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Introduction

Context

Efficient support of IEEE floating-point arithmetic on integer
processors requires

software libraries emulating standard-compliant operations

usually written in C for portability
better performance if processor features considered

compiler optimizations supporting the target processor

efficient code selection when compiling the libraries
efficient selection of library operators for applications

Our current target is the ST231, a very long instruction word
(VLIW) integer processor from the ST200 family.
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Introduction

Context (cont’d)

So far, two software libraries have been used on the ST231:

SoftFloat [Hauser, 2000]

FLIP [Arénaire team, 2009]

FLIP achieves higher instruction level parallelism (ILP) for each
arithmetic operator [Revy, 2009]:

SoftFloat cycles FLIP cycles Speedup

+ 48 26 1.9x
− 49 26 1.9x
× 31 21 1.5x
/ 177 34 5.2x
√

95 23 4.1x
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Introduction

Motivation

In application codes, basic operators are often too generic.

For example,

products by special constants like 2.0f or 0.5f

squares

2-norm computations:

float two norm(float a[], int n){
int i; float s = 0.0f;

for (i=0; i<n; i++)

s = s + a[i]*a[i];  fused square-add

return sqrtf(s); }

To fully exploit such codes, operator customization is needed.
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Introduction

Motivation (cont’d)

Another example: FFT computation

for (k=j; k<n; k=k+n2 ){ // float t1, t2, x[ ], y[ ], s, c

t1 = c*x[k+n1] - s*y[k+n1];

t2 = s*x[k+n1] + c*y[k+n1];

x[k+n1] = x[k] - t1; x[k] = x[k] + t1;

y[k+n1] = y[k] - t2; y[k] = y[k] + t2;

}

each of t1 and t2 is a two-dimensional dot product: xy + zt

each of (x[k+n1],x[k]) and (y[k+n1],y[k]) corresponds to

simultaneous addition and subtraction: (x+ y, x− y)
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Introduction

Custom operators studied during this thesis

Specialized operators:

multiplication by two (mul2) 2x
division by two (div2) x/2
scaling (scaleB) x · 2n with n an integer

squaring (square) x2

addition of nonnegative terms (addnn) x+ y with x > 0 and y > 0

Fused operators:

fused multiply-add (FMA) xy + z
fused square-add (FSA) x2 + z with z > 0

two-dimensional dot product (DP2) xy + zt
sum of two squares (SOS) x2 + y2

Paired operators:

simultaneous addition and subtraction (addsub) (x+ y, x− y)
simultaneous sine and cosine (sincos) (sinx, cosx)
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Introduction

Contributions: computer arithmetic aspects

Algorithms and implementations for all these custom operators

accurate: IEEE compliant

fast: low latencies via high ILP exposure

scalable: designs parametrized by the floating-point format

only one correctness proof

C code generation for single and double precision
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Introduction

Contributions: compilation aspects

Code-selection optimizations in the ST200 C/C++ compiler

better selection when compiling custom operators

enhanced 64-bit integer support

integer range analysis for shift operators

selection of custom operators from applications

optimizations at different intermediate representation levels

extension of range analysis framework from integers to
floating-point numbers
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IEEE binary floating-point

IEEE 754 standard

Floating-point arithmetic is specified by the IEEE 754 standard.

This standard (1985-2008) aims at increased robustness, efficiency
and portability of numerical programs.

It specifies

data and their encoding into integers for various formats

results of operations

rounding modes

exceptions and their handling

conversions between formats
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IEEE binary floating-point

Floating-point data

Finite nonzero floating-point numbers: x = (−1)s ·m · 2e with

sign bit s

integer exponent e such that emin 6 e 6 emax

p-bit significand m = (m0.m1 · · ·mp−1)2

↪→ x is normal (m0 = 1) or subnormal (m0 = 0 and e = emin)

Special data: signed zeros and infinities, not-a-numbers (NaN)
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IEEE binary floating-point

Formats

Floating-point data are specified for some values of the precision p
and the exponent range [emin, emax]

Basic standard formats:

p emin emax w k

binary32 (”single”) 24 -126 127 8 32
binary64 (”double”) 53 -1022 1023 11 64
binary128 (”quad”) 113 -16382 16383 15 128

They are special cases of the binaryk format, for which:

k = p+ w and emax = 1− emin

= 2w−1 − 1
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IEEE binary floating-point

Encoding into integers

Binaryk fl-point data have encodings into k-bit unsigned integers:

Finite nonzero number x = (−1)s ·m · 2e encoded uniquely into
X ∈ N, whose bitstring is

s Ew−1 · · ·E0 m1 · · ·mp−1

and where
∑w−1

i=0 Ei2
i is the biased exponent e− emin +m0 > 0.

Zeros, infinities, NaNs encoded by special values of X.
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IEEE binary floating-point

Correct rounding and exceptions

Correct rounding (CR): operation performed “as if to infinite
precision” and then rounded.

Rounding modes: RN (default), RD, RU, RZ.

↪→ the 2008 revision of IEEE 754

specifies the FMA operation (CR for xy + z),
requires CR for basic arithmetic,
recommends CR for functions like sine, exponential...

Some exceptions:

If NaN in input or 0/0 or
√
−1 then invalid: return NaN

If exact result outside the normal floating-point range then
overflow or gradual underflow: return ±∞ or a subnormal.
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Overview of the ST231

ST231: overview

A four-way VLIW integer processor from the ST200 family:

up to 4 instruction words grouped into 1 bundle

up to 4 instructions executed in 1 cycle

↪→ key to realize instruction level parallelism

Typical applications:

a media processor with an embedded OS

a host processor running Linux and applications
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Overview of the ST231

ST231: architecture
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Overview of the ST231

ST231: key features for floating-point support

select instruction, slct RDEST = B, Opnd1, Opnd2, computing
RDEST = B ? Opnd1 : Opnd2

→ transform branches to straight line code

32× 32-bit multiplication: latency of 3 cycles, a maximum of
2 multiplications issued at each cycle → polynomial evaluation

leading-zero count instruction → subnormal numbers support

encoding immediate operands up to 32 bits in instruction word
→ masking, encoding of polynomial coefficients

and of special floating-point data (NaN...)

min, max, shift-and-add (a� b) + c with b ∈ {1, 2, 3, 4}
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Overview of the ST231

Exposing ILP by code speculation

We distinguish between special input and generic input.

The implementation of each operator essentially reduces to
three independent tasks T1, T2, and T3:

evaluate the condition C = “x is special” [T1]
if C is true then

handle special input [T2]
else

handle generic input [T3]

T1, T2, and T3 are computed in parallel by code speculation.
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Overview of the ST231

Illustration: bundle occupancy for our square operator
[Jeannerod, Jourdan-Lu, Monat, Revy (ARITH 2011)]

uint square(uint X) {
Cspec = ... ; // T1

if (Cspec)

{ ... } // T2

else

{ ... } // T3

}

−→

Cycle issue 1 issue 2 issue 3 issue 4
0 shared T3 T2 T2
1 shared T3 T3 T3
2 T3 T3 T3 T3
3 T3 T2 T2
4 T3 T3 T3 T3
5 T3 T3 T3 T3
6 T3 T3 shared T1
7 T3 T3 T2 T2
8 T3 T3 T2 T2
9 T3 T2 T1

10 slct return

Optimize the a priori most expensive task

Try to reuse its intermediate results for the other two tasks
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Fast and accurate simultaneous sine and cosine

Simultaneous sine and cosine [Jeannerod and Jourdan-Lu (ASAP 2012)]

Sine and cosine often evaluated at a same floating-point input x,
and their routines have much in common [Markstein (2003)].

Classically, evaluation in 3 steps: [Muller (1997), Ercegovac, Lang (2004)]

1 Range reduction: compute x∗ such that

x∗ ∈ [−π4 ,
π
4 ] and x∗ = x− k π2 , k ∈ Z.

2 Evaluation of sin and cos at reduced argument ρ = |x∗|.

3 Reconstruction: (sinx, cosx) =

{
(± sin ρ, cos ρ) if k even,

(± cos ρ,± sin ρ) if k odd.

Problem: how to implement step 2 accurately and fast on our target?
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Fast and accurate simultaneous sine and cosine

Our design and implementation of step 2

New algorithms for sine and cosine over [0, π4 ]:

accurate: error proven to be at most of 1 ulp
(unit in the last place)

fast: 19 and 18 cycles on ST231

C code for sincos
as fast as sine alone
faster than the correctly-rounded multiplication of FLIP

↪→ all this for single precision, including subnormals.
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Fast and accurate simultaneous sine and cosine

ulp function and 1-ulp accuracy [Muller et al. (2010)]

For any real number x, the ulp function is defined as

ulp(x) =

{
0 if x = 0,

2max{emin,e}−p+1 if |x| ∈ [2e, 2e+1).

Let F be the set of binary32 finite floating-point numbers. Given
f ∈ {sin, cos} and x ∈ F ∩ [0, π4 ], we want r ∈ F such that∣∣r − f(x)∣∣ 6 ulp

(
f(x)

)
.

This is ”1-ulp accuracy” (≈ all bits correct but possibly the last one).

Such a precise specification is indispensable for establishing the
accuracy of our C codes.
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Fast and accurate simultaneous sine and cosine

Algorithms for sine and cosine

Since 32× 32-bit multipliers are available, a classical approach is
via the evaluation of polynomial approximants [Tang (1990), Gal,

Bachelis (1991)...]

↪→ high-level algorithm for x ∈ [0, π4 ] ⊂ [0, 1):

1. If x close enough to zero then
return x for sinx, and 1− 2−24 for cosx

2. Else
evaluate a pair of polynomials approximating sinx and cosx

Software toolchain for step 2: Sollya → CGPE → Gappa
[Chevillard, Joldes, Lauter (2010); Mouilleron, Revy (2011); Melquiond (2009)]

Steps 1 and 2 are independent =⇒ obvious source of ILP

Much more ILP can be exposed at the polynomial evaluation level
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Fast and accurate simultaneous sine and cosine

Polynomial evaluation for cosine

For our accuracy constraint, a polynomial of degree 6 is enough:

a(y) = a0 + a1y + · · ·+ a6y
6.

Each ai has 6 32 fraction bits and is encoded in a uint32 t.

y is a fixed-point approximation of x.

We have chosen a highly-parallel evaluation scheme:((
a0 + a1y

)
+
(
a2 + a3y

)
z
)
+
((
a4 + a5y

)
+ a6z

)
z2

with z = y2.

↪→ accurate enough and 2.2x faster than Horner’s rule

a0 + y
(
· · ·+ y(a5 + a6y)

)
.
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Fast and accurate simultaneous sine and cosine

Polynomial evaluation for sine

Over [0, π4 ], things are more difficult than for cosine:

cosine was ’flat’, ranging in [0.707..., 1] =⇒ already fixed point

sine ranges in [0, 0.707...] =⇒ ’exponent’ not known in advance

Classical workaround [Tang (1990)]:

1 instead of sinx, approximate the function sin x
x ranging in [0.8, 1]

2 reconstruct using sinx = sin x
x × x

↪→ drawback: steps 1 and 2 are not independent.
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Fast and accurate simultaneous sine and cosine

Polynomial evaluation for sine (cont’d)

Our solution is to interleave steps 1 and 2:

For x = m · 2e we have sinx
x × x = m sinx

x · 2
e

View m sinx
x as a bivariate function and approximate it by

b(m,x) = b0 +mc(x), c(x) = c0 + c2x
2 + c4x

4 + c6x
6

Evaluate b at (m, y) using a highly-parallel evaluation scheme:

b(m,x) =
((
b0 +mc0

)
+
(
mc2

)
x
)
+
(
mc4 +

(
mc6

)
z
)
z2,

with z = x2.
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Fast and accurate simultaneous sine and cosine

Results on ST231 for sine, cosine, and sincos

latency L (cycles) instr. number N IPC = N/L
sinf 19 31 1.6
cosf 18 25 1.4
sincosf 19 47 2.4

sincos obtained by inlining as fast as sine alone

faster than best-known software implementation of IEEE 754
floating-point multiplication (21 cycles for single precision)
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Fast and accurate simultaneous sine and cosine

Bundle occupancy and shared resources for sincos

Cycle issue 1 issue 2 issue 3 issue 4
0 shared shared
1 shared shared shared sin
2 shared shared sin sin
3 shared sin sin
4 shared sin sin
5 sin sin cos cos
6 cos cos cos cos
7 shared sin sin sin
8 sin sin cos cos
9 cos cos cos cos

10 sin cos cos
11 sin sin cos
12 sin cos
13 sin cos
14 sin sin
15 sin sin cos
16 sin sin cos
17 sin cos cos
18 shared sin cos cos

In 80% of the bundles,
at least 3 slots used

Shared computations:

unpacking of input x
y ≈ x, y2, y4
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Range analysis for floating-point specialization

Intermediate representations for st200cc

The ST200 C/C++ compiler, st200cc, is based on the Open64
technology and further developed by STMicroelectronics.

Two main intermediate representations:

Target-independent: Winning Hierarchical Intermediate
Representation Language (WHIRL)
↪→ Most custom operators can be selected at this level.

Target-dependent: Code Generator Intermediate
Representation (CGIR)
↪→ Improvements for 64-bit integer support and shifts are done here.

Selecting fused square-add (FSA) and nonnegative add (addnn)
requires work at both the WHIRL and CGIR levels.
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Range analysis for floating-point specialization

Example: selection of FSA (x2 + z with z > 0)

float two norm(float a[], int n){
int i; float s = 0.0f;

for (i=0; i<n; i++)

s = s + a[i]*a[i];

return sqrtf(s); }

WHIRL level: select the pattern s + a[i]*a[i] as a
general FSA (gFSA), which

computes x2 + z without assuming z > 0
is not as fast as FSA

CGIR level: analyze the range of variable s
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Range analysis for floating-point specialization

Integer range analysis framework in st200cc

Implemented at CGIR level in st200cc, the integer range analysis
framework consists of two phases:

range analysis, based on sparse conditional constant
propagation algorithm [Wegman and Zadeck (1991)], calculates
the ranges for all variables.

range propagation, based on the information analyzed by the
propagation phase, performs various code improvements.
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Range analysis for floating-point specialization

Integer range analysis for shift operators
[Bertin, Jeannerod, Jourdan-Lu, Knochel, Monat, Mouilleron, Muller, Revy (PASCO 2010)]

S = ... //uint32 t S, nlz, L, u

nlz = countLeadingZeros(S);

u = max (3-nlz, 0);

L = S >> (5 + u);

Better ILP can be achieved thanks to range analysis.

original CGIR range analysis
improved CGIR

after range propagation
r0 = . . . r0 ∈ [⊥,⊥] r0 = . . .
r1 = clz r0 r1 ∈ [0, 32] r1 = clz r0

r2 = sub 3 r1 r2 ∈ [−28, 3] r2 = sub 3 r1

r3 = max r2 0 r3 ∈ [0, 3]⊆ [0, 31] r3 = max r2 0 || r7 = shr r0 5

r4 = add r3 5 r4 ∈ [5, 8]⊆ [0, 31] r5 = shr r7 r3

r5 = shr r0 r4
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Range analysis for floating-point specialization

Analyzing the positivity of general FSA

CGIR instructions for the computation of s:

float two norm(float a[], int n){
int i;

float s = 0.0f;
CGIR−−−→ mov r1 = Const

for (i=0; i<n; i++)

s = s + a[i]*a[i]; CGIR−−−→
call gFSA r = r1, r2;

mov r1 = r;

return sqrtf(s); }

What remains is to check the nonnegativity of gFSA.



36 / 45

Custom floating-point arithmetic for integer processors: algorithms, implementation, and selection

Range analysis for floating-point specialization

Bounding rule of general FSA

From the arithmetic point of view, floating-point numbers r1

and r2 satisfy

r1+ r2 · r2 ∈ [min,∞) when r1 ∈ [min,max].

Cast the range of r1 to a pair of unsigned integers [I1, I2],
where I1 and I2 are the integer encodings of min and max.
For the binary32 format, we have

gFSA(r1, r2) ∈ [I1, 0x7fffffff] when [I1, I2] ⊂ [0, 0x7fffffff].

When the sign bit of r1 is zero, the sign bit of gFSA is zero.
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Range analysis for floating-point specialization

Selecting FSA at the range propagation stage

Recall the two norm function and its CGIR instructions:

float two norm(float a[], int n){
int i;

float s = 0.0f;
CGIR−−−→ mov r1 = Const

for (i=0; i<n; i++)

s = s + a[i]*a[i]; CGIR−−−→
call gFSA r = r1, r2;

mov r1 = r;

return sqrtf(s); }

Since mov copies the range of gFSA to r1, we can replace the
general FSA by FSA at the range propagation stage if

r1 ∈ [0, 0x7fffffff].
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Range analysis for floating-point specialization

Selecting FSA at the range propagation stage

Recall the two norm function and its CGIR instructions:

float two norm(float a[], int n){
int i;

float s = 0.0f;
CGIR−−−→ mov r1 = Const

for (i=0; i<n; i++)

s = s + a[i]*a[i]; CGIR−−−→
call FSA r = r1, r2;

mov r1 = r;

return sqrtf(s); }

Since mov copies the range of gFSA to r1, we can replace the
general FSA by FSA at the range propagation stage if

r1 ∈ [0, 0x7fffffff].
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Experimental results

Speedups and code size reductions on the ST231

Speedup CRR
mul2 4.2 0.15
div2 3.5 0.22
scalb 1.4 0.70

square 1.75 0.49
addnn 1.73 0.54
FSA 2.14 0.46
FMA 1.02 1.02
SOS 2.62 0.35
DP2 1.33 0.84

addsub 1.86 0.56
sincos 1.95 0.82

Speedup

=
latency of direct implementation

latency of custom operator

Code reduction ratio (CRR)

=
size of custom operator

size of direct implementation

Example of direct

implementation:
DP2 as RN(RN(xy) + RN(zt))

Speedups up to 4.2 and CRRs as low as 0.15

FMA’s CRR due to bigger alignment logic in addition stage

On the ST231, a more interesting operator is DP2
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Experimental results

Performances on the UTDSP benchmark

UTDSP benchmark [Lee (1992)]

Assessing C compilers’ efficiency on typical DSP codes

Good predictor of improvements achievable at a larger scale

Kernels (FFT, Latnrm...) and applications (LPC, SPE, ADPCM...)

Speedups thanks to our custom operators:

 0.8

 1

 1.2

 1.4

 1.6

 1.8

FFT-256,1024

Latnrm-8

Latnrm-32

LPC
SPE

ADPCM

Sp
ee

du
p

Baseline: FLIP 1.0

FMA alone
custom operators

Using FMA alone, beneficial effect of fewer function calls

Speedup factor up to 1.6x using the full set of custom operators
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Experimental results

Performances on the UTDSP benchmark (cont’d)

Usage of custom operators

(Close to) 100% usage of custom operators in several test suites

Two key combinations are (DP2, addsub) and (DP2, FMA)
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Conclusions and perspectives

Conclusions

A set of custom operators can significantly improve the
performances of floating-point applications on integer processors.

This has required

the design of useful and fast operators

developments at both the arithmetic and compilation levels

Specifically,

highly efficient paired operators like sincos

practical impact of fast DP2

floating-point range analysis based on integer framework
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Conclusions and perspectives

Perspectives

Computer arithmetic designs:

Paired sincos operator:

extension to double precision
efficient range reduction

Study of fused operators like x+ y + z or
√
x2 + y2

Performance impact of relaxing the 1-ulp accuracy constraint?

Compilation optimizations:

Development of native 128-bit integer support in the compiler

Improve range analysis techniques for floating-point operations
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