
A Concurrent Extension of Functional Logic
Programming Languages?

draft of December 16, 1999

Rachid Echahed and Wendelin Serwe

LEIBNIZ–IMAG / CNRS, 46, av. F. Viallet, 38031 Grenoble, France

Rachid.Echahed@imag.fr Wendelin.Serwe@imag.fr

Abstract. We present a concurrent extension of functional logic pro-
gramming languages together with a compositional semantics based on
labelled sequences, which takes into account the environment of the pro-
gram. This framework allows to specify, at a very high level, applications
that need concurrency and interaction with the environment. For that,
we introduce the possibility of defining processes (agents) which specify
the dynamics (evolution) of a classical functional logic program, includ-
ing its communication with the environment. The resulting formalism
integrates in a uniform way the main features of functional, logic and
concurrent programming.

1 Introduction

The aim of a functional logic programming language is to combine, in a uni-
form way, the main advantages of both functional programming (e.g., efficient
reduction strategies, higher order facilities etc.) and (constraint) logic program-
ming (e.g., goal solving, computation with partial information (logical variables)
etc.). The integration of functional and logic programming languages has been
launched by Robinson and Sibert in [25]. Since then, a plethora of such declar-
ative languages has been proposed, see [14] for a survey, and [16, 20] for recent
contributions.

However, pure declarative languages (either functional or logic) fail to provide
the possibility of high-level description of concurrent real-world applications; by
concurrent applications we mean programs describing several processes which
may be executed concurrently and cooperate together to achieve their (different)
specific tasks (via communication or sharing critical resources), as for example
an application involving several unix processes.

Thus, many concurrent extensions of declarative languages have been pro-
posed. However, these extensions encode processes, whereas we consider pro-
cesses as basic concepts in the same way as functions or predicates.

The main contributions of this paper can be summarised as follows:
? This work has been partially supported by the PROCOPE programme under grant

number 99093.

– We propose a framework of concurrent functional logic programming lan-
guages where concurrency is expressed by means of processes (or agents).
These processes are described in process algebra style, whereas functions
and predicates are defined in classical functional logic formalisms.

– Our operational semantics distinguishes clearly between the implicit paral-
lelism that may be used to evaluate functional logic expressions (e.g., parallel
evaluation of function arguments or different kinds of and-parallelism, as for
instance [21, 23]) from concurrency which is explicitly specified by a program-
mer to meet the intrinsic concurrency of a system (e.g., unix processes).

– Our framework provides some elementary actions which allow programs to
interact with their environments. We found these primitives very useful in
some realistic case studies.

– We give a semantics for terminating or nonterminating programs. This se-
mantics is compositional and takes into account the possible interactions of
a program with its environment (which is not part of the program itself).

This paper reviews and extends a previous version [5] and provides a com-
positional semantics.

The rest of this paper is organised as follows: In the next section, we introduce
an abstract syntax for a concurrent extension of functional logic languages. In
Sect. 3, we describe an operational semantics of the proposed languages. A com-
positional semantics based on labelled sequences is subject of Sect. 4. In Sect. 5
we compare briefly our proposal to some related existing languages. Section 6
concludes the paper and gives some directions of future work.

2 Syntax

Many frameworks have been used to define the integration of functional and
logic programming paradigms. Without loss of generality, we consider here Horn
clause logic with equality (HCLE) as the basis of a functional logic language, e.g.,
[12, 3]. Our approach of concurrent functional logic programs can be generalised
easily to other frameworks such as Curry [16] or Escher [20]. Hereafter, we assume
that the reader is familiar with the classical notions about HCLE.

Let P = (Σ,Cl) be a HCLE-theory presentation where Σ = (S,Ω,Π) is
a many-sorted first order signature with equality and Cl a finite set of clauses
defining the operator symbols in Ω as well as the predicate symbols in Π, S
being the set of sorts. Roughly speaking, P constitutes a functional logic pro-
gram. The operational semantics of such programs, which is classically based
on rewriting, narrowing or (extended) SLD-resolution, allows the evaluation of
functional expressions as well as goal-solving.

The theory presentation (or program) P describes a concrete system. But
as the latter is a part of the real world, and the world changes, the theory
modelling a part of the world has to change too, i.e., to be modified. So in this
paper, we suggest to extend functional logic languages with processes controlling
the evolution of an initial program P0 through a finite or infinite sequence of

2

changes as it is shown below:

P0 = (Σ,Cl0) −→ P1 = (Σ,Cl1) −→ P2 = (Σ,Cl2) · · · (1)

In fact, the derivation (1) rather corresponds to a run (or behaviour) of an
extended automaton. To motivate the need for systems having runs such as (1),
we consider two examples.

The first one is a system keeping the temperature of a room about a given
value (Tavg). It has a sensor for the current temperature (Tenv) in the room
and can command an air conditioning device (AC) to heat up or cool down the
room. Then a possible instance of (1) may be: P0 describes an “initial” state,
e.g., Cl0 = {Tavg == 18; Tenv == 18}; P1 is obtained from P0 by a modification
of the desired temperature of the room, e.g., Tavg == 20; and P2 reflects the
effect of starting the heating, e.g., Tenv has raised to 19. As a second example,
consider the well known dining philosophers problem. In that case, each Pi can
be seen as a description of the situation of the philosophers, i.e., who is thinking
and who is eating; P1 may be obtained from P0 after a philosopher stops eating
and P2 may be obtained from P1 after a philosopher starts eating.

Note that each Pi in (1) constitutes a functional logic program and that its
standard operational semantics can still be used. So we can for example calculate
the pressure in the room, or ask for the philosophers who are eating, etc.

In the rest of this section we sketch an abstract syntax of a concurrent exten-
sion of functional logic programming languages. Informally, a concurrent func-
tional logic program P will consist of five components, 〈ΣQ,Procs,Cl0, a0, σ0〉.
ΣQ is a set of declarations (signature) of different entities used in P and Cl0 is
the initial functional logic program which can be modified by the processes de-
fined in Procs. a0 stands for the initial process (agent) to be run and σ0 completes
Cl0 by giving initial values to “changing constants” (variables). Thus we intro-
duce first the notion of a concurrent functional logic signature. Then we define
a set of elementary actions, i.e., the primitives by means of which a process can
modify a theory presentation (i.e., a functional logic program). Thereafter we
introduce the notion of a process term, the operators on process terms and the
“clauses” defining processes, namely procedures. Finally, we give the definition
of a concurrent functional logic program.

2.1 Concurrent Functional Logic Signature

Definition 1. A concurrent functional logic signature ΣQ is a tuple
〈S,Ω,Π,Q,Ξ, V 〉 such that:

– 〈S,Ω,Π〉 is a first-order signature with equality, i.e., S is a set of symbols
(of sorts), Ω is a (S+-indexed) family of operator-symbol-sets and Π is a
(S∗-indexed) family of predicate-symbol-sets including equality.

– Q =
⋃
u∈S∗ Qu is a (S∗-indexed) family of symbol-sets, called procedures or

processes. We assume that success is an element of Qε1.
1 where Πε denotes the set of parameterless procedures (ε is the empty sequence).

3

– Ξ is a set of symbols for “external machines” representing the external pro-
grams or physical devices with which the program can communicate.

– V = VI ∪ VO ∪ VL ∪ VC is a set of variables, where:
• VI =

⋃
s∈S(VI)s is a (S-indexed) family of symbol-sets, called internal

variables.
• VO =

⋃
s∈S(VO)s is a (S-indexed) family of symbol-sets, called external

variables.
• VL =

⋃
s∈S(VL)s is a (S-indexed) family of symbol-sets, called queue-

variables.
• ∀v ∈ VL, emptyv ∈ Πε.
• VC =

⋃
ξ∈Ξ(VC)ξ is a (Ξ-indexed) family of (S-indexed) families of

symbol-sets, called channel-variables.

The internal variables (VI) are similar to variables known in imperative pro-
gramming languages: they are initialised before program-execution and are mod-
ifiable via assignment. The external variables (VO) are similar to sensors: their
value is determined by something outside the system. The queue-variables (VL)
are used to model the reception of values from an external machine via a FIFO-
channel: arriving messages are implicitly buffered in the order of arrival. For each
channel-variable v, we suppose the existence of the predicate emptyv indicating
if the associated channel is empty. In the sequel, the set of all internal, exter-
nal and queue variables, i.e., Vst = VI ∪ VO ∪ VL will be called state variables
(Vst). The channel-variables (VC) denote a part of the communication interface
with external machines, i.e., they represent the channels by means of which we
can send messages to external machines. In this paper we do not consider how
external machines implement the reception of messages. Nevertheless, whenever
an external machine is modelled by a concurrent functional logic program, the
reception of messages may be buffered (via queue-variables) or not (e.g., via
external variables).

Example 1. According to the notations of Definition 1, we define the following
concurrent functional logic signature for the temperature-controller example:

S = {Nat ; Mode}
Ω = {0:→Nat ; succ : Nat→Nat ; pred : Nat→Nat ; Tmin :→Nat ; Tmax :→Nat}
Π = {stop; heat; cool}
Q = {stop; heat; cool; success}
VI = {Tiavg}, VO = {Tenv}, VL = {Tavg}, VC = ∅

Ξ = {AC}

We use external variables for a sensor (Tenv) of the current temperature and a
queue-variable for a control device (Tavg) through which a user may communicate
to the system the desired average temperature. Tiavg is an internal variable used
to memorise the current value of Tavg . AC stands for “Air Conditioner” and
represents the physical machine that will receive the orders “stop”, “cool” or
“heat” from the temperature controller. The program for the controller is subject
of Example 3.

4

2.2 Process Terms, Procedures and Programs

In the following, we suppose given a concurrent functional logic signature ΣQ

and denote by T (Σ,X) (resp., A(Σ,X), G(Σ,X) and Horn(Σ,X)) the set of
terms (resp., atoms, (finite) conjunctions of atoms and (definite) Horn clauses)
built from the (first-order) signature Σ = 〈S,Ω,Π〉 with variables X.

The following definition introduces the notion of elementary actions, that is
to say the kind of operations which, when executed, make a theory presentation
(i.e., a functional logic program) Pi evolve to Pi+1 as in (1).

Definition 2. Let Vp be the set of local variables needed to define the process
p, and X a set of variables. Then the set of elementary actions Ae(ΣQ, Vp, X)
over the variable-sets Vp and X is the smallest set (for inclusion) such that:

1. Nop ∈ Ae(ΣQ, Vp, X)
2. ∀cl ∈ Horn(Σ,X), Tell(cl) ∈ Ae(ΣQ, Vp, X)
3. ∀cl ∈ Horn(Σ,X), Del(cl) ∈ Ae(ΣQ, Vp, X)
4. ∀x ∈ (VI)s,∀t ∈ Ts(Σ, Vp)2, (x := t) ∈ Ae(ΣQ, Vp, X)
5. ∀ξ ∈ Ξ,∀A ∈ A(Σ,X), Send(ξ,A) ∈ Ae(ΣQ, Vp, X)
6. ∀ξ ∈ Ξ,∀x ∈ (VC)ξs,∀t ∈ Ts(Σ, Vp), Send(ξ, (x := t)) ∈ Ae(ΣQ, Vp, X)

Nop is the invisible action without any effect. The elementary actions Tell
and Del are dual: they are used to add and remove a clause from the current
theory. “:=” assigns the value3 of the term t to an internal variable v. Finally,
Send allows the communication with the external machines via message-passing.
These messages can be of two forms: an atomic formula or an affectation of a
channel-variable. There are no elementary actions associated with the external
and the queue-variables: their management is supposed to be external.

An action a (∈ A(ΣQ, Vp, X)) is a set of elementary actions satisfying:

1. ∀Tell(cl),Del(cl ′) ∈ a, cl is not a variant (equal up to renaming) of cl ′,
2. ∀(x := e), (y := f) ∈ a, x 6= y

These conditions imply that an action is consistent: so a double affectation or
the simultaneous addition and removal of a same clause (modulo renaming of
variables) are not allowed. Therefore the order of elementary actions in an action
is insignificant, and an action can be considered as “atomic”.

Definition 3. A process term (or an agent) a (containing the set Vp of local
variables) is described by the following grammar:

a ::= q(t1, . . . , tn) | [g⇒a] | (a; a) | (a ‖ a) | (a + a) | (a⊕ a)

q(t1, . . . , tn) is a procedure-call q (∈ Q) with parameters ti ∈ T (Σ, Vp). The
process term [g⇒ a] describes the atomic execution of the action a, given the
validity of the guard g (∈ G(Σ, Vp)) in the current store (i.e., the current theory).
2 Ts(Σ,X) denotes the set of terms of sort s (T (Σ,X) =

⋃
s∈S Ts(Σ,X)).

3 note that t’s free variables have to be local in the procedure p.

5

In reference to process algebras [2], we call ; the operator of sequential com-
position, ‖ the operator of parallelism and + the operator of non-deterministic
choice. The operator ⊕ is not very common: we call it operator of choice with
priority. It is necessary to model certain (critical) applications, where non-
determinism is inadmissible [1]. The intended meaning of a1 ⊕ a2 is to execute
a2 iff a1 cannot be executed.

In the sequel, we will write PT (ΣQ, Vp, X) for the set of process terms, and
RPT (ΣQ, Vp, X) for the set of process terms containing neither [g⇒a] nor ⊕.

Definition 4. A procedure is defined by a formula of the following form:

p(x1, . . . , xn)⇐
m⊕
i=1

([gi⇒ai]; ai)

where (for each i) gi is a guard (i.e., in G(Σ, {x1; . . . ;xn})), ai is an action
(i.e., in A(ΣQ, {x1; . . . ;xn}, X)) and ai is a process term containing neither ⊕
nor [g⇒a] (i.e., in RPT (ΣQ, {x1; . . . ;xn}, X)), with the xi as (local) variables
of the procedure p.

Example 2. Consider the problem of the “Dining Philosophers.” We model the
situation with two predicates: fork(x) and is eating(y). The former represents
the fact that fork x is lying on the table, and the latter affirms that philosopher
y is eating. Then we can model the behaviour of a philosopher by the two
procedures shown in Fig. 1, corresponding to the two different behaviours of
a philosopher: either a philosopher thinks or eats. Note that we do not use low-
level synchronisation (like semaphores) and auxiliary constructions (as placing
the table in a separate room or asymmetric philosophers).

thinks(x, n) ⇐ [

(
fork(x) ∧
fork(x+ 1 mod n)

)
⇒

Del(fork(x))
Del(fork(x+ 1 mod n))
Tell(is eating(x))

]; eats(x, n)

eats(x, n) ⇐ [TRUE⇒

Del(is eating(x))
Tell(fork(x))
Tell(fork(x+ 1 mod n))

]; thinks(x, n)

Fig. 1. Procedures for the dining philosophers example

Now we can define a concurrent functional logic program.

Definition 5. A concurrent functional logic program P is a tuple
〈ΣQ,Procs,Cl0, a0, (σI)0〉 such that:

– ΣQ is a concurrent functional logic signature,
– Procs is the set of procedures of the program,

6

– Cl0 is a set of Horn clauses with equality, called the initial clause set,
– a0 ∈ PT (ΣQ,∅, X) is the initial process term, containing no free variable,
– (σI)0 is a valuation (i.e., a total substitution) over VI , called initialisation

(for the internal variables).

According to Definition 5, a concurrent functional logic program has two
parts: a static one (ΣQ and Procs) and an initialisation. The former will be
modifiable neither by the actions nor by the environment. The latter describes
everything that is modifiable.
〈〈S, (Ω ∪Vst),Π〉,Cl0 ∪ (σI)0〉 is the initial theory which can be modified by

the execution of actions, for example via addition and removal of clauses. a0 is
the initial process which will modify the state of the system via the application of
transition rules. (σI)0 initialises the internal variables; the external and queue-
variables are initialised by the environment. This distinction reflects the fact
that the programmer may ignore the (initial) environment.

Example 3. We give now the program for the temperature-controller mentioned
at the beginning of this section. We take for ΣQ the concurrent functional logic
signature of Example 1. The procedures corresponding to the three states of
the controller, e.g., to heat, to cool or to do nothing (stop), are defined by
Fig. 2. The initialisation is defined by the initial theory Cl0 = {pred(succ(x)) ==
x; Tmin == pred(Tiavg); Tmax == succ(Tiavg)}, the initial process a0 = stop
and the initial value for the internal variable (σI)0 = {Tiavg 7→ 20}.

heat ⇐ cool ⇐
[Tenv > Tmax⇒Send(AC, cool)]; cool [Tenv < Tmin⇒Send(AC,heat)]; heat

⊕ [Tenv ≥ Tiavg⇒Send(AC, stop)]; stop ⊕ [Tenv ≤ Tiavg⇒Send(AC, stop)]; stop

⊕ [TRUE⇒(Tiavg := Tavg)]; heat ⊕ [TRUE⇒(Tiavg := Tavg)]; cool

stop ⇐
[Tenv < Tmin⇒Send(AC,heat)]; heat

⊕ [Tenv > Tmax⇒Send(AC, cool)]; cool
⊕ [TRUE⇒(Tiavg := Tavg)]; stop

Fig. 2. Procedures for the example of a temperature controller

3 Operational Semantics

In this section we give the operational semantics for the concurrent functional
logic programming languages sketched before. The operational semantics of a
concurrent functional logic program P is defined by a transition system Tr(P)
(presented in Sect. 3.2) integrating two types of transitions corresponding to the
two orthogonal aspects of concurrent functional logic languages: those describing

7

the evolution of the theory description (i.e., the execution of processes) and those
dedicated to goal-solving (i.e., the use of the current theory as a functional logic
program).

3.1 Describing the evolution of the theory

We first define a transition system Tr(P) which models (only) the evolution of
the theory description (in its environment), i.e., the execution of processes of P,
without taking care of goal-solving. Therefore, we introduce first the notion of
configurations which will serve as the states of Tr(P). Then we specify the oper-
ational semantics of the (elementary) actions, and finally present the transition
system Tr(P).

Definition 6. A configuration is a tuple 〈a, 〈Cl , σI〉, σO, L〉 such that:

– a is a process term, i.e., in PT (ΣQ,∅, X),
– Cl is a set of Horn clauses with equality,
– σI (resp., σO) is a valuation for the internal (resp., external) variables and
– L is a mapping defining the content of the queues corresponding to the queue-

variables VL.

A configuration represents the current state of the system: a is the current
process and the pair (〈Cl , σI〉, σO, L) represents the current theory or store. The
distinction between Cl and σI on the one hand and L and σO on the other hand
reflects the fact that (elementary) actions modify the set of clauses and the inter-
nal variables directly, whereas the handling of the queues and external variables
is implicit. In the sequel, Config(ΣQ, X) will denote the set of configurations.

For an atom A and a configuration C = 〈a, 〈Cl , σI〉, σO, L〉, we say:

– If A = emptyv, then A is called valid in C iff L(v) = nil.
– If A 6= emptyv, then A is called valid in C iff σ(Cl) |= σ(A), with σ =
σI∪σO∪σL, where σL is a substitution which associates a queue-variable with
the first element of its corresponding FIFO-channel, and |= is the standard
validity of first-order logic.

A guard g is valid in a configuration C iff all of its conjuncts are valid in C. We
note the validity of g in C by C |= g.

The execution of actions is expressed by means of the auxiliary function do
describing the transformations of theories (stores).

Definition 7. Let σL be a substitution for the queue-variables as before, and σl a
substitution for the local variables of a procedure. Let further σ = σI∪σO∪σL∪σl.
The (partial) function do is defined by:
– do(Nop, σO, L, σl)(〈Cl , σI〉) = 〈Cl , σI〉
– do(Tell(cl), σO, L, σl)(〈Cl , σI〉) = 〈Cl ∪ {σL(σl(cl))}, σI〉
– do(Del(cl), σO, L, σl)(〈Cl , σI〉) = 〈Cl\{σL(σl(cl))}, σI〉

where Cl stands for the clause-set obtained from Cl via variable renaming
– do((x := e), σO, L, σl)(〈Cl , σI〉) = 〈Cl , σI � {x 7→ (σ(e))!}〉4

where t! denotes a normal (simplified) form of the term t

8

– do(Send(ξ, A), σO, L, σl)(〈Cl , σI〉) = 〈Cl , σI〉
– do(Send(ξ, (x := e)), σO, L, σl)(〈Cl , σI〉) = 〈Cl , σI〉

The function do gives the following semantics to the elementary actions:

– Nop is the identity,
– Tell allows to add a formula in which all local and queue-variables have been

substituted,
– Del removes a formula (after replacing the local and queue-variables) modulo

renaming of bounded variables (we remove the corresponding equivalence
class),

– “:=” changes the value of an internal variable (the new value is the normal
form (symbol “!”) of the expression e, where all state and local variables
have been replaced by their current value),

– Send does not alter the configuration – it is nevertheless different from Nop,
because its implicit semantics is to send a message to an external machine.

We will note d̃o the straightforward extension of do over actions.
The execution of an action has no effect on external variables. But all the

queue-variables used in an action (denoted by VL([g⇒a])) are modified: the first
message in the associated queues is removed after the execution. We describe
this by the function newL:

newL([g⇒a], L) = L� {v 7→ tail(l) | v ∈ VL([g⇒a]) and l = L(v)}

The transition system Tr(P) modelling the evolution of a process (in a system
described by P) is a triple 〈Config(ΣQ, X),−→, C0〉, where C0 is an initial con-
figuration (i.e., C0 = 〈a0, 〈Cl0, (σI)0〉, (σO)0,∅〉 ((σO)0 being a valuation of the
external variables)), and the transition relation is defined by a set of inference
rules given in Fig. 3. In this section we will not consider the transition-labels. In
fact, they are used in Sect. 4 to construct a compositional semantics.

According to rule (R1), the process success is always executable and its ex-
ecution yields the special symbol SS. The latter witnesses the successful ter-
mination of processes. Rule (R2) concerns the execution of a process [g⇒ a],
where a ∈ A(ΣQ,∅, X) and g ∈ G(Σ,∅), i.e., [g⇒a] contains no free variables.
The action a is executed, when the guard g holds in the current configuration
and no queue used in the guard or the elementary actions is empty. The trans-
formation of the configuration is described using the functions d̃o and newL
defined above. The substitution σl in rule (R3) replaces the formal parameters
of the procedure p, i.e., x1, . . . , xn by the actual arguments, i.e., t1, . . . , tn, thus
σl = {xi 7→ ti | i ∈ {1; . . . ;n}}. So rule (R3) tells us that if the body of p (after
applying σl) can make a transitions, then the call p(t1, . . . , tn) can do alike.

The rules concerning the operators of sequential composition, of parallelism
and of choice are as usual. Due to space limitations we do not show the symmetric
version of the rules (R5), (R5′) and (R6).
4 (σ � {x 7→ v})(x) = v and (σ � {x 7→ v})(y) = σ(y) when x 6= y.

9

(R1)
〈success, 〈Cl , σI〉, σO, L〉

Successp

−−−−→ 〈SS, 〈Cl , σI〉, σO, L〉

(R2)
〈[g⇒a], 〈Cl , σI〉, σO, L〉 |= g ∀x ∈ VL([g⇒a]), L(x) 6= nil

〈[g⇒a], 〈Cl , σI〉, σO, L〉
[g⇒a]p

−−−−→
〈SS, d̃o(a, σO, L,∅)(〈Cl , σI〉), σO,newL([g⇒a], L)〉

(R3)

p(x1, . . . , xn)⇐
⊕m

j=1([gj⇒aj]; aj) ∈ Procs

〈
⊕m

j=1 σl([gj⇒aj]; aj), 〈Cl , σI〉, σO, L〉
ap

−→ 〈a, 〈Cl ′, σ′I〉, σO, L′〉

〈p(t1, . . . , tn), 〈Cl , σI〉, σO, L〉
ap

−→ 〈a, 〈Cl ′, σ′I〉, σO, L′〉

(R4)
〈a1, 〈Cl , σI〉, σO, L〉

ap

−→ 〈a′1, 〈Cl ′, σ′I〉, σO, L′〉

〈a1; a2, 〈Cl , σI〉, σO, L〉
ap

−→ 〈a′1; a2, 〈Cl ′, σ′I〉, σO, L′〉
if a′1 6= SS

(R4′)
〈a1, 〈Cl , σI〉, σO, L〉

ap

−→ 〈SS, 〈Cl ′, σ′I〉, σO, L′〉

〈a1; a2, 〈Cl , σI〉, σO, L〉
ap

−→ 〈a2, 〈Cl ′, σ′I〉, σO, L′〉

(R5)
〈a1, 〈Cl , σI〉, σO, L〉

ap

−→ 〈a′1, 〈Cl ′, σ′I〉, σO, L′〉

〈a1 ‖ a2, 〈Cl , σI〉, σO, L〉
ap

−→ 〈a′1 ‖ a2, 〈Cl ′, σ′I〉, σO, L′〉
if a′1 6= SS

(R5′)
〈a1, 〈Cl , σI〉, σO, L〉

ap

−→ 〈SS, 〈Cl ′, σ′I〉, σO, L′〉

〈a1 ‖ a2, 〈Cl , σI〉, σO, L〉
ap

−→ 〈a2, 〈Cl ′, σ′I〉, σO, L′〉

(R6)
〈a1, 〈Cl , σI〉, σO, L〉

ap

−→ 〈a′1, 〈Cl ′, σ′I〉, σO, L′〉

〈a1 + a2, 〈Cl , σI〉, σO, L〉
ap

−→ 〈a′1, 〈Cl ′, σ′I〉, σO, L′〉

(R7l)
〈a1, 〈Cl , σI〉, σO, L〉

ap

−→ 〈a′1, 〈Cl ′, σ′I〉, σO, L′〉

〈a1 ⊕ a2, 〈Cl , σI〉, σO, L〉
ap

−→ 〈a′1, 〈Cl ′, σ′I〉, σO, L′〉

(R7r)
〈a2, 〈Cl , σI〉, σO, L〉

(a′′)p

−−−→ 〈a′′2 , 〈Cl ′′, σ′′I 〉, σO, L′′〉

〈a1 ⊕ a2, 〈Cl , σI〉, σO, L〉
(a′′)p

−−−→ 〈a′′2 , 〈Cl ′′, σ′′I 〉, σO, L′′〉
if @ a′1(6= a1), a′,Cl ′, L′ : 〈a1, 〈Cl , σI〉, σO, L〉

(a′)p

−−−→ 〈a′1, 〈Cl ′, σ′I〉, σO, L′〉

Fig. 3. Transition rules

10

3.2 Operational Semantics of a Program

For a concurrent functional logic program P = 〈ΣQ,Procs,Cl0, a0, (σI)0〉, the
operational semantics is composed of two orthogonal parts: the transition sys-
tem describing the state changes (given in Sect. 3.1) and the goal-solving, based
on a complete system for functional logic programs such as (extended) SLD-
resolution, rewriting, narrowing, etc. Thus, the operational semantics of a con-
current functional logic program P is defined by a new transition system Tr(P)
that combines dynamic rules (which change the theory) and “static” inference
rules (that solve goals). This transition system is a triple Tr(P) = 〈Q, 7−→, q0〉
where Q = (Config(ΣQ, X))×(Goal×Goal×Subst) with Subst is the set of substi-
tutions over terms T (Σ,X), q0 ∈ Q is the initial state of the system of the form
q0 = 〈C0, 〈G,G,∅〉〉, where C0 is an initial configuration for P and G is a goal
to solve. The transition relation 7−→ is defined by the two following “abstract”
rules.

Rule (STA) concerns the goal resolution. G1 ;σ G2 means that the new goal
G2 is deduced by the inference rules of a functional logic language.

(STA)
G1 ;σ G2

〈C, 〈G,G1, ϑ〉〉 7−→ 〈C, 〈G,G2, σ ◦ ϑ〉〉

As usual in the description of functional logic languages, (STA) describes only
one possible step; in fact, an implementation has to take into account the set of
all possible applications of (STA), by for example depth-first (backtracking) or
breadth-first traversal strategy of the search space.

The second rule describes the states changes of the system. C −→ C′ witnesses
the change of configuration according to the rules in Sect. 3.1.

(DYN)
C −→ C′

〈C, 〈G,G′, ϑ〉〉 7−→ 〈C′, 〈G,G,∅〉〉

Thanks to this operational semantics, we can solve goals while the processes
are running. So we might ask in the dining philosophers example the question
is eating(Z) in order to know which of the philosophers are currently eating. As
the philosophers continue to run, we will get different answers to this question,
depending on the time when we ask.

4 A Compositional Semantics Based on Labelled
Sequences

In this section we present a compositional denotational semantics for the lan-
guages presented before. Compositionality allows the inference of the semantics
of a program from that of its components. Thus compositionality eases reusabil-
ity as well as program analysis and validation and so it is most desirable for
building large systems.

11

Let P be a concurrent functional logic program. A first semantics for P,
denoted by T (P), may be defined as the set of possible executions or traces of
Tr(P), such as in (1). An element in T (P) is a sequence of actions which can be
observed by executing P. For example, the sequence of actions a1 · a2 · a3 · a4 · · ·
is a trace of the run

P0
a1−→ P1

a2−→ P2
a3−→ P3

a4−→ P4 · · · (2)

It turns out that this semantics is not compositional. Indeed consider the
following counter-example:

Example 4. Consider the following three processes:

a1 = Q⇒ success, a2 = R⇒ success and a3 = Tell(Q); success

Then, starting with an empty store (theory), we have: T (a1) = T (a2) = ∅,
whereas T (a1 ‖ a3) 6= T (a2 ‖ a3)

The source of the non-compositionality is that sequences as (2) represent
only the behaviour of the process under consideration without taking into ac-
count their context, that is to say possible actions of other parallel processes or
the environment. Thus two processes, e.g., a1 and a2, though having the same se-
mantics, may behave differently in some contexts, e.g., when executed in parallel
with a3.

4.1 Semantics T ′

To overcome the defect of non-compositionality, the semantics of a process a has
to take into account the possible contexts within which it may run. Thus we
provide a new transition rule ((R8), see Fig. 4) which allows a process to make
assumptions about the behaviour of other processes executing concurrently on
the same store. This new rule mimics exactly rule (R2), the only difference
is the transition-label (and the unmodified agent a). Figure 4 gives also the
rules concerning the modelling of the environment: rule (R9) models the changes
of external variables by the environment, rule (R10) describes the arrival of
new values at the end of the queues associated with the queue-variables5, and
rule (R11) the reception of an atomic formula which is immediately added to the
store. In practice, the predicate building this atomic formula has to be declared
as a communication predicate in order to be acceptable in the receiving store.

Furthermore, to distinguish between the actions actually executed by the
process (via the rule (R2)) and assumptions about actions executed by someone
else (i.e., applications of rule (R8)), we label the actions in the traces. A labelled
sequence is a sequence of labelled actions, as it can be obtained as an execution
trace of the transition system Tr(P) (presented in Sect. 3.1 plus rule (R8), but
now including the transition labels). These labels ({p, o, e}) are used as indica-
tors for the “author” of the corresponding action. In extension to [10], we have
5 � denotes the enqueue-operation.

12

(R8)
〈a, 〈Cl , σI〉, σO, L〉 |= g ∀x ∈ VL([g⇒a]), L(x) 6= nil

〈a, 〈Cl , σI〉, σO, L〉
[g⇒a]o

−−−−→
〈a, d̃o(a, σO, L,∅)(〈Cl , σI〉), σO,newL([g⇒a], L)〉

(R9)
〈a, 〈Cl , σI〉, σO, L〉

(vO := v)e

−−−−−−→ 〈a, 〈Cl , σI〉, σO � {vO 7→ v}, L〉

(R10)
〈a, 〈Cl , σI〉, σO, L〉

(vL�v)e

−−−−−→ 〈a, 〈Cl , σI〉, σO, L� {vL 7→ (L(vL)� v)}〉

(R11)
〈a, 〈Cl , σI〉, σO, L〉

Receive(A)e

−−−−−−→ 〈a, 〈Cl ∪A〉, σI , σO, L〉

Fig. 4. Rule for modelling modifications by concurrent processes on the same store

three possibilities: the process itself, p, another process, o, (which is executed
concurrently on the same store) or the environment, e, (an external machine)
which modifies the external variables or sends values to the queue-variables. It
is necessary to distinguish between other processes and external machines, be-
cause the actions of other processes could be executed by the process itself (the
rules (R8) and (R2) are identical except the label), but the actions of external
machines cannot.

Definition 8. The semantics T ′ is a function associating to a process term (for
a program P and an initial configuration C0) the set of (finite and infinite) traces
that can be produced by an execution via the transition system, starting with C0.

4.2 Semantic Operators

In this paragraph, we will define the semantic operators corresponding to those
defined on processes, i.e., ;̃ , ‖̃ , +̃ and ⊕̃ . The goal is to define the right operators
on the semantical level that allow the definition of a compositional semantics.

For ;̃ and ‖̃ , we define first the corresponding partial operators on sequences
(represented equally by ;̃ and ‖̃); the extensions to sets (of sequences) are
straightforward and given later.

Sequential Composition. To execute the processes a1 and a2 one after another
means to execute first a1 and then a2; in addition, to make a1 executable, it
may be necessary to make some assumptions (i.e., transitions using rules (R9)
to (R8)) about the behaviour of other processes and the environment. The same
holds for a2 once a1 has terminated (if ever). So a sequence s can only be in
T ′(a1; a2) if (by only changing the labels) s can be seen as both, an execution
trace of a1 followed by an assumption of a2 and an execution trace of a2 preceded
by an assumption of a1.

13

Let s1 = (a
x1
i
i)i∈IN and s2 = (a

x2
i
i)i∈IN be two labelled sequences such that

there are m ∈ IN and n, µ ∈ IN ∪ {∞} satisfying the following conditions:

– m+ µ < n (a1 has finished before a2 starts),
– µ > 0 (a1 “does something”),
– ∀j such that 0 ≤ j < m and m + µ < j, x1

j ∈ {e; o} (a1 “does not do
anything” before step m and after step m+ µ),

– ∀j s.t. 0 ≤ j < n, x2
j ∈ {e; o} (a2 “does not do anything” before step n), and

– ∀j, x1
j = e iff x2

j = e (in both sequences, the interactions with the environ-
ment take place in the same steps).

Then we define s1 ;̃ s2 = (ayii)i∈IN where yi =
{
x1
i if i < n
x2
i otherwise .

Parallelism. To execute two processes in parallel, both processes have to make
assumptions about the execution of the other. If this is the case, the actions
executed by the parallel composition are the actions executed by the processes.
Obviously, both processes cannot execute an action at the same time.

Let s1 = (a
x1
i
i)i∈IN and s2 = (a

x2
i
i)i∈IN be two labelled sequences.

Then define s1 ‖̃ s2 = (ayii)i∈IN where yi =

p if x1

i = p and x2
i = o

p if x1
i = o and x2

i = p
o if x1

i = o and x2
i = o

e if x1
i = e and x2

i = e

.

Extension of these Operators. Since arbitrary assumptions can always be made,
it is sufficient to consider the cases listed above, and to leave ;̃ and ‖̃ undefined
on all sequences of different kind. The extension of those operators to sets of
sequences is defined in the obvious way:

A ;̃ B = {s | ∃s1 ∈ A,∃s2 ∈ B such that s1 ;̃ s2 = s}
A ‖̃ B = {s | ∃s1 ∈ A,∃s2 ∈ B such that s1 ‖̃ s2 = s}

Non-Deterministic Choice. It is possible to execute both processes. Therefore
we simply have +̃ = ∪.

Choice with Priority. When executing a1 ⊕ a2, the process a2 is executed iff in
the configuration in which rule (R7r) is applied, rule (R7l) cannot be applied.
This means in terms of sequences, that there is no sequence for a1 that makes
the same assumptions as the sequence for a2 and has its first action labelled p.
To put this formally, we introduce the notion of a hypothetical prefix.

Definition 9. The hypothetical prefix of a labelled sequence s = a`11 · · · · ·a
`n−1
n−1 ·

ap
n·s′, where all `i ∈ {o, e} is the (finite) labelled sequence prh(s) = a`11 · · · · ·a

`n−1
n−1 .

We define S1 ⊕̃ S2 = S1 ∪ {s | s ∈ S2 and ∀s′ ∈ S1 : prh(s) 6= prh(s′)}.
From the definitions above, we can prove the following equalities which ex-

press the compositionality of the semantics T ′.

14

Theorem 1 (Compositionality of T ′). Let a1, a2 ∈ PT (ΣQ,∅, X). Then the
following equations hold:

T ′(a1 ‖ a2) = T ′(a1) ‖̃ T ′(a2)
T ′(a1; a2) = T ′(a1) ;̃ T ′(a2)
T ′(a1 + a2) = T ′(a1) +̃ T ′(a2)
T ′(a1 ⊕ a2) = T ′(a1) ⊕̃ T ′(a2)

5 Related Work

As mentioned in the introduction, many authors noticed the need of adding
concurrency to declarative programming languages. We do not survey all the
propositions in the area, but focus on some of those which are close to our pro-
posal. Our proposal departs radically from the classical concurrent extensions of
declarative languages in the sense that it does not encode processes but considers
them as first class citizens.

Concurrent Functional Programming. Both CML [24] and Concurrent Haskell
(CH) [22] propose concurrent extensions for functional languages by adding to
ML resp., to Haskell new primitives which can be used to “encode” concur-
rent systems. In CH, the authors defined new primitive operations based on
monadic IO. These primitives are forkIO and those forming the data type
MVar, namely, newMVar, takeMVar and putMVar. The forkIO primitive allows
to start a new parallel process, whereas the MVar data type is used to describe
atomically-mutable state. Thanks to this data type “more friendly abstractions”
[22] for communication and cooperation of processes (as for example quantity
semaphores QSem) can be implemented. A CH-program for the dining philoso-
phers is given in Fig. 5. This program tries to simulate the behaviour of the
program given in Fig. 1, i.e., a philosopher takes the two forks atomically. Thus,
contrary to Fig. 1, the programmer has to encode the currently available forks
as well as the associated operations (e.g., getForks, putForks, possible and
newForks).

As for CML, parallel processes are implemented by “a number of threads,
which use message passing on typed channels”. The implementation of threads
and their communication is made by set of primitives: spawn (resp., channel)
allows to create new threads (resp., channels). The primitives sync, transmit,
receive, choose and wrap are used to achieve synchronisation and communi-
cation between threads.

Though these primitives of CML or CH look very interesting for concurrent
programming, they are still low level: We find it more abstract to use new lan-
guage constructs to express concurrency. Indeed, in our framework processes are
specified independently from functions and predicates. Furthermore the proposed
primitives of (CML and CH) do not distinguish between parallel evaluation of
functional expressions and concurrent execution of processes. As a consequence
of this last point, there is no hope to extend, in a straightforward manner, the

15

phil s i = think >> getForks s i >> eat >> putForks s i >> phil s i

getForks s i = takeMVar s >>= \ fl ->

if (possible fl i)

then putMVar s (newForks fl i)

else (putMVar s fl >> threadDelay 1000 >> getForks s i)

putForks s i = takeMVar s >>= \ forks ->

putMVar s (i : (((i+1) ‘mod‘ n) : forks))

possible l i = and [i ‘elem‘ l, ((i+1) ‘mod‘ n) ‘elem‘ l]

newForks [] i = []

newForks (f:fl) i = if (or [f == i, f == ((i + 1) ‘mod‘ n)])

then (newForks fl i)

else (f : (newForks fl i))

think = ... eat = ...

Fig. 5. Dining Philosophers in Concurrent Haskell

operational semantics in order to allow interactive goal-solving. Also, there is no
direct support for building atomic actions as we used in our modelling of the
dining philosophers program.

lotos [17] is a language which integrates process definitions with functions.
It allows the definition of processes using classical process algebra operators. lo-

tos also provides the possibility to define functions in equational logic. However,
communication between processes in lotos is performed via connected gates in
contrast to our framework, where processes communicate via the store. Our state
variables (Vst) play almost the same rôle as lotos gates. But one of the main
advantages in using state variables is the possibility to broadcast a message in
one shot, just by instantiating a variable in the store by the right message. The
use of a store as a medium of communication allows sophisticated message pass-
ing via logic formulas (or constraints) which is impossible in lotos. Also, in
lotos the function-definitions (theory presentations) cannot be modified.

Concurrent (Constraint) Logic Programming. Concurrent Constraint Program-
ming (ccp) [27] integrates ideas from concurrent logic programming [30] and
constraint logic programming [18]. In ccp a set of agents (or processes) commu-
nicates via a common store. These agents are defined according to the following
grammar:

A ::= stop | fail | ask(c)→ A | tell(c)→ A | A+A | A ‖ A | ∃X.A | p(~t)

where p(~t) corresponds to a procedure call. Procedure-definitions are sentences
of the form p(~x) :- A; obviously they play the same rôle as our procedures.
Nevertheless, there are noteworthy differences between the two frameworks, e.g.,

16

– We found the operator of choice with priority (⊕) very useful for some
examples. Unfortunately this operator does not exist in ccp. However, in a
recent extension of ccp, [8], a now-then-else operator has been introduced
which can simulate the operator ⊕.

– A store in ccp is monotonic. This is not the case in our approach as we
allow the deletion of clauses (see e.g., Del). Some variants of ccp with non-
monotonic stores have been proposed, see e.g., [29, 9, 28, 4, 11].
In [9] an operator updatex is used to hide the name of a variable. Our Del
operator is more precise and allows us to describe for instance the example of
philosophers without special requirements on the structure of the constraint
system. In fact, the program:

phil(x) :- eat(x)
eat(x) :- atell(use(x, leftfork) ∧ use(x, rightfork)); think(x)
think(x) :- updatex(true); eat(x)

of [9] needs the following condition on the underlying constraint system
(where the xi represent the philosophers and the basic constraint are of the
form use(xi, leftfork) or use(xi, rightfork)):

use(x1, leftfork) ∧ use(x2, rightfork) = use(x2, leftfork) ∧ use(x3, rightfork)
...
= use(xn, leftfork) ∧ use(x1, rightfork)
= false

Note that this condition in combination with the “atomic tell” (atell) is
needed to model the atomic request for two forks.
Another different approach to handle non-monotonic stores is presented in
[29, 4, 11]. This approach is based on linear logic and allows the implicit
deletion of information thanks to the semantics of the linear ask.
[28] is based on default logic. Thus, if an action is taken based on the absence
of information, it is assumed that this information will not be present in the
final result. To model non-terminating systems, the framework is extended
over time in the style of synchronous languages, i.e., a given set of processes
is executed (until termination) at every time instant.

– In our proposition, we distinguish clearly between the behaviour of processes
and goal-solving. The latter may be performed sequentially or concurrently
à la parallel-Prolog. However, this distinction is not present in ccp (nor
in the extensions we know of) where the resolution of a goal corresponds
surprisingly to the run of a process.

– State variables are necessary for many real-word applications. Unfortunately,
there is no counterpart of state variables in ccp and its extensions we are
aware of.

The logic programming language Prolog provides two “predicates” that allow
to modify the logic program by adding and deleting clauses, namely retract
and assert [26]. Obviously, they destroy the declarativity of the language: it is

17

necessary to know implementation details to use them correctly (consider, e.g.,
the difference between asserta and assertz).

In Shared Prolog (SP, [6]), the “extra-logical operators” assert and retract
are interpreted as send and receive on a blackboard built of atomic formulas
(so-called “blackboard interpretation” of logic programs). An SP-program is
built from several “theories” that communicate via a multiset of atoms, called
the “blackboard”. Each theory is provided with a logic program and a set of
(guarded) rules. Whenever the guard of a rule holds, the rule is activated, i.e.,
retracts some atoms from the blackboard, starts the solving of a goal using the
logic program of its associated theory, and on successful termination adds a set
of new atoms to the blackboard. Our approach is more general, as our actions
modify stores, i.e., more than only a multiset of atoms.

Recently, another extension of Prolog close to the “blackboard interpreta-
tion” has been proposed [7] – without the need of large modifications of the
underlying execution model, namely the WAM. It provides (a family of) new
primitives for launching the concurrent solving of goals (in a (local) copy of the
current logic program). Additional primitives allow to control this new goal-
solving process, e.g., to force backtracking or termination, or to synchronise
on its result. Communication between these processes is achieved by asserting
and retracting (marked) atoms. This model has the same restrictions as Shared
Prolog. Meanwhile, [7] proposes good implementation techniques which can be
extended to our general framework.

AKL [19] introduces the notion of ports as a communication medium for pro-
cesses described in concurrent constraint logic programming framework. Prim-
itives on ports such as open port(P, S) or send(P,m) have been introduced to
describe message passing. It is argued in [19] that the introduced port primitives
have a logical reading and preserve the monotonicity of the constraint store.
In our case, message passing can be achieved by the modification of state vari-
ables, or the addition or deletion of clauses of the (constraint) store. Since in
our framework monotonicity is not a concern, we do not need ports; they can be
implemented via state variables. Recently, the idea of ports has been extended
and integrated in the functional logic programming language Curry [15] in order
to cope with distributed applications.

Synchronous Programming. Our processes communicate in an asynchronous
manner. They can also synchronise through a rendezvous. Nevertheless, hard
real time applications do need more sophisticated synchronisation primitives
that can be found in some domain specific languages [13]. The real-time exten-
sions of our framework is under work.

6 Conclusion

We have sketched a concurrent extension of functional logic programming lan-
guages which allows to model concrete applications where concurrency is neces-
sary. In this paper, we have used many-sorted Horn clause logic with equality as

18

a means to define abstract data types, functions and predicates. Of course, the
choice of this logic is not mandatory; any formalism allowing the integration of
functional and logic languages (with constraints) can be considered. Our opera-
tional semantics distinguishes clearly the rules that implement the behaviour of
processes from the rules of a traditional functional logic language. In addition,
we presented a compositional semantics that takes into account the behaviour
of the environment.

Future work includes the axiomatisation of the equivalence defined by our
compositional semantics over processes and the investigation of new proof tech-
niques for temporal logics such as (extended) LTL. Other topics are the inte-
gration of different kind of synchronisations which are needed in some real-time
applications. For these applications the integration of temporal aspects in our
framework will be mandatory. Finally, the extension of the framework to consider
systems of several stores, possibly in different languages and the generalisation
of the notion of elementary actions provide promising fields of research.

The implementation of a prototype is under progress.

References

[1] J.-R. Abrial. Formal Methods for Industrial Applications, LNCS 1165, chapter
Steam-Boiler Control Specification Problem, pages 500–510. Springer, 1996.

[2] J. C. M. Baeten and W. P. Weijland. Process Algebra. Number 18 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[3] D. Bert and R. Echahed. Design and implementation of a generic, logic and
functional programming language. In Proc. of ESOP ’86, LNCS 213, pages 119–
132, Saarbrücken, March 1986. Springer.

[4] E. Best, F. de Boer, and C. Palamidessi. Partial order and SOS semantics for
linear constraint programs. In D. Garlan and D. L. Métayer, editors, Proc. of CO-
ORDINATION ’97, LNCS 1282, pages 256–273, Berlin, September 1997. Springer.

[5] J. Blanc, R. Echahed, and W. Serwe. Towards reactive functional logic pro-
gramming languages. In H. Kuchen, editor, Proc. of WFLP ’98. Institut für
Wirtschaftsinformatik, Westfälische Wilhelms-Universität Münster, April 1998.

[6] A. Brogi and P. Ciancarini. The concurrent language, Shared Prolog. ACM
TOPLAS, 13(1):99–123, January 1991.

[7] M. Carro and M. Hermenegildo. Concurrency in prolog using threads and a shared
database. In Proc. of ICLP ’99, Las Cruces, November 1999. MIT Press.

[8] F. S. de Boer and M. Gabbrielli. Modeling real-time in concurrent constraint
programming. In J. W. Lloyd, editor, Proc. of ILPS ’95, pages 528–542, Portland,
December 1995.

[9] F. S. de Boer, J. N. Kok, C. Palamidessi, and J. J. M. M. Rutten. Non-monotonic
concurrent constraint programming. In Proc. of ILPS ’93, pages 315–334. The
MIT Press, 1993.

[10] F. S. de Boer and C. Palamidessi. A fully abstract model for concurrent constraint
programming. In S. Abramsky and T. S. E. Maibaum, editors, Proc. of TAPSOFT
’91, Volume 1: CAAP ’91, LNCS 493, pages 296–319, Brighton, UK, April 1991.
Springer.

[11] F. Fages, P. Ruet, and S. Soliman. Phase semantics and verification of concur-
rent constraint programs. In Proc. of the 13th Annual IEEE Symp. on Logic in
Computer Science (LICS ’98), 1998.

19

[12] J. A. Goguen and J. Meseguer. EQLOG: Equality, types and generic modules
for logic programming. In DeGroot and Lindstrom, editors, Functional and Logic
Programming. Prentice Hall, 1986.

[13] N. Halbwachs. Synchronous programming of reactive systems: A tutorial and
commented bibliography. In A. J. Hu and M. Y. Vardi, editors, Proc. of CAV ’98,
LNCS 1427, pages 1–16, Vancouver, June/July 1998. Springer.

[14] M. Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19 & 20:583–628, 1994.

[15] M. Hanus. Distributed programming in a multi-paradigm declarative language.
In G. Nadathur, editor, Proc. of PPDP ’99, LNCS 1702, pages 188–205, Paris,
1999. Springer.

[16] M. Hanus (Ed.). Curry: An integrated functional logic language. available at
http://www-i2.informatik.rwth-aachen.de/~hanus/curry/report.html, 1999.

[17] ISO/IEC JTC1/SC21 WG7. Final Committee Draft on Enhancements to Lotos,
May 1998. Project: WI 1.21.20.2.3.

[18] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proc. of POPL ’87,
pages 111–119, München, January 1987. ACM.

[19] S. Janson, J. Montelius, and S. Haridi. Ports for objects in concurrent logic
programs. In Agha, Wegner, and Yonezawa, editors, Research Directions in Con-
current Object-Oriented Programming. The MIT Press, 1993.

[20] J. W. Lloyd. Declarative programming in Escher. Technical Report CSTR-95-013,
Departement of Computer Science, University of Bristol, June 1995.

[21] M. Olmedilla, F. Bueno, and M. Hermenegildo. Automatic exploitation of non-
determinate independent and-parallelism in the basic andorra model. In Y. Dev-
ille, editor, Proc. of LOPSTR ’93, Workshops in Computing, pages 177–165.
Springer, 1993.

[22] S. L. Peyton Jones, A. D. Gorden, and S. Finne. Concurrent Haskell. In Proc. of
POPL ’96, pages 295–308, St Petersburg Beach, Florida, January 1996.

[23] G. Puebla and M. Hermenegildo. Abstract specialization and its application to
program parallelization. In J. Gallagher, editor, Proc. of LOPSTR’96, LNCS
1207, pages 169–186. Springer, 1997.

[24] J. H. Reppy. CML: A higher-order concurrent language. In Proc. of PLDI ’91,
ACM SIGPLAN Notices, pages 293–305, Toronto, June 1991. ACM Press.

[25] J. A. Robinson and E. E. Sibert. The LOGLISP user’s manual. Technical Report
12/81, Syracuse University, New York, 1981.

[26] P. H. Salus, editor. Handbook of Programming Languages: Functional and
Logic Programming Languages, volume 4, chapter Prolog: Programming in Logic.
Macmillan Technical Publishing, 1998.

[27] V. A. Saraswat. Concurrent Constraint Programming. ACM Doctoral Dissertation
Awards. MIT Press, 1993.

[28] V. A. Saraswat, R. Jagadeesan, and V. Gupta. Timed default concurrent
constraint programming. Journal of Symbolic Computation, 22(5–6):475–520,
November–December 1996.

[29] V. A. Saraswat and P. Lincoln. Higher-order, linear, concurrent constraint pro-
gramming. Technical report, Xerox PARC, 1992.

[30] E. Shapiro. The family of concurrent logic programmming languages. ACM
Computing surveys, 21(3):412–510, 1989.

20

