
appeared in the Proc. of WFLP 2001

Integrating Action Definitions into

Concurrent Declarative Programming

Rachid Echahed and Wendelin Serwe

Laboratoire LEIBNIZ – Institut IMAG, CNRS
46, avenue Felix Viallet, F-38031 Grenoble, France

Tel: (+33) 4 76 57 48 91; Fax: (+33) 4 76 57 46 02
Rachid.Echahed@imag.fr Wendelin.Serwe@imag.fr

Abstract. The semantics of a process defines the actions it can execute.
Thus actions constitute an essential notion for concurrent systems. In
this paper, we tackle the problem of integrating the definition of actions
within the context of concurrent constraint functional logic program-
ming. We propose to define actions in a meta-language, where abstract
data types of programs are available, as functions from constraint func-
tional logic programs to themselves. We illustrate our approach through
some examples and compare our approach to related work.

1 Introduction

A purely declarative program can be seen as a static theory presentation, which
can be used for reasoning over the underlying model, e.g., by solving goals as
in the logic programming paradigm or by simplifying expressions as in the func-
tional programming paradigm. However, due to their “static” nature, the con-
cepts underlying declarative languages are not sufficient to capture the whole
complexity of real-world applications [29], which require coordination of con-
current activities as well as interaction with the environment. For instance, a
program which uses a constant date as a value has to update it regularly, as well
as a database recording the daily evolution of bank accounts has to evolve along
with the operations executed on the accounts. Even more obvious is the case of
interactive applications, since the interactions with the environment (e.g., other
systems or users) have naturally an impact on the theory.

So, applications of this kind are required to modify theories, i.e., declarative
programs. Most existing approaches for concurrent extensions of declarative lan-
guages, as for instance [3, 6, 7, 17, 24, 25, 27], provide actions in form of several
built-in primitives, dedicated to update current theories, e.g., the “predicates”
assert and retract of Prolog, the action tell of ccp, the assignment “functions”
(with effects) setq (respectively, :=) of Common Lisp and Scheme (respectively,
SML), or the built-in actions for changing the code of a module of Erlang. But
unfortunately, there is no standard set of such actions, and each language sug-
gests its own ones.

In this paper, we advocate that considering declarative programs as data
objects in a metalanguage allows to subsume the different existing approaches

1



Integrating Action Definitions in Concurrent Declarative Programming

for building actions over programs. If we consider (declarative) programs as el-
ements of an abstract data type (ADT), all the different modifications can be
considered as operations defined in the metalanguage on this ADT. This has
several advantages. First, the approach for the integration of concurrency and
mobility becomes more abstract and generic and can be applied to any declara-
tive language, since it does not rely on special built-in primitives which might be
difficult to define for other languages. Thus we gain the same advantages as when
passing from data definitions to abstract data types. Second, the programmer
may be given the possibility to define its own, application specific actions. This
should lead to a better structured and in consequence more readable and main-
tainable code. Last, but not least, the ADT of programs can be used as a kind of
“glue language” which permits the interaction between several components: In
fact, to manipulate other components we need to know their precise structure.
Thus exhibiting the ADT of programs defines the “interface” to the language
(and consequently components written using the language) more formally.

The rest of the paper is organized as follows: The next section reviews briefly
our framework for concurrent declarative programming. Section 3 introduces the
definition of actions and presents an example of an ADT of programs, which is
used to illustrate some definitions of actions in section 4. A comparison with
some related work is subject of section 5. Finally, section 6 concludes.

2 A Concurrent Declarative Programming Framework

In this section, we briefly review the broad outlines of our proposal for a multi-
paradigm framework combining mobile processes and declarative programming.
We will not present the framework in all its aspects but rather focus on the
parts we will need in this paper. The interested reader may consider [12, 13] for
further information. We assume the reader is familiar with classical notions of
rewriting [10, 19] as well as process algebra [4].

In our framework, an application (or system) is modeled as a set of com-
ponents. Loosely speaking, a component will consist of two parts C = 〈F, P 〉,
where P is a set of process definitions and F is a set of formulæ describing a
traditional declarative program, called a store in the sequel.

The execution model of a component is similar to the one of concurrent
constraint programming (ccp) [26] or the coordination language Linda [14] and
can be characterized as in Fig. 1. Processes (pi) communicate by modifying the
common store F , i.e., by altering, in a non-monotonic way, the current theory
described by the store, for example by simply redefining constants (e.g., adding
a message in a queue) or by adding or deleting formulæ in F . Every change of
the store is the result of the execution of an action. Thus actions constitute the
basic entities for building processes. Interaction with the environment is based
on the same mechanism: processes are allowed to execute actions on the stores
of other components. Examples of actions are 〈F, (tell (stick 4))〉 which adds
the atom (stick 4) to the store F , 〈s, c := v〉, to change the definition of the
(variable) constant c (which is defined in the store of the component s) to the

2



R. Echahed & W. Serwe, WFLP 2001

s2

F

p2

p5

p1
p4

p3

Fig. 1. execution model

new value v, 〈Window , close〉 to close the window Window , 〈Engine, stop〉 to
stop the engine Engine and 〈Display , (print ’hello’)〉 to print the string hello

on the display Display .
Orthogonally to the execution of actions, the store can be used as usual for

a declarative program, i.e., for goal solving or the evaluation of expressions.

2.1 Stores

A store is a declarative program, presented as usual by a signature Σ declaring
the different symbols used in the program and a collection of judgements R
defining the meaning (or semantics) of the symbols. To simplify the presentation,
and without loss of generality, we choose as an example of a declarative language
for this paper a language based on conditional rewrite rules, and we follow a
constructor-based discipline. Note that the concepts presented in this paper also
apply to more realistic, i.e., more sophisticated, languages (using constraints,
definitional trees, etc.).

Definition 1. A signature Σ is a pair 〈S, Ω〉 where S is a set of sorts (includ-
ing Bool , the sort of boolean values) and Ω is a family of sorted operations.

A conditional rewrite rule is a triple “ lhs → rhs | cond”, where lhs and rhs1

are terms and cond is a boolean valued term.

Example 1. Using the signature Σ = 〈S = {Bool ;Nat}; Ω = {succ : Nat →
Nat ; zero : Nat ; true : Bool ; +, −, mod : Nat × Nat → Nat ; <, ≥: Nat × Nat →
Bool}〉 we can define the operation “ mod” by the following two rules:

x mod y → x | x < y (1)

x mod y → (x − y) mod y | x ≥ y (2)

2.2 Processes

Besides the definition of operations, a component may also include process def-
initions in order to deal with the dynamics of real-world applications. Processes
in our framework are defined in the style of a process algebra (see, e.g., [4]).

1
lhs (respectively, rhs) stands for “left (respectively, right) hand side”.

3



Integrating Action Definitions in Concurrent Declarative Programming

Definition 2. A process term p is a well-typed expression defined by the follow-
ing grammar:

p ::= success
[

g ⇒
〈

si, ai

〉

i

]

(q t1 . . . tn) p ; p p ‖ p p + p p ⊕ p

The process success represents the process which terminates successfully. A
guarded action a =

[

g ⇒
〈

si, ai

〉

i

]

is composed of a guard (i.e., a boolean
expression) g and a sequence of pairs of (elementary) actions ai and storenames
si. Informally, a storename can be seen as a (symbolic) identifier for a component,
by denoting the store of the component. So, executing a guarded action means to
test the validity of the guard in the (local) store (i.e., the guard may be reduced
to true), and, upon the validity of the guard, to execute (atomically) the sequence
of the (elementary) actions2 〈si, ai〉. The execution of the (elementary) action
〈s, a〉 replaces the store denoted by the storename s, say F , by the result of
the application of the (elementary) action a to it, i.e., (a F ). The definition of
(elementary) actions will be presented in more detail in section 3. (q t1 . . . tn)
stands for a call to the process q. The definition of processes is given shortly
below.

As usual in process algebra, we use some operators for combining processes:
parallel (‖) and sequential (;) composition, nondeterministic choice (+) and
choice with priority (⊕). The last operator is not very common, but we found it
necessary to model critical applications where nondeterminism is not acceptable
[1]. The intended meaning of the process term p1⊕p2 is: “execute the process p2

only if the process p1 cannot be executed now”, i.e., the process p1 has a higher
priority than the process p2.

Process definitions are intended to give a description of the behaviour of
processes. Some restrictions are required on the (recursive) definition of processes
in order to avoid pathologic cases, especially processes with an infinite branching
degree. A common solution to avoid such problems consists in requiring process
definitions to be guarded.

Definition 3. A process q is defined by a judgement of the form

(q x1 . . . xn) ⇐
⊕m

j=1
aj ; pj

where (for each j) aj is a guarded action and pj is a process term. For a read-
able presentation, we omit here some formal technical conditions on the use of
variables.

According to definition 3 a process is defined by a set (ordered by priority)
of “bodies”, each of which consist of a (guarded) action and a process term.

Example 2. Consider the problem of the “Dining Philosophers” [11]. We model
the situation with two boolean functions, which have to be added to the signature
of example 1, namely (stick x) and (is eating y). The former represents the fact

2 Abusing the notation, we call a pair 〈storename, (elementary) action〉 for short (el-
ementary) action.

4



R. Echahed & W. Serwe, WFLP 2001

(thinks x n) ⇐

24(stick x) ∧
(stick ((x+1) mod n))

⇒
〈F, (del (stick x))〉;
〈F, (del (stick ((x+1) mod n)))〉;
〈F, (tell (is eating x))〉

35; (eats x n)

(eats x n) ⇐

24true ⇒
〈F, (del (is eating x))〉;
〈F, (tell (stick x))〉;
〈F, (tell (stick ((x+1) mod n)))〉

35; (thinks x n)

Fig. 2. process definitions for the Dining Philosophers (located on store F )

that stick x is lying on the table, and the latter is true whenever philosopher y

is eating.
Using the (elementary) actions (tell r) (respectively, (del r)) which add (re-

spectively, remove) an (unconditional) rule “r → true” to (respectively, from)
the store F , i.e., the declarative program, we can model the behavior of a philoso-
pher by the processes of Fig. 2. When a philosopher is thinking and wants to
start eating, he has to execute a guarded action: the guard (stick x)∧(stick ((x+
1) mod n)) ensures that the needed sticks are both available, and the three (el-
ementary) actions modify the theory by removing the two sticks, and by adding
the eating philosopher.

2.3 Operational Semantics

Informally, the operational semantics of a component is defined via a transition
system, the states of which are pairs consisting of a theory presentation, repre-
senting the current state of the store, and a process term, representing the current
structure of processes to be run. The transitions between states are triggered by
the execution of actions, either by processes, by the external environment, e.g.,
when a sensor has to be updated, or by the user via a dedicated interpreter for
actions. At each state, the inference rules defining the operational semantics of
the underlying declarative language may be run over the current store, e.g., one
might ask for the philosophers which are eating. For a more detailed presenta-
tion of the operational semantics of our framework, the interested reader may
consult [12].

3 User-Defined Actions

In the previous section, we have seen that actions are the principal constituents
for the description of processes, since each run of a process corresponds to the
performance of a possibly infinite sequence of actions. In this section, we discuss
the definition of actions.

The actions executed by processes operate on stores. Notice that, whenever a
process has to execute actions on some physical device, the latter is considered as

5



Integrating Action Definitions in Concurrent Declarative Programming

a component, modeled as a store for the data description, together with processes
for the control part of the device. This leads us to define an action as a curryfied
recursive function which goes from stores to stores3.

Definition 4. An action possibly takes some arguments and returns a total re-
cursive function from a store to a store, i.e., an action has the following profile
action : arg_type_1 -> ... -> arg_type_n -> store -> store

where the sort store denotes the ADT of stores, and the sorts arg_type_i

denote the sorts of needed parameters.

Using our framework, the integration of processes into a programming lan-
guage L becomes straightforward as far as it is possible to define or to use actions
which modify programs written in L. Unfortunately, actions over programs are
often supposed to be not a fundamental part of a language and are not specified
for most familiar programming languages. Exceptions are reflective languages,
as for instance Maude [6], or Common Lisp [28] together with its Metaobject
Protocol [18]. In these languages, programs can be represented as data in the
language itself, and these programs can be executed by an interpreter.

Nevertheless, even if classical programming languages do not provide actions
as such, particular actions on programs exist, but are mixed with “predefined
built-ins” of the syntax of the language. For instance, Prolog provides the “pred-
icates” assert and retract which allow one to add and to remove clauses to
and from a program. In SML (respectively, Scheme or Common Lisp), the “func-
tion” := (respectively, setq) permits to update the value associated to a “muta-
ble cell”. In Erlang, the “built-in functions” load_module, delete_module and
purge_module allow to exchange a version of a module by a new, “corrected”
one. These built-in actions, which are supposed to be used inside the sentences
defining a program, have side-effects on that program and hence modify the pro-
gram. Stated otherwise, the parameter representing the program to which the
action is to be applied is missing, since it is implicitly “self”.

There are many ways to define actions on programs for a given language L,
for example by providing a set of built-in actions or by providing an action de-
scription language (ADL). An ADL associated to L is defined as a language that
allows the description of actions over programs of L. Therefore, the structures of
L-programs have to be considered as data types of the ADL. Hereafter, we give
hints for the definition of an ADL associated to a rule-based programming lan-
guage as seen in Sect. 2. The ADL we use is a functional language, syntactically
close to SML [22].

To let users define their own actions, stores should be represented as data
objects of the ADL. Recall that a store of the language at hand is a triple
〈S, Ω, R〉 where S is a set of sorts, Ω is a family of sorted operations and R is a
set of conditional rewrite rules. We give in Fig. 3 a description of the signature of
an abstract data type (ADT) for the considered stores. This ADT is defined in a
modular way. The signatures of basic data types such as strings and generic lists

3 A similar view is taken by the authors of Concurrent Haskell (CH), when they call a
state transformer, i.e., a function (or value) of type IO t, an action [24, section 2.1].

6



R. Echahed & W. Serwe, WFLP 2001

are missing. Data types of sorts, operations, variables, terms, rules and stores are
described by their constructors (make ?), testers (is ?) and accessors (get ?).
Note that this ADT is not meant to be an (optimized) implementation of the
considered declarative language.

ADT store (* STORES *)

make_store : sort list -> operation list -> rule list -> store

get_sorts : store -> sort list

get_operations : store -> operation list

get_rules : store -> rule list

ADT rule (* RULES *)

make_rule : term -> term -> term -> rule

get_lhs : rule -> term

get_rhs : rule -> term

get_condition : rule -> term

ADT term (* TERMS *)

make_variable_term : variable -> term

make_application : operation -> term list -> term

is_variable : term -> bool

is_application : term -> bool

get_variable : term -> variable

get_operation : term -> operation

get_arguments : term -> term list

ADT variable (* VARIABLES *)

make_variable : string -> sort -> variable

get_variable_name : variable -> string

get_variable_sort : variable -> sort

ADT operation (* DEFINED OPERATIONS *)

make_operation : string -> sort -> operation

get_operation_name : operation -> string

get_operation_sort : operation -> sort

ADT sort (* SORTS *)

make_basic_sort : string -> sort

make_functional_sort : sort -> sort -> sort

Fig. 3. Sample of the signature of an ADT store

4 Examples of Actions

In this section we give some examples of actions with their definitions. All actions
are supposed to return well-formed stores.

7



Integrating Action Definitions in Concurrent Declarative Programming

4.1 Adding Rules

The actions which are most straightforward to define are those which just add
something to a part of the store, for example the addition of a rule. In ex-
ample 2, for instance, the (elementary) action (tell (is eating x)) adds the rule
“(is eating x) → true”.

Obviously, since in our example the store contains a list of rules, we have
at least two different possibilities to implement this action, depending on the
position where the new rule will be inserted into the list of rules. Two reasonable
choices are for instance the beginning and the end of the list – the following is
a (naive) specification of the former:
add_rule : rule -> store -> store

add_rule rule store =

make_store (get_sorts store)

(get_operations store)

(cons rule (get_rules store))
Prolog provides two built-in “predicates”, namely asserta and assertz,

which add a new clause at the beginning (asserta) or the end (assertz) of the
clauses defining the corresponding predicate [9, pages 44 – 47].

Obviously, the possibilities will be different, if the ADT of stores is more
sophisticated in order to implement “optimal” evaluation strategies, where rules
are stored, for instance, within definitional trees [2].

There are still more possibilities for the addition of a rule to a store. Consider
the case of adding several times the same rule. Depending on the operational
semantics, the existence of duplicated rules may be important (notice that the
standard of Prolog [9] is not very precise about how this is handled in Prolog).
In classical ccp for instance, telling the constraint c several times (i.e., adding
the constraint c several times to the store) is equivalent to telling it just once
[26].

The addition of a rule could also be combined with a test, such as adding a
rule only if it is not yet present in the store (modulo an equivalence relation).

4.2 Removing Rules

There are several possibilities to remove a rule from a store. A programmer
might want to remove a precise rule, or all rules of a specified form. Thus, when
removing a rule, we should test each rule separately if it should be removed
or not. Different possibilities of removal will then correspond to different tests,
which might be a functional parameter of the action. Examples for such tests are
identity, identity up to renaming of free variables, pattern matching, unification,
equality (equivalence with respect to the store), etc. A possible implementation
might be the following:
remove_rules : (rule -> bool) -> store -> store

remove_rules test store =

make_store (get_sorts store)

(get_operations store)

(find_all (fun x -> not (test x)) rules)

8



R. Echahed & W. Serwe, WFLP 2001

where the function (find all t list) returns the list of all elements e of the
list list for which the evaluation of (t e) returns true. We use an anonymous
function (or λ-abstraction) to inverse the result of the test test, that is to say
the expression (find all (fun x -> not (test x)) rules) denotes the list
of all rules r in the list of rules rules for which (test r) returns false.

In Prolog, the built-in “predicate” abolish(predicate) removes all clauses
for a given predicate predicate (in a single step), whereas retract(pattern)
removes all rules which can be unified with the rule-pattern pattern (one by
one upon backtracking) [9, pages 37 & 38, 154 & 155]. While abolish is not
very “precise”, the successful use of retract requires to control the number of
necessary backtracking steps, which is to our opinion not straightforward.

4.3 Assignment

Probably the most common action is assignment (:=) as it is ubiquitous in
imperative programming languages and also used in some declarative languages
as SML [22], Common Lisp [28] or Oz [27].

Similar to the view of assignment in the coordination language Linda [14,
page 98], we see the assignment c := term as removal of all rules defining the
(constant) operation c and addition of a single rule which redefines c to have the
value term. Thus, using the actions defined above (i.e., the functions add rule

and remove rules), the action of assignment might be defined as follows:

(:=) : operation -> term -> store -> store

(:=) operation term store =

(add_rule

(make_rule (make_application operation nil) term true)

(remove_rules

(rule_pattern_match

(make_rule (make_application operation nil)

(make_variable_term x)

(make_variable_term y)))

store))

where x and y are variables, true is the boolean constant true, and nil the
empty list. rule pattern match is a test function which implements a pattern-
matching-based removal4:

rule_pattern_match : rule -> rule -> bool

rule_pattern_match rule1 rule2 =

(term_matches (get_lhs rule1) (get_lhs rule2)) and

(term_matches (get_rhs rule1) (get_rhs rule2)) and

(term_matches (get_condition rule1) (get_condition rule2))

where we use the standard pattern matching function term matches:

term_matches : term -> term -> bool

4 We suppose that and is evaluated “lazily” in a sequential manner from left to right.

9



Integrating Action Definitions in Concurrent Declarative Programming

(term matches term1 term2) returns true if term1 matches term2.
Note, that in our framework, a “variable” in the sense of standard imperative

programming languages corresponds to a “changing constant”: using assignment,
we may change the theory which defines the value of the constant, and in each
of these theories, the value does not change, i.e., it is constant.

A further possibility for the assignment action (c := term) might reduce
the term to normal-form, i.e., the action might add a rule defining c to have the
value term’ where term’ is the normal-form of term.

4.4 Modifying the Signature

So far, we have only considered the modifications of the rules of a store. Modifi-
cations of the other part of the store, i.e., its signature, might be interesting too.
For instance, consider an implementation of a window system. Such a system
needs to store information about all the different windows that are currently
displayed on the screen. Roughly speaking, a theory describing the current state
of the system might model every window by a constant. Hence, when a request
for the creation of a new window arrives, the theory has to be changed, and a
new constant corresponding to the new window needs to be created. A simi-
lar example is the dynamic creation of new communication channels, which is
mandatory in order to model mobility through link passing as in the π-calculus
[21]. These examples are presented in more detail in [12].

These examples have in common that the enrichment of the signature is
limited to new constants, which then may be further used and modified by
assignment as in classical imperative programming languages. However, there
are also situations where the addition of a new operation, or even a new sort
might be necessary. For instance, if a program has to be modified, the new
version of the program might use new operations over new data-structures, in
particular new data-types. This happens for example if we want to change the
implementation of an algorithm using another, more efficient data structure, as
for instance graphs instead of lists.

Actions modifying the signature are executed implicitly in some of the inter-
active interpreters for modern declarative languages, whenever the definition of
new global symbols is permitted, as for example the let-construct in ocaml and
SML/NJ.

Removing declarations from the signature could be more problematic. For
example removing an operation from the signature should also remove all the
sentences (rules) including that operation.

4.5 Complex Actions

More complex actions are needed when particular parts of a store have to be
modified. A typical example is the correction of errors without stopping the
activity of the entire system, as it is required for example for large telephone
exchanges or air traffic control systems.

10



R. Echahed & W. Serwe, WFLP 2001

To handle such systems, the concurrent functional language Erlang [3] pro-
vides the built-in functions delete_module, load_module and purge_module

which allow to replace a complete module by a new, updated version (without
stopping the entire system). Since Erlang is untyped, this allows also the mod-
ification of the signature of the module, by changing the profile of functions,
and the set of symbols defined in the module. But one might imagine situations
where the exchange of an entire module is too coarse-grained, and where the
modification of a single rule is sufficient.

Maybe we need even to change the profile of some functions. Consider a
function computing the price of train tickets. There may be new, unpredictable
policies, such that the age of the customer, the season or the time-period has to
be taken into account. Thus the function computing the prices of train tickets
has to be replaced (in the entire store) by a new one, which has some addi-
tional parameters. This action (in its generality) is difficult (or even impossible)
to express using the built-in actions of existing declarative languages. Another
example are chip-cards. Since about two years are needed for the design of the
cards, the requirements of the application have probably evolved. Hence, it would
be interesting to have the possibility to adapt the program in chip cards without
the need for redesigning the chip.

5 Related Work

As already mentioned in the preceding sections, most existing programming
languages do not provide actions for the modification of programs as such, but
rather as special built-in primitives integrated into the syntax of the language.
These primitives are usually difficult to adapt to languages based on a different
paradigm.

Since examples for such primitives are too numerous to survey them all, we
restrict ourselves to give just a selection of some different kinds. When they have
already been discussed in Sect. 4, we do not further comment them here. For
instance, the logic language Prolog [9] provides the built-in predicates assert,
retract and abolish which allow one to add (respectively, remove) clauses
to (respectively, from) a program (see Sects. 4.1 and 4.2). In languages based
on the framework of ccp [26], as for instance Oz [27], the action tell allows
to add a constraint to the global constraint store (see Sect. 4.1). Languages
providing assignment are numerous. Besides imperative programming languages
(e.g., C++, Java, ada, etc.), assignment actions can be found in functional
languages (e.g., SML or Common Lisp) or constraint programming languages
(e.g., Oz) (see Sect. 4.3). The concurrent functional language Erlang [3] offers
the built-in functions delete_module, load_module and purge_module which
allow users to replace a module by a new corrected one without stopping the
entire application (see Sect. 4.5). CML [25], Erlang [3] and Concurrent Haskell
(CH) [24] provide a built-in primitive spawn (or forkIO in CH) the “side-effect”
of which is to launch a concurrent process. Interprocess communication via ports
(e.g., in AKL [16, 17], Oz [27] and Curry [7, 15]) uses the built-ins openPort

11



Integrating Action Definitions in Concurrent Declarative Programming

and sendPort for the creation and the sending of messages through ports. The
latter primitive modifies the program by adding the message at the end of the
associated stream; thus the information about the current end of the stream has
to be kept in the program and to be modified when sending a message.

Similar to most concurrent declarative programming languages, most ap-
proaches to state changes in (logic) databases [5] do not clearly distinguish be-
tween the notions of actions and predicates. Also, by focusing on database up-
dates which can be rolled back, these approaches do not encompass all actions,
in particular actions that manipulate physical objects external to the system,
as for instance alarm bells or production machines, since one cannot “roll back”
the emitted sound or reverse every mechanical transformation.

Additionally, all these built-ins are required to operate on the program exe-
cuting them. In other words, all actions are implicitly applied to the store itself,
as for example the implicit state parameter of the monadic I/O in CH [24]. Conse-
quently, these languages are in fact designed for the description of self-contained
components and thus, additional tools are necessary for the coordination and
communication of components written in such languages. An example of such a
tool are coordination languages, e.g., Linda [14]. In Linda, processes communi-
cate via a shared tuple space, using several primitive actions, namely primitives
for adding, reading and removing tuples. To allow the definition of more high-
level communication schemes, the idea of programmable coordination media has
been suggested [8]. Similar to our approach, a programmer can define the ac-
tions executable on the tuple space. By using (declarative) programs instead of
a tuple space, we give the programmer the possibility to express more complex
coordination structures on an abstract level, without the need to encode these
strategies via tuple space operations.

Reflective programming languages, e.g., Maude [6] or Common Lisp [28] to-
gether with its Metaobject Protocol [18], allow the representation of programs
as terms of the language itself. Therefore, the language itself can be used as
an ADL for the definition of actions, since the language corresponds to its own
meta-language. In Maude, the module META-LEVEL allows the modification of
the modules which are stored in a “module-database”. Metaobject Protocols
(MOP’s) [18], as for instance in the object system of Common Lisp [28], provide
also the possibility for the definition of actions on parts of the program. In Java

[20], reflection is limited to the discovery information about objects of the pro-
gram, to the invocation methods (including constructors for the creation of new
objects) and to the modification of fields. However, no new classes or methods
can be defined.

In combination with an implementation of an interpreter of the language (in
the language), as for example the special operator eval of Common Lisp, which
interprets its argument, reflection allows to write self-modifying programs. This
can be used to implement programs the execution scheme of which is similar
to our components. However, since the definitions of processes is not separated
from the store, even the definition of processes can also be modified dynamically.

12



R. Echahed & W. Serwe, WFLP 2001

To facilitate the understanding of programs, we prefer to separate the different
matters, namely the store and the processes modifying the store.

The scripting language Tcl/Tk [23] allows to modify stores representing
graphical user interfaces (GUI’s) by the execution of commands. The set of
available actions (or commands) can be extended. Therefore, thanks to its adapt-
ability and flexibility, Tcl/Tk is widely used for building GUI’s.

6 Conclusion

In this paper we have presented the definition of actions in a framework for con-
current declarative programming. In this framework, actions are defined as func-
tions from programs to themselves, using a metalanguage where abstract data
types of programs are available. Most existing (declarative) languages provide
such actions as built-in primitives which are presented as a part of the syntax,
whenever they are provided at all. Hence the integration of these languages into
our framework is unfortunately not straightforward.

In fact, to be integrated into our framework, a programming language should
provide the possibility to define the actions on stores, for instance by providing
an action definition language (ADL), where programs are considered as data
objects. A natural way to provide such an ADL is to include an ADT of programs
in the language definition, in addition to the syntax and semantics.

We would have appreciated to have such ADT’s for existing languages, as
we could have integrated them easily into our prototype of a multi-paradigm
platform currently under development.

References

1. J.-R. Abrial. In Formal Methods for Industrial Applications, vol. 1165 of LNCS,
chap. Steam-Boiler Control Specification Problem, pp. 500–510. Springer, 1996.

2. S. Antoy. Definitional trees. In H. Kirchner and G. Levi, editors, Proc. of ALP

1992, vol. 632 of LNCS, pp. 143–157, Sept. 1992. Springer.
3. J. Armstrong, R. Virding, and M. Williams. Concurrent Programming in ER-

LANG. Prentice Hall, 1993.
4. J. C. M. Baeten and W. P. Weijland. Process Algebra. Number 18 in Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 1990.
5. A. J. Bonner and M. Kifer. The state of change: A survey. In B. Freitag, H. Decker,

M. Kifer, and A. Voronkov, editors, Transactions and Change in Logic Databases:

Invited Surveys and Selected Papers of DYNAMICS ’97, vol. 1472 of LNCS, pp.
1–36, 1998. Springer.

6. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: Specification and Programming in Rewriting Logic. Computer Science
Laboratory, SRI Int., Mar. 1999.

7. Curry: An integrated functional logic language. available at
http://www.informatik.uni-kiel.de/~mh/curry/report.html.

8. E. Denti, A. Natali, and A. Omicini. Programmable coordination media. In D. Gar-
lan and D. L. Metayer, editors, Proc. of Coordination ’97, vol. 1282 of LNCS, pp.
274–288, Sept. 1997. Springer.

13



Integrating Action Definitions in Concurrent Declarative Programming

9. P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard, Reference Man-

ual. Springer, 1996.
10. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, ed-

itor, Handbook of Theoretical Computer Science, Volume B: Formal Models and

Semantics, chap. 6, pp. 243–320. Elsevier, Amsterdam, 1990.
11. E. W. Dijkstra. Hierarchical ordering of sequential processes. In C. A. R. Hoare

and R. H. Perrott, editors, Proc. of a Seminar on Operating Systems Techniques,
vol. 9 of A.P.I.C. Studies in Data Processing, pp. 72–93, Belfast, 1971. Acdemic
Press.

12. R. Echahed and W. Serwe. Combining mobile processes and declarative program-
ming. In J. Lloyd et al., editors, Proc. of CL 2000, vol. 1861 of LNAI, pp. 300–314,
London, July 2000. Springer.

13. R. Echahed and W. Serwe. A component-based approach to concurrent declarative
programming. In Proc. of WFLP 2001, Kiel, Sept. 2001. This volume.

14. D. Gelernter. Generative communication in Linda. ACM TOPLAS, 7(1):80–112,
Jan. 1985.

15. M. Hanus. Distributed programming in a multi-paradigm declarative language. In
G. Nadathur, editor, Proc. of PPDP ’99, vol. 1702 of LNCS, pp. 188–205, 1999.
Springer.

16. S. Janson. AKL–A Multiparadigm Programming Language. PhD thesis, Uppsala
Theses in Computing Science 19, June 1994. SICS Dissertation Series 14.

17. S. Janson, J. Montelius, and S. Haridi. Ports for objects in concurrent logic pro-
grams. In G. A. Agha, P. Wegner, and Yonezawa, editors, Research Directions in

Concurrent Object-Oriented Programming. The MIT Press, 1993.
18. G. Kiczales, J. des Rivières, and D. G. Bobrow. The Art of the Metaobject Protocol,

chap. 5 and 6. The MIT Press, 1991.
19. J. W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and Maibaum,

editors, Handbook of Logic in Computer Science, Vol. II, pp. 1–112. Oxford Uni-
versity Press, 1992.

20. G. McCluskey. Using Java reflection. Jan. 1998, available at
http://developer.java.sun.com/developer/technicalArticles/ALT/Reflection

21. R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, June 1999.

22. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard

ML–Revised. The MIT Press, 1997.
23. J. K. Ousterhout. Tcl and the Tk toolkit. Addison-Wesley, 1994.
24. S. L. Peyton Jones, A. D. Gordon, and S. Finne. Concurrent Haskell. In Proc. of

POPL ’96, pp. 295–308, Jan. 1996.
25. J. H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.
26. V. A. Saraswat. Concurrent Constraint Programming. The MIT Press, 1993.
27. G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer

Science Today: Recent Trends and Developments, vol. 1000 of LNCS, pp. 324–343.
Springer, 1995.

28. G. L. Steele, Jr. Common Lisp the Language. Digital Press, second edition, 1990.
29. P. Wegner. Interactive foundations of computing. Theoretical Computer Science,

192(2):315–351, Feb. 1998.

14


