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ABSTRACT
We propose a new algorithm of secrecy analysis in a frame-
work integrating declarative programming and concurrency.
The analysis of a program ensures that information can only
flow from less sensitive levels toward more sensitive ones.
Our algorithm uses a terminating abstract operational se-
mantics which reduces the problem of secrecy to constraint
solving within finite lattices. It departs in that from the
previous works essentially based on type systems. Further-
more, our proposal is general and tackles a very large class
of programs, featuring dynamic process creation, general se-
quential composition, recursive process calls and high level
synchronization.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

General Terms
Algorithms, Security, Verification.

Keywords
Safety, noninterference, abstract interpretation

1. INTRODUCTION
The need for secrecy increases as more and more (secret or

sensitive) private data (e.g., credit card numbers, personal
medical files, etc. ) migrate through the Internet. Hence
the protection of sensitive data becomes increasingly impor-
tant. We follow the popular approach of defining secrecy
as absence of information flow from sensitive to less sensi-
tive data [20]. In this setting, a privacy level is assigned
to each datum used by a program (similar to the model of
[4]), where high levels denote highly sensitive data, and low
levels represent public ones. A program respects secrecy
if the observation of the data with low privacy levels does
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not allow an attacker to gather information about the secret
data. In other words, public data may influence private data
whereas the converse is forbidden, i.e., any modification of
private data should not be observable at the public level.
Hence the aim of secrecy analysis is to show the absence of
information flow from high to low levels of privacy. This
approach to secrecy has been introduced by [7] and studied
for some time now; see [20] for a recent survey.

In this paper we present a static secrecy analysis for con-
current declarative programs [11]. Our computation model
integrates term rewrite systems with process rewrite sys-
tems la process algebra. Thus it exhibits a rich set of fea-
tures, including dynamic creation of parallel processes, gen-
eral sequential composition (including synchronization with
the termination of a parallel composition of an unbounded
number of processes), recursive process calls and high level
synchronization via a (constraint) store. Another point of
this work is that in contrary to most of recent works [3,
5, 18, 19, 21, 23, 24, 25, 26, 27] which are based on type
systems, we use an abstract execution to compute a set of
constraints (on the assignment of privacy levels) the satis-
faction of which is sufficient to guarantee secrecy. It has
to be noted, that using this approach we can easily extend
our analysis to obtain a compositional one, although this
is generally a strong point of type based systems not avail-
able with abstract interpretations. In summary, our work
is a step toward extending previous work in the dimension
of language expressiveness and analysis precision, using a
new style of approach (abstract interpretation versus type
inference).

The rest of the paper is organized as follows. In Sect. 2
we briefly present the computation model considered in this
paper. We give a precise definition of (the respect of) secrecy
in Sect. 3. Roughly speaking, we consider a program to
respect secrecy if information cannot flow from any privacy
level toward a lower one. In other words, we consider secrecy
from a non-interference point of view: a program respects
secrecy if there are no interferences from higher levels toward
lower ones. We present an abstract operational semantics in
Sect. 4, which always terminates and allows the computation
of a constraint set. We also show that a program respects
secrecy, whenever these constraints are satisfied. Sect. 5
gives a brief comparison with some related work, and Sect. 6
concludes. To help the reviewers verify the accuracy of our
results, we give some proofs and technical lemmas in App. A.

91



2. A FRAMEWORK FOR CONCURRENT
DECLARATIVE PROGRAMMING

The computational model used in this paper is a simpli-
fied version of the one proposed in [11, 12, 22]; we refer to
these works for a more detailed presentation of the com-
plete model and its implementation. Roughly speaking, a
program or a component in our framework consists of two
parts S = (F,ΠR). ΠR is a set of process definitions and
F is a declarative program or theory presentation, i.e., a
set of formulæ (here, we consider Term Rewriting Systems
(TRS)), which we call a store. We assume some familiarity
of the reader with TRS (see, e.g., [8]).

The execution model of a component can be schematized
as follows. Processes communicate by modifying a common
store F , i.e., by altering, in a non-monotonic way, the current
theory described by F , for example by simply redefining
constants (e.g., adding a message in a queue) or by adding
or deleting formulæ in F . Hence, the execution of processes
will cause the transformation of the store F . Every change
of the store is the result of the execution of an action.

We now define the different parts of our computational
model. The first step is to formalize the notion of store,
where constants and functions are defined.

Definition 1. A store is a many sorted conditional TRS
F = 〈Σ,R〉, composed of a signature Σ and a set of rules
(or formulæ ) R. A signature Σ = 〈S,Ω〉 is a pair of a set S
of sorts and a (S-indexed) family Ω of operator or function
symbols, such that Σ contains at least the sort Truth with its
constructor True. We note the (S-indexed) family of sets of
terms for a signature Σ and variables X as T (Σ,X). Rules
(elements of R) are of the form l → r | c which has to be
read: “l rewrites to r if c holds”, where l and r are terms of
the same sort, and c is a term of sort Truth.

Furthermore, we use the function eval(F, t), which evalu-
ates the term t to its normal form with respect to the store
F = 〈Σ,R〉. The actual (rewriting) strategy used by the
operational semantics is not important in this paper.

We write F ∪ (l→ r | c) (respectively F \ (l→ r | c)) the
store F to (from) which the rule l → r | c has been added
(removed). Furthermore, we write F • (l → r | c) the store
equivalent to store F where all rules of the form l → r′ | c′
have been erased and rule l → r | c has been added.

Actions allow the modification of stores. We distinguish
two kinds of actions: elementary actions like assignment,
addition or removal of rules, and guarded actions that are
executed atomically only if their guard evaluates to True,
providing high level synchronization.

Definition 2. An action α is a pair consisting of a guard
g and a sequence of elementary actions ai, written: [g ⇒
a1; . . . ; an]. A guard is a term of sort Truth whose valid-
ity in the store is decidable (i.e., normalization to True is
decidable). The elementary actions a we consider in this
paper are assignment (:=), addition of a rule to the store
(tell), removal of a rule from the store (del) and (skip) the
(elementary) action that does nothing.

Basic processes in our model are success (the process which
terminates successfully), guarded actions α, or process calls
q(t1, . . . , tn). As usual in process algebra (see, e.g., [14]), we
provide some operators for combining processes: parallel (‖)

and sequential (;) composition as well as nondeterministic
choice (+). Hence we have the following definition.

Definition 3. A process term p is a (well-sorted) ex-
pression defined by the following grammar: p ::= success |
[g ⇒ a] | q(t1, . . . , tn) | p; p | p ‖ p | p+ p.
A process q is defined by a sentence of the form:

q(x1, . . . , xn) ⇐ Pm
i=1 αi; pi where (for each i) αi is an

action and pi is a process term, such that the free variables
of αi and pi are included in the parameter set {x1; . . . ;xn}.

Definition 4. A system S is a tuple 〈F,ΠR〉, where F is
a store and ΠR a set of process definitions. A program p of
system S is a closed process q(t1, . . . , tn) where q(x1, . . . , xn)
is in ΠR.

The operational semantics of our execution model is de-
fined by a transition system, defined by the rules shown
in Fig. 1. The transition relation ↪→ describes the modi-
fication of the store by the execution of sequences of ele-
mentary actions. The execution of processes is described
by the transition relation −→. Transitions are of the form
〈F, p〉 −→ 〈F ′, p′〉 where F is a store and p is a process term.
The relation −→ is defined modulo the (classical) equiva-
lence relation ≡p which states that the operators ‖ and +
are commutative and success may vanish. Notice that the
execution of an action is atomic (see rule (Pguard)).

Example 1. As a first example, consider a direct trans-
lation of an example given in [5], showing how control flow
can lead to information flow. It shows the limitations of the
analysis of [26] in a concurrent context, and it is a simplified
version of the example given in [25].

α ⇐ [cα = tt⇒ SPY := ff; cβ := tt]; success
β ⇐ [cβ = tt⇒ SPY := tt; cα := tt]; success
γ ⇐ �

[PIN = tt⇒ cα := tt]; success
�

+
�
[PIN = ff⇒ cβ := tt]; success

�

PIN ,SPY , cα and cβ are constants of sort bool defined
by the two constructors tt and ff. cα and cβ are initiated
to ff. Notice that execution of α ‖ β ‖ γ copies the (secret)
value PIN into the (public) constant SPY .

Example 2. For the second example we present a toy
program, illustrating several points in a small amount of
code. Notice that the process s has a non-terminating ex-
ecution.

s ⇐ [test1(g1) ⇒ c := c+ 1]; s ‖ p(g1)
+ [test2(g2) ⇒ c := c+ 1]; s ‖ p(g2)
+ [test3(c) ⇒ g1 := 0 ]; s

This process roughly represents a server awaiting requests
on g1 and g2. If some conditions are met (these situations
are represented by testi) then, the server modifies (this might
be viewed as an acknowledgment) the value of a constant c
(a counter of the number of requests) and executes recur-
sively itself in parallel with a process p parameterized by the
request. One may think that gi represents a bank account
and p produces a service and decreases the account by some
amount of money (the price of the service). When the num-
ber of requests satisfies some condition (test3), then a mes-
sage is sent to g1 (that can be seen as the administrator of
the server). We will show (cf. Ex. 3 and 5) that, depending
on the circumstances, this program respects secrecy or not.
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〈F, tell(R); a〉 ↪→ 〈F ∪R, a〉 (ea tell)

〈F, del(R); a〉 ↪→ 〈F \R, a〉 (eadel)

〈F, f := t; a〉 ↪→ 〈F • (f → eval(F, t)), a〉 (ea :=)

〈F, skip; a〉 ↪→ 〈F, a〉 (easkip;)

success; p ≡p p (Eqsuccess;)

success ‖ p ≡p p (Eq success‖)

p1 + p2 ≡p p2 + p1 (Eq+ com)

p1 ‖ p2 ≡p p2 ‖ p1 (Eq‖ com)

p1 ≡p p2 〈F, p2〉 −→ 〈F ′, p3〉 p3 ≡p p4

〈F, p1〉 −→ 〈F ′, p4〉 (P≡p)

〈F, a1; . . . ; an; skip〉 ↪→∗ 〈F ′, skip〉 eval(F, g) = True

〈F, [g ⇒ a1; . . . ; an]〉 −→ 〈F ′, success〉 (Pguard )

(q(x1, . . . , xn) ⇐ Σm
j=1αj ; pj) ∈ ΠR 〈F, (Σm

j=1αj ; pj)[xi/ti]〉 −→ 〈F ′, p′〉
〈F, q(t1, . . . , tn)〉 −→ 〈F ′, p′〉 (Pabs)

〈F, p1〉 −→ 〈F ′, p′1〉
〈F, p1 + p2〉 −→ 〈F ′, p′1〉

(P+)
〈F, p1〉 −→ 〈F ′, p′1〉

〈F, p1 op p2〉 −→ 〈F ′, p′1 op p2〉 op ∈ {‖, ; } (Pop)

Figure 1: Inference Rules Defining the Operational Semantics

3. FORMALIZATION OF SECRECY
In this section we precisely define what we intend by se-

crecy in our setting. In line with [4], we assign to each
symbol in a store F a privacy level indicating its “status”.
The higher the privacy level of a value, the more private (or
secret) is the status of this value. Thus we assign to every
symbol of the signature, i.e., all elements of Ω, an element
of a lattice L. We note � the order defined on L and make
no difference between the lattice and the set of its elements,
i.e., L denotes at the same time the lattice and its carrier.
If π1, π2 are two elements of L and π1 � π2, we say that π2

is more private than π1. We write � for the join operation
(least upper bound) and � for the meet operation (greatest
lower bound). The upper bound of L is � and its lower
bound ⊥.

Definition 5. Let F be a store. We call any map � from
symbols of Ω toward L a privacy map. We extend naturally
any privacy map � to all terms in T (Σ,X). The privacy level
of a term is recursively defined as the least upper bound of
the privacy level of its subterms1:

�(f(t1, . . . , tn)) =
�Fn

i=1 �(ti)
� � �(f)

�(x) = ⊥ (x is a variable)

In the following we suppose that we are given a privacy
map �. When we talk of the privacy level of a term t we
intend �(t). We also define the notion of privacy level for
rewrite rules: for a rule l → r | c, �(l → r | c) is equal
to �(l). Finally we extend the notion of privacy level to
actions. For an action we use the greatest lower bound, i.e.,
we extend � with the following equations:

�(skip) = 2� �(f := t) = �(f)

�(tell(l → r | c)) = �(del(l→ r | c)) = �(l)

�([g ⇒ a1; . . . ; an]) = Fni=1 �(ai)

We also define a notion of safe rewrite rules. Informally, a
rewrite rule is safe whenever no information may flow from
1By assigning ⊥, the neutral element for �, to variables, we
ensure that they do not interfere with the privacy level of a
term.

a higher level toward a lower one. Consider two constants
PIN and SPY such that �(PIN ) = � and �(SPY ) = ⊥.
Then rewrite rules such as SPY → PIN or SPY → v |
PIN = v′ transmit a high level information to a lower one,
by evaluating SPY . Hence we consider rewrite rules safe
when the result of a rewrite step is a term of a lower or
equal privacy than what it depends upon.

Definition 6. A rewrite rule l → r | c is safe whenever
the following condition holds:

�
�(r) � �(l)

� ∧ �
�(c) � �(l)

�
.

A store F = 〈Σ,R〉 is safe, if all rewrite rules l → r | c ∈
R are safe.

In order to define processes respecting secrecy, we have
first to define a notion of equivalence between stores up to a
given privacy level. Informally, two stores are π�-equivalent
if they agree on all information the privacy level of which is
less than π.

Definition 7. Let F0, F1 be two stores, � a privacy map
and π ∈ L. We say that F0 and F1 are π�-equivalent and
write F0

∼=�
π F1 iff ∀i ∈ {0, 1} we have ∀ρi ∈ Ri and

�(ρi) � π, ∃ρ1−i ∈ R1−i, such that ρi = ρ1−i, up to variable
renaming.

A property of safe π�-equivalent stores is that the eval-
uation of a term is independent from the rules of a higher
privacy than π. This property is expressed formally and
proved in App. A.1.

We now define a notion of bisimulation of processes up to
a privacy level π and with respect to a privacy map �. Infor-
mally, two processes p1, p2 are π�-bisimilar when executed
on π�-equivalent stores, they remain π�-bisimilar. In other
words, either one can execute p1 and then for each execu-
tion there is an execution of p2 such that stores modified by
these executions remain π�-equivalent, or p1 can’t be exe-
cuted. In this last case, we ensure that every execution of p2

only affects parts of the store with a higher privacy than π.
Hence π�-bisimulation formalizes the idea that information
may flow from low privacy levels to high privacy levels but
not vice-versa. More formally:

Definition 8. Let p1, p2 be two ΠR-process terms, π ∈ L,
and F1, F2 two stores, and � a privacy map such that F1

∼=�
π
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F2. A relation B�
π (on pairs of stores and process terms) is a

π�-bisimulation if it is symmetric and if 〈F1, p1〉 B�
π 〈F2, p2〉

such that 〈F1, p1〉 −→ 〈F ′
1, p

′
1〉 then

• either ∃F ′
2, p

′
2 such that 〈F2, p2〉 −→ 〈F ′

2, p
′
2〉 and

〈F ′
1, p

′
1〉 B�

π 〈F ′
2, p

′
2〉

• or 〈F2, p2〉 �−→ and ∀F 

1 , p



1 s.t. 〈F ′

1, p
′
1〉 −→∗ 〈F 


1 , p


1〉

we have F 

1
∼=�

π F2.

In the sequel, we consider only the largest π�-bisimulation,
which we note as t�

π.
Now we can define when a process respects secrecy, namely

when it is bisimilar to itself for every privacy level.

Definition 9. A program p of a system 〈F,ΠR〉 respects
secrecy for a privacy map �, iff for all π and F ′ such that
F ′ ∼=�

π F , we have 〈F ′, p〉 t�
π 〈F, p〉.

Example 3. We now examine examples 1 and 2 from a
secrecy point of view.

Regarding Ex. 1, suppose that we start with a store F
in which PIN is tt and that we have �(PIN ) = � and
�(SPY ) = �(cα) = �(cβ) = ⊥ with ⊥ ❁ �. α ‖ β ‖ γ is
not safe with respect to � and F . Indeed, take a store F1 in
which PIN equals ff and SPY , cα, cβ have the same values
as in F . We have F1

∼=�
⊥ F , because all operators with a

privacy level less or equal to ⊥ are equally defined in both
F and F1. Now, if one executes α ‖ β ‖ γ with F , one will
obtain a store where the value of SPY is tt whereas with F1

the value of SPY is ff. Thus we get two stores that are no
longer π�-equivalent which is in contradiction with Def. 9.

For Ex. 2, let �(c) = πc, �(g1) = π1 and �(g2) = π2. We
may show that if πc ❁ π1, then s does not respect secrecy.
Indeed, it is easy to see that g1 depends on c and vice versa.
Hence a modification of g1 may influence the value of c, a
constant with a lower privacy. On the other hand, if π2 �
πc = π1 then s respects secrecy because the value of g2 does
depend neither on c nor g1.

4. ABSTRACTION AND CONSTRAINT GEN-
ERATION

We develop an abstract operational semantics aiming at
the generation of a set of constraints, i.e., inequations on pri-
vacy levels, representing the constraints satisfied by a pro-
gram respecting secrecy. If the constraint set cannot be sat-
isfied, then the analyzed program may not respect secrecy.

Since our abstract operational semantics always termi-
nates, it plays the same role as the type systems of [3, 5, 18,
19, 21, 23, 24, 25, 26, 27]. There, type inference is used to
analyze non-interference properties of programs, either for
imperative, functional or concurrent programs. Types in-
ferred in these analyses are not similar to “standard types”,
say Int → Int, they are rather like Intπ1 → Intπ2 . That
is to say, normal types are used as backbone where to put
privacy annotations. This whole idea of using “standard
types” as skeleton for the analysis has been studied in [17].
We follow this strategy and use the skeleton of an execution
in order to collect constraints on privacy levels.

First we define the abstract operational semantics and
show afterward how it can be used to analyze the respect of
secrecy by a program.

4.1 Abstract Operational Semantics
Suppose that we are given a system S = 〈F,ΠR〉. We de-

fine an abstract operational semantics for S . Informally, the
abstraction of the store is a set of inequations over privacy
levels. For each symbol of the signature of F , we introduce a
constant denoting its privacy level. The abstract operational
semantics collects inequations through abstract executions.
Since the number of these inequations is finite, it is possible
to produce the whole set of inequations for a program. We
prove in Theorem 1 that if a privacy map � defined on S is
such that all inequations hold, then the analyzed program
respects secrecy for �. This is a kind of abstract interpreta-
tion [6].

Abstract stores are sets of privacy inequations. We define
privacy formulæ f by the following grammar (where c de-
notes a constant): f ::= π | c | f�f | f�f. Privacy inequations
are statements of the form f1 � f2.

Definition 10. An abstract store FA is a couple
〈ΣA,RA〉 where the signature ΣA = 〈{sA},ΩA〉 defines a
set of constants ΩA and RA is a set of privacy inequations
build with symbols belonging to ΣA. For a store F = 〈Σ,R〉,
we define FA = 〈ΣA,RA〉, its abstract store, as follows:
for all elements f ∈ Σ, there is a constant xf (of sort sA)
in ΩA and for all rules l → r | c in R, there are inequations
�A(r) � �A(l), �A(c) � �A(l) in RA, where �A is the function
defined by: �A(f) = xf (∀f ∈ Σ) and �A

�
f(t1, . . . , tn)

�
=

�A(f)� �A(t1)� . . .��A(tn). We call F the original store of
FA and write in the following tA instead of �A(t).

We use an abstract execution to collect constraints that
ensure secrecy. Informally, the abstract operational seman-
tics is defined by a transition system, the states of which are
tuples 〈FA, 〈pA, σ〉〉 consisting of an abstract store FA, an
abstract process term pA and a privacy level σ, correspond-
ing to the highest level checked in a guard up to the current
point in the execution. Abstract transitions generate con-
straints, depending on σ as well as on the privacy level of
terms manipulated, and record them into the abstract store.
Fig. 2 gives the rules defining the abstract transition rela-
tion. This transition system is obviously infinitely branching
due to rules (AEq≡p

), (Eq success‖) and (Eq success;). However,
it is clear that we can get a finitely branching transition
system by considering term processes modulo the equations
(Eq success;) and (Eq success‖).

Abstract execution of sequences of elementary actions is
described by the relation ↪→A. Abstract elementary actions
modify an abstract store FA with respect to a privacy level
σ of L. Since in a parallel composition p ‖ q, p might check
guards of a high level while q only works on low privacy
levels, we need to duplicate the privacy level σ, in order to
not reject such processes (as constraints generated by p can
be too strong compared to q). Hence, we introduce abstract

operators +A, ‖A, ;Aand abstract process terms (or M-

terms), defined by the grammar: M ::= 〈p, σ〉 | M‖AM |
M+AM |M ;AM. In some sense, the role of ‖A is similar
to the one of the subtyping rule in type based analyses (see
for instance [5]), namely to allow to associate different types
for both parts of a parallel composition and then to use
the subtyping rule in order to have the same type in both
branches in the type derivation tree. The other two abstract
operators are defined for notational coherence and do not
influence the analysis. In order to translate between the
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〈FA, 〈f := t; a, σ〉〉↪→A〈FA∪ {tA � fA} ∪ {σ �fA}, 〈a, σ〉〉 (Aea :=)

〈FA, 〈tell(l→ r | c); a, σ〉〉↪→A
FA ∪ {rA � lA} ∪ {cA � lA} ∪ {σ � lA}, 〈a, σ〉� (Aea tell)

〈FA, 〈del(l→ r | c); a, σ〉〉↪→A〈FA ∪ {σ � lA}, 〈a, σ〉〉 (Aeadel)

〈FA, 〈skip; a, σ〉〉↪→A〈FA, 〈a, σ〉〉 (Aea skip;)

p1 ≡p p2

〈p1, σ〉≡A〈p2, σ〉 (AEq≡p
)

M1‖AM2≡AM2‖AM1 (AEq‖A)

M1+AM2≡AM2+AM1 (AEq+A)

〈p1 op p2, σ〉 �−→ 〈p1, σ〉 opA 〈p2, σ〉 op ∈ {‖, ; ,+} (AopA-I)

〈success, σ1〉‖A〈success, σ2〉 �−→ 〈success, σ1 � σ2〉 (A‖A-E)

〈success, σ1〉 ;A〈p2, σ2〉 �−→ 〈p2, σ1 � σ2〉 (A ;A-E)

M1
nf≡AM2 〈FA,M2〉−→A〈FA′,M3〉 M3

nf≡AM4

〈FA,M1〉−→A〈FA′,M4〉 (AP≡A)

〈FA, 〈a1; . . . ; an; skip, σ� gA〉〉↪→A∗〈FA′, 〈skip, σ� gA〉〉
〈FA, 〈[g ⇒ a1; . . . ; an], σ〉〉−→A〈FA′, 〈success, σ � gA〉〉 (APguard)

(q(x1, . . . , xn) ⇐ Σm
j=1αj ; pj) ∈ ΠR 〈FA, 〈(Σm

j=1αj ; pj)[xi/ti], σ〉〉−→A〈FA′,M′〉
〈FA, 〈q(t1, . . . , tn), σ〉〉−→A〈FA′,M′〉 (APabs)

〈FA,M1〉−→A〈FA′,M′
1〉

〈FA,M1opAM2〉−→A〈FA′,M′
1op

AM2〉 op ∈ {; , ‖} (APopA)

〈FA,M1〉−→A〈FA′,M′
1〉

〈FA,M1+AM2〉−→A〈FA′,M′
1〉

(AP+A)

Figure 2: Abstract Operational Semantics

concrete and abstract operators, we define a transformation
relation �−→. It is clear that �−→ is confluent and strongly

normalizing. We write Mnf
the normal form of M for �−→.

By inspection of the similarities of the inference rules in
Figs. 1 and 2 we prove in App. A.3 that to each concrete
transition step corresponds an abstract reduction step.

4.2 Program Analysis
The idea of our analysis is to collect the constraints com-

puted by all possible abstract executions. We claim that
if there exists a substitution of variables in the privacy for-
mulæ to L elements satisfying the computed constraints,
then the program respects secrecy for any privacy map as-
signing the same privacy to f as the substitution associates
to xf (see Def. 10). Crucial for the termination of our anal-
ysis is that the abstract store becomes stable during an ab-
stract execution, i.e., after a certain point no more new pri-
vacy inequations are created. This is due to the fact that
abstract elementary actions only increase the number of pri-
vacy inequations in the store. Furthermore, abstract execu-
tions are purely symbolic, and since the number of symbols
appearing in a program is finite so is the number of inequa-
tions that can be generated by this program. Therefore it is
possible to cut infinite branches, when no more information
can be collected.

Definition 11. The analysis reduction  is the relation
between triples of the form 〈FA,M,H〉, where H (denoting
the History of executed process calls) is a set of pairs of the
form 〈q, [�A(t1); . . . ; �A(tn)]〉.  is defined as follows:

• if 〈FA,M〉−→A〈FA′,M′〉 using a reduction rule dif-
ferent from (APabs), then 〈FA,M,H〉 〈FA′,M,H〉
and

• if M = 〈q(t1, . . . , tn), σ〉 and

〈FA, 〈(Σm
j=1αj ; pj)[xi/ti], σ〉〉−→A〈FA′,M′〉, where the

process q is defined by
�
q(x1, . . . , xn) ⇐ Σm

j=1αj ; pj

� ∈
ΠR, then

〈FA,M,H〉 

8>>>><
>>>>:

〈FA, 〈success, σ〉,H〉
if 〈q, [t1A; . . . ; tn

A]〉 ∈ H
〈FA′,M′,H ∪ 〈q, [t1A; . . . ; tn

A]〉〉
otherwise

Using that the number of non equivalent abstract process
calls is finite (since � is idempotent and associative), we
prove in App. A.5 that there are no infinite  reduction
sequences. Since furthermore the number of rules that are
applicable is always finite, we can define the result returned
by our analysis as the collection of all reachable abstract
stores.

Definition 12. Let S = 〈F,ΠR〉 be a system and p be

a program of S. We call skeleton of p, and write p�
F , the

constraint set
S

i∈I F
A
i where the index set I is defined such

that ∀〈FA
i , success, σi〉 reachable from 〈FA, 〈p,⊥〉〉 using  ,

i ∈ I.
We now address the question of how this analysis can be

used. The idea is that if we consider a program p, a privacy
map �, and if every constraint of p�

F is compatible with �
then the program respects secrecy, otherwise there might be
information flow from high privacy levels to lower ones. We
say that a constraint set FA is satisfied by a substitution S

from ΣA to L, iff for every rule l � r of RA S(l) � S(r) is
correct, where S(l) is the natural extension of S to terms of
the form x1 � . . .�xn. Informally, compatibility between an
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abstract store FA and a privacy map � expresses that the
inequations of the abstract store are verified for the privacy
map defined on the original store.

Definition 13. A program skeleton p�
F is told compat-

ible with a privacy map � iff S� satisfies p�
F , where S� is

defined by: ∀f ∈ F S�(xf ) = �(f).

If the skeleton of a program is compatible with a privacy
map �, then we claim that this program is safe with respect
to �.

Example 4. Consider again α ‖ β ‖ γ as defined in
Example 1. As in Example 3, suppose �(PIN ) = � and
�(SPY ) = ⊥. The abstract execution of α ‖ β ‖ γ produces
a collection of constraints separately generated by α, β, γ.
Consider γ. From rules (APguard) and (Aea :=) (condition
σ � cA in definition of (Aea :=)), we have � � cα

A and
� � cβ

A. On the other hand, considering α, the same rules
lead to cα

A � ⊥. It is clear that the constraints gener-
ated by γ and α are not compatible with �. Indeed we have
� � cα

A � ⊥.

Example 5. Example 2 illustrates that the analysis ter-
minates, even in presence of recursive processes. If we sup-
pose that test1, test2 and p only generate trivial inequations
(like g1

A � g1
A), then we can see that the first line of the

process will generate g1
A � cA since c is modified after a

test on g1. For the same reasons the second and third line
will generate g2

A � cA, and generates cA � g1
A. Each

of these inequations is generated by an application of the
choice rule (AP+A). The recursive call to s after the choice
has the same arguments (that is no argument). Therefore
because of Def. 11 the execution stops since 〈s, []〉 has al-
ready been recorded in H. Now by Def. 12 we can merge the
three inequations in order to obtain the skeleton of s. From
cA � g1

A and g1
A � cA, it follows that program s respects

secrecy if � fulfills the equality g1
A = cA. Otherwise, pro-

gram s may not respect secrecy.

Now we give the main result of the paper, namely that a
program respects secrecy for a privacy map � if its skeleton
is compatible with �. The converse is not true. For instance,
the process

q(x)⇐ �
[PIN =12 ⇒ SPY := 0]; success

�

+
�
[PIN �=12 ⇒ SPY := 0]; success

�
is rejected for a privacy map that assigns � to PIN and ⊥
to SPY , whereas in fact the final value of SPY does not
depend on the actual value of PIN : there is no information
flow from high towards low levels.

Recall that a process respects secrecy if it is bisimilar to it-
self for every privacy level. Thus by contradiction, if secrecy
is not respected, there is a privacy level π, such that for two
stores F0, F1 with F0

∼=�
π F ∼=�

π F1, there exists an execution
path leading from 〈F0, p〉 to a store F# such that there is
no path leading from 〈F1, p〉 to a store π�-equivalent to F#.

Intuitively, this is impossible if � is compatible with p�
F , be-

cause of the following two cases: either all guards are lower
than π, and thus both stores allow the process to proceed
with the same actions, or a guard is higher than π but then
elementary actions modify the store only in a region higher
than π and the transformation is not visible with respect to
π�-equivalence. We get the following theorem:

Theorem 1. Let S = 〈F,ΠR〉 be a system, p a program

on S, � a privacy map for F , p�
F the skeleton of program p,

then if p�
F is compatible with � then p respects secrecy for �.

5. RELATED WORK
Due to lack of space we cannot compare our analysis to all

proposals in the literature, but focus only on some particu-
larly related works. We refer the reader to [20] for a more
exhaustive survey of existing work.

In contrary to [2, 5, 23, 25], our framework allows the
dynamic creation of parallel (possibly non-terminating) pro-
cesses, a feature very common in real-life programming, e.g.,
servers handling requests by separate processes (or threads).
Furthermore, we can deal with general sequential composi-
tion, including programs of the form (P ‖ Q); R, which are
not possible in [5, 21, 23, 25]. Notice that processes of the
form (P ‖ Q); R are difficult to deal with using type sys-
tems. Indeed, in order to have the subject reduction prop-
erty, it is necessary to introduce a process success, such that
(success ‖ P ) � P where success may have any type (from
a secrecy point of view). This implies the loss of type unic-
ity for observationally equivalent processes, since one can
always add success processes within any process, obtaining
an observationally equivalent process, and by giving an ar-
bitrary type to success modify the type of the whole process.
This may lead to technical difficulties to prove safety. Our
proposition, based on an abstract interpretation, avoids such
problems. Nevertheless, our approach retains a key prop-
erty of type based systems, namely compositionality. It is
possible to analyze separately different programs yielding
constraint sets that can be mixed in an appropriate way
(depending on the composition used) in order to obtain the
analysis of the composition. In [29], Zanotti uses also ab-
stract interpretation for the systematic derivation of secrecy
type systems, but does not consider concurrent program-
ming.

The computation model of [18] uses semaphores for syn-
chronization and, as most other work, while-loops instead
of recursion as in our model. However, the loop-guards of
[18, 21] are limited to low privacy levels. Hence our analysis
is more precise in this point.

The approach to secrecy based on type systems has also
been applied to object oriented languages [3, 16]. However,
we are not aware of extensions of these works dealing with
concurrency. [28] presents a new approach to secrecy analy-
sis based on linear bisimulation in the context of the linear
π-calculus. The comparison of their results with ours re-
mains to be done.

In [9, 10], the authors consider a computation model which
is similar to ours. However, their work departs from ours,
since their computation model, as well as their analysis and
even their notion of interference are probabilistic. This en-
ables their analysis to measure the amount of information
flow. On the other hand, [9, 10] consider only finite execu-
tions, whereas we can deal with non-terminating programs
(cf. Ex. 2).

The analysis presented in this paper does not address in-
formation flow due to peculiar scheduling policies. Different
approaches have been studied in this direction: probabilis-
tic non-interference, scheduler encoding as meta-process and
program transformations. The propositions for the latter we
are aware of (i.e., [1, 18, 21]) do not allow high guards in

96



loops, and extensions to more than two privacy levels seem
not straightforward. However, the extension of the model
integrating the specification of scheduling policies as in [5,
21] seems interesting3. Our computation model containing
both, dynamic process creation and hierarchic process struc-
tures instead of a “flattened” set of concurrent processes,
the techniques need to be adapted. The use of probabilistic
noninterference [15] as in [23, 24, 27], allows to ensure that
the probability distributions for the values of public data do
not depend on secret data. This path also merits further
investigation.

6. CONCLUSION
In this paper we have presented a new secrecy analysis,

which ensures that no information may flow from a secret
area towards a public one. This idea of “no information
flow from high to low”, as shown in [13], may be used for
many security issues. With respect to existing work, our
analysis considers a richer computation model and uses a
different technique, namely abstract computations and con-
straint solving instead of type systems.

Notice that our algorithm is general in the sense that it
can be adapted to cope with new actions, as for instance ac-
tions which create new symbols in the store [22]. It suffices
to add the appropriate definitions of ↪→A. In addition, it is
easy to see that we can tune our algorithm to handle pro-
grams written in several other programming languages, e.g.,
Constraint Logic Programming, Concurrent Constraint Pro-
gramming, Rewriting-based languages, LOTOS, SDL etc.
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APPENDIX

A. PROOFS OMITTED FROM THE PAPER
(INTENDED FOR THE REVIEWERS)

In this appendix we give the proofs omitted in the paper

and introduce further auxiliary lemmas, together with their
proofs.

A.1 Independence from Higher Privacy Lev-
els

The following lemma expresses that the evaluation of a
term in a safe store does not depend from the rules of higher
privacy level. We use the following notations. Let t be a
term of T (Σ,X), ρ a rewrite rule in R and p a position in
t, then a rewrite step at position p using rule ρ is written
t 9 9 Kp,ρ t

′.

Lemma 1. Let π be a privacy level, � be a privacy map,
F1 = 〈Σ,R1〉, F2 = 〈Σ,R2〉 be two safe stores such that
F1
∼=�

π F2 and t be a term of T (Σ,?) such that �(t) � π. If
there is a reduction step t 9 9 Kp,ρ1 t

′ with p a position and
ρ1 ∈ R1 then there exists t′′ such that t 9 9 Kp,ρ2 t

′′ with ρ2 ∈
R2, t′ is equal to t′′ up to renaming and �(t′) = �(t′′) � π.

Proof. The safety of the stores F1 and F2 implies the
safety of their rewrite rules. The privacy level of a rewrite
rule l → r | c is �(l → r | c) = �(l). Now since the privacy
level of a term is the least upper bound of the privacy levels
of its subterms, if rule ρ1 can be used at position p, then the
subterm at this position has a privacy level lower than π, and
the level of ρ1 is also lower than π (indeed the privacy levels
of variables that could occur in l are ⊥). Hence the privacy
levels of all rules (notice that due to conditions in the rewrite
rules, more than one rule can be used in a reduction step)
used in the reduction step t 9 9 Kp,ρ1 t

′ are lower or equal to
π. By definition of ∼=�

π we have thus for each of these rules
(∈ R1) the existence of a rule (∈ R2) which is equal up to
renaming. Thus the reduction steps are with respect to the
same stores (modulo renaming of the variables in the rewrite
rules).

A.2 Characterization of Nonbisimilar Processes
The following lemma characterizes a process which is not

bisimilar to itself on equivalent stores. Intuitively, the state-
ment corresponds to the negation of Def. 8. We use this
lemma to prove Theorem 1.

Lemma 2. Let � be a privacy map, π a privacy level, p0

a process term and F 1
0 , F

2
0 two stores. 〈F 1

0 , p0〉 �t�
π 〈F 2

0 , p0〉
implies that there exist an integer N , and two derivations:

〈F 0
0 , p0〉 −→ 〈F 0

1 , p1〉 −→ . . . −→ 〈F 0
N , pN 〉

〈F 1
0 , p0〉 −→ 〈F 1

1 , p1〉 −→ . . . −→ 〈F 1
N , pN 〉

such that for all j < N , F 0
j
∼=�

π F
1
j and

• F 0
N �∼=�

π F
1
N ,

• or there exist F#, p# such that (for j ∈ {0, 1})
〈F j

N , pN〉 −→ 〈F j
N+1, pN+1〉 −→∗ 〈F#, p#〉

but 〈F 1−j
N , pN 〉 �−→ and F 1−j

N �∼=�
π F

#.

Proof. Intuitively, Lemma 2 is simply the negation of
Def. 8. We prove Lemma 2 by considering the different
cases with respect to the length of the transition sequences.

Without loss of generality, consider, in the situation of
Lemma 2, a maximal transition sequence d0 starting with
F 0

0 and p0, i.e., a sequence of transitions that can not be
extended. We distinguish between the case of a finite and
an infinite transition sequence.
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1. The maximal transition sequence d0 is finite, i.e., we
have n ≥ 0 such that
〈F 0

0 , p0〉 −→ 〈F 0
1 , p1〉 −→ · · · −→ 〈F 0

n , pn〉 �−→.

We prove Lemma 2 by induction on the length n of d0.

Base Case. In the case that n = 0, if we have F 0
0 �∼=�

π

F 1
0 the lemma is obviously true (for N = 0). Other-

wise, by definition of t�
π, there exist F 
, p
 such that

〈F 1
0 , p0〉 −→+ 〈F 
, p
〉 with F 0

0 �∼=�
π F


. Thus the lemma
holds for N = 0.

Induction Step. Suppose now, that Lemma 2 holds
for maximal transition sequences for 〈F 0

0 , p0〉 of length
shorter than n. Consider a maximal transition sequence
of length n. If F 0

0 �∼=�
π F

1
0 , the lemma is obviously true

(for N = 0). Otherwise we distinguish two further
cases:

• 〈F 1
0 , p0〉 �−→. Assume that F 1

0
∼=�

π F 0
i for all i ∈

{1, . . . , n}. Thus we have by definition 8 that
〈F 0

0 , p0〉 t�
π 〈F 1

0 , p0〉 which is in contradiction to
our assumption. Thus there exists i0 such that
〈F 0

0 , p0〉 −→ 〈F 0
1 , p0〉 −→∗ 〈F 0

i0 , p
0
i0〉 but 〈F 1

0 , p0〉 �−→
and F 0

i0 �∼=�
π F

1
0 , i.e., we are in the second situation

of Lemma 2 for N = 0.

• There exists p′0 such that4 〈F 1
0 , p0〉 −→ 〈F 1

1 , p
′
0〉.

In this case, we have the following transition5

〈F 1
0 , p0〉 −→ 〈F 1

1 , p1〉. Consequently we have also
〈F 0

1 , p1〉 �t�
π 〈F 1

1 , p1〉 and can apply the hypothe-
sis of the induction, since the considered maximal
transition sequence for 〈F 0

1 , p1〉 has length n− 1.

2. The maximal transition sequence d0 is infinite, i.e., we
have
〈F 0

0 , p0〉 −→ 〈F 0
1 , p1〉 −→ · · · −→ 〈F 0

i , pi〉 −→ · · ·.
Consider the maximal transition sequence d1 for F 1

0 and
p0 which corresponds to an execution of (a prefix of)
the same sequence of actions. If d1 is finite, the proof
is symmetric to case 1. Thus we suppose we have an
infinite transition sequence6 〈F 1

0 , p0〉 −→ 〈F 1
1 , p1〉 −→

· · · −→ 〈F 1
i , pi〉 −→ · · ·.

Notice that we cannot have F 0
i
∼=�

π F 1
i for all i ≥ 0

since this implies that 〈F 0
0 , p0〉 t�

π 〈F 1
0 , p0〉, in contrary

to our assumption. Thus, we choose N as the least
index such that F 0

n �∼=�
π F

1
n .

A.3 Correspondence Between Concrete and
Abstract Executions

The correspondence between concrete and abstract execu-
tions is established by the following two lemmas. The first
lemma states that the execution of abstract action modifies
the abstract store in a monotonic manner, that is to say by
only adding constraints to the abstract store.

Lemma 3. We have that 〈F, a; a〉 ↪→ 〈F ′, a〉 implies that
for all σ and constraint sets C there exists C′ ⊇ C such that

〈FA ∪ C, 〈a; a, σ〉〉↪→A〈F ′A ∪ C′, 〈a, σ〉〉.
Proof. We analyze our four elementary actions sepa-

rately.
4The transition yields the store F 1

1 since the execution of
actions is deterministic.
5Since the store and the process term are the same, we just
have to use the same inference rules to infer this transition.
6We have the same process terms in the transition sequences
d0 and d1 by a similar reasoning as above (see footnote 5).

skip: According to (ea skip;), F
′ = F . We choose C′ = C and

Lemma 3 holds due to (Aeaskip;).

tell(l→ r | c): Inspection of (Aea tell) and (ea tell) shows that
Lemma 3 holds for C′ = C∪{σ � lA}, since the further
inequations added to FA are exactly those correspond-
ing to the rule added to F .

del(l → r | c): We distinguish two situations:

On the one hand, if l → r | c �∈ F , then we have by
(eadel) that F ′ = F , and inspection of (Aeadel) shows
Lemma 3 holds for C′ = C ∪ {σ � lA}.
On the other hand, if l → r | c ∈ F , then we have

that F ′A = FA ∪{rA � lA; cA � lA}. Hence Lemma 3
holds by choosing
C′ = C ∪ {rA � lA; cA � lA} ∪ {σ � lA}.

f := t: By a similar reasoning as for tell and del7, inspection
of (Aea :=) and (ea :=) shows that Lemma 3 holds for
C′ = C ∪ D ∪ {σ � fA}, where D is defined as the
following set of privacy inequations
D =

�
r � l; c � l such that ∃(l→ r | c) ∈ F \ F ′	.

Before we can state the correspondence between concrete
and abstract transitions, we introduce the function φ which
associates to an abstract process term M a corresponding
concrete process term by omitting all privacy levels. φ is
defined by the following four equations:

φ(〈p, σ〉) = p φ(M‖AM′) = φ(M) ‖ φ(M′)
φ(M+AM′) = φ(M) + φ(M′)
φ(M ;AM′) = φ(M);φ(M′)

The following lemma states that for each concrete transi-
tion exists a corresponding abstract transition.

Lemma 4. Let S = 〈F,ΠR〉 and p a process term of S. If
〈F, p〉 −→ 〈F ′, p′〉 then for all M such that φ(M) = p and
for all constraint sets C we have M′, C′ such that 〈FA ∪
C,Mnf〉−→A〈F ′A ∪ C′,M′〉, φ(M′) ≡p p

′ and C ⊆ C′.

Proof. We prove Lemma 4 by induction of the height
of the inference tree used to infer the concrete transition
〈F, p〉 −→ 〈F ′, p′〉. That is to say, we prove for all inference
rules for −→ that, if Lemma 4 holds for the premises, than
it also holds for the conclusion of the inference rule.

Base Case. The only inference rule for −→ without any
occurrence of −→ in the premise is rule (APguard). Notice

first that φ(M) = [g ⇒ a1; . . . ; an] implies that M = Mnf

and M is of the form 〈[g ⇒ a1; . . . ; an], σ〉, where σ is a
privacy level. Applying Lemma 3 n times, we have that
〈F, a1; . . . ; an; skip〉 ↪→ 〈F ′, skip〉 implies that for all σ and
constraint sets C there exists C′ ⊇ C such that

〈FA ∪ C, 〈a1; . . . ; an; skip, σ〉〉↪→A〈F ′A ∪ C′, 〈skip, σ〉〉
Defining M′ = 〈success, σ〉, we have by rule (APguard) that
Lemma 4 holds.

Induction Step. We consider the remaining inference rules
one by one, under the hypothesis that lemma 4 holds for the
transitions occurring in the premise.

7Notice that assignment is a combination of del and tell.
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(P≡p): Suppose that the premises of rule (P≡p) hold, i.e.,
that p1 ≡p p2, p3 ≡p p4 and 〈F, p2〉 −→ 〈F ′, p3〉. Us-
ing the hypothesis of the induction, we have thus that
for all M2 and C such that φ(M2) = p2 there ex-

ist M3 and C′ such that 〈FA,M2
nf〉−→A〈F ′A,M3〉,

φ(M3) ≡p p3 and C ⊆ C′. Since p1 ≡p p2, we can,
for any M1 such that φ(M1) = p1, choose M2 such

that M2
nf≡AM1

nf
and φ(M2) = p2. Applying the hy-

pothesis of the induction, we have for all C that there

existM3 and C′ such that 〈FA,M2
nf〉−→A〈F ′A,M3〉,

φ(M3) = p3 and C ⊆ C′. Defining M4 = M3
nf

, we
have obviously φ(M4) ≡p p4. Thus by application of
rule (AP≡A), Lemma 4 holds.

(P‖): The premise of (P‖) is 〈F, p1〉 −→ 〈F ′, p′1〉. Hence,
according to the hypothesis of the induction, for all
C and M1 such that φ(M1) = p1, we have that there

existM′
1 and C′ such that 〈FA,M1

nf〉−→A〈F ′A,M′
1〉,

φ(M′
1) = p′1 and C ⊆ C′. Hence we have by rules (AP‖A)

and (AP≡A) an abstract transition

〈FA,M1‖AM2〉−→A〈F ′A,M′
1‖AM2〉 for all M2, and

in particular, for all M2 such that φ(M1‖AM2) = p1 ‖
p2, which proves Lemma 4.

(Pabs), (P;), or (P+): These cases are proven in a similar
way as for rule (P‖).

A.4 “No Low Actions after High Guards”
The following lemma relates the level of actions executed

by a process to the level of guards. If the skeleton of a
program is compatible with a privacy map then it implies
that actions following a guard of privacy level π operate on
data of a privacy level higher than π.

Lemma 5. Let S = 〈F0,ΠR〉 be a system, p = p0 a pro-

gram on S, � a privacy map for F , p�
F0

the skeleton of pro-

gram p0 and p�
F0

be compatible with �. Consider a transition

sequence 〈F0, p0〉 α1−→ 〈F1, p1〉 −→ · · · −→ 〈Fn, pn〉, where
α1 = [g1 ⇒ a1, . . . , a1

n1 ], we have that �(g1) � �(αi) for all
i ≥ 0.

Proof. We reason by contradiction. Using lemma 4, con-
sider an abstract transition sequence corresponding to the
concrete transition sequence above

〈F0
A ∪ C0,M〉 −→A〈F1

A ∪ C1,M1〉
−→A . . .
−→A〈Fn

A ∪ Cn,Mn〉
where φ(Mi) ≡p pi for i ∈ {0, . . . , n} and C0 is an arbitrary
set of privacy inequations. Suppose that there is an i0 ∈
{1, . . . , n} such that �(αi0) ❁ �(g1).

By inspection of rule (APguard) and because the skeleton

p�
F0

is compatible with �, we have that �(g1) � σ for all

σ occurring in Mi for i ∈ {1, . . . , n}. Let αi0 be [gi0 ⇒
ai0
1 ; . . . ; ai0

ni0
]. Thus we have an abstract transition corre-

sponding to the execution of αi0 :
〈FA, ai0

1 ; . . . ; ai0
ni0

; skip, σi0〉↪→A∗〈FA′, skip, σi0〉.
We conclude from �(αi0) ❁ �(g) that there exists j ∈

{1, . . . , ni0} such that �(ai0
j ) ❁ �(g). We consider the differ-

ent possibilities for the elementary action ai0
j one by one.

tell(l→ r | c): According to rule (Aea tell), p�
F0

implies σi0 �
�(l), which is in contradiction to the hypothesis, since
�
�
tell(l→ r | c)� = �(l).

del(l → r | c): According to rule (Aeadel), p�
F0

implies σi0 �
�(l), which is in contradiction to the hypothesis, since
�
�
del(l→ r | c)� = �(l).

(f := t): According to rule (Aea :=), p�
F0

implies σi0 � �(f),
which is in contradiction to the hypothesis, since �(f :=
t) = �(f).

skip: This is impossible, since by definition �(skip) = �.

A.5 Strong Normalization of  

Theorem 2. Relation  is strongly normalizing.

Proof. The first thing to notice is that if there is an
infinite −→A reduction sequence then there is an infinite
number of reduction steps using rule (APabs). If it were not
the case then there would be an infinite reduction sequences
where rule (APabs) is not used, but it is not possible since for
each −→A rule different from (APabs) the size of M terms
decreases.

Now suppose that there is an infinite number of reduction
steps using rule (APabs). Since the size of the store is finite,
so is the number of terms like �A(t). Indeed, the definition
of �A (see Def. 10) uses the idempotent operator �. Finally
the number of process definition is also finite, therefore the
number of couples of the form 〈q, [t1A; . . . ; tn

A]〉 is finite
too (note that the arity of a process is fixed). Thus there
exists a natural N such that after a reduction sequence of
size N a couple of the form 〈q, [t1A; . . . ; tn

A]〉 has already
been integrated in H, and by definition of  it yields the
process success, hence no longer −→A reduction step can be
executed. Thus there can be no infinite number of reduction
steps using rule (APabs).

A.6 Main Theorem

Theorem 1. Let S = 〈F,ΠR〉 be a system, p a program

on S, � a privacy map for F , p�
F the skeleton of program p,

then if p�
F is compatible with � then p respects secrecy for �.

Proof. We reason by contradiction. Suppose that p does
not respect secrecy for �. Def. 9 implies that it exists a
privacy level π, two stores F0, F1 such that F0

∼=�
π F1

∼=�
π F

and 〈F0, p〉 �t�
π 〈F1, p〉. Now from Lemma 2 we have that

there exist an integer N and two derivations (with p0 = p):

〈F 0
0 , p0〉 −→ 〈F 0

1 , p1〉 −→ . . . −→ 〈F 0
N , pN 〉

〈F 1
0 , p0〉 −→ 〈F 1

1 , p1〉 −→ . . . −→ 〈F 1
N , pN 〉

such that for all j < N , F 0
j
∼=�

π F
1
j and we have two cases:

1. Either F 0
N �∼=�

π F
1
N ,

2. or there exists F#, p# such that for j ∈ {0, 1}:
• 〈F j

N , pN〉 α−→ 〈F j
N+1, pN+1〉 −→∗ 〈F#, p#〉 and

〈F 1−j
N , pN〉 � α−→,

• F 1−j
N �∼=�

π F
#.

The first case corresponds to the analysis of [25]. A con-
tradiction can be derived using Lemma 4, and the fact that
the program skeleton is satisfied. Indeed if F 0

N �∼=�
π F

1
N , then
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it is because the last transition is done on a process term of
the form [g ⇒ a1; . . . ; an]. We have

〈F j
N,0, a1; . . . ; an; skip〉 ↪→ 〈F j

N,1, a2; . . . ; an; skip〉
↪→ 〈F j

N,2, a3; . . . ; an; skip〉
...

↪→ 〈F j
N,n, skip〉

where F j
N,0 = F j

N for j ∈ {0, 1}.
Thus there must exist an elementary action ai (for i ∈

{1; . . . ;n}) that transforms two different π�-equivalent stores
into two non π�-equivalent stores. On the other hand, thanks
to Lemmas 3 and 4 we can mimic these reductions on the
abstract level.

tell(ρ): The abstract action tell(ρA) has been executed dur-
ing the analysis (because of Lemma 4), i.e., the com-

putation of the constraints p�
F . We distinguish the fol-

lowing two cases:

ρA � π: The rule ρ added to the store is the same
for both, F 0

N,i−1 and F 1
N,i−1. Thus, we have that

F 0
N,i
∼=�

π F
1
i , in contradiction to the assumption.

π ❁ ρA: In this case, the rules of a lower or equal pri-
vacy level than π are not modified, and thus we
cannot have F 0

N,i �∼=�
π F

1
N,i.

del(ρ): We distinguish two cases:

ρA � π: In this case, the rule ρ is present in F 0
N,i−1

if and only if ρ is present in F 1
N,i−1. Thus the

removal of ρ has the same effect, and we have that
F 1

N,i
∼=�

π F
1
N,i, in contradiction to the assumption.

π ❁ ρA: Since the rules of the store which have a lower
or equal privacy level than π are not modified by
the execution of this action, we have F 0

N,i
∼=�

π F
1
N,i,

in contradiction to the assumption.

c := v: We distinguish the following two cases:

cA � π: Since F 0
N,i−1

∼=�
π F

1
N,i−1, we have (by Lemma 1)

that eval(F 0
i−1, v) = eval(F 1

N,i−1, v). Consequently

F 0
N,i
∼=�

π F
1
N,i, in contradiction to the assumptions.

π ❁ cA: In this case, the assignment does modify only
rules of a higher privacy level than π, and thus we
cannot have F 0

N,i �∼=�
π F

1
i .

The second case corresponds to the extension of [25] done
in [5]. In this case the contradiction comes from the fol-
lowing fact: if F# �∼=�

π F 1−j
N , then it means that an in-

formation of a privacy level lower or equal to π has been
modified, but on store 1 − j an action α cannot have been
performed (〈F 1−j

N , pN〉 � α−→) while it is possible on store j.
By Lemma 1, we know that this implies that this action is
guarded by a guard of privacy level strictly superior than
π (if it were not the case then the evaluation of the guard
would give the same result for both stores). But by Lemma 5
we know that actions following a guard must be defined at
a level higher than the guard, hence the contradiction: an
action must have been performed on a level lower or equal
than π and since the skeleton of the program is satisfied,
we have that actions must be done on a strictly higher level
than π.

101


