
A Concurrent Extension of Functional Logic
Programming Languages

(extended abstract)

Rachid Echahed and Wendelin Serwe

Laboratoire Leibniz { Institut IMAG, CNRS
46, av. Felix Viallet, F-38031 Grenoble { France

Tel: (+33) 4 76 57 48 91; Fax: (+33) 4 76 57 46 02
Rachid.Echahed@imag.fr Wendelin.Serwe@imag.fr

Abstract. We present a concurrent extension of functional logic programming languages
together with a compositional semantics based on labeled sequences, which takes into
account the environment of the program. This framework allows to specify, at a very high
level, applications that need concurrency and interaction with the environment. For that,
we introduce the possibility of de�ning processes (agents) which specify the dynamics
(evolution) of a classical functional logic program, including its communication with the
environment. The resulting formalism integrates in a uniform way the main features of
functional, logic and concurrent programming.

1 Introduction

The aim of a functional logic programming language is to combine, in a uniform way,
the main advantages of both functional programming (e.g., efficient reduction strate-
gies, higher order facilities etc.) and (constraint) logic programming (e.g., goal solving,
computation with partial information (logical variables) etc.). The integration of func-
tional and logic programming languages has been launched by Robinson and Sibert in
[19]. Since then, a plethora of such declarative languages has been proposed, see [9] for
a survey, and [11, 15] for recent contributions.

However, pure declarative languages (either functional or logic) fail to provide the
possibility of high-level description of concurrent real-world applications; by concurrent
applications we mean programs describing several processes which may be executed in
parallel and cooperate together to achieve their (different) specific tasks (via commu-
nication or sharing critical resources), as for example an application involving several
unix processes.

Thus, many concurrent extensions of declarative languages have been proposed.
Our proposal departs radically from the classical concurrent extensions of declarative
languages in the sense that it does not encode processes but considers them as first
class citizens in the same way as functions or predicates.

The main contributions of this paper can be summarized as follows:

– We propose a framework of concurrent functional logic programming languages
where concurrency is expressed by means of processes (or agents). The latter are
described in process algebra style [1], whereas functions and predicates are defined
in classical functional logic formalisms.

– Our operational semantics distinguishes clearly between the implicit parallelism
that may be used to evaluate functional logic expressions (e.g., parallel evaluation of
function arguments) from concurrency which is explicitly specified by a programmer
to meet the intrinsic concurrency of a system (e.g., unix processes).

– Our framework provides some elementary actions which allow programs to interact
with their environments. We found these primitives very useful in some realistic
case studies.

– We give a semantics for terminating or nonterminating programs. This semantics
is compositional and takes into account the possible interactions of a program with
its environment (which is not part of the program itself).

The rest of this extended abstract is organized as follows: In the next section, we
outline an abstract syntax for a concurrent extension of functional logic languages. In
Sect. 3, we sketch briefly a compositional semantics (based on labeled sequences) for
the proposed languages. Finally Sect. 4 gives a brief comparison of our approach to
related work. The details omitted in the Sect. 2 and 3 can be found in the full paper
[6].

2 Syntax

Many frameworks have been used to define the integration of functional and logic
programming paradigms. Without loss of generality, we consider here Horn clause logic
with equality (HCLE) as the basis of a functional logic language, e.g., [8, 2]. Our
approach of concurrent functional logic programs can be generalized easily to other
frameworks such as Curry [11] or Escher [15]. Hereafter, we assume that the reader is
familiar with the classical notions about HCLE.

Let P = (Σ,Cl) be a HCLE-theory presentation where Σ = (S,Ω,Π) is a many-
sorted first order signature with equality and Cl a finite set of clauses defining the
operator symbols in Ω as well as the predicate symbols in Π, S being the set of
sorts. Roughly speaking, P constitutes a functional logic program. The operational
semantics of such programs, which is classically based on rewriting, narrowing and
SLDE-resolution, allows the evaluation of functional expressions as well as goal-solving.

The theory presentation (or program) P describes a concrete system. But as the
latter is a part of the real world, and the world changes, the theory modeling a part
of the world has to change too, i.e., to be modified. So in this paper, we suggest to
extend functional logic languages with processes controlling the evolution of an initial
program P0 through a finite or infinite sequence of changes as it is shown below:

P0 = (Σ,Cl0) −→ P1 = (Σ,Cl1) −→ P2 = (Σ,Cl2) · · · (1)

In fact, the derivation (1) rather corresponds to a run (or behavior) of an extended
automaton. To motivate the need for systems having runs such as (1), we consider two
examples.

The first one is a system keeping the temperature of a room near a given value (Tavg).
It has a sensor for the current temperature (Tenv) in the room and can command an air
conditioning device (AC) to heat up or cool down the room. Then a possible instance
of (1) may be: P0 describes an “initial” state, e.g., Cl0 = {Tavg == 18; Tenv == 18};

P1 is obtained from P0 by a modification of the desired temperature of the room, e.g.,
Tavg == 20; and P2 reflects the effect of starting the heating, e.g., Tenv has raised to
19. As a second example, consider the well known dining philosophers problem. In that
case, each Pi can be seen as a description of the situation of the philosophers, i.e., who
is thinking and who is eating; P1 may be obtained from P0 after a philosopher stops
eating and P2 may be obtained from P1 after a philosopher starts eating.

Note that each Pi in (1) constitutes a functional logic program and that its standard
operational semantics can still be used. So we can for example calculate the pressure
in the room (suppose that the volume of the room is fixed), or ask for the philosophers
who are eating, etc.

In the rest of this section we sketch an abstract syntax of a concurrent extension
of functional logic programming languages. Roughly speaking, a concurrent functional
logic program P will consist of five components, P = 〈ΣQ,Procs, cl0, a0, σ0〉, where
ΣQ is a set of declarations (signature) of different entities used in P, cl0 is the initial
functional logic program which can be modified by the processes defined in Procs. a0

stands for the initial process (agent) to be run and σ0 completes cl0 by giving initial
values to “changing constants” (variables). Thus we introduce first the notion of a
concurrent functional logic signature. Then we define a set of elementary actions, i.e.,
the primitives by the means of which a process can modify a theory presentation (i.e.,
a functional logic program). Thereafter we introduce the notion of a process term, the
operators on process terms and the “clauses” defining processes, namely procedures.
Finally, we give the definition of a concurrent functional logic program. More details
about the proposed framework can be found in the full paper [6].

Definition 1. A concurrent functional logic signature ΣQ is a tuple 〈S,Ω,Π,Q,Ξ, V 〉
such that:

– 〈S,Ω,Π〉 is a first-order signature with equality, i.e., S is a set of sorts, Ω is a set
of operators (or functions) and Π is a set of predicates including equality.

– Q is a set of procedures (or processes). We assume that success is an element of
Qε.

– Ξ is a set of “external machines” representing the external programs or physical
devices with which the program can communicate.

– V = VI ∪ VO ∪ VL ∪ VC is a set of variables where VI (resp., VO, VL, VC) is a set of
internal variables (resp., external variables, queue-variables, channel-variables).

In the sequel, the set of all internal, external and queue variables, i.e., Vst =
VI ∪ VO ∪ VL will be called state variables (Vst). The internal variables (VI) are similar
to variables known in imperative programming languages: they are initialized before
program-execution and are modifiable via affectation. The external variables (VO) are
similar to sensors: their value is determined by something outside the system. The
queue-variables (VL) are used to model the reception of values from an external ma-
chine via a FIFO-channel: arriving messages are implicitly buffered in the order of
arrival. The channel-variables (VC) are used to define a part of the communication
with external machines. In this paper we do not consider how external machines im-
plement the reception of messages. Whenever an external machine is modeled by a
concurrent functional logic program, the reception of messages may be buffered (via
queue-variables) or not (e.g., via external variables).

Example 1. According to the notations of Definition 1, we define the following concur-
rent functional logic signature for the temperature-controller example:

– S = {Nat ; Mode}
– Ω = {0:→ Nat ; succ : Nat → Nat ; pred : Nat → Nat ; Tmin :→ Nat ; Tmax :→ Nat}
– Π = {stop; heat; cool}
– Q = {stop; heat; cool; success}
– VI = {Tiavg}, VO = {Tenv}, VL = {Tavg}
– VC = ∅

– Ξ = {AC}

We use external variables for a sensor (Tenv) of the current temperature and a queue-
variable for a control device (Tavg) through which a user may communicate to the
system the desired average temperature. Tiavg is an internal variable used to memorize
the current value of Tavg . AC stands for “Air Conditioner” and represents the physical
machine that will receive the orders “stop”, “cool” or “heat” from the temperature
controller. The program for the controller is subject of Example 3.

In the following, we suppose given a concurrent functional logic signature ΣQ and
denote by T (Σ,X) (resp., A(Σ,X), G(Σ,X) and Horn(Σ,X)) the set of terms (resp.,
atoms, (finite) conjunctions of atoms and (definite) Horn clauses) built from the (first-
order) signature Σ = 〈S,Ω,Π〉 with variables X.

The following definition introduces the notion of elementary actions, that is to
say the kind of operations which, when executed, make a theory presentation (i.e., a
functional logic program) Pi evolve to Pi+1 as in (1).

Definition 2. Let Vp be the set of local variables needed to define the process p, and
X a set of variables. Then the set of elementary actions Ae(ΣQ, Vp, X) is obtained by
instantiating the parameters of the following five primitives:

– Nop
– Tell(Cl), where Cl ∈ Horn(Σ,X)
– Del(Cl), where Cl ∈ Horn(Σ,X)
– (v := t), where v ∈ VI and t is a term (∈ T (Σ, Vp)) of the same sort as v
– Send(ξ,A), where ξ is a machine (∈ Ξ) and A ∈ A(Σ,X) an atom
– Send(ξ, (v :=t)), where ξ ∈ Ξ, t is a term and v is a channel-variable of the machine
ξ

Nop is the invisible action without any effect. The elementary actions Tell and Del
are dual: they are used to add and remove a clause from the current theory. “:=” affects
the value1 of the term t to an internal variable v. Finally, Send allows the communication
with the external machines via message-passing. These messages can be of two forms: an
atomic formula or an affectation of a channel-variable. There are no elementary actions
associated with the external and the queue-variables: their management is supposed to
be external.

We call action a (∈ A(ΣQ, Vp, X)) a set of elementary actions which contains no
“contradictions”, e.g., a Tell and a Del of the same clause or a double affectation of an
internal variable.
1 note that t’s free variables have to be local in the procedure p.

Definition 3. A process term (or an agent) a (containing the set Vp of local variables)
is described by the following grammar:

a ::= q(t1, . . . , tn) | [g⇒a] | (a; a) | (a ‖ a) | (a + a) | (a⊕ a)

q(t1, . . . , tn) is a procedure-call q (∈ Q) with parameters ti ∈ T (Σ, Vp). The process
term [g⇒ a] describes the atomic execution of the action a, given the validity of the
guard g (∈ G(Σ, Vp)) in the current store (i.e., the current theory).

In reference to process algebras [1], we call ; the operator of sequential composition, ‖
the operator of parallelism and + the operator of indeterministic choice. The operator
⊕ is not very common: we call it operator of choice with priority. It is necessary to
model certain (critical) applications, where indeterminism is inadmissible. The intended
meaning of a1 ⊕ a2 is to execute a2 iff a1 cannot be executed.

In the sequel we will write PT (ΣQ, Vp, X) for the set of process terms, and
RPT (ΣQ, Vp, X) for the set of process terms containing neither [g⇒a] nor ⊕.

Definition 4. A procedure is defined by a formula of the following form:

p(x1, . . . , xn)⇐
m⊕
i=1

([gi⇒ai]; ai)

where (for each i) gi ∈ G(Σ, {x1; . . . ;xn}), ai ∈ A(ΣQ, {x1; . . . ;xn}, X) and
ai ∈ RPT (ΣQ, {x1; . . . ;xn}, X). The xi are the (local) variables of the procedure p.

Example 2. Consider the problem of the “Dining Philosophers.” We model the situation
with two predicates: stick(x) and is eating(y). The former represents the fact that stick
x is lying on the table, and the latter affirms that philosopher y is eating. Then we can
model the behavior of a philosopher by the procedures shown in Fig. 1. Note that we
do not use low-level synchronization (like semaphores) and auxiliary constructions (as
placing the table in a separate room or asymmetric philosophers).

thinks(x, n) ⇐ [

�
stick(x) ∧
stick(x+ 1 mod n)

�
⇒

8
<

:

Del(stick(x))
Del(stick(x+ 1 mod n))
Tell(is eating(x))

9
=

;
]; eats(x, n)

eats(x, n) ⇐ [TRUE⇒

8
<

:

Del(is eating(x))
Tell(stick(x))
Tell(stick(x+ 1 mod n))

9
=

;
]; thinks(x, n)

Fig. 1. Procedures for the dining philosophers example

Now we can define a concurrent functional logic program.

Definition 5. A concurrent functional logic program is a tuple 〈ΣQ,Procs, cl0, a0, (σI)0〉
such that:

– ΣQ is a concurrent functional logic signature,

– Procs is the set of procedures of the program,
– cl0 is a set of Horn clauses with equality, called the initial clause set,
– a0 ∈ PT (ΣQ,∅, X) is the initial process term, containing no free variable,
– (σI)0 is a valuation (i.e., a total substitution) over VI , called initialization (for the

internal variables).

According to Definition 5, a concurrent functional logic program has two parts: a
static one (ΣQ and Procs) and an initialization. The former will not be modifiable
neither by the actions nor by the environment. The latter describes everything that is
modifiable.
〈〈S, (Ω ∪ Vst), Π〉, cl0 ∪ (σI)0〉 is the initial theory which can be modified by the

execution of actions, for example via addition and removal of clauses. a0 is the initial
process which will modify the state of the system via the application of transition rules.
(σI)0 initializes the internal variables; the external and queue-variables are initialized
by the environment. This distinction reflects the fact that the programmer cannot know
the (initial) environment.

Example 3. We give now the program for the temperature-controller mentioned at the
beginning of this section. We take for ΣQ the concurrent functional logic signature of
Example 1. The procedures are defined by Fig. 2. The initialization is defined by the
initial theory cl0 = {pred(succ(x)) == x; Tmin == pred(Tiavg); Tmax == succ(Tiavg)},
the initial process a0 = stop and the initial value for the internal variable (σI)0 =
{Tiavg 7→ 20}.

heat ⇐
[Tenv > Tmax⇒Send(AC, cool)]; cool

⊕ [Tenv ≥ Tiavg⇒Send(AC, stop)]; stop

⊕ [TRUE⇒(Tiavg := Tavg)]; heat

cool ⇐
[Tenv < Tmin⇒Send(AC, heat)]; heat

⊕ [Tenv ≤ Tiavg⇒Send(AC, stop)]; stop

⊕ [TRUE⇒(Tiavg := Tavg)]; cool

stop ⇐
[Tenv < Tmin⇒Send(AC, heat)]; heat

⊕ [Tenv > Tmax⇒Send(AC, cool)]; cool
⊕ [TRUE⇒(Tiavg := Tavg)]; stop

Fig. 2. Procedures for the example of a temperature controller

3 Compositional Semantics

The execution of a concurrent functional logic program P = 〈ΣQ,Procs, cl0, a0, (σI)0〉
informally consists, on the one hand, in running the procedures in Procs starting from
the initial agent a0 and, on the other hand, in solving goals in the possibly different
reachable theory presentations (e.g., search for the currently eating philosophers). The
complete set of rules defining the operational semantics may be found in the full paper
[6].

In this section we discuss briefly the basic ideas for constructing a compositional
denotational semantics for our language-proposal. Compositionality allows the inference

of the semantics of a program from that of its components. Thus compositionality eases
reusability as well as program analysis and validation and so it is most desirable for
building large systems.

Let P be a concurrent functional logic program. We can define [6] a transition
system Tr(P) corresponding to P by using the inference rules describing the operational
semantics. A first semantics for P, denoted by Tr(P), may be defined as the set of
possible executions or traces of Tr(P), such as in (1). An element in Tr(P) is a sequence
of actions which can be observed by executing P. For example, the sequence of actions
a1 · a2 · a3 · a4 · · · is a trace of the run

P0
a1−→ P1

a2−→ P2
a3−→ P3

a4−→ P4 · · · (2)

It turns out that this semantics is not compositional. Indeed consider the following
example:

Example 4. Consider the following three processes:

a1 = (Q⇒ success), a2 = (R⇒ success) and a3 = (Tell(Q); success)

Then, starting with an empty store (theory), we have: Tr(a1) = Tr(a2) = ∅, whereas
Tr(a1 ‖ a3) 6= Tr(a2 ‖ a3)

The source of the non-compositionality is that sequences as (2) represent only the
behavior of the process under consideration without taking into account their context,
that is to say possible actions of other parallel processes or the environment. Thus two
processes, e.g., a1 and a2, though having the same semantics, may behave differently
in some contexts, e.g., when executed in parallel with a3. To overcome this defect, the
semantics of a process a has to take into account the possible contexts within which it
may run.

Thus the new compositional semantics of P, denoted by Tr′(P), is the set of possible
action sequences interleaved with assumptions about the behavior of parallel processes,
i.e., the actions they may execute. Furthermore, the actions in the traces are labeled by
their “author”, in order to distinguish between the actions executed by the process and
the assumptions made. In extension to [5] an action in our framework can be executed
by the process itself (p), another process (executing in parallel) (o) or the environment,
e.g., the reception of a message or the modification of a value captured by a sensor (e).
The distinction between other processes and the environment is necessary because the
actions of another process could be executed by the process itself, whereas the actions
of the environment cannot. A run as (2) now becomes for example:

P0
ap

1−→ P1
ap

2−→ P ′1
(a′2)o

−→ P2
ap

3−→ P3
ap

4−→ P4
(a′4)e

−→ P ′4 · · · (3)

Having defined the labels of the actions, it is possible to define semantic operators
[6] corresponding to the operators for composing processes, in order to obtain compo-
sitionality. Remark that at a first sight, the traces in Tr′(P) may seem to incorporate
“too much” information; nevertheless this is the price to pay for compositionality.

4 Related Work

Due to lack of space we do not survey all the propositions in the area, but focus on
some of those which are close to our proposal.

Concurrent extensions of functional programming languages as CML [18] and Con-
current Haskell (CH) [16] add to ML, resp., to Haskell, new primitives which can be
used to “encode” concurrent systems. Though these primitives of CML or CH look very
interesting for concurrent programming, they are still low level: We find it more ab-
stract to use new language constructs to express concurrency. Indeed, in our framework
processes are specified independently from functions and predicates. Furthermore the
proposed primitives of (CML and CH) do not distinguish between parallel evaluation
of functional expressions and concurrent execution of processes. As a consequence of
this last point, there is no hope to extend, in a straightforward manner, the operational
semantics in order to allow interactive goal-solving. Also, there is no direct support for
building atomic actions as we used in our modeling of the dining philosophers program.

lotos [12] is a language which integrates process definitions with functions. It allows
the definition of processes using classical process algebra operators. lotos also provides
the possibility to define functions in equational logic. However, communication between
processes in lotos is performed via connected gates in contrast to our framework, where
processes communicate via the store. Our state variables (Vst) play almost the same
rôle as lotos gates. But one of the main advantages in using state variables is the
possibility to broadcast a message in one shot, just by instantiating a variable in the
store by the right message. The use of a store as a medium of communication allows
sophisticated message passing via logic formulas (or constraints) which is impossible in
lotos. In addition, in lotos the function-definitions (theory presentations) cannot be
modified.

Concurrent Constraint Programming (ccp) [20] integrates ideas from concurrent
logic programming [22] and constraint logic programming [13]. In ccp a set of agents
(or processes) communicates via a common store. These agents are defined according
to the following grammar:

A ::= stop | fail | ask(c)→ A | tell(c)→ A | A+A | A ‖ A | ∃X.A | p(~t)

where p(~t) corresponds to a procedure call. Procedure-definitions are sentences of the
form p(~x) :- A; obviously they play the same rôle as our procedures. Nevertheless, there
are noteworthy differences between the two frameworks, e.g.,

– We found the operator of indeterministic choice with priority (⊕) very useful for
some examples. Unfortunately this operator does not exist in ccp. However, in a
recent extension of ccp, [3], a now-then-else operator has been introduced which can
simulate the operator ⊕.

– A store in ccp is monotonic. This is not the case in our approach due to the possibil-
ity of deleting some clauses (see e.g., Del). Some variants of ccp with non-monotonic
stores have been proposed, see e.g., [4, 21, 7].
In [4] an operator updatex is used to hide the name of a variable. Our Del operator
is more precise and allows us to describe for instance the example of philosophers
without special requirements on the structure of the constraint system: in [4] the first

solution for the dining philosophers can only be understood with some knowledge
about the constraint system.
Another different approach to handle non-monotonic stores is presented in [21, 7].
This approach is based on linear logic and allows the implicit deletion of information
thanks to the semantics of the linear ask.

– In our proposition, we distinguish clearly between the behavior of processes and
goal-solving. The latter may be performed sequentially or concurrently à la parallel-
Prolog. However, this distinction is not present in ccp where the resolution of a goal
corresponds surprisingly to the run of a process.

– State variables are necessary for many real-word applications. Unfortunately, there
is no counterpart of state variables in ccp.

Prolog III offers the possibility of adding and removing clauses by predefined “pred-
icates”, as for example assert and retract [17]. However, these predicates are not
declarative: their use implies the knowledge of the operational details of the language
interpreter. In our opinion, these extensions are intended to ease interactive program
development, and not programming concurrent systems.

AKL [14] introduces the notion of ports as a communication medium for processes
described in concurrent contraint logic programming framework. Primitives on ports
such as open port(P, S) or send(P,m) have been introduced to describe message passing.
It is argued in [14] that the introduced port primitives have a logical reading and
preserve the monotonicity of the contraint store. In our case, message passing can be
achieved by the modification of state variables, or the addition or deletion of clauses of
the (constraint) store. Since in our framework monotonicity is not a concern, we do not
need ports; they can be implemented via state variables. Recently, the idea of ports has
been extended and integrated in the functional logic programming language Curry [10]
in order to cope with distributed applications.

References

[1] J. C. M. Baeten and W. P. Weijland. Process Algebra. Number 18 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1990.

[2] D. Bert and R. Echahed. Design and implementation of a generic, logic and functional program-
ming language. In Proc. of ESOP’86, volume 213 of LNCS, pages 119 { 132, Saarbr�ucken, March
1986. Springer.

[3] F. S. de Boer and M. Gabbrielli. Modeling real-time in concurrent constraint programming. In
Proc. of the Int. Logic Programming Symposium, 1995.

[4] F. S. de Boer, J. N. Kok, C. Palamidessi, and J. J. M. M. Rutten. Non-monotonic concurrent
constraint programming. In Proc. of the Int. Symp. on Logic Programming, pages 315 { 334. The
MIT Press, 1993.

[5] F. S. de Boer and C. Palamidessi. A fully abstract model for concurrent constraint programming.
In S. Abramsky and T. S. E. Maibaum, editors, Proc. of the Int. Joint Conf. on Theory and
Practice of Software Development, Volume 1, Colloquium on Trees in Algebra and Programming,
volume 493 of LNCS, pages 296 { 319, Brighton, UK, April 1991. Springer.

[6] R. Echahed and W. Serwe. A concurrent extension of functional logic programming languages.
available at ftp://ftp.imag.fr/pub/LEIBNIZ/PMP/conc_ext_flp.ps.gz.

[7] F. Fages, P. Ruet, and S. Soliman. Phase semantics and veri�cation of concurrent constraint
programs. In Proc. of LICS, 1998.

[8] J. A. Goguen and J. Meseguer. EQLOG: Equality, types and generic modules for logic program-
ming. In DeGroot and Lindstrom, editors, Functional and Logic Programming. Prentice Hall,
1986.

[9] M. Hanus. The integration of functions into logic programming: From theory to practice. Journal
of Logic Programming, 19 & 20:583 { 628, 1994.

[10] M. Hanus. Distributed programming in Curry. In R. Echahed, editor, Proc. of the 8th Int.
Workshop on Functional and Logic Programming, pages 195 { 208, Grenoble, June 1999. Institut
IMAG, RR-1021-1-.

[11] M. Hanus (Ed.). Curry: An integrated functional logic language. available at
http://www-i2.informatik.rwth-aachen.de/~hanus/curry/report.html, 1999.

[12] ISO/IEC JTC1/SC21 WG7. Final Committee Draft on Enhancements to Lotos, May 1998.
Project: WI 1.21.20.2.3.

[13] J. Ja�ar and J.-L. Lassez. Constraint logic programming. In Proc. of the 14th Annual ACM
Symp. on Principles of Programming Languages, pages 111 { 119, M�unchen, January 1987. ACM.

[14] S. Janson, J. Montelius, and S. Haridi. Ports for objects in concurrent logic programs. In Agha,
Wegner, and Yonezawa, editors, Research Directions in Concurrent Object-Oriented Programming.
The MIT Press, 1993.

[15] J. W. Lloyd. Declarative programming in Escher. Technical Report CSTR-95-013, Departement
of Computer Science, University of Bristol, June 1995.

[16] S. L. Peyton Jones, A. D. Gorden, and S. Finne. Concurrent Haskell. In Proc. of ACM Symp. on
Principles of Programming Languages, pages 295 { 308, St Petersburg Beach, Florida, January
1996.

[17] PrologIA. PrologIII, Reference-Manual.
[18] J. H. Reppy. CML: A higher-order concurrent language. In Proc. of the Conf. on Programming

Language Design and Implementation, ACM SIGPLAN Notices, pages 293 { 305, Toronto, June
1991. ACM Press.

[19] J. A. Robinson and E. E. Sibert. The LOGLISP user’s manual. Technical Report 12/81, Syracuse
University, New York, 1981.

[20] V. A. Saraswat. Concurrent Constraint Programming. ACM Doctoral Dissertation Awards. MIT
Press, 1993.

[21] V. A. Saraswat and P. Lincoln. Higher-order, linear, concurrent constraint programming. Tech-
nical report, Xerox PARC, 1992.

[22] E. Shapiro. The family of concurrent logic programmming languages. ACM Computing surveys,
21(3):412 { 510, 1989.

