
Software for squaring floats on ST231:
a case study in bringing floating-point

to VLIW integer processors

Jingyan Jourdan-Lu

Computer Arithmetic Team Arénaire Compilation Expertise Center
INRIA (Lyon) STMicroelectronics (Grenoble)

Joint work with C.-P. Jeannerod, C. Monat, G. Revy



1

Context Fused and specialized operators Square: example of operator specialization Conclusions

Floating-point arithmetic on integer microprocessors

We aim at efficient software emulation of FP operators for
integer-only microprocessors.

I embedded systems everywhere, set top boxes, mobile phones,...

I fast FP emulation to avoid the cost of hardware FP units

Our design is
I compliant with the main IEEE 754 features:

I different binaryk formats
I all rounding modes
I gradual underflow

I portable to integer processors: implementation in C



2

Context Fused and specialized operators Square: example of operator specialization Conclusions

Our hardware platform: ST231

The ST231 is a 4-way integer-only VLIW processor from the
ST200 family:

I Up to 4 instruction words can be grouped in one bundle.

I Up to 4 instructions can be executed in one cycle.

→ Key to realize Instruction Level Parallelism (ILP).

Typical applications:

I a media processor with an embedded OS

I a host processor running Linux and applications



3

Context Fused and specialized operators Square: example of operator specialization Conclusions

Architecture of the ST231 core

ICache

ITLB
DTLB

Mul

Register
file (64

registers
8 read
4 write)

Load
store
unit

(LSU)

IU IU IU IU

Trap
controller

4 x SDI

Instruction
buffer

STBus

SDI ports

61 interrupts Debuglink

Peripherals

Debug
Timers

3 x
controller support unit 32−bit

I−side
memory
subsystem

Interrupt

register
PC and
branch

unit

Branch

file

DCache

buffer
Write

Prefetch
buffer

SCU

CMC

STBus

64−bit

registers
Control

UTLB
Mul

D−side
memory
subsystem

ST231 core



4

Context Fused and specialized operators Square: example of operator specialization Conclusions

Key instructions for FP designs

All arithmetic operations have a one-cycle latency except the multipliers

which have a three-cycle latency.

I slct RDEST = B, Opnd1, Opnd2.
returning RDEST = B ? Opnd1 : Opnd2
Transform branches to straight line code.

I clz RDEST = Opnd1.
counting the leading zeros of Opnd1

Key to subnormal numbers support.

I Up to two muls can be issued in one cycle.
Essential to polynomial evaluation.

I Others: (un)signed min and max, arbitrary length shifts.



5

Context Fused and specialized operators Square: example of operator specialization Conclusions

Software libraries for FP emulation used on ST231

I SoftFloat [Hauser]
I Robust. It is a reference model with test vectors.

I Hardware independent. It doesn’t address performance.

I FLIP [Arénaire team]
I High ILP exposure.
I Fast division, square root based on polynomial evaluation.

SoftFloat cycles FLIP cycles Speedup

addition 48 26 1.9x
subtraction 49 26 1.9x
multiplication 31 21 1.5x
division 177 34 5.2x
square root 95 23 4.1x



6

Context Fused and specialized operators Square: example of operator specialization Conclusions

Beyond FLIP

I Some typical applications may intensively use numerical
blocks involving special operators.

I Discovering useful fused or specialized operators can improve
the FP performance.

Example of 2-norm:

float two_norm(float a[], int n){

int i; float s = 0.0f;

for (i=0; i<n; i++) s = s + a[i]*a[i];

return sqrtf(s);}

Essential part of radix-2 FFT:

for (k=j; k < n; k=k+n2){

t1 = c*x[k+n1] - s*y[k+n1]; t2 = s*x[k+n1] + c*y[k+n1];

x[k] = x[k] + t1; x[k+n1] = x[k] - t1;

y[k] = y[k] + t2; y[k+n1] = y[k] - t2;}



7

Context Fused and specialized operators Square: example of operator specialization Conclusions

An extension of general operators

• A specialized operator replaces a generic operator when the
compiler can prove properties about the arguments.

• A fused operator replaces a set of 2 or more FP operators by a
single one.

The operators we aim at implementing in software include:

I ◦(x · y)→ ◦(x2) square

I ◦(x · y + z)→ ◦(x2 + z) fused square-add

I ◦(◦(x · y) + ◦(z · t)) → ◦(x · y + z · t) 2D dot product

I fused add-sub, a unit to compute the pair [◦(x + y), ◦(x− y)].

↪→ for hardware designs, see Saleh and Swartzlander (2008), Saleh (2009)

We work at two levels:

I Detection of such operators during compilation

I Design and software implementation of arithmetic algorithms



8

Context Fused and specialized operators Square: example of operator specialization Conclusions

Detecting square during compilation

st200cc:

I based on Open64 technology

I further developed by STMicroelectronics

WHIRL: the intermediate representation for Open64 compilers.

I supporting different front-end languages, C, C++, ...

I independent of target processor architectures

At WHIRL level, we can detect square by checking the identity of
the WHIRL tree of the two operands of each multiplication.

For instance:

I x · x→ x2

I (x + 1.0f) · (x + 1.0f)→ (x + 1.0f)2



9

Context Fused and specialized operators Square: example of operator specialization Conclusions

Designing a fast FP square operator x 7→ r = x2

Goals

I From the integer encoding X = [sign|biased exp|fraction] of x,
get the integer encoding R of the IEEE 754 result r.

I On ST231, don’t save just a few cycles (compared to general
multiply), but divide the latency by ≈ 2.

Design principles

I Define generic vs. special input very carefully.
I Maximize ILP exposure in the generic path:

I In parallel: biased exp, truncated fraction L, sticky bit t.
I Fast parallel expressions for L and t.

I Reuse previous work to optimize the special path.

I Do all this “symbolically” (= parameterized by the format).



10

Context Fused and specialized operators Square: example of operator specialization Conclusions

Generic vs. special input

For the binaryk format with rounding ◦, specializing the IEEE-754
specification of multiplication x× y to the case x = y gives:

r =



+0 if |x| = 0,
min◦ if |x| ∈ [α, α′),
◦(x2) if |x| ∈ [α′,Ω′),
max◦ if |x| ∈ [Ω′,Ω],
+∞ if |x| =∞,
qNaN if x is NaN.

with

I α smallest positive number

I Ω largest finite number

I α′ = 2b(emin−p)/2c≈
√
α

I Ω′ = 2(emax+1)/2≈
√

Ω

I min◦, max◦ depending only
on rounding mode ◦

↪→ Input x is generic if α′ ≤ |x| < Ω′, and special otherwise.



11

Context Fused and specialized operators Square: example of operator specialization Conclusions

Generic path
Here, the fraction of R is of course the hardest part and we get it
as L+ b with L the truncated fraction of x2 and b the round bit.

For rounding “to nearest even” b depends on the sticky bit t.

Theorem 1 (formula for L): L = H � (µ+ w − 1) with

I H the higher half of square of input significand mx

I µ = max(c, F ) with c and F functions of mx and 2Ex

I w the exponent width of the format

Advantages:

I covers normal and subnormal cases

I H and µ in parallel
I on ST231 and for binary32,

I only 1 multiply instruction is used
I we proved the shift value is C99 compliant: µ+ 8− 1 < 32



12

Context Fused and specialized operators Square: example of operator specialization Conclusions

Generic path (cont’d)

Similarly, we have proved a parallel formula for the sticky bit t:

Theorem 2 (sticky bit formula): t = [T1 6= 0] ∨ [T2 6= 0] with

I T1 = H � (p+ 2− µ)

I T2 = X mod 2p−bk/2c

I H and µ as before, and p the precision of the binaryk format

↪→ very fast in practice: 7 cycles on ST231 for binary32.



13

Context Fused and specialized operators Square: example of operator specialization Conclusions

Special path

Recall that special x is either NaN or such that |x| is “small”
(|x| < α′) or “large” (|x| ≥ Ω′).

Hence any special input is filtered out via the condition

Cspec = Cnan ∨ Csmall ∨ Clarge.

Theorem 3: One can reuse 2Ex from the generic path:

I Csmall = [2Ex ≤ emax − p− 1]

I Clarge ∨ Cnan = [2Ex ≥ 3emax + 1]

↪→ once 2Ex is available, 3 instructions suffice to get Cspec.



14

Context Fused and specialized operators Square: example of operator specialization Conclusions

Special path (cont’d)

Besides Cspec, Csmall, and Clarge ∨ Cnan, we need Cnan in order to
handle special input.

I For rounding to nearest, we thus have:

if (Cspec) {

if (Cnan) return qNaN;

else {

if (Csmall) return 0;

else return +oo;}

}else {...// generic case}

binary32−−−−−−→
ST231

slct $r1 = Csmall, 0, +oo

slct $r2 = Cnan, qNaN, $r1

slct $rDEST = Cspec, $r2, $rx

$rx holds the result

from the generic path.

I For other roundings, easy adaptation by using min and max:
I for RD and RZ, +∞ is replaced by max(|x|,Ω),
I for RU, 0 is replaced by min(|x|, α).



15

Context Fused and specialized operators Square: example of operator specialization Conclusions

Summary of ILP exposure

Three independent tasks: detect special inputs (T1) , handle them

(T2) , and handle generic inputs (T3) :

uint square(uint X) {

Cspec = ... ; // (T1)

if (Cspec)

{ ... } // (T2)

else

{ ... } // (T3)

}

4-way−−−→
VLIW

slct ret



16

Context Fused and specialized operators Square: example of operator specialization Conclusions

Performance of our FP square operator on ST231

I Performance for various rounding modes:

◦ FLIP multiply square speedup

RN 21 12 1.75x
RD 21 9 2.3x
RU 21 11 1.9x
RZ 18 9 2x

I Speed up from 1.75x to 2.3x.
I On average, 3.4 instructions per cycle (IPC), so that all

bundles are almost full.

I Application example: 1.15x speedup when computing 2-norms.

I Our symbolic approach made it immediate to produce C code
for binary64 as well:

I already a 1.74x speedup



17

Context Fused and specialized operators Square: example of operator specialization Conclusions

Conclusions

In summary:

I High ILP can be exposed on ST231 for FP operators.

I Specialized or fused operators really improve FP applications.

I Selecting special operators requires sophisticated compiler
optimizations.

On-going work:

I Detecting and implementing fused square-add (FSA), 2D dot
product, fused add-sub
↪→ thanks to FSA, the speedup for 2-norms is 1.3x instead of 1.15x.

I Addressing operators like sincos [Markstein (2003)].


	Context
	Fused and specialized operators
	Square: example of operator specialization
	Conclusions

