Simultaneous floating-point sine and cosine
for VLIW integer processors

Jingyan Jourdan-Lu

Computer Arithmetic group ARIC Compilation Expertise Center
INRIA and ENS Lyon, France STMicroelectronics Grenoble, France

Joint work with Claude-Pierre Jeannerod

UNIVERSITE D= LYoN

'S7

Context and motivation

Fast and accurate floating-point support for integer-only
microprocessors:

VLIW cores, like STMicroelectronics’ ST231
Portable C code for IEEE 754 formats

>
>
» 'Fast’ = low latencies
| 4

"Accurate’ = proven error bounds
Basic operations (+, —, X, /, \/) are already available: FLIP library

But no fast and accurate support for high-level functions like
trigonometric functions, logarithms, exponentials,...

Simultaneous sine and cosine (“sincos ")

Sine and cosine: ubiquitous in graphics and signal processing applications,
and often evaluated at a same floating-point input .

Classically, evaluation in 3 steps: [Muller'97, Ercegovac & Lang’'04]

1. Range reduction: compute x* such that
zre[-1,%7] and 2" =zx-kT, kcZ
2. Evaluation of sin and cos at reduced argument |z*|.

(£ sinz*, cos ™) if k even,
(cosx*, £sinx*) if k odd.

3. Reconstruction: (sinx,cosx) = {

— Problem: how to implement step 2 accurately and fast on our target?

Our contributions

» New algorithms for sine and cosine over [0, T]:

» Accurate: error proven to be at most of 1 ulp (unit in the last place)
» Fast: 19 and 18 cycles on ST231

» C code for sincos

> as fast as sine alone
» faster than the correctly-rounded multiplication of FLIP
(which takes 21 cycles, also via a pure software emulation)

— all this for single precision, including subnormals.

Outline

1. Overview of the ST231 processor

» Architecture
» Key features for floating-point support

2. Floating-point sine and cosine
» Accuracy specification
» Polynomial-based algorithms
» Results for sinf, cosf, sincosf on ST231

ST231: overview

The ST231 is a 4-way VLIW integer processor from the ST200 family:
» Up to 4 instruction words grouped into 1 bundle

» Up to 4 instructions executed in 1 cycle

— key to realize instruction level parallelism (ILP)

Typical applications:
» a media processor with an embedded OS

» a host processor running Linux and applications

ST231: architecture

ST231 core SIIJIIpErIs
‘ |]
Mul Mul I
ITLB ‘
DTLB UTLB | 4xSDI
Control
. registers scU
| Register : [27
Instructionf»| file (64 |« Load m%fr N
ICache buffer registers store
[8read unit
| 4 write) (LSU) DCache [« > STBus
CMC | g4-bit
7 Plr)effcfetch «—|
b PCand | [Branch| vl LIl vel Il e
orenh [-esstr] [[w] [Do
|-side T T T T T subsystem
memory
subsystem Trap |
controller
!
Peripherals STBUS
3x Interrupt Debu -
Timers%’ controler‘ suppon%nit 32-bit
LY)
i i

I v
61 interrupts Debuglink

ST231: key features for floating-point support

» select instruction — transform branches to straight line code
» leading-zero count instruction — subnormal numbers support
> 32 x 32-bit multiplication — polynomial evaluation
» immediate number up to 32 bits

can be encoded in 1 instruction word
— masking, encoding of polynomial coefficients

and of special floating-point values (NaN,...)
> min, max, shift-and-add (a < b) + ¢ with b € {1, 2, 3,4}

Multiplier features:
> Latency of 3 cycles

» At most 2 multiplications can be issued at each cycle

Notation for floating-point

» [:= binary32 finite floating-point numbers of IEEE 754
» This set is defined by a precision p and an exponent range [€,in, €ma)
such that
p =24, Cmax = 1 — €min = 127.
> It consists of

1. signed zeroes +0 and —0
2. subnormal numbers +m - 2°min with m = (0.my ...m,_1) nonzero
3. normal numbers £m - 2° with m = (L.my ... mp_1)

» Unit roundoff v := 277

Specification of sine and cosine

Input and output:

> 32-bit unsigned integers

> encode floats in the standard way:

z€F «— X = [sign bit|biased exponent|fraction bits]

Specification of sine and cosine (cont'd)

Accuracy:

» The key tool is the ulp function:

0 ifx=0
Vo € R, ulp(z) = ’
p() {2max{emin,e}p+l if ’.T‘ c [267 26+1)'

= ulp(z) < 2u|z| for & normal.

> Given f € {sin,cos} and x € FN [0, 7], we want 7 € IF such that

r— f(@)] < ulp(f(@)).

< This is " 1-ulp accuracy” (= all bits correct but possibly the last one).
— Such a precise specification is indispensable for the mathematical proof
of the accuracy of our codes.

Algorithms for sine and cosine

Since 32 x 32-bit multipliers are available, a classical approach is via the

evaluation of polynomial approximants [Tang’'90, Gal & Bachelis'91, ...]

 high-level algorithm for = € [0, %] C [0,1):

1. If z close enough to zero then

return x for sinx, and 1 — u for cosx
2. Else

evaluate a pair of polynomials approximating sin z and cosz

» Software toolchain for step 2: Sollya — CGPE — Gappa.
> Steps 1 and 2 are independent = obvious source of ILP.

» Much more ILP can be exposed at the polynomial evaluation level.

Polynomial evaluation for cosine

For our accuracy constraint, a polynomial of degree 6 is enough:

a(y) = ao + ary + - + agy’.

» Each a; has < 32 fraction bits and is encoded in a uint32_t.
» 1y is a fixed-point approximation of x.
» We have chosen a highly-parallel evaluation scheme:

((ao + aly) + (ag + agy) z) + ((a4 + a5y) + a62> (22)
with 2z = 3%
— accurate enough and 2.2x faster than Horner’s rule

a0+y("'+y(a5+a6y))'

Polynomial evaluation for sine

Over [0, 7], things are more difficult than for cosine:
» cosine was 'flat’, ranging in [0.707...,1] = already fixed point

» sine ranges in [0,0.707...] = 'exponent’ not known in advance

Classical workaround:

1. instead of sinz, approximate the flat function % ranging in [0.8, 1]

2. reconstruct using sinx = *F X 1

— drawback: steps 1 and 2 are NOT independent.

Polynomial evaluation for sine (cont'd)

Our solution is to interleave steps 1 and 2:

‘Sln €T sin x 2(5

» For x = m - 2° we have X x = m3L

> View msml’ as a blvarlate function and approximate it by
b(m,x) = § +mc(x), c(x) = co + cox? + cqzt + cga®

» Evaluate b at (m,y) using a highly-parallel evaluation scheme:

b(m,x) = <(% + mco) + (mcz)x) + (mC4 + (mcﬁ)z) (%),

with z = 22.

Results on ST231 for sine, cosine, and sincos

Careful implementation in C for the binary32 format (= single precision),
compiled by the st200cc compiler (in -O3 and for the ST231 core):

» Straight-line assembly code thanks to 'if conversion’
» The schedules produced are optimal

» C code for sincosf obtained by inlining

Results on ST231 for sine, cosine, and sincos (cont'd)

latency L (cycles) instr. number N IPC = N/L

sinf 19 31 1.6
cosf 18 25 1.4
sincosf 19 47 2.4

» sincos as fast as sine alone
» faster than best-known software implementation of IEEE 754
floating-point multiplication (21 cycles in single precision)

Bundle occupancy and shared resources for sincos

Cycle issue 1 issue 2 issue 3 issue 4
0 shared shared
1 shared shared shared sin
2 shared shared sin sin
3 shared sin sin
4 shared sin sin
5 sin sin cos cos > In 80% of the bundles,
9 cos cos cos cos at least 3 slots used
7 shared sin sin sin
8 sin sin cos cos
9 cos cos cos cos » shared resources:
10 21l COS COS » unpacking of input z
11 sin sin cos >y~ y2 y4
12 cos B
13 cos
14 sin sin
15 sin sin cos
16 sin sin cos
17 sin cos cos
18 shared sin cos cos

Conclusion

Summary:
» Fast and 1-ulp accurate algorithms for sine and cosine
» Key ingredient = parallel evaluation of uni-/bi-variate polynomials

> C code for sincos having the same latency as sine alone

On-going work:
» Efficient range reduction x — x* on VLIW integer architectures:
» Easy case: x =7y forany y in FF
> General case: any z in F

» Performance impact of relaxing the 1-ulp accuracy constraint

