
Simultaneous floating-point sine and cosine
for VLIW integer processors

Jingyan Jourdan-Lu

Computer Arithmetic group ARIC Compilation Expertise Center
INRIA and ENS Lyon, France STMicroelectronics Grenoble, France

Joint work with Claude-Pierre Jeannerod

1

Context and motivation

Fast and accurate floating-point support for integer-only
microprocessors:

I VLIW cores, like STMicroelectronics’ ST231

I Portable C code for IEEE 754 formats

I ’Fast’ = low latencies

I ’Accurate’ = proven error bounds

Basic operations (+, −, ×, /,
√

) are already available: FLIP library

But no fast and accurate support for high-level functions like
trigonometric functions, logarithms, exponentials,...

2

Simultaneous sine and cosine (“sincos“)

Sine and cosine: ubiquitous in graphics and signal processing applications,
and often evaluated at a same floating-point input x.

Classically, evaluation in 3 steps: [Muller’97, Ercegovac & Lang’04]

1. Range reduction: compute x∗ such that

x∗ ∈ [−π4 ,
π
4] and x∗ = x− k π2 , k ∈ Z.

2. Evaluation of sin and cos at reduced argument |x∗|.

3. Reconstruction: (sinx, cosx) =

{
(± sinx∗, cosx∗) if k even,
(± cosx∗,± sinx∗) if k odd.

↪→ Problem: how to implement step 2 accurately and fast on our target?

3

Our contributions

I New algorithms for sine and cosine over [0, π4]:
I Accurate: error proven to be at most of 1 ulp (unit in the last place)
I Fast: 19 and 18 cycles on ST231

I C code for sincos
I as fast as sine alone
I faster than the correctly-rounded multiplication of FLIP

(which takes 21 cycles, also via a pure software emulation)

↪→ all this for single precision, including subnormals.

4

Outline

1. Overview of the ST231 processor
I Architecture
I Key features for floating-point support

2. Floating-point sine and cosine
I Accuracy specification
I Polynomial-based algorithms
I Results for sinf, cosf, sincosf on ST231

5

ST231: overview

The ST231 is a 4-way VLIW integer processor from the ST200 family:

I Up to 4 instruction words grouped into 1 bundle

I Up to 4 instructions executed in 1 cycle

↪→ key to realize instruction level parallelism (ILP)

Typical applications:

I a media processor with an embedded OS

I a host processor running Linux and applications

6

ST231: architecture

ICache

ITLB
DTLB

Mul

Register
file (64

registers
8 read
4 write)

Load
store
unit

(LSU)

IU IU IU IU

Trap
controller

4 x SDI

Instruction
buffer

STBus

SDI ports

61 interrupts Debuglink

Peripherals

Debug
Timers

3 x
controller support unit 32−bit

I−side
memory
subsystem

Interrupt

register
PC and
branch

unit

Branch

file

DCache

buffer
Write

Prefetch
buffer

SCU

CMC

STBus

64−bit

registers
Control

UTLB
Mul

D−side
memory
subsystem

ST231 core

7

ST231: key features for floating-point support

I select instruction → transform branches to straight line code

I leading-zero count instruction → subnormal numbers support

I 32× 32-bit multiplication → polynomial evaluation

I immediate number up to 32 bits
can be encoded in 1 instruction word

→ masking, encoding of polynomial coefficients

and of special floating-point values (NaN,...)

I min, max, shift-and-add (a� b) + c with b ∈ {1, 2, 3, 4}

Multiplier features:

I Latency of 3 cycles

I At most 2 multiplications can be issued at each cycle

8

Notation for floating-point

I F := binary32 finite floating-point numbers of IEEE 754

I This set is defined by a precision p and an exponent range [emin, emax]
such that

p = 24, emax = 1− emin = 127.

I It consists of

1. signed zeroes +0 and −0
2. subnormal numbers ±m · 2emin with m = (0.m1 . . .mp−1) nonzero
3. normal numbers ±m · 2e with m = (1.m1 . . .mp−1)

I Unit roundoff u := 2−p

9

Specification of sine and cosine

Input and output:

I 32-bit unsigned integers

I encode floats in the standard way:

x ∈ F ←→ X =
[
sign bit

∣∣biased exponent
∣∣fraction bits

]

10

Specification of sine and cosine (cont’d)

Accuracy:

I The key tool is the ulp function:

∀x ∈ R, ulp(x) =

{
0 if x = 0,
2max{emin,e}−p+1 if |x| ∈ [2e, 2e+1).

⇒ ulp(x) 6 2u|x| for x normal.

I Given f ∈ {sin, cos} and x ∈ F ∩ [0, π4], we want r ∈ F such that∣∣r − f(x)
∣∣ 6 ulp

(
f(x)

)
.

↪→ This is ”1-ulp accuracy” (≈ all bits correct but possibly the last one).
↪→ Such a precise specification is indispensable for the mathematical proof
of the accuracy of our codes.

11

Algorithms for sine and cosine

Since 32× 32-bit multipliers are available, a classical approach is via the
evaluation of polynomial approximants [Tang’90, Gal & Bachelis’91, ...]

↪→ high-level algorithm for x ∈ [0, π4] ⊂ [0, 1):

1. If x close enough to zero then
return x for sinx, and 1− u for cosx

2. Else
evaluate a pair of polynomials approximating sinx and cosx

I Software toolchain for step 2: Sollya → CGPE → Gappa.

I Steps 1 and 2 are independent =⇒ obvious source of ILP.

I Much more ILP can be exposed at the polynomial evaluation level.

12

Polynomial evaluation for cosine

For our accuracy constraint, a polynomial of degree 6 is enough:

a(y) = a0 + a1y + · · ·+ a6y
6.

I Each ai has 6 32 fraction bits and is encoded in a uint32 t.

I y is a fixed-point approximation of x.

I We have chosen a highly-parallel evaluation scheme:((
a0 + a1y

)
+
(
a2 + a3y

)
z
)

+
((
a4 + a5y

)
+ a6z

)(
z2
)

with z = y2.

↪→ accurate enough and 2.2x faster than Horner’s rule

a0 + y
(
· · ·+ y(a5 + a6y)

)
.

13

Polynomial evaluation for sine

Over [0, π4], things are more difficult than for cosine:

I cosine was ’flat’, ranging in [0.707..., 1] =⇒ already fixed point

I sine ranges in [0, 0.707...] =⇒ ’exponent’ not known in advance

Classical workaround:

1. instead of sinx, approximate the flat function sinx
x ranging in [0.8, 1]

2. reconstruct using sinx = sinx
x × x

↪→ drawback: steps 1 and 2 are NOT independent.

14

Polynomial evaluation for sine (cont’d)

Our solution is to interleave steps 1 and 2:

I For x = m · 2e we have sinx
x × x = m sinx

x · 2
e

I View m sinx
x as a bivariate function and approximate it by

b(m,x) = u
2 +mc(x), c(x) = c0 + c2x

2 + c4x
4 + c6x

6

I Evaluate b at (m, y) using a highly-parallel evaluation scheme:

b(m,x) =
((

u
2 +mc0

)
+
(
mc2

)
x
)

+
(
mc4 +

(
mc6

)
z
)(
z2
)
,

with z = x2.

15

Results on ST231 for sine, cosine, and sincos

Careful implementation in C for the binary32 format (= single precision),
compiled by the st200cc compiler (in -O3 and for the ST231 core):

I Straight-line assembly code thanks to ’if conversion’

I The schedules produced are optimal

I C code for sincosf obtained by inlining

16

Results on ST231 for sine, cosine, and sincos (cont’d)

latency L (cycles) instr. number N IPC = N/L
sinf 19 31 1.6
cosf 18 25 1.4
sincosf 19 47 2.4

I sincos as fast as sine alone

I faster than best-known software implementation of IEEE 754
floating-point multiplication (21 cycles in single precision)

17

Bundle occupancy and shared resources for sincos

Cycle issue 1 issue 2 issue 3 issue 4
0 shared shared
1 shared shared shared sin
2 shared shared sin sin
3 shared sin sin
4 shared sin sin
5 sin sin cos cos
6 cos cos cos cos
7 shared sin sin sin
8 sin sin cos cos
9 cos cos cos cos

10 sin cos cos
11 sin sin cos
12 cos
13 cos
14 sin sin
15 sin sin cos
16 sin sin cos
17 sin cos cos
18 shared sin cos cos

I In 80% of the bundles,
at least 3 slots used

I shared resources:

I unpacking of input x
I y ≈ x, y2, y4

18

Conclusion

Summary:

I Fast and 1-ulp accurate algorithms for sine and cosine

I Key ingredient = parallel evaluation of uni-/bi-variate polynomials

I C code for sincos having the same latency as sine alone

On-going work:
I Efficient range reduction x→ x∗ on VLIW integer architectures:

I Easy case: x = πy for any y in F
I General case: any x in F

I Performance impact of relaxing the 1-ulp accuracy constraint

