Software for squaring floats on ST231:
a case study in bringing floating-point
to VLIW integer processors

Jingyan Jourdan-Lu

Computer Arithmetic Team Arénaire Compilation Expertise Center
INRIA (Lyon) STMicroelectronics (Grenoble)

Joint work with C.-P. Jeannerod, C. Monat, G. Revy

—— —

n1 — . —
— -

ENS DE LYON

4

Context Fused and specialized operators Square: example of operator specialization Conclusions

Floating-point arithmetic on integer microprocessors

We aim at efficient software emulation of FP operators for
integer-only microprocessors.

» embedded systems everywhere, set top boxes, mobile phones,...

» fast FP emulation to avoid the cost of hardware FP units

Our design is
» compliant with the main IEEE 754 features:

» different binaryk formats
> all rounding modes
» gradual underflow

» portable to integer processors: implementation in C

Context Fused and specialized operators Square: example of operator specialization Conclusions

Our hardware platform: ST231

The ST231 is a 4-way integer-only VLIW processor from the
ST200 family:

» Up to 4 instruction words can be grouped in one bundle.
» Up to 4 instructions can be executed in one cycle.

— Key to realize Instruction Level Parallelism (ILP).

Typical applications:
» a media processor with an embedded OS

» a host processor running Linux and applications

Context Fused and specialized operators Square: example of operator specialization Conclusions

Architecture of the ST231 core

ST231 core Sli)llpsrzs
‘ —— 1 4l
Mul Mul
ITLB ‘
- _ DTLB UTLB | 4xSDI
pEREI Control
i registers 7SCU
| Register [
Instruction| » file (64 |1 Load bWu;fer -
ICache buffer registers store
[8read unit
| 4 write) (Lsv) DCache [«»| STBuS
CMC |64-bit
7 Ptr)efﬁtch «—
= PCand | [Branch| —v+l LI vel Ll 5 i
branch |«-register| |y || || v || v ooy
|-side f i 1111 subsystem
memory
subsystem Trap |
controller
1
Peripherals STBus
3x Interrupt Debug -
Timers controler suppon unlt 32-bit

61 interrupts Debuglmk

Context Fused and specialized operators Square: example of operator specialization Conclusions

Key instructions for FP designs

All arithmetic operations have a one-cycle latency except the multipliers
which have a three-cycle latency.

» slct Rpgst = B, Opndl, Opnd2.
returning Rpest = B 7 Opnd1 : Opnd2
Transform branches to straight line code.
» clz Rpgst = Opndl.
counting the leading zeros of Opnd1
Key to subnormal numbers support.
» Up to two muls can be issued in one cycle.

Essential to polynomial evaluation.

» Others: (un)signed min and max, arbitrary length shifts.

Context Fused and specialized operators Square: example of operator specialization Conclusions

Software libraries for FP emulation used on ST231

» SoftFloat [Hauser]

» Robust. It is a reference model with test vectors.

» Hardware independent. It doesn’t address performance.

» FLIP [Arénaire team]

» High ILP exposure.
» Fast division, square root based on polynomial evaluation.

‘ SoftFloat cycles ‘ FLIP cycles ‘ Speedup ‘

addition 48 26 1.9x
subtraction 49 26 1.9x
multiplication 31 21 1.5x
division 177 34 5.2x
square root 95 23 4.1x

Context Fused and specialized operators Square: example of operator specialization Conclusions

Beyond FLIP

» Some typical applications may intensively use numerical
blocks involving special operators.

» Discovering useful fused or specialized operators can improve
the FP performance.

Example of 2-norm:

float two_norm(float al[l], int n){
int i; float s = 0.0f;
for (i=0; i<n; i++) s = s + al[il*al[i]l;
return sqrtf(s);}

Essential part of radix-2 FFT:

for (k=j; k < n; k=k+n2){
tl = c*x[k+nl] - s*xy[k+nl]; t2 = s*x[k+nl] + cx*y[k+nl];
x[k] = x[k] + t1; x[k+n1] = x[k] - t1;
y [kl y[k]l + t2; y[k+n1] = y[k] - t2;}

Context Fused and specialized operators Square: example of operator specialization Conclusions

An extension of general operators

o A specialized operator replaces a generic operator when the
compiler can prove properties about the arguments.

e A fused operator replaces a set of 2 or more FP operators by a
single one.

The operators we aim at implementing in software include:
o(x-y) — o(x?) square

o(x-y+2) —o(x?+2) fused square-add
ofo(x-y)+o(z-t)) »o(x-y+2-t) 2D dot product

vV v v v

fused add-sub, a unit to compute the pair [o(z + y), o(z — y)].
— for hardware designs, see Saleh and Swartzlander (2008), Saleh (2009)

We work at two levels:
» Detection of such operators during compilation

» Design and software implementation of arithmetic algorithms

Context Fused and specialized operators Square: example of operator specialization Conclusions

Detecting square during compilation

st200cc:
» based on Open64 technology
» further developed by STMicroelectronics

WHIRL: the intermediate representation for Open64 compilers.
» supporting different front-end languages, C, C++, ...

» independent of target processor architectures

At WHIRL level, we can detect square by checking the identity of
the WHIRL tree of the two operands of each multiplication.

For instance:

> XX — x>

» (x+ 1.0f) - (x + 1.0f) — (x + 1.0£)?

Context Fused and specialized operators Square: example of operator specialization Conclusions

Designing a fast FP square operator x +— r = 2

Goals

» From the integer encoding X = [sign|biased exp|fraction] of z,
get the integer encoding R of the IEEE 754 result r.

» On ST231, don't save just a few cycles (compared to general
multiply), but divide the latency by =~ 2.

Design principles
» Define generic vs. special input very carefully.

» Maximize ILP exposure in the generic path:

> In parallel: biased exp, truncated fraction L, sticky bit t.
» Fast parallel expressions for L and t¢.

» Reuse previous work to optimize the special path.

» Do all this “symbolically” (= parameterized by the format).

Context Fused and specialized operators Square: example of operator specialization Conclusions

Generic vs. special input

For the binaryk format with rounding o, specializing the IEEE-754
specification of multiplication x X y to the case x = y gives:

+0 if |[2| =0,

min, if |z| € [, &),

o(z?) if |z] € [o,Q),

"= i 1 — 9l(emin—p)/2] A
max, if |z| € [, 9], with of =2 P NG

400 if |z| = oo, Q) = 2(emaxt1)/2 o /)

aNaN-if 2 is NaN. > min,, max, depending only

on rounding mode o

« smallest positive number

>
» () largest finite number
>
>

— Input z is generic if @/ < |z| < £, and special otherwise.

10

Square: example of operator specialization

Generic path

Here, the fraction of R is of course the hardest part and we get it
as L + b with L the truncated fraction of 22 and b the round bit.

For rounding “to nearest even” b depends on the sticky bit 7.

Theorem 1 (formula for L): L =H > (u+ w — 1) with
» H the higher half of square of input significand m,

» 1= max(c, F') with ¢ and F functions of m, and 2E,

> w the exponent width of the format

Advantages:
» covers normal and subnormal cases

» H and p in parallel
» on ST231 and for binary32,

> only 1 multiply instruction is used
» we proved the shift value is C99 compliant: ©+8 — 1 < 32

11

Context Fused and specialized operators Square: example of operator specialization

Generic path (cont'd)

Similarly, we have proved a parallel formula for the sticky bit ¢:

Theorem 2 (sticky bit formula): t = [T1 # 0] V [T # 0] with
> Ti=H<(p+2—p)
> T, = X mod 2¢~F/2]

» H and p as before, and p the precision of the binaryk format

— very fast in practice: 7 cycles on ST231 for binary32.

Conclusions

12

Square: example of operator specialization

Special path

Recall that special z is either NaN or such that |z| is “small”
(lz| < ') or “large” (Jz| > Q).

Hence any special input is filtered out via the condition

Cspec = Cnan \ C'small \% C(Iarge-

Theorem 3: One can reuse 2F, from the generic path:
> Csmall = [2El < €max — P — 1}
> CVlarge V Chan = [2Em > 3emax + 1]

— once 2F, is available, 3 instructions suffice to get Cspec.

13

Context Fused and specialized operators Square: example of operator specialization Conclusions
- 1
Special path (cont'd)

Besides Cspec, Csmall, and Clarge V Chan, we need Chap, in order to
handle special input.

» For rounding to nearest, we thus have:

slct $r1 = Csmall, O, +oo

if (Cspec) { slct $r2 = Cnan, gNaN, $ri
if (Cnan) return gNaN; binary32 _
else 1 Y slct $rpest = Cspec, $r2, $rx
if (Csmall) return O; ST231 $rx holds the result
else return +o00;} .
Yelse {...//generic casel} from the generic path.

» For other roundings, easy adaptation by using min and max:

» for RD and RZ, 40 is replaced by max(|z|,),
» for RU, 0 is replaced by min(|x|, &).

14

Context Fused and specialized operators

Summary of ILP exposure

Three independent tasks: detect special inputs - handle them
-, and handle generic inputs (T3) :

uint square (uint X) {

Square: example of operator specialization

Cspec = ... ; // (T1)
if (Cspec) ~way
{ ...} // (T2) VLIW
else
{ ... Y // (T3)

ret

Conclusions

15

Context Fused and specialized operators Square: example of operator specialization Conclusions

Performance of our FP square operator on ST231

» Performance for various rounding modes:

| o [FLIP multiply | square [speedup |

RN 21 12 1.75x
RD 21 9 2.3x
RU 21 11 1.9x
RZ 18 9 2x

» Speed up from 1.75x to 2.3x.
» On average, 3.4 instructions per cycle (IPC), so that all
bundles are almost full.

» Application example: 1.15x speedup when computing 2-norms.

» Our symbolic approach made it immediate to produce C code
for binary64 as well:
> already a 1.74x speedup

16

Conclusions

Conclusions

In summary:
» High ILP can be exposed on ST231 for FP operators.
» Specialized or fused operators really improve FP applications.

» Selecting special operators requires sophisticated compiler
optimizations.

On-going work:

» Detecting and implementing fused square-add (FSA), 2D dot
product, fused add-sub
— thanks to FSA, the speedup for 2-norms is 1.3x instead of 1.15x.

» Addressing operators like sincos [Markstein (2003)].

17

	Context
	Fused and specialized operators
	Square: example of operator specialization
	Conclusions

