
appeared in the Pro. of WFLP 2001A Component-Based Approah toConurrent Delarative ProgrammingRahid Ehahed and Wendelin SerweLaboratoire LEIBNIZ � Institut IMAG, CNRS46, avenue Felix Viallet, F-38031 Grenoble, FraneTel: (+33) 4 76 57 48 91; Fax: (+33) 4 76 57 46 02Rahid.Ehahed�imag.fr Wendelin.Serwe�imag.frAbstrat. In this paper we present a omponent-based approah tomobile onurrent delarative programming, where we model systems assets of interating omponents. We �rst give a de�nition of a omponentand its di�erent onstituents. Finally, we brie�y present a prototypeimplementation through an example.1 IntrodutionClassial delarative languages, i.e., funtional, logi and funtional-logi lan-guages, aim at providing high-level desriptions of systems. These languageshave well-known nie features, suh as abstration, readability, ompilation teh-niques, proof methods et. However, the onepts of funtions and prediates,underlying lassial funtional-logi languages, are not su�ient to apture thewhole omplexity of real-world appliations where interativity, onurreny anddistributivity are needed [29℄.On the other hand, omponent models, as for instane [5, 11, 17℄, allow theonstrution of omplex (software) systems by assembling omponents whihare haraterised by their interfae through whih they an interat with theirenvironment, e.g., other omponents or the user. While these models seem toallow short development times and high degrees of reuse, we are not aware ofany ommon formal de�nition of a omponent.In this paper we present a omponent-based approah to mobile onurrentdelarative programming. We propose a de�nition of a omponent, extendingthe framework of [9℄ to several interating omponents that may be written indi�erent languages.We model a system as a set of interating omponents, whih may be dis-tributed over a network or reside on a single omputer. Eah omponent will beidenti�ed by a omponent-name s. Internally, a omponent is organised as a setof proesses pi, i.e., a onurrent program, and a set of formulæ F , i.e., a tradi-tional delarative program, alled store. Hene, the exeution model of a systeman be pitured as in Fig. 1. Proesses (pi) ommuniate by modifying the stores,i.e., by altering, in a non-monotoni way, the urrent theories desribed by thestores, for example by simply rede�ning onstants (e.g., assignment of a newvalue) or by adding or deleting formulæ in F .1
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TFig. 1. Exeution Model of a System Fig. 2. A Programmer'sView of a ComponentAll the hanges of the stores are the result of the exeution of ations. Roughlyspeaking, an ation {s � a} is a pair of an elementary ation a and a storename
s denoting the store F on whih the ation is to be exeuted. Examples ofations are {s �  := v}, to hange the de�nition of the (variable) onstant (whih is de�ned in the store named s) to the value v and {Display � (print'hello')} to print the string hello on the display Display.Orthogonally to the exeution of ations by proesses, the stores of the om-ponents an be used as usual, i.e., for goal solving or the evaluation of expressions(to normal-form). This shows that our framework is a onservative extension ofdelarative programming, sine a omponent without any proesses orrespondsto a delarative program in the lassial sense.As we fous in this paper on the desription and de�nition of omponents,i.e., their internal struture, we make some simplifying assumptions about theommuniation between omponents. For example, we suppose that the under-lying ommuniation network is fault-free, that is to say, that all messages sentarrive eventually, in the order they have been sent and without dupliation.The rest of this paper is organised as follows. In the next setion we give thede�nition of a omponent and illustrate its di�erent onstituents. Then we brie�ypresent the priniples of a prototype implementation and give an example of aprogram. We ompare our framework to some related work in setion 5. Finally,setion 6 onludes. For the rest of the paper, we assume the reader is familiarwith lassial notions of rewriting [8, 16℄ as well as proess algebra [3℄.2 ComponentsBesides the (initial) store or delarative program and the de�nition of proesses, aomponent will be haraterised, on the one hand, by the set of ations whih anbe used for the modi�ation of its store and, on the other hand, by its interfaeto the environment. Thus, we get the following de�nition of a omponent whihis symbolized in Fig. 2.De�nition 1. A omponent (identi�ed by a (omponent-) or (store-) name) sis spei�ed by �ve di�erent (but interdependent) parts, namelyF the (initial) store or delarative program,P the de�nitions of proesses, together with the initial proess term,2



R. Ehahed & W. Serwe, WFLP 2001A the de�nitions of the ations that are exeutable on the store F ,T the de�nitions of translations for ommuniating values of the store to otherstores that are possibly written in a di�erent language andI the imported (respetively, exported) de�nitions from (respetively, to) theenvironment, i.e., other omponents of the system.In addition to these �ve parts, a omponent has also a mailbox, assoiatedto it that is used for the interation between omponents. In fat, the ations tobe exeuted on a remote omponent are sent (via the ommuniation networkwhih we assume to be fault-free) to its mailbox. It is then up to the remoteomponent to ensure the exeution of these ations. Thus this mailbox is handledby the implementation and thus transparent for the programmer. Notie thatany of the parts of a omponent may be missing. For instane, a pure delarativeprogram or omponent will need neither proesses, nor interation with otheromponents.In the following, we will detail the ontents of the parts one by one, usingas a running example a system of multiple ounters inspired from [14℄. Theappliation starts by reating a window (as shown in Fig. 3) representing aounter whih an be inremented manually. In the ounter window, a opy-button and a link-button allow one to reate new ounter windows: the formerreates an independent ounter (with an assoiated new window) and initialisesit with the urrent value of the ounter being opied and the latter reates anew view (i.e., a new window) of the same ounter. All views of a same ountershould behave identially, e.g., they inrease the ounter at the same time.This example illustrates some of the di�ulties related to onurrent pro-esses, suh as dynami reation of new onstants (e.g., ounters, windows andthe assoiated hannels) or resoures shared by several proesses. Obviously, weneed to extend a pure delarative language to ope with this interative appli-ation. This has also been noted in the literature on delarative programming:�Some interations appear most straightforward to express in an imperative style,and we should not hesitate to do so� [28℄. Our solution uses two omponents, onefor the ounters, with storename (or omponent name) ounters, and anotherfor the window system with storename X11. In this setion, we present (partsof) the de�nition of the omponent ounters.2.1 F � StoreAs mentioned in setion 1, the store of a omponent is a lassial delarativeprogram. In this paper, we onsider a simple funtional-logi language based ononstrutor-based onditional term rewriting systems. For the examples, we willuse a syntax similar to Curry [6℄. Thus, a program is a pair of a signature and aset of (onditional) rewrite rules. A signature is a pair of a set of sorts (inluding
Bool, the sort of boolean values) and a family of sorted funtions . We distinguishbetween onstrutors, i.e., operations whih are used to onstrut data terms,and de�ned funtions or operations that operate on data terms. Prediates aremodeled as funtions yielding the prede�ned type Bool. A (onditional) rewrite3



A Component-Based Approah to Conurrent Delarative Programmingrule is a triple �lhs | ond = rhs�, where lhs is a linear pattern, i.e., an op-eration rooted term in whih any variable ours at most one, rhs is a termand the (optional) ondition ond is a boolean valued term. We require that thefree variables of rhs and ond are inluded in the free variables of lhs. The op-erational semantis of programs is de�ned by the evaluation strategy of weaklyneeded narrowing [1℄.Considering our example, we model a ounter as a pair of its urrent valueand a list of windows assoiated to it. Thus the store for the ounters de�nesa data type of ounters, i.e., a pair of the urrent value and a list of identi�ersof assoiated windows, represented as strings. Additionally, we de�ne a datatype of messages orresponding to the messages sent when a user liks on thebuttons of a ounter window1. Sine onstrutors are not de�ned by rules, theyare delared along with the delaration of the orresponding data type.data msg = inr | link | opy | quit.data ounter = nt natural [string℄.value :: ounter -> naturalvalue (nt v a l) = vwindows :: ounter -> [string℄windows (nt v a l) = l2.2 A � AtionsThe ations that an be used (by the proesses or the environment) to modifythe store of a omponent are de�ned in this part, using a speial language, alledation desription language (ADL) [10℄. A natural andidate for an ADL is thelanguage in whih the delarative language is implemented, sine an abstratdata type (ADT) representing programs already exists. We all this ADT ofprograms store. In our implementation of the delarative language in oaml,an (elementary) ation an be de�ned as an oaml-funtion of the type:type elementary_ation_ode = parameter list -> store -> storeDue to spae limitations, we annot present store, the ADT of programs,ompletely, nor an we give detailed examples of de�nitions of ations. Theinterested reader may onsult [10℄ for more details. Some lassial ations arefor instane tell, del, :=, enq and deq.Informally, the ation (tell (lhs = rhs)) adds the rule lhs↓ = rhs↓ (here,term↓ stands for the normal-form of the term term) to the store, whereas (delpattern) removes all rules whose left-hand side math pattern from the store.In the sequel we will abbreviate (tell (term = true)) for boolean terms to(tell term). Certainly the most ommon elementary ation is assignment := v, whih takes two parameters: the name  of a onstant (traditionally on-sidered as a variable) and a (new) value v. Notie the need for introduing anew parameterised type Name(t) to denote the type of the name of a symbol of1 We suppose prede�ned the types strings, natural numbers and polymorphi listswith elements of type t, written as [t℄.4



R. Ehahed & W. Serwe, WFLP 2001type t. If  is of type Name(t), we denote by ! the assoiated symbol of typet. Exeuting (enq q m) puts the message m into the queue named q, and theexeution of (deq q) removes the head of the queue named q.Another important elementary ation handles the reation of new symbols:(new s t) introdues two new symbols in the store, namely s of type Name(t)and !s of type t. s stands for the name of (or a referene to) the symbol !s. Thiselementary ation together with the parameterised type Name(t) allows mod-eling mobility in the same way as the π-alulus [18℄. In the multiple ountersexample, new allows the reation of new ounters and the assoiated ommuni-ation hannels with the window-system.2.3 I � Imports and ExportsWe distinguish di�erent levels of imports (respetively, exports). For instane,the delarative program desribing a store may itself be a olletion of �les ormodules. This is to be distinguished from the import (respetively, export) ofdelarations of a store or delarations of ations from one omponent to another.The former is a faility to struture the program forming a store, whereas thelatter is neessary for interation between omponents, sine a omponent mustbe able, for example, to onstrut the parameters of an ation to be exeuted ona remote store.Interation between omponents in our framework is based upon the exeu-tion of ation on the stores of remote omponents. Hene, a omponent needsto import the ations whih an be exeuted on the stores of other omponents.Sine these ations take parameters that are related to the store of the remoteomponent, the assoiated delarations of the store, e.g., sorts, funtions andprediates, have to be imported. To avoid name-lashes, the �names� of the de-larations ould be pre�xed with the name of the omponent they are de�ned in,similar to the pre�xing of the module name in oaml for example.The ations imported from the omponent X11 in harge of the graphialuser interfae (GUI) for the example of the multiple ounters are spei�ed asfollows:COMPONENT X11ation new_window ::int -> Name(ounter) -> storename -> Name([msg℄) -> store -> store.ation refresh_windows :: int -> [window℄ -> store -> store.ENDThe ation new_window takes the name of a ounter and its urrent value, thename of a message-queue (to whih the messages orresponding to liks on thebuttons in a window should be sent) and the storename of the store of the oun-ters and has as e�et the reation of a new window for the ounter, displayingits urrent value. refresh_windows takes the urrent value of a ounter and alist of windows (assoiated to the onsidered ounter) and refreshes the valuedisplayed in all the windows.The exported delarations of a omponent are those whih an be used byother omponents. Obviously they onstitute a subset of the delarations of theomponent. 5



A Component-Based Approah to Conurrent Delarative Programming2.4 T � TranslationsConsider a system of several omponents the stores of whih are written indi�erent delarative languages. When the proesses of suh a system are tointerat, the values sent from one (store) to another (store) have to be translated,i.e., values of one language have to be transformed into values of the other. Herewe mean by values ground onstrutor terms, i.e., terms in normal-form. It seemsnatural to require a translation to be a total reursive funtion, sine to any valuethat is to be ommuniated has to orrespond a unique translation whih shouldbe omputable.Note that these translation funtions annot be part of one of the stores in-volved, sine they de�ne relations between objets in both of the languages. Infat, they an be seen as funtions in a �union-language� that ombines bothstores, i.e., two programs written in di�erent languages. Furthermore, a trans-lation may need to use the operational semantis of the delarative languages,in order to redue terms to normal-forms before and after the translation, ifneessary.We suggest to speify translations (from language L1 to language L2
2) viaa onstrutor-based term rewriting system, and to separate a translation intothree steps. First, the term to be translated is redued to normal-form (using theoperational semantis of language L1). Then a orresponding expression is gen-erated, by appliation of a speial translation funtion. Finally the expression isredued to normal-form (using the operational semantis of language L2) yield-ing the translation of the original term. The motivation of this separation is tolet a programmer just speify the translation funtions, and put the handling ofthe other phases into the implementation. Thus a translation funtion assoiatesto a ground term t in normal-form a term t' whose normal-form orrespondsto the translation of the term t.A simplisti translation of the type of natural numbers whih an be de�nedas data natural = z | s natural to the int's of oaml is(int_of_natural z ) = 0(int_of_natural (s x)) = ((+) (int_of_natural x) 1)Another possibility for interation between omponents written in di�erentlanguages is to suppose that both omponents understand a ommon language,and to provide built-in translations for the elements of this third language. Ex-amples for this approah are, e.g., the Interfae De�nition Language (IDL) ofthe Common Objet Request Broker Arhiteture (orba) [20℄ or the interfaebetween oaml and C.2.5 P � ProessesIn our framework, proesses are de�ned in the style of a proess algebra (see,e.g., [3℄). In this setion, we restrit ourselves to the syntax of the urrent pro-totype implementation whih we will present in setion 3. For more details onthe de�nition of proesses, we refer the interested reader to [9℄.2 Notie that when L1 and L2 are the same language, a translation an be used tobridge between di�erent (internal) in the two omponents involved.6



R. Ehahed & W. Serwe, WFLP 2001A proess term p is a well-typed expression de�ned by the following grammar:
p ::= success (q t1 ... tn) p; p p || pThe basi proess terms of our framework are alls to proesses (q t1 ... tn).The proess success represents the proess whih terminates suessfully. Pro-ess terms an be omposed sequentially (;) or in parallel (||). Proesses arede�ned by a set of bodies ordered by priority. Eah body onsists of a guarded a-tion and a proess term. A guarded ation [g => {s1 � a1}; ...; {sn � an}℄is omposed of a guard g, i.e., a onjuntion of atoms or boolean expression, anda sequene of pairs {si � ai} of a storename si and an elementary ation ai tobe exeuted on the store si. The exeution of a guarded ation is loally atomi,i.e., the hek of validity of the guard together with the sequene of ations forthe loal store are to be exeuted atomially, and all (sub-)sequenes of ationsfor a given (remote) storename are to be exeuted atomially when they arereeived at the remote store.Eah ounter window is ontrolled by a proess nt_trl. It has two param-eters: the name  of the assoiated ounter and the name e of the event-queueto whih all the events ourring in the window are sent. Thus nt_trl takesthe events ourring in the window it ontrols one by one from the queue e andreats aordingly. The de�nition of nt_trl is as follows:proess nt_trl  e :-[(head !e) == inr =>{ounters � (deq e)};{ounters �  := (nt ((value !) + 1) (windows !))};{X11 � (refresh_windows (int_of_natural (value !))(list_of_winlist (windows !))})℄;(nt_trl  e),[(head !e) == link =>{ounters � (deq e)};{ounters � (new e1 [msg℄)}; {ounters � e1 := nil};{X11 � (new_window (int_of_natural (value !))  ounters e1)}℄;(nt_trl  e)[(head !e) == opy =>{ounters � (deq e)};{ounters � (new 2 ounter)}; {ounters � 2 := (nt (value !) nil)};{ounters � (new e2 [msg℄)}; {ounters � e2 := nil};{X11 � (new_window (int_of_natural (value !2)) 2 ounters e2)}℄;(nt_trl  e)endFor instane, nt_trl will reat to a lik on the opy-button by reatinga new ounter 2 and a new event-queue e2, initialising these new onstantsappropriately, reating a window for the new ounter and launhing a onurrentproess handling the new window for the new ounter 2. Notie that not allparameters of the ations exeuted on the store X11 have to be translated. Infat, we suppose that all omponents share a ommon �proess language�. Forinstane, we do not need to translate storenames.7
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success, whih means that no proesses are to be exeuted. In the example ofthe ounters, the initial proess term is a all to a (parameterless) proess start,whih reates a new ounter, a new message queue and a orresponding window,and then starts a proess for ontrolling the ounter-window.3 A Prototype ImplementationThe general sheme of the interpretation proess for a single omponent in ourprototype, whih we all Sabir, is shown in Fig. 4. For eah omponent in thesystem, an interpreter has to be started separately (where the addresses of themailboxes of the di�erent omponent are mutually known). In this paper we givejust a brief overview of the arhiteture of the prototype implementation. For adesription of the operational semantis of a omponent we refer the reader to[9℄. In Sabir, a omponent is desribed by a set of �ve separate �les orrespond-ing to the di�erent parts. The names of the �les are obtained by adding di�erentsu�xes to the storename of the omponent. These �les are proessed by the�ompiler�, in the order indiated by the numbers in Fig. 4. Using all this in-formation, the �ompiler� produes an �abstrat forest� (or parse-tree), i.e., aninternal, intermediate representation of the omponent. Finally, the �interpreter�exeutes the omponent using this internal representation, that is to say, a han-dler for the mail-box is set up, the onnetions to the other omponents areestablished, the exeution of the initial proess is started and two (interative)interpreters are launhed. The �rst is an interpreter of the delarative languagefor the store and the seond is an interpreter for the interative exeution ofations on the store. The former an be used for interative use of the theorydesribed by the store, and the seond allows a user to update the theory (orprogram) remotely, similar to the primitives for exhanging the ode of modulesin Erlang [2℄.To simplify the implementation, all delarations of stores are onsidered asimported (respetively, exported) in Sabir (we just have to read the �le de�n-8



R. Ehahed & W. Serwe, WFLP 2001ing the initial program of the remote omponent). However, the set of ationsexeutable on the remote store have to be mentioned expliitly.To allow for a more e�ient exeution of ations during interpretation ofa omponent, ations are used in form of ompiled oaml-funtions that are(dynamially) linked to the interpreter. Thus, before the interpretation of aomponent, the de�nitions of ations have to be ompiled using the standardoaml-ompiler and a library ontaining the neessary de�nitions of Sabir.4 Example of a Lift ControllerConsider a building with m �oors in whih a system of n lifts is installed. Onevery �oor there is a button for requesting a lift, and eah lift is equipped withbuttons for ordering the lift to stop at a given level. Suppose we are to model thissystem, i.e., ontrol the lifts, ensuring that all orders and requests are eventuallyhandled. For simpliity, we do not onsider the apaity of the lifts, assumingthat it is always su�ient for the requests to handle.Roughly speaking we will model the lifts as independent proesses that sharethe information of requests oming from the �oors. Hene, our model does notdepend on the numbers of �oors and lifts, and we an, for instane, easily add anauxiliary lift. This feature might ome in handy when we want to use the modelfor the evaluation of the number of lifts atually needed for the building. In thefollowing we give some samples of the desription of the omponent modelingthe lifts. Due to spae limitations, we do not show the omplete omponent, butgive only a sample of the most interesting parts.As in the ounters example, we suppose that we have a seond omponent,namely X11, whih is used to display a GUI for the lifts. The ations exeutableon the omponent X11 are the following:ation move_to_floor :: Name(lift) -> int -> store -> store.ation open_doors :: Name(lift) -> int -> store -> store.ation lose_doors :: Name(lift) -> int -> store -> store.Their �rst parameter denotes the (name of the) lift, and the seond the urrentlevel of this lift. We also use the translation int_of_natural of the ounters,presented in setion 2.4. Figure 5 shows a sample of the store for the lifts andFig. 6 gives the de�nition of the lift-ontrol proess lift_trl.The intuitive idea of our model is as follows. We distinguish between therequests issued by the buttons on the �oors whih an be handled by any ofthe lifts and orders whih have to be handled by a given lift. orders are eitherissued by the buttons inside the lift or requests that have been assigned to thelift. In order to optimise the assignment of requests to lifts, we will try to makethe lifts move as long as possible in one diretion, i.e., either up or down. Thus wean model a lift as a triple (L dir pos orders) ontaining its urrent level orposition (represented by a natural), its urrent diretion and a list of ordersto handle, represented as a list of �oors-numbers. Orders from the buttons insidea lift are diretly put in the list of orders of the lift, while requests on the �oorsare put into a list requests shared by all lifts. A proess ontrolling the lift9



A Component-Based Approah to Conurrent Delarative Programmingdata diretion = up | down.data lift = L diretion natural [natural℄.order_to_handle (L d p (ons x xs)) = (member p (ons x xs))order_to_handle (L d p nil) = (member p requests)rm_request p nil = nilrm_request p (ons x xs) | p == x = (rm_request p xs)rm_request p (ons x xs) | p < x = (ons p (rm_request p xs))rm_request p (ons x xs) | x < p = (ons p (rm_request p xs))rm_order (L d p r) = (L d p (rm_request p r))request_in_dir (L up p o) | (nearest p (head requests)) =p <= (head requests)request_in_dir (L down p o) | (nearest p (head requests)) =(head requests) <= pnearest p r = (all_above (dist p r) (get_dists r lifts_pos))all_above x nil = trueall_above x (ons y ys) | x <= y = (all_above x ys)get_dists x nil = nilget_dists x (ons y ys) = (ons (dist x y) (get_dists x ys))dist z z = zdist z (s x) = (s x)dist (s x) z = (s x)dist (s x) (s y) = (dist x y)next x up | x < top = (s x)next (s x) down = xnext_floor (L d p r) = (L d (next p d) r)Fig. 5. Sample of the store for the lifts exampleln moves a request from the list requests into the list of orders of ln, if therequest is in the urrent diretion of lnand if ln is among the lifts that arenearest to the request. Whenever a lift handles an order all requests for thesame �oor are handled as well.A de�nition for the proess lift_trl ontrolling a lift named ln is shownin Fig. 6 (where we denote by s� the name of a symbol s). The proess is de�nedby four �rules�. The guard of the �rst rule, i.e., (order_to_handle !ln), heksif there is an order (or request) to handle on the urrent �oor (of the lift ln).Handling an order (and/or request) means to remove it from the lists of orders(and/or requests). The third ation displays the handling in the GUI by exeut-ing the ation open_doors on the omponent X11. After exeuting the ations,the proesses alls the speial proess wait whih waits a ertain time. Finallythe proess handle is alled, losing the doors and reentering the handling loop.The seond rule of the proess lift_trl desribes the transformation of the�rst request of the list requests into an order of the lift. The third rule movesthe lift, if it has pending orders in its urrent diretion. Finally, the last rule10



R. Ehahed & W. Serwe, WFLP 2001proess lift_trl ln :-[(order_to_handle !ln) =>{lifts � ln := (rm_order !ln)};{lifts � requests� := (rm_request (pos !ln) requests)};{X11 � (open_doors ln (int_of_natural (pos !ln)))}℄;wait; (handle ln),[(request_in_dir !ln) =>{lifts � ln := (add_lift_requests (head requests) !ln)};{lifts � requests� := (tail requests)}℄;(lift_trl ln),[(order_in_dir !ln) =>{lifts � lifts_pos� := (rm_first (pos !ln) lifts_pos)};{lifts � ln := (next_floor !ln)};{lifts � lifts_pos� := (pos !ln) :: lifts_pos};{X11 � (move_to_floor ln (int_of_natural (pos !ln)))}℄;(lift_trl ln),[(further_requests !ln) => {lifts � ln := (opposite !ln)};(lift_trl ln)endproess handle ln :-[true => {X11 � (lose_doors ln (int_of_natural (pos !ln)))}℄;(lift_trl ln)end Fig. 6. Proesses for the lifts examplehanges the diretion of the lift, if it has orders in the opposite diretion. If noneof the guards applies, the lift just waits, sine there are no orders or requests forit to handle.Some of the funtions used for the desription of the proess are shown inthe sample of the store in Fig. 5. Aessing the �elds or onstituents of a lift ispossible by means of the funtions dir, pos and orders. Informally, there is anorder (or request) to handle for a lift, whenever the urrent position of the liftis a member of the list of orders of the lift or of the list of global requests. Thede�nition of order_to_handle re�ets this intuition. The funtion rm_request(respetively, rm_first) takes a request, i.e., natural number n, and a list of nat-urals nat_list and returns a list of naturals whih is obtained from nat_listlby removing all (respetively, the �rst) ourrenes of n. rm_order removes theurrent position from the list of orders of a lift. All these removal funtionsbehave as the identity funtion when the list does not ontain the position tobe removed. When assigning requests to lifts we hoose a lift (at position p)whih is among the nearest ones to the request r using lifts_pos, a list of theurrent positions of all lifts. Notie that this list is also modi�ed when moving alift. The next �oor of a lift is desribed by the funtion next_floor, where topdenotes the top �oor of the building. 11



A Component-Based Approah to Conurrent Delarative ProgrammingUsing a similar programming style as in the example of the multiple ounters,we an easily extend our program to allow the dynami reation of lifts. Whilethis feature may seem not very realisti, it might be useful when the program isto be used as a simulation to determine the number of lifts atually needed in abuilding. For this purpose, we have simply to add a proess that adds requestsaording to a stohasti distribution, and to observe the evolution of the numberof outstanding requests.5 Related WorkMost existing onurrent extensions of delarative languages, e.g., [2, 7, 15, 21,23�25, 27℄, do not distinguish learly between the di�erent onstituents of a om-ponent. In these languages, proesses are rather enoded in terms of the oneptsunderlying the delarative language, ations are �built-in�, and interation andtranslations are hidden or intertwined with the store. As an example, onsiderthe proess sripts of CML [23℄ or the behaviour-expressions of Faile [27℄, whihallow funtions and proesses to all one another mutually, making di�ult toreason about these two onepts separately. Thus these extant approahes seemto be tailored to a spei� language hindering a straightforward extension to ageneral framework.Similar to onurrent extensions of delarative languages, where proesseshave to be enoded as, e.g., funtions or prediates, programming languagesuniquely based on proess aluli enode the notions of funtions and prediatesvia proesses [12, 22℄.Coordination languages, e.g., [4, 13, 19℄, model the interation between pro-esses, most of them following the model of Linda [13℄, where proesses ommu-niate via a (hierarhy of) shared tuple spae, using several primitive ations,namely primitives for adding, reading and removing tuples. Our approah is moregeneral sine we avoid the need to enode omplex ommuniation strutures byusing use (delarative) programs instead of simple tuples spaes. Furthermore,in our framework the set of ation an be de�ned by the programmer, whereasthe set of Linda-operations is �xed.The urrent popular omponent models, as for instane the (Distributed)Component Objet Model ((D)COM) [17℄ or JavaBeans [11℄, fous mainly onthe omposition of systems using omponents as basi building bloks of ompo-nents and systems. These approahes regard omponents as �blak-boxes�, thestruture of whih is left unspei�ed, sine the essential properties for a user ofa omponent is its interfae [26℄. This implies that, in order to build any system,a set of prede�ned or built-in omponents has to be provided, for instane inform of a omponent library. The only de�nition of a omponent we are awareof is given in [5℄, where a omponent is haraterised by a funtion mappinginput streams to output streams. Hene this de�nition also onsiders merely theinput/output behaviour and neglets the internal struture of a omponent.In ontrary, we have given in this paper a desription of omponents in-luding their struture (and semantis) in the domain of onurrent delarative12
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