Software for squaring floats on ST231: a case study in bringing floating-point to VLIW integer processors

Jingyan Jourdan-Lu

Computer Arithmetic Team Arénaire INRIA (Lyon) Compilation Expertise Center STMicroelectronics (Grenoble)

Joint work with C.-P. Jeannerod, C. Monat, G. Revy

Floating-point arithmetic on integer microprocessors

We aim at efficient software emulation of FP operators for integer-only microprocessors.

- embedded systems everywhere, set top boxes, mobile phones,...
- fast FP emulation to avoid the cost of hardware FP units

Our design is

- compliant with the main IEEE 754 features:
 - different *binaryk* formats
 - all rounding modes
 - gradual underflow
- portable to integer processors: implementation in C

Our hardware platform: ST231

The **ST231** is a 4-way integer-only VLIW processor from the ST200 family:

- Up to 4 instruction words can be grouped in one bundle.
- Up to 4 instructions can be executed in one cycle.
- \rightarrow Key to realize Instruction Level Parallelism (ILP).

Typical applications:

- a media processor with an embedded OS
- a host processor running Linux and applications

Architecture of the ST231 core

Key instructions for FP designs

All arithmetic operations have a one-cycle latency except the multipliers which have a three-cycle latency.

slct R_{DEST} = B, Opnd1, Opnd2.
returning R_{DEST} = B ? Opnd1 : Opnd2
Transform branches to straight line code.

clz R_{DEST} = Opnd1. counting the leading zeros of Opnd1

Key to subnormal numbers support.

Up to two muls can be issued in one cycle. Essential to polynomial evaluation.

Others: (un)signed min and max, arbitrary length shifts.

Software libraries for FP emulation used on ST231

- SoftFloat [Hauser]
 - Robust. It is a reference model with test vectors.
 - ► Hardware independent. It doesn't address performance.
- FLIP [Arénaire team]
 - High ILP exposure.
 - ► Fast division, square root based on polynomial evaluation.

	SoftFloat cycles	FLIP cycles	Speedup
addition	48	26	1.9x
subtraction	49	26	1.9×
multiplication	31	21	1.5×
division	177	34	5.2x
square root	95	23	4.1×

Beyond FLIP

- Some typical applications may intensively use numerical blocks involving special operators.
- Discovering useful *fused* or *specialized* operators can improve the FP performance.

Example of 2-norm:

Essential part of radix-2 FFT:

```
for (k=j; k < n; k=k+n2){
t1 = c*x[k+n1] - s*y[k+n1]; t2 = s*x[k+n1] + c*y[k+n1];
x[k] = x[k] + t1;    x[k+n1] = x[k] - t1;
y[k] = y[k] + t2;    y[k+n1] = y[k] - t2;}</pre>
```

An extension of general operators

- A *specialized* operator replaces a *generic* operator when the compiler can prove properties about the arguments.
- A *fused* operator replaces a set of 2 or more FP operators by a single one.

The operators we aim at implementing in software include:

- $\circ(x \cdot y) \rightarrow \circ(x^2)$ square
- $\circ(x \cdot y + z) \rightarrow \circ(x^2 + z)$ fused square-add
- $\blacktriangleright \ \circ (\circ (x \cdot y) + \circ (z \cdot t)) \rightarrow \circ (x \cdot y + z \cdot t) \quad \text{ 2D dot product}$
- ▶ fused add-sub, a unit to compute the pair $[\circ(x+y), \circ(x-y)]$.

 \hookrightarrow for *hardware* designs, see Saleh and Swartzlander (2008), Saleh (2009)

We work at two levels:

- Detection of such operators during compilation
- Design and software implementation of arithmetic algorithms

Detecting square during compilation

st200cc:

- based on Open64 technology
- further developed by STMicroelectronics

WHIRL: the intermediate representation for Open64 compilers.

- ▶ supporting different front-end languages, *C*, *C*++, ...
- independent of target processor architectures

At WHIRL level, we can detect square by checking the identity of the WHIRL tree of the two operands of each multiplication.

For instance:

▶ $\mathbf{x} \cdot \mathbf{x} \rightarrow \mathbf{x}^2$ ▶ $(\mathbf{x} + 1.0\mathbf{f}) \cdot (\mathbf{x} + 1.0\mathbf{f}) \rightarrow (\mathbf{x} + 1.0\mathbf{f})^2$

Designing a fast FP square operator $x \mapsto r = x^2$

Goals

- ► From the integer encoding X = [sign|biased exp|fraction] of x, get the integer encoding R of the IEEE 754 result r.
- ► On ST231, don't save just a few cycles (compared to general multiply), but divide the latency by ≈ 2.

Design principles

- Define generic vs. special input very carefully.
- Maximize ILP exposure in the generic path:
 - In parallel: biased exp, truncated fraction L, sticky bit t.
 - ► Fast parallel expressions for *L* and *t*.
- Reuse previous work to optimize the special path.
- ▶ Do all this "symbolically" (= parameterized by the format).

Generic vs. special input

For the binary k format with rounding \circ , specializing the IEEE-754 specification of multiplication $x \times y$ to the case x = y gives:

with

$$r = \begin{cases} +0 & \text{if } |x| = 0, \\ \min_{\circ} & \text{if } |x| \in [\alpha, \alpha'), \\ \circ(x^2) & \text{if } |x| \in [\alpha', \Omega'), \\ \max_{\circ} & \text{if } |x| \in [\Omega', \Omega], \\ +\infty & \text{if } |x| = \infty, \\ q\text{NaN} & \text{if } x \text{ is NaN.} \end{cases}$$

- α smallest positive number
- $\blacktriangleright \ \Omega$ largest finite number

$$\blacktriangleright \alpha' = 2^{\lfloor (e_{\min} - p)/2 \rfloor} \approx \sqrt{\alpha}$$

$$\blacktriangleright \ \Omega' = 2^{(e_{\max}+1)/2} \approx \sqrt{\Omega}$$

▶ min_o, max_o depending only on rounding mode o

 \hookrightarrow Input x is generic if $\alpha' \leq |x| < \Omega'$, and special otherwise.

Generic path

Here, the fraction of R is of course the hardest part and we get it as L+b with ${\pmb L}$ the truncated fraction of x^2 and b the round bit.

For rounding "to nearest even" b depends on the sticky bit t.

Theorem 1 (formula for L): $L = H \gg (\mu + w - 1)$ with

• H the higher half of square of input significand m_x

• $\mu = \max(c, F)$ with c and F functions of m_x and $2E_x$

 $\blacktriangleright \ w$ the exponent width of the format

Advantages:

- covers normal and subnormal cases
- H and μ in parallel
- on ST231 and for binary32,
 - only 1 multiply instruction is used
 - we proved the shift value is C99 compliant: $\mu + 8 1 < 32$

Generic path (cont'd)

Similarly, we have proved a parallel formula for the sticky bit t:

Theorem 2 (sticky bit formula): $t = [T_1 \neq 0] \lor [T_2 \neq 0]$ with $\blacktriangleright T_1 = H \ll (p+2-\mu)$

$$T_2 = X \bmod 2^{p - \lfloor k/2 \rfloor}$$

 \blacktriangleright H and μ as before, and p the precision of the binary k format

 \hookrightarrow very fast in practice: 7 cycles on ST231 for binary32.

Special path

Recall that special x is either NaN or such that |x| is "small" $(|x| < \alpha')$ or "large" $(|x| \ge \Omega')$.

Hence any special input is filtered out via the condition

$$C_{\text{spec}} = C_{\text{nan}} \lor C_{\text{small}} \lor C_{\text{large}}.$$

Theorem 3: One can reuse $2E_x$ from the generic path:

$$\blacktriangleright C_{\mathsf{small}} = [2E_x \le e_{\mathsf{max}} - p - 1]$$

$$\blacktriangleright C_{\mathsf{large}} \lor C_{\mathsf{nan}} = [2E_x \ge 3e_{\mathsf{max}} + 1]$$

 \hookrightarrow once $2E_x$ is available, 3 instructions suffice to get C_{spec} .

 $a_1a_+ \phi_{m1} = C_{ama}$

Special path (cont'd)

Besides C_{spec} , C_{small} , and $C_{\text{large}} \vee C_{\text{nan}}$, we need C_{nan} in order to handle special input.

For rounding to nearest, we thus have:

		bico wii obmaii, o, oo	
if (Cspec) {		slct \$r2 = Cnan, qNaN, \$r1	
if (Cnan) return qNaN; else {	binary32 ST231	<pre>slct \$r_DEST = Cspec, \$r2, \$rx</pre>	
if (Csmall) return 0;		\$rx holds the result	
else return +oo;}		from the generic path.	
<pre>}else {//generic case}</pre>		8 1	

▶ For other roundings, easy adaptation by using min and max:

- for RD and RZ, $+\infty$ is replaced by $\max(|x|, \Omega)$,
- for RU, 0 is replaced by $\min(|x|, \alpha)$.

slct

ret

Summary of ILP exposure

Three independent tasks: detect special inputs (T1), handle them

(T2), and handle generic inputs (T3):

Performance of our FP square operator on ST231

Performance for various rounding modes:

0	FLIP multiply	square	speedup
RN	21	12	1.75x
RD	21	9	2.3x
RU	21	11	1.9x
RZ	18	9	2x

- ▶ Speed up from 1.75x to 2.3x.
- On average, 3.4 instructions per cycle (IPC), so that all bundles are almost full.
- ► Application example: 1.15x speedup when computing 2-norms.
- Our symbolic approach made it immediate to produce C code for binary64 as well:
 - already a 1.74x speedup

Conclusions

In summary:

- ► High ILP can be exposed on ST231 for FP operators.
- Specialized or fused operators really improve FP applications.
- Selecting special operators requires sophisticated compiler optimizations.

On-going work:

 Detecting and implementing fused square-add (FSA), 2D dot product, fused add-sub

 \hookrightarrow thanks to FSA, the speedup for 2-norms is 1.3x instead of 1.15x.

Addressing operators like sincos [Markstein (2003)].