
of outstanding requests.

5 Related Work

Most existing concurrent extensions of declarative languages, e.g., [2,7,15,21,
23-25,27], do not distinguish clearly between the different constituents of a com-
ponent. In these languages, processes are rather encoded in terms of the concepts
underlying the declarative language, actions are “built-in”, and interaction and
translations are hidden or intertwined with the store. As an example, consider
the process scripts of CML [23] or the behaviour-expressions of Facile [27], which
allow functions and processes to call one another mutually, making difficult to
reason about these two concepts separately. Thus these extant approaches seem
to be tailored to a specific language hindering a straightforward extension to a
general framework.

Similar to concurrent extensions of declarative languages, where processes
have to be encoded as, e.g., functions or predicates, programming languages
uniquely based on process calculi encode the notions of functions and predicates
via processes [12, 22].

Coordination languages, e.g., [4,13,19], model the interaction between pro-
cesses, most of them following the model of Linda [13], where processes commu-
nicate via a (hierarchy of) shared tuple space, using several primitive actions,
namely primitives for adding, reading and removing tuples. Our approach is more
general since we avoid the need to encode complex communication structures by
using use (declarative) programs instead of simple tuples spaces. Furthermore,
in our framework the set of action can be defined by the programmer, whereas
the set of Linda-operations is fixed.

The current popular component models, as for instance the (Distributed)
Component Object Model ((D)COM) [17] or JAVABEANS [11], focus mainly on
the composition of systems using components as basic building blocks of compo-
nents and systems. These approaches regard components as “black-boxes”, the
structure of which is left unspecified, since the essential properties for a user of
a component is its interface [26]. This implies that, in order to build any system,
a set of predefined or built-in components has to be provided, for instance in
form of a component library. The only definition of a component we are aware
of is given in [5], where a component is characterised by a function mapping
input streams to output streams. Hence this definition also considers merely the
input/output behaviour and neglects the internal structure of a component.

In contrary, we have given in this paper a description of components in-
cluding their structure (and semantics) in the domain of concurrent declarative
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programming. Thus our approach allows the definition of the atomic built-in
components necessary for the approaches mentioned before. This combination
of the composition principles, as in the current component models, with the
definition of components, as in our approach, seems to be a promising field of
research.

6 Conclusion and Future Work

In this paper we have presented a component-based approach to concurrent
declarative programming. In this framework, components are defined by means
of five different parts and may be written in different languages. Interaction is
based on the modification of declarative programs using user-definable actions.
We have illustrated the principles by a short presentation of a prototypical im-
plementation of an interpreter and some examples of programs.

Extension of our approach to imperative stores is possible. However, the
semantics of the framework risks to become hard to understand if the imperative
language is used in an unrestricted manner, e.g., side-effects (assignments of
global “variables”) during the evaluation of a guard.

Currently, we plan to several further additions to the framework and their
implementation, namely the introduction of notions related to time and the
combination with dedicated constraint solving algorithms.
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