
Formal Methods in Industry

MAURICE H. TER BEEK, Formal Methods and Tools Lab, CNR-ISTI, Pisa, Italy

ROD CHAPMAN, Automated Reasoning Group, Amazon Web Services, Bath, United Kingdom of Great

Britain and Northern Ireland

RANCE CLEAVELAND, University of Maryland, College Park, United States

HUBERT GARAVEL, INRIA, Grenoble, France

RONG GU, Mälardalen University, Västerås, Sweden

IVO TER HORST, ASML, Veldhoven, Netherlands

JEROEN J. A. KEIREN, Eindhoven University of Technology, Eindhoven, Netherlands

THIERRY LECOMTE, CLEARSY Systems Engineering, Aix-en-Provence, France

MICHAEL LEUSCHEL, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

KRISTIN YVONNE ROZIER, Iowa State University, Ames, United States

AUGUSTO SAMPAIO, Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil

CRISTINA SECELEANU, Mälardalen University, Västerås, Sweden

MARTYN THOMAS, Gresham College, London, United Kingdom of Great Britain and Northern Ireland

TIM A. C. WILLEMSE, Eindhoven University of Technology, Eindhoven, Netherlands

LIJUN ZHANG, Institute of Software, Chinese Academy of Sciences, Beijing, China

Formal methods encompass a wide choice of techniques and tools for the specification, development, analysis,
and verification of software and hardware systems. Formal methods are widely applied in industry, in activi-
ties ranging from the elicitation of requirements and the early design phases all the way to the deployment,
configuration, and runtime monitoring of actual systems. Formal methods allow one to precisely specify the
environment in which a system operates, the requirements and properties that the system should satisfy, the

R. Cleaveland died during the second revision of this paper. We gratefully acknowledge his contributions in the appropriate
section at the end of this paper.
Authors’ Contact Information: Maurice H. ter Beek (Corresponding author), Formal Methods and Tools Lab, CNR-ISTI,
Pisa, Italy; e-mail: maurice.terbeek@isti.cnr.it; Rod Chapman, Automated Reasoning Group, Amazon Web Services, Bath,
United Kingdom of Great Britain and Northern Ireland; e-mail: rodchap@amazon.co.uk; Rance Cleaveland, University of
Maryland, College Park, Maryland, United States; e-mail: rance@cs.umd.edu; Hubert Garavel, INRIA, Grenoble, France; e-
mail: hubert.garavel@inria.fr; Rong Gu, Mälardalen University, Västerås, Västmanland, Sweden; e-mail: rong.gu@mdu.se;
Ivo ter Horst, ASML, Veldhoven, Netherlands; e-mail: ivo.ter.horst@asml.com; Jeroen J. A. Keiren, Eindhoven University
of Technology, Eindhoven, Noord-Brabant, Netherlands; e-mail: j.j.a.keiren@tue.nl; Thierry Lecomte, CLEARSY Systems
Engineering, Aix-en-Provence, France; e-mail: thierry.lecomte@clearsy.com; Michael Leuschel, Heinrich Heine University
Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany; e-mail: leuschel@hhu.de; Kristin Yvonne Rozier, Iowa State Uni-
versity, Ames, Iowa, United States; e-mail: kyrozier@iastate.edu; Augusto Sampaio, Centro de Informática, Universidade
Federal de Pernambuco, Recife, Pernambuco, Brazil; e-mail: acas@cin.ufpe.br; Cristina Seceleanu, Mälardalen University,
Västerås, Västmanland, Sweden; e-mail: cristina.seceleanu@mdu.se; Martyn Thomas, Gresham College, London, United
Kingdom of Great Britain and Northern Ireland; e-mail: martyn@mctar.uk; Tim A. C. Willemse, Eindhoven University
of Technology, Eindhoven, Noord-Brabant, Netherlands; e-mail: t.a.c.willemse@tue.nl; Lijun Zhang, Institute of Software,
Chinese Academy of Sciences, Beijing, China; e-mail: zhanglj@ios.ac.cn.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 1433-299X/2024/12-ART7
https://doi.org/10.1145/3689374

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

HTTPS://ORCID.ORG/0000-0002-2930-6367
HTTPS://ORCID.ORG/0000-0003-2717-760X
HTTPS://ORCID.ORG/0000-0002-4952-5380
HTTPS://ORCID.ORG/0009-0000-5304-8081
HTTPS://ORCID.ORG/0000-0003-0570-6005
HTTPS://ORCID.ORG/0009-0003-2655-2698
HTTPS://ORCID.ORG/0000-0002-5772-9527
HTTPS://ORCID.ORG/0000-0001-8977-4827
HTTPS://ORCID.ORG/0000-0002-4595-1518
HTTPS://ORCID.ORG/0000-0002-6718-2828
HTTPS://ORCID.ORG/0000-0001-6593-577X
HTTPS://ORCID.ORG/0000-0003-2870-2680
HTTPS://ORCID.ORG/0000-0003-1226-2772
HTTPS://ORCID.ORG/0000-0003-3049-7962
HTTPS://ORCID.ORG/0000-0002-3692-2088
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3689374
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689374&domain=pdf&date_stamp=2024-12-26


7:2 M. H. ter Beek et al.

models of the system used during the various design steps, and the code embedded in the final implementa-
tion, as well as to express conformance relations between these specifications. We present a broad scope of
successful applications of formal methods in industry, not limited to the well-known success stories from the
safety-critical domain, like railways and other transportation systems, but also covering other areas such as
lithography manufacturing and cloud security in e-commerce, to name but a few. We also report testimonies
from a number of representatives from industry who, either directly or indirectly, use or have used formal
methods in their industrial project endeavours. These persons are spread geographically, including Europe,
Asia, North and South America, and the involved projects witness the large coverage of applications of for-
mal methods, not limited to the safety-critical domain. We thus make a case for the importance of formal
methods, and in particular of the capacity to abstract and mathematical reasoning that are taught as part
of any formal methods course. These are fundamental Computer Science skills that graduates should profit
from when working as computer scientists in industry, as confirmed by industry representatives.

CCS Concepts: • Software and its engineering → Formal methods; • Social and professional topics

→ Computer science education;

Additional Key Words and Phrases: Formal methods, computer science education

ACM Reference Format:

Maurice H. ter Beek, Rod Chapman, Rance Cleaveland, Hubert Garavel, Rong Gu, Ivo ter Horst, Jeroen J.
A. Keiren, Thierry Lecomte, Michael Leuschel, Kristin Yvonne Rozier, Augusto Sampaio, Cristina Seceleanu,
Martyn Thomas, Tim A. C. Willemse, and Lijun Zhang. 2024. Formal Methods in Industry. Form. Asp. Comput.

37, 1, Article 7 (December 2024), 38 pages. https://doi.org/10.1145/3689374

1 Introduction

Formal methods collectively refer to an array of methods for mathematically specifying and veri-
fying computer-system behaviour. In such approaches, systems are interpreted as mathematically
precise structures, whether as state machines, as functions mapping initial to final states, or as
logical formulas describing system behaviour. Specifications also are given in a mathematically
well-founded manner, whether as logical properties or state machines, and the notion of a system
satisfying a specification is also given a mathematical definition. Given these elements, formally
verifying a system involves constructing a mathematical proof that the system satisfies the spec-
ification. The key motivation for these techniques is the strength of the correctness guarantees
they provide: in contrast to testing-based and inspection-based techniques, a proof conclusively
demonstrates that the system in question, at the level of abstraction that it is presented, is correct
with respect to its specification. Formal methods complement other verification and validation
techniques, such as testing or simulation [169].

Formal methods have been studied in the computing community since at least the 1960s, with
seminal work by Floyd [133], Hoare [170], and Dijkstra [113] defining techniques for proving
programs correct. Later work by Pnueli, Lamport, Clarke, Emerson, and others considered the
automated verification of state machines vis à vis properties in temporal logics [87, 201, 256].
Still others, including Boyer, Moore, Gordon, and Coquand [66, 100, 152], developed automated
theorem provers for checking the correctness of verification proofs. Later researchers have
built on and improved these efforts, and formal methods remain a vital and fundamental area
of basic computing research. Notably, the Cost of Poor Software Quality (CPSQ) is astonishing.
In the 2022 Report1 for the CPQS in the US, the amount is considered at least US$ 2,41 trillion.
Considering the more specific cost of finding and fixing bugs, the estimation is US$ 607 billion.
Therefore, there is scope for applications of formal methods and tools to improve this situation

1https://www.it-cisq.org/

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://doi.org/10.1145/3689374
https://www.it-cisq.org/


Formal Methods in Industry 7:3

in several domains, much beyond the context of safety-critical systems. Historical references
from long-time advocates of formal methods reflect on their industrial application through
the metaphors of myths and commandments of formal methods and invite their uptake in
industry in order to realize their benefits [29, 61–65, 84, 102, 161, 162, 195, 227, 249, 276, 287, 298].
Throughout the last three decades several major surveys of formal methods have appeared in the
literature [90, 135, 138, 144, 299].

This paper demonstrates that formal methods have wide-ranging practical value by reporting
on the increasing use of formal methods in industry, and it makes a case for the inclusion of formal
methods as a separate topic in Computer Science education. This is well-agreed upon by the for-
mal methods community. To make this point better known to the Computer Science community
at large and, in particular, to those involved in Computer Science education, the remainder of this
article develops as follows. First, in Section 2, we give more detail about what formal methods are,
precisely. Then, in Section 3, we survey the vast array of formal-methods applications, much be-
yond the context of safety-critical systems.2 In our brief survey, we cite specific instances across a
variety of different domains of successful applications of the techniques in delivering systems that,
by their nature, must be reliable. These include very recent work, which was not available five
years ago when the most recent above-mentioned surveys were conducted, as well as testimonies
contributed by current industry leaders. Next, in Section 4, we argue that undergraduate curric-
ula should include formal methods as a topic, not only because of their growing importance in
industry, as witnessed by the evidence presented in this paper, but also because formal methods
contribute to cultivate abstract thinking, enabling students to better understand and solve complex
problems, and because of the discipline they instil in students as they learn to develop systems. In
the words of Rance Cleaveland, “students who learn formal methods are better developers, because
they learn to think about correctness while they are building systems.” Further support for such
statements can be found in [34] and in the accompanying papers [118], which underlines the im-
portance of formal methods thinking in Computer Science education, and [70], which argues that
every computer scientist needs to know formal methods: “software developers not being aware of
the various benefits of formal methods cannot be called computer scientists or software engineers.”
Finally, in Section 5, we conclude the paper.

2 Formal Methods and Tools

Complex, industrial systems typically come into being according to some standardized software
development methodology. Most methodologies distinguish different phases in the development
of a system. While these phases may differ across development methodologies, and carry different
names, in general, there is a requirements analysis phase, an architecture design phase, a system
design phase, and an implementation phase. Each phase yields a set of artefacts. Apart from describ-
ing the type of artefacts delivered at each phase in the development of a system, a methodology
also describes the validation and verification methods and activities needed to ensure the internal
consistency of an artefact, and the consistency of artefacts across different phases. For instance,
the artefacts produced during the requirements phase need to be non-contradictory, whereas the
artefacts produced in the design phase need to be consistent with the artefacts delivered in the
requirements phase. Formal methods, and their implementation in widely available tools, provide
automated, repeatable, easily checkable evidence to support these needs. Triggered by their suc-
cessful applications in industry, we mostly focus on a posteriori verification of (software) systems.

2We survey formal-methods applications from well-known and representative domains, including papers and testimonies
that have been selected based on the expertise and experience of the authors, spread geographically as well as across
different application domains.

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.



7:4 M. H. ter Beek et al.

We do not discuss in detail the verification of formal specifications of requirements nor the al-
ternative of a priori verification techniques, such as developing correct-by-construction system
implementations based on formal methods that provide correctness-preserving refinement trans-
formations (like in the seminal work on the refinement calculus and related calculi by Back [10],
Morris [231], and Morgan [230], based on Dijkstra’s guarded command language [114]).

In the remainder of this section, we first define and introduce formal methods in Section 2.1,
after which we provide an overview of selected formal methods and tools in Section 2.2.

2.1 What are Formal Methods?

In line with [138], in this paper we define formal methods as mathematically rigorous techniques
for the specification, design, validation, and (manual or automated) verification of software and
(logical) hardware systems. In short, formal methods enable checking that behaviours (statements
in a formal semantics such as mathematical logic) always hold in a system (specified in a language
with a formal semantics). They examine the entire behaviour space of the system, covering all
possible inputs, to provide assurance derived from a mathematical proof that the specified system’s
behaviour is correct. In other words, formal methods address the verification problem: given formal
definitions of what a system does (M) and what it should do (φ), formal methods show that M
satisfies φ. Intuitively, formal methods show that the system does what you think it should do and

nothing else.
That last part, “and nothing else,” distinguishes exhaustive formal methods from non-exhaustive

methods for verification, such as testing [14, 50, 58, 226] and simulation [181, 291]. These popular
methods reason over the input space of a system by producing a set of individual system executions.
By aggregating a large set of executions, they can provide probabilistic answers to questions such
as: how often does some behaviour occur, how many inputs produce a certain type of output, or
how likely is something to occur. They can provide a proof of the existence of a run of a system,
such as a run that exhibits a fault, but since neither testing nor simulation explores all possible
system behaviour (state space), they can never show the absence of such a run. For that, we need
(exhaustive) formal methods.

Formal methods reason over the behaviour space of a system. They yield Boolean (typically true
or false, not probabilistic) answers to questions like: is it possible for something to occur, does
this property hold for all system executions, or even how many system execution paths lead to a
certain output. While testing and simulation involve executing the system many times to gather
examples for verification, formal methods tools generally execute once but reason exhaustively
over the complete set of system behaviours, covering all possible executions. This is also why
there is such a variety of formal methods (as opposed to a singular formal method) — different
methods scale differently and different systems require different proof strategies to enable such
exhaustive reasoning. Successful application of formal methods requires some knowledge of the
underlying system, and therefore which formal method(s) to apply.

In practice, (exhaustive) formal methods provide quite a different understanding of a system
than non-exhaustive or informal methods. Informal or semi-formal methods refer to techniques
and tools that are not fully formal, i.e., lacking a precise and unambiguously defined syntax and
semantics. Formal methods can prove both the presence and the absence of given behaviour. Be-
cause mathematical proofs reason equally well over partially-defined systems as fully-defined ones,
formal methods can check systems starting from the earliest stages of the system design. While
simulation and testing require some form of executable to run, formal methods do not. Nor are
formal methods sensitive to systems being used in ways they were not intended, such as receiv-
ing unanticipated inputs. These are precisely the properties that make formal methods essential
tools for industry, e.g., for certifying software and hardware systems, also for non-safety-critical

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.



Formal Methods in Industry 7:5

systems. Anticipating the testimonies from Rod Chapman (Amazon Web Services) in Section 3.6
and Ivo ter Horst (ASML) in Section 3.8, respectively:

Chapman: “A key point is that Automated Reasoning (AR) builds trust with customers by
allowing universal and sound verification of properties of our infrastructure and customers’
applications. By “universal,” AWS means properties that hold for all users, all storage buckets,
all networks, all compute instances, all configurations, and so on — freeing the user from
having to “test” a nearly infinite state space.”

ter Horst: “To make ASML’s lithography systems run reliably and consistently ASML needs
software that sends unambiguous instructions in every situation to the carefully engineered
hardware. One way that ASML ensures this is by formally verifying (model checking) the
specified machine behaviour and automatically generating correct and semantically equiva-
lent code from those models.”

For this reason, experts continue to argue for the continuous integration of formal methods
throughout the complex industrial system development lifecycle, and for the formal methods edu-
cation of system developers [138] (cf. Section 3.1). In our experience, reported in this paper, which
covers 50 years of work in industry as well as in academia, most software projects lack the disci-
pline seen in other branches of engineering. Few developers approach their work with the under-
standing that mistakes will be made and that they should select and use the methods and tools
that were designed to prevent errors and to detect errors as early as possible after they are made.
Too few Computer Science graduates work in a way that shows that they understand their respon-
sibility to be able to provide evidence that their software meets their customer’s or end user’s
requirements — and that evidence from testing can never be strong enough on its own.

This does not mean that we are suggesting that formal methods exclude or are a replacement
for testing or simulation. As mentioned in the Introduction, these are complementary techniques
for the central task of verification and validation (cf. [169] and, for a concrete example, Section 3.9:
Formal Testing of Mobile Devices from Natural Language Requirements). Our purpose is to em-
phasize the distinguishing feature of formal methods in being capable of mathematically ensuring
the absence of errors with respect to a given specification.

2.2 Overview of Formal Methods and Tools

Formal methods offer the means to both formally describe the artefacts delivered at each phase
in the system development lifecycle, and aid in their automated validation and verification [7,
135]. Some tools prove useful throughout the development methodology; others may specialize to
address specific phases and activities. As mentioned in the beginning of this section, we focus on
formal methods for the verification phase. We refer to [70] for a discussion on formal methods for
all phases: identifying and formalizing requirements, modelling and formal specification, design
and implementation, verification and validation, and maintenance and evolution. There are two
core formal (verification) methods from which all other formal (verification) methods derive: model

checking [17, 88] and theorem proving [238, 266].
Theorem provers, such as Coq3 [51], Isabelle [241], Lean [233], Vampire [264], KeYmaera X [254,

255], LP [140], PVS [248], Z3 [232], and others allow users to mechanically, and sometimes even au-
tomatically, prove generic statements and theories about system artefacts formalized as mathemat-
ical theories. Theorem proving has found its way in tool sets for state-based refinement approaches
(as originally advocated by VDM [188], Z [282], and subsequently B [2, 3]), such as Atelier B4 and

3Coq received the 2013 ACM Software System Award.
4https://www.atelierb.eu/

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://www.atelierb.eu/


7:6 M. H. ter Beek et al.

Event-B.5 A theorem prover’s independence of specific problem domains is one of its major strong
points. Each theorem prover brings its own library of previous proofs upon which it can draw
to efficiently prove new theorems. Theorem provers differ in the contents of these libraries and
in their input logics. Typically users choose which theorem prover to use for a particular job by
choosing the input language that most intuitively describes the verification question at hand and
checking the proof library for previous proofs useful in constructing the needed proof. While a the-
orem prover can complete some proofs automatically after the user sets up the theorem correctly,
others require substantial interaction from the user to complete the proof, so utilizing previous
results from the proof library and having a clearly-defined proof strategy are essential. Theorem
provers are very powerful tools that can reason about very large, or even infinite-state, systems
and complex mathematical algorithms.

Process-algebraic approaches such as ACP [15], CCS [228], CSP [171, 269], LOTOS [57],
or LNT [137] have inspired the development of model-checking toolsets such as CADP6 [136],
CWB [91] / CWB-NC [93], FDR [143], and mCRL2 [9, 75, 157] (cf. [92]). These and other model
checkers, such as SPIN7 [172], NuSMV [86] / nuXmv [80], UPPAAL8 [38, 39, 109, 110], ProB [211],
and ABC [69], provide a convenient “push-button” technique for automatically assessing the con-
sistency of an artefact (e.g., an algorithm or design described in a formal semantics) by automati-
cally verifying whether it satisfies behavioural specifications typically expressed as assertions or
using some form of temporal logic. The industrial appeal of model checking includes the limited
user interaction required to achieve a complete, exhaustive verification result. To effectively use a
model checker, the user needs only two inputs: the formal artefact or system description, and the
logical specification to check it against. The user then pushes a button and receives either confir-
mation, e.g., in the form of a certificate, that the system artefact always upholds the specification,
or a counterexample proving that it does not. A counterexample is a system trace stepping state-
by-state through a valid execution of the system until a clear violation of the specification occurs.
Counterexamples are therefore incredibly useful for debugging. Model checkers produce results
that are exhaustive: if there exists any system execution that violates the specification, they will
produce a counterexample.

In this way, both theorem provers and model checkers effectively prove both the presence and
the absence of bugs. Moreover, both theorem provers and model checkers require guidance from
a knowledgeable user to structure and organize their specifications, and in the case of theorem
provers, also their proofs. Model checkers, on the other hand, have fully-automatic proofs but
come with some limitations when compared to theorem provers. Due to their exhaustive explo-
ration of the state space, model checkers are sensitive to the shape and size of the state space of
the input system description and often do not allow elements like floating-point variables or un-
bounded integers. Also, the presence of superfluous information not relevant to the core algorithm
under verification can dramatically slow down the model checker or cause it to time-out. There-
fore, the user must be careful to describe only the relevant system logic in the input description to
mitigate the state-space explosion problem, where the number of states needed to model the sys-
tem accurately may exceed the amount of available computer memory. “Despite the development
of several very effective methods to combat this problem [. . . ], models of realistic systems may still
be too large to fit in memory” [17, Section 1.2.2: Strengths and Weaknesses].

Similarly to choosing a theorem prover, users choose model checkers based on the efficiency of
the input modelling language at describing the verification problem at hand. There are two types

5http://www.event-b.org/
6CADP received the ETAPS Test-of-Time Tool Award 2023.
7SPIN received the 2001 ACM Software System Award.
8https://uppaal.org/

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

http://www.event-b.org/
https://uppaal.org/


Formal Methods in Industry 7:7

of model checkers, explicit and symbolic, and some knowledge of which of these two types is best-
suited to the problem is also helpful. Explicit model checkers explicitly represent the systems’s
behaviour space as a type of graph in memory and the model checker systematically explores each
state and verifies whether it satisfies the given specification. Such an enumerative representation
is suitable for systems with smaller state spaces, or state spaces with certain types of repeated pat-
terns. Instead of representing individual states or transitions, symbolic model checkers represent
sets of states and sets of transitions symbolically using data structures such as Boolean formulas or
Binary Decision Diagrams (BDDs). Symbolic model checking is particularly suitable for systems
with a large, or even infinite state space. Finally, for both theorem proving and model checking, the
user must be careful to specify the behaviour property correctly. Since many system requirements
in natural language are vague, incomplete, or confusing, this can be a very challenging task [271].
NASA’s Formal Requirements Elicitation Tool (FRET)9 [142] for the elicitation, formalization and
understanding of requirements may be of help. FRET assigns unambiguous semantics to require-
ments written in a structured natural language and allows to export the requirements into forms
that can be used by a variety of analysis tools, among which Simulink Design Verifier and SMV
(cf., e.g., [123], where it is reported that the industrial partner found the FRET tool “very easy to
use”).

Next to these exhaustive qualitative verification techniques, it is worth mentioning exhaustive
quantitative methods such as probabilistic (a.k.a. stochastic) model checking, and non-exhaustive
methods such as runtime verification, model-based testing and statistical model checking, and
light-weight formal methods such as static analysis.

Static analysis concerns the derivation of properties of interest from source code (or an inter-
mediate representation) without executing the code [265], meaning precision is the price to pay.
Well-known static analysis tools include Astrée10 [112], Coccinelle11 [204], Frama-C12 [194], and
Lint [187] (cf. [116] for key lessons from designing the static analyses tools Infer and Zoncolan
and [210] for a comparison of the static analysis tools Better Code Hub, CheckStyle, Coverity
Scan, FindBugs, PMD, and SonarQube). Typically, one has to decide between under- and overap-
proximations (e.g., abstract interpretation [103]), with the possibility of both false positives and
false negatives. Underapproximation13 is a consequence of an approach representing all possible
program behaviours in a way that includes some, but not necessarily all actual behaviour (thus
giving rise to false negatives, i.e., the analysis may fail to detect certain properties of the code),
whereas an overapproximation represents the set of all possible program behaviour in a way that
includes all actual behaviour as well as possibly some that are not possible (thus giving rise to
false positives, i.e., the analysis may detect certain problems that do not actually exist in the code).
The choice between under- and overapproximation depends on the specific goals of the analysis
and the trade-off between precision and completeness, where the challenge is to find a suitable ab-
straction that is both computationally feasible and provides meaningful insights into the program’s
behaviour while dealing with false positives and false negatives.

Model-based testing is a formal-methods approach to testing that complements formal verifica-
tion and model checking and increases the efficiency and effectiveness of software testing [290].
It uses a formal or semi-formal model to represent the desired behaviour of a system under test,
which serves as the basis for generating test cases and executing tests. It is typically more efficient

9https://software.nasa.gov/software/ARC-18066-1
10https://www.astree.ens.fr/
11https://coccinelle.gitlabpages.inria.fr/website/
12https://frama-c.com/
13Not to be confused with underapproximate triples in incorrectness logic [245], a logical underapproximate theory for
proving the presence of problems.

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://software.nasa.gov/software/ARC-18066-1
https://www.astree.ens.fr/
https://coccinelle.gitlabpages.inria.fr/website/
https://frama-c.com/


7:8 M. H. ter Beek et al.

than traditional testing approaches, since it automates the test case generation process. Moreover,
by systematically deriving test cases from the model, often a better coverage of the system’s be-
haviour is achieved. Model-based testing complements other testing methodologies and is part of
the broader landscape of model-driven engineering [73].

Runtime verification monitors analyses actual software (and hardware) system behaviour while
the system is running [27, 94]. It offers improved practical applicability and scalability compared
to exhaustive formal verification, such as model checking and theorem proving, by analyzing only
one—or a few—execution traces of the actual system. Runtime monitoring derives from model
checking, except that in model checking the running system is the input system description, so
instead of an exhaustive analysis of all possible system runs (like model checking), runtime mon-
itoring analyses only the “current” system run against the input logical specification (cf. [272] for
a disambiguation from simulation).

Compared to model checking, which focuses on absolute guarantees of correctness, probabilis-
tic or stochastic model checking focus on modelling and analysing systems that exhibit probabilis-
tic or stochastic behaviour [16, 17, 198, 200, 263]. Such aspects are essential in cases of unreliable
or unpredictable system behaviour and performance evaluation. Instead of providing a yes/no an-
swer to the question as to whether a system model (M) satisfies a temporal logic property (φ), the
answers are of the form “with a likelihood of 99%, M will satisfy φ,” where φ is expressed in a sto-
chastic or probabilistic temporal logic. Statistical model checking [5, 208] uses a simulation- and
sample-based approach to reason about precise properties specified in a stochastic temporal logic,
offering a scalability advantage over exhaustive (or probabilistic) model checking due to the fact
that there is no need to analyze entire state spaces. Moreover, even though the outputs of sample-
based methods are not always correct, statistical inference enables quantifying the confidence in
the obtained result,14 thus compensating for the lack of exact results (100% confidence).

3 Formal Methods in Industry

In this section, we present a broad scope of applications of formal methods in industry, not limited
to the safety-critical domain, including testimonies contributed by Rod Chapman from Amazon
Web Services, leader in cloud computing (cf. Section 3.6), and Ivo ter Horst from ASML, leader
in the semiconductor industry (cf. Section 3.8). The reported applications of formal methods in
industry range from experiments with formal methods in industry to routine applications of formal
methods in industry as part of the development process. After a summary of recent literature
on successful applications of formal methods in Section 3.1, we describe a selection of success
stories for applying formal methods in the safety-critical domains of railways, automotive, and
aerospace in Sections 3.2–3.4. Subsequently, we report testimonies of success stories in the non-
safety-critical domains of operating systems in Section 3.5, e-commerce in Section 3.6, hardware
design in Section 3.7, lithography manufacturing in Section 3.8, and mobile devices in Section 3.9.

3.1 Summary of Recent Literature

Success stories of the application of formal methods in industry traditionally focus on their ap-
plication to safety-critical systems, such as transport, nuclear power plants, and medical devices.
Arguably one of the most cited ones concerns the fatal accidents with the infamous Therac-25
software-controlled radiation therapy machine that were, among others, due to software coding

14The level of confidence is usually stated as a percentage 100×(1−α )%, meaning that 100×(1−α )% of the time the actual
expected value belongs to the confidence interval [X − δ/2, X + δ/2], where X is the estimated value, α is the confidence,
and δ is the width of the confidence interval, which is typically determined based on α and a large enough n, the number
of samples obtained from n independent simulations.

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.



Formal Methods in Industry 7:9

errors. As demonstrated in [213, 214, 288, 289] (using, among others, the process algebra LO-
TOS [57] and the theorem prover LP [140]) these software errors could have been avoided if “basic
software engineering principles” and “sophisticated modeling and analysis tools” had been ap-
plied. Alas, what Nancy Leveson wrote in 1993, “software should be subjected to extensive test-
ing and formal analysis” [214], and in 2017, “it’s time for computer science practitioners to be
better educated about engineering for safety.” [213], is still true. Transport applications include,
but are not limited to, the railway [33, 77, 207] and aerospace [234, 281] domains. We refer to,
e.g., [32, 36, 128, 145, 174, 299] for more complete overviews of such applications. A recent survey
among 216 participants studying the use of formal methods for mission-critical software indicates
“an increased intent to apply FMs in industry, suggesting a positively perceived usefulness” [144].

Outside safety-critical applications, the literature also reports a recent uptake in the applica-
tion of formal methods [82]. Formal methods have, for example, been applied to ensure the qual-
ity of cloud services at Amazon [12, 239], cloud databases at Huawei [134], and mobile apps at
Facebook [116]. Sadowski et al. [277] describe how formal methods are integrated in the soft-
ware development workflow at Google. Godefroid reviews concolic testing and various forms of
fuzzing, which are capable of scaling to Microsoft applications (e.g., Excel or PowerPoint) with
millions of lines of code [146]. Concrete symbolic (concolic) testing is a hybrid software verifica-
tion technique that performs symbolic execution along concrete execution paths in an attempt to
systematically explore the execution of a program, focusing on both specific input values (as for
traditional testing) and symbolic representations of various alternative program paths, to achieve
improved path coverage compared to traditional testing. Scalability is a challenge due to the path
explosion problem, i.e., the number of possible paths grows significantly as the program’s complex-
ity increases [280]. Fuzzing is a more light-weight testing technique focused on quickly exploring
a large input space by providing random or semi-random inputs, typically generated by mutation-
based or generation-based fuzzing, to a program to discover vulnerabilities or unexpected be-
haviour [286]. Formal methods have also been used successfully to show the incorrectness of
widely used software such as Timsort [154], the Java LinkedList implementation [168], and im-
plementations of the MCS mutual exclusion locks [225] in open-source weak memory models and
at Huawei [244], as well as the correctness of the seL4 operating-system kernel [192, 193] and the
CompCert C compiler [26, 55, 183].15 In the same realm, modern programming language features
such as Rust’s memory safety and Go’s concurrency have a solid foundation in formal methods (cf.,
e.g., [104, 189]). Finally, formal methods have also been applied in other domains, like in medical
imaging for model checking the segmentation of glioblastoma and nevi [22, 41, 42].

A recent survey among 130 experts in formal methods (includingthree Turing Award winners,16

all four FME Fellowship Award winners17 and 16 CAV Award winners18) investigated the factors
that limit the uptake of formal methods in industry practice. In this survey, 71.5% of the respon-
dents identify that “engineers lack proper training in formal methods” as a limiting factor for a

wider adoption of formal methods by industry [138, Section 5: Formal Methods in Industry]. Other
key limiting factors are that “academic tools have limitations and are not professionally main-
tained” (66.9%), formal methods “are not properly integrated in the industrial design life cycle”
(66.9%) and “have a steep learning curve” (63.8%). Related to this, 62.3% indicates that “developers

15The seL4 developers received the 2022 ACM Software System Award for “the first industrial-strength, high-performance
operating system to have been the subject of a complete, mechanically-checked proof of full functional correctness;” the
2021 ACM Software System Award went to “CompCert, the first practically useful optimizing compiler targeting multiple
commercial architectures that has a complete, mechanically checked proof of its correctness.”
16https://amturing.acm.org/byyear.cfm
17https://www.fmeurope.org/awards/
18http://i-cav.org/cav-award/

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://amturing.acm.org/byyear.cfm
https://www.fmeurope.org/awards/
http://i-cav.org/cav-award/


7:10 M. H. ter Beek et al.

are reluctant to change their way of working.” Another survey [138] concludes that “the current sit-
uation [of formal methods education] is very heterogeneous across universities, and many experts
call for a standardisation of university curricula with respect to formal methods.”

In the following sections, we describe a selection of success stories of applying formal methods
in both safety-critical (cf. Sections 3.2–3.4) and non-safety-critical domains (cf. Sections 3.5–3.9).
Moreover, we relate the formal methods and tools mentioned in Sections 3.2–3.9 to the compre-
hensive classifications and explanations in Section 2. We acknowledge the need for performing
more empirical studies on formal methods according to well-established guidelines [35] to estab-
lish at what point formal methods are being applied, which are the most frequently applied tech-
niques and tools, and related questions. From two recent surveys from the literature involving,
respectively, 216 professionals from Europe and North America using formal methods in depend-
able systems engineering [144] and 328 papers on formal methods in railways [128], we know
that (i) the professionals employ formal methods mainly for assurance (e.g., proof, error removal),
specification (i.e., formal description techniques), and inspection (e.g., error detection, bug find-
ing), while in most of the papers formal methods are applied in the Architecture (66%) and De-
tailed Design (45%) development phases; (ii) the professionals mainly use formal methods analysis
techniques for assertion checking, followed by consistency checking and model checking, while
in the papers formal verification is the dominant analysis technique (67%), in particular model
checking (47%) and theorem proving (19.5%), whereas static analysis is hardly used (1%); (iii) the
professionals were not asked for their experiences with formal methods tools as it was left for
future work “to find out which particular FM (and tool) is used in which domain for which partic-
ular purpose and role,” while in the papers the tool landscape is rather scattered with ProB (9%),
NuSMV (8%), and UPPAAL (7%) among the most frequently used ones, but not much more than
Atelier B (5%), Event-B/Rodin (4%), SPIN (4%), and Simulink (4%).

3.2 Formal Methods for Railways

Railway signalling used to be done manually by observing trains and operating signals, which is
error-prone and restricts the capacity of railway transportation. Automatic signalling is obviously
needed for modern railway control systems. However, the safety of such automatic systems is
crucial as a small error in signalling may have catastrophic consequences, such as train collisions.
Moreover, replacing manual railway signalling with an automatic solution means huge invest-
ments and the extremely high standards of safety make it even more expensive. Formal methods
can be a solution both for ensuring the safety of such systems and saving costs [40, Section 3:
Cost-Benefit Analysis]. CENELEC EN 50128 is a European standard for the development of soft-
ware for use in the railway industry [122]. It highly recommends formal methods for the design
and verification of products that need to meet the highest safety integrity levels (SIL 3 or SIL 4,
i.e., with a maximum accepted probability of dangerous failure between 10−7 and 10−9 per hour).
The above mentioned cost-benefit analysis reported, which follows EU guidelines and covers both
financial and economic analysis, is the only such analysis applied to formal methods that we are
aware of. We agree with the authors of [40] who call for “greater attention of the formal meth-
ods community to the quantification of costs and benefits parameters [. . . ] since the evidence of
the beneficial effects of formal methods is mostly given instead in the literature in a qualitative
way.” In [247], the authors evaluated (without any monetary measurements) the effect of apply-
ing the commercial formal technique Analytical Software Design (ASD) to an industrial project,
and they compared the positive results concerning code quality (good) and productivity (high)
with those of 13 similar projects that used other formal methods (e.g., B and VDM). The above
mentioned recent survey among 130 experts in formal methods also contained a question that
asked the experts to make an informal cost-benefit analysis over time [138, Section 5.3: Return on

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.



Formal Methods in Industry 7:11

Investment]. A small majority of 58.5% of the respondents answered that the application of formal
methods is profitable in medium and long terms; 15% answered that they are immediately profitable

and 12.3% that they are profitable in the long term only, while 2.3% answered that there is no return

on investment and 11.5% had no opinion.
From the above mentioned recent survey of the landscape of research on applications of for-

mal methods to the development of railway systems [128], involving 328 high-quality papers from
1989–2020,19 we know that formal methods in railways is a thriving research field with strong
industrial ties, since 143 papers were published solely in the last five years (44% of the total of
328 papers) and 79 papers (24%) involved industry. Well-known success stories throughout the
years concern the development and verification of the Automatic Train Protection (ATP) system
for the RER Line A of Paris [159], the Subway Speed Control System (SSCS) of the subway of Cal-
cutta [108], Line 14 of the Paris Metro [117], and derivatives thereof, like line 1 or the NY Canarsie
line [121], and the driverless Paris–Roissy Airport shuttle [37], all developed with the B method. B
was also used for an industrial scale system-level analysis of Alstom’s U400 system [95], which is
in operation in about 100 metro lines worldwide. Another success story concerns the metro con-
trol system of Rio de Janeiro, developed with the support of Simulink/Stateflow [125]. Simulink20

is a model-based development tool for graphical system design, supporting simulation, test gener-
ation and code generation. A Simulink model’s basic unit is a block diagram such that each block
represents a different system component and their connections represent interactions between
these components. Simulink comes with Stateflow, a graphical language inspired by Harel’s hi-
erarchical statecharts [166], for modelling and simulating the behaviour of complex systems in
the form of state machines and flow charts, and it supports model checking through Simulink
Design Verifier, which is part of the Simulink Verification and Validation tools. Further success
stories concern the verification of the ERTMS/ETCS European standard for railway control and
management with NuSMV [85] and of Hybrid ERTMS/ETCS Level 3 with a variety of formal
methods and tools [30, 76]. In particular, in [164], the new system was modelled in B, identi-
fying over 30 issues and using the formal model as a runtime artefact for a real-life demonstration.
Moreover, in [6], the system structure of the movement authority scenario of the Chinese Train
Control System Level 3 (CTCS-3) was modelled by core constructs of the Architectural Analy-
sis and Design Language (AADL) [111, 278], with its extensions Behavior Language for Embed-
ded Systems with Software (BLESS) [203] for the discrete behaviour and Hybrid CSP [184] for
the continuous behaviour, and verified with the Hybrid Hoare Logic (HHL) Prover [295], an in-
teractive theorem prover based on Isabelle/HOL. Recently, the Autonomous Positioning System
(APS) of the Florence tramways was verified with the support of the model checker UPPAAL [28].
See [126, 127, 223] for comparisons of different formal methods and tools for railway system
design.

Railway transportation, such as trains, metros, and trams, is one of the most environmentally
friendly and energy-efficient means of transportation. In the domain of railway control systems,
a large number of research projects that involve formal methods have been carried out during
the past decades, such as RobustRail21 and more than one hundred projects funded under the

19The survey was conducted following the guidelines for systematic mapping studies [252]. In particular, the 328 high-
quality papers were selected from an initial set of 4346 papers retrieved from scientific databases upon the application
of predefined criteria for inclusion (e.g., the study is written in English language) and exclusion (e.g., the study does not
use a formal or semi-formal method) plus a quality checklist (e.g., is there a clear description of the task addressed with
formal methods?) used for grading the papers. All papers with an insufficient overall quality score were excluded from the
selection.
20https://nl.mathworks.com/products/simulink.html
21http://www.robustrails.man.dtu.dk

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://nl.mathworks.com/products/simulink.html
http://www.robustrails.man.dtu.dk


7:12 M. H. ter Beek et al.

Shift2Rail initiative,22 including the X2Rail series. Shift2Rail and its successor Europe’s Rail are
joint efforts of railway stakeholders and the EU to advance the railway domain through innovative
research projects involving both academia and industry, in which formal methods are considered
to be fundamental to the provision of safe and reliable technological advances in railways [33].
Notable initiatives outside the EU are the UK Rail Research and Innovation Network (UKRRIN)23

and the Chinese State Key Laboratory of Rail Traffic Control and Safety.24

Companies such as Alstom and Siemens are using formal methods, such as the B language, in
the development of their train control systems as well as for data validation [206, 212], notably
using the model checker ProB within tools like Systerel’s OVADO25 [1, 13] and the ClearSy Data
Solver,26 both of which are certified T2 (i.e., tools where a fault could lead to an error in the results
of verification or validation) for SIL 4 in accordance to the CENELEC EN 50128 standard. Prover
is another industrial leader in formal methods for railway signalling automation. They develop
software tools and services to support railway signalling design automation. Their solution covers
a formal high-level language for formal verification and tools for developing, testing, and veri-
fying railway control systems, like railway interlocking systems. They apply formal verification
techniques, like theorem proving, in their interlocking software, digital twins, and development
tools for railway signalling, which have been used in projects worldwide, like Sweden, Norway,
China, France, and Canada.27 The Prover Certifier formal verification tool, which includes the
Prover PSL model checker, is also certified T2 for SIL 4 in accordance to the CENELEC EN 50128
standard. Moreover, the successful application of formal methods in Prover shows that formal
verification can cut on-site testing time by up-to 50% and detect bugs that are overlooked by tradi-
tional testing:28 “Formal Verification provides much higher coverage than testing. At Prover, we
always find errors when doing formal verification, even on systems that have gone through regular
verification”29

In the near future, the Railway domain is expected to contribute significantly to the European
Green Deal by improved digitalization and data analytics.30 Challenges include the extension of
formal methods and tools to cope with AI-based systems, such as equipping verification tools with
certificate generation, and their integration in the CENELEC standards [279].

3.3 Formal Methods for Automotive

ISO 26262 is an international standard for functional safety in the automotive industry [179]. It pro-
vides guidelines and requirements for the development of safety-critical electrical and electronic
systems (E/E systems) in vehicles. The standard is focused on ensuring the safety of E/E systems
that are involved in the operation of passenger cars, motorcycles, trucks, and buses. The stan-
dard defines a safety life-cycle that encompasses various phases, including requirements, system,
hardware, and software development. It emphasizes the identification and assessment of poten-
tial hazards, as well as the implementation of safety measures to mitigate risks. ISO 26262 also
outlines processes for safety management, hazard analysis, risk assessment, and verification and

22https://projects.shift2rail.org
23https://www.ukrrin.org.uk/
24http://en.bjtu.edu.cn/research/institute/laboratory/16583.htm
25https://www.ovado.net/
26https://www.clearsy.com/en/tools/data-solver/
27https://www.prover.com
28https://www.prover.com/categories/verification-validation
29Daniel Fredholm from Prover Technology in his presentation Formal Verification in the Railway Domain during FME’s
“InFM: Industry talks on Formal Methods” series on May 16, 2024.
30https://transport.ec.europa.eu/system/files/2021-04/2021-mobility-strategy-and-action-plan.pdf

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://projects.shift2rail.org
https://www.ukrrin.org.uk/
http://en.bjtu.edu.cn/research/institute/laboratory/16583.htm
https://www.ovado.net/
https://www.clearsy.com/en/tools/data-solver/
https://www.prover.com
https://www.prover.com/categories/verification-validation
https://transport.ec.europa.eu/system/files/2021-04/2021-mobility-strategy-and-action-plan.pdf


Formal Methods in Industry 7:13

validation of functional safety, defined as the absence of unreasonable risk due to hazards caused
by malfunctioning behaviour of E/E systems.31

Compliance with ISO 26262 is typically required by regulatory bodies and is expected by cus-
tomers in the automotive industry. Adhering to the standard helps ensure that vehicles and their
associated systems are designed, developed, and produced with a focus on safety, reducing the
likelihood of failures or malfunctions that could lead to accidents or injuries. Formal methods are
considered the best choice in order to handle complexity and improve confidence in the automo-
tive system’s correctness, and although not mandated by ISO 26262, they are clearly encouraged
and actually used, as demonstrated in the next paragraphs.

The need for advanced formal methodologies for design, development, and verification of au-
tomotive systems was identified by both industry and academia. Several projects were launched,
and many problems were addressed. The Systems Modelling Language (SysML) [180] is a general-
purpose modelling language for systems engineering applications defined as an extension to UML
addressing the structuring of requirements and their verification. Within several EU research
projects, the Architecture Description Language, a metamodel and an ontology for representing
engineering information for automotive embedded systems, called EAST-ADL32 [56], was devel-
oped. EAST-ADL went further and applied an automotive ontology and representation aligned
with AUTOSAR for the structuring of engineering information. The EAST-ADL model is struc-
tured in abstraction levels, where each sub-model represents the complete embedded system, at
the relevant level of detail. The EAST-ADL abstraction levels map to the abstraction levels given in
ISO 26262. EU projects like ATESST, CESAR, SafeCer, MAENAD, and MBAT all addressed the use
of models and tools to automate the representation and formal verification of automotive systems’
requirements.

Volvo Group Trucks Technology (VGTT) in Sweden is a division of Volvo Trucks that is a world-
leading truck manufacturer, providing total transport solutions. In its Model-based Continuous In-

tegration of Automotive Embedded Systems [215], VGTT applies the following engineering princi-
ples in order to address their product development and process challenges: (i) Go Virtual, to allow
daily deliveries and maximize verification confidence while exercising dangerous and rare events,
(ii) Go Rigorous, which requires the use of models, data, and formal verification to provide means
to secure products versus needs and requirements, and allow engineering rigour and automation,
(iii) Go Multi-Method, which incorporates in the engineering workflow a multitude of tools for the
model representation (EAST-ADL, Simulink, the object-oriented, declarative modelling language
Modelica,33 its Association Project Function Mockup Interface,34 and the model checker UPPAAL),
as well as software-centric and physics-centric simulation (e.g., EAST-ADL/Simulink and Function
Mockup Units) and formal verification of components’ behaviour and timing (e.g., by employing
the model-checking toolset UPPAAL), (iv) Go Consistent, to ensure that binaries and components
are faithful realizations of models and code, and (v) Go Continuous to deliver daily/weekly/monthly
component versions and tests. All these methods and tools for modelling and verification have
been integrated or are under integration in VGTT’s ADAPT Integration Environment, leading to
development efficiency via iterative and incremental development, and assured product quality by
incorporating formal techniques, such as SAT-based requirements consistency-checking with the
Z3 theorem prover [216, 217] and model checking with the UPPAAL model checker [131, 158, 218],
in the engineering workflow.

31https://www.iso.org/obp/ui/en/#iso:std:iso:26262:-1:ed-2:v1:en
32https://www.east-adl.info/
33https://modelica.org/
34https://fmi-standard.org/

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://www.iso.org/obp/ui/en/#iso:std:iso:26262:-1:ed-2:v1:en
https://www.east-adl.info/
https://modelica.org/
https://fmi-standard.org/


7:14 M. H. ter Beek et al.

The recent rise of autonomous vehicles has brought exciting new challenges to the automotive
industry to make such vehicles safe, reliable, and trustworthy, respect legal regulations, and ready
for societal acceptance. These include dealing with uncertainties and incomplete or inaccurate
information, as well as the development of effective formal methods and tools for the verification
of AI-based systems based on transparent and explainable components that can be certified [219].

3.4 Formal Methods for Aerospace

Formal methods are now an expected and required part of the development processes of intelli-
gent, autonomous, and safety-critical air and space systems. Their use is codified into flight certi-
fication, e.g., by the US Federal Aviation Administration (FAA) via DO-178B [257], DO-178C [260],
DO-333 [259], and DO-254 [258], and in the EU by Regulation (EU) 2018/1139.35 International stan-
dards agencies IEEE and IEC (International Electrotechnical Commission) maintain tens of stan-
dards for avionics involving formal methods [177, 178]. See [132] for a more detailed discussion
of regulations for formal methods in certification of reliable autonomous systems, which include
Unmanned Aerial Systems (UAS), covering airborne vehicles ranging from toy quadcopters to mil-
itary UAS and autonomous missiles, but also driverless trains and self-driving cars.

Systems whose requirements, design, verification, and maintenance were shaped by for-
mal methods continue to further the frontiers of modern aerospace engineering. For example,
explicit-state model checking with model checkers like SPIN and the software model checker
Java PathFinder [292] increased the robustness of the Small Aircraft Transportation System
(SATS) [236]; proved the absence of synchronization faults in the Tactical Separation Assur-
ance Flight Environment (TSAFE) [52]; verified a design-time hierarchical, concurrent spacecraft
model [224]; and analyzed the Mars Science Laboratory’s flight software [156, 173]. Symbolic
model checking of temporal logic formulas [270] with model checkers like (Nu)SMV / nuXmv
verified the Traffic Alert and Collision Avoidance System (TCAS) flying on-board commercial air-
craft [83]; ensured internal aircraft modes followed the A-7E aircraft software requirements [283];
provided the basis for the Correctness, Modelling and Performability of Aerospace Systems (COM-
PASS) [67]; robustified Boeing’s AIR6110 wheel braking system [68]; and changed NASA’s design
for the NextGen automated air traffic control system [139, 222, 302]. Such successes convinced the
engineers at Dassault Aviation of the feasibility of verifying Esterel programs [49], which they use
for parts of the safety-critical software of flight control systems but also for mission management
systems. Theorem proving with theorem provers like KeYmaera and PVS provided many core veri-
fication results, e.g., for full-scale, real-life air traffic control systems including KB3D pair-wise con-
flict detection and resolution algorithms [235], Stratway (a modular approach to strategic conflict
resolution) [160], ACCoRD (state-based conflict detection and resolution algorithms) [237], Cho-
rus (tactical conflict and loss of separation detection and resolution) [78], and ACAS-X (Airborne
Collision Avoidance System X) [182]. The theorem prover Isabelle/HOL [300] provided proofs for
partition scheduling of a commercial real-time operating system implemented following the AR-
INC 653 international aerospace industry standard [4] .

Next to these exhaustive qualitative verification techniques, the exhaustive quantitative method
of probabilistic model checking, in particular the probabilistic model checker PRISM36 [199],

35Regulation (EU) 2018/1139 of the European Parliament and of the Council of 4 July 2018 on common rules in the field of
civil aviation and establishing a European Union Aviation Safety Agency, and amending Regulations (EC) No 2111/2005,
(EC) No 1008/2008, (EU) No 996/2010, (EU) No 376/2014 and Directives 2014/30/EU and 2014/53/EU of the European Parlia-
ment and of the Council, and repealing Regulations (EC) No 552/2004 and (EC) No 216/2008 of the European Parliament and
of the Council and Council Regulation (EEC) No 3922/91: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:
32018R1139.
36PRISM received the ETAPS Test-of-Time Tool Award 2024.

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018R1139.


Formal Methods in Industry 7:15

proved instrumental in increasing the robustness of ACAS-X [294]; carrying out comparative anal-
ysis of automated air traffic control systems [303]; assessing the reliability, availability, and main-
tainability of a satellite [250]; and analyzing NASA’s SPIDER distributed, fault-tolerant operating
system [120]. We conclude with non-exhaustive formal methods. Static analysis made possible the
verification of a large, complex software system that provides separation assurance between multi-
ple airplanes up to 20 minutes ahead of time [141]. Dynamic analysis, a scalable alternative to static
analysis for models with nonlinear dynamics, enabled rigorous safety-checking of the nonlinear
predicates that arise from dynamics-based predictions used in alerting logic for a state-of-the-art
parallel aircraft landing protocol [119]. Three runtime verification engines have been designed
specifically for aerospace use-cases: NASA Langley’s Copilot [251, 253], DLR’s RTLola [31], and
R2U2 [185, 273].

Advances in the scalability, adaptability, and connectivity of all of these tools and techniques
have created an ecosystem advancing the system lifecycle of robust aerospace systems through
their combined use. For example, NASA’s Lunar Gateway is currently being designed from formal
requirements authored as assume-guarantee contracts, verified at design time and carried through
the system lifecycle all the way to on-board, real-time runtime verification [106, 107, 186].

3.5 Formal Methods for Operating Systems

From the beginning, formal methods have been inspired by the problems arising from multi-user
operating systems, especially parallel programming and communication protocols, for which spec-
ification languages and automated protocol validation techniques based on state-space exploration
have been developed since the 1970s, e.g., [274, 296]. The application field of formal methods fur-
ther expanded to also encompass the verification of distributed algorithms, such as the atomic
multicast protocol used for the DELTA-4 distributed dependable architecture [23].

There have been many success stories of formal methods in this area. One can mention the
formal verification of the seL4 general-purpose commercial microkernel using the Isabelle/HOL
theorem prover [192, 193], the SLAM verification platform based on static analysis and symbolic
model checking for analyzing the source code of Microsoft Windows drivers [18–21], Microsoft’s
SAGE whitebox fuzzer, which found roughly one third of all the bugs discovered by file fuzzing
during the development of Windows 7 [147–150], and the Coccinelle static analysis tool for auto-
matically updating the Linux kernel and drivers [204, 205, 267].

3.6 Formal Methods for Cloud Security and e-Commerce

Amazon Web Services (AWS) has developed and deployed formal and automated reasoning tech-
nology for more than a decade. AWS leadership have recently described a “Golden Age” [275] for
automated reasoning (AR), with AR Group founder Byron Cook noting:

“Formal methods is transforming how Amazon Web Services (AWS) secures the cloud.
Security has historically been a manual, high-judgement and thus un-scalable field;
automated formal reasoning is challenging that entire structure, changing both the
quality of AWS products and the cost structure to support them. The key at AWS has
been to avoid “shiny-object syndrome” [99] and instead build and apply tools that
quietly but reliably change the behaviour of engineers. Many leaders at AWS were
skeptical of this type of work in 2016, but the success in areas such as cryptography,
identity, storage and virtualization has changed minds.”

A key point is that AR builds trust with customers by allowing universal and sound verifica-
tion of properties of AWS’ infrastructure and customers’ applications. By “universal,” AWS means

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.



7:16 M. H. ter Beek et al.

properties that hold for all users, all storage buckets, all networks, all compute instances, all con-
figurations, and so on — freeing the user from having to “test” a nearly infinite state space.

The deployment of AR within AWS covers a broad spectrum — from deep proofs of foundational
code, through properties of protocols and internal services, to universal properties of customer-
facing applications at enormous scale. A small selection of examples includes:

(1) At the foundational level, AWS has proven the memory- and type-safety of the first-stage
boot code of its servers [98], giving them confidence that the code is crash-proof and resis-
tant to code injection attacks for all possible configurations. The authors used the C Bounded
Model Checker (CBMC) [89], but mention that “any other bit-precise, sound, automated
static analysis tool could be used.” More recently, AWS has produced a library, called “s2n-
bignum,” that provides primitive operations for elliptic curve field elements and points [163].
These operations underpin billions of cryptographic operations per day. s2n-bignum is the
first cryptographic library that combines formal proofs of functional correctness for multi-
ple variants of the ARM64 and x86_64 micro-architectures, resistance to timing-based side-
channel attacks, and performance that is equal to or exceeds all other contemporary imple-
mentations. The s2n-bignum code [167] and proofs are freely available under a permissive
licence.

(2) The AWS authorization system evaluates each request to AWS against relevant access
control policies to determine if access is allowed or denied. An internal service called
Zelkova [11] takes in a set of policies and uses automated reasoning to analyze every pos-
sible request that would be allowed by those policies. Under the hood, Zelkova translates
each policy into a set of SMT constraints that are passed to a “portfolio” of solvers, such as
the theorem provers Z3, CVC4 [25] and CVC5 [24] for solving Satisfiability Modulo Theories
(SMT) in a “winner-takes-all” race. In 2019, AWS extended Zelkova to introduce “IAM Access
Analyzer,” which removes the burden of requiring the user to write formal access control
specifications. Instead, the tool presents the user with a set of “findings” that the user can re-
view and mark as “intended” or “not intended.” This interaction is actually a form of formal
specification refinement, although the user does not have to interact with the underlying
formal model. By late 2022, Zelkova and its customer-facing services were generating over
1 Billion SMT queries per day [275].37

(3) In late 2020, AWS announced the availability of strong read-after-write consistency in the
S3 storage service. S3 operates at a currently preposterous scale, storing over 100 Trillion
objects and handling over 10 Million requests per second [293]. Strong consistency ensures
that the same view of an object is available to all readers instantly following a write oper-
ation to that object. Consistency properties were specified and verified using Dafny [209],
a verification-aware programming language which uses the Z3 automated theorem prover
for discharging proof obligations. To deal with continued evolution of the system, formal
verification activities are built into the development team’s continuous integration pipeline
and run before traditional testing [97].

3.7 Formal Methods for Hardware Design

In the design of modern circuits (e.g., processors, co-processors, systems on chip), the largest part
of the effort is dedicated to testing (which is usually called “verification” in this hardware domain)
and “formal verification” (which implies the use of formal methods). A fair estimation is that more
than 50% of the effort is dedicated to verification (formal or not) [72, 262], which is much higher
than what is typically observed in the software industry.

37https://www.amazon.science/blog/a-billion-smt-queries-a-day

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://www.amazon.science/blog/a-billion-smt-queries-a-day


Formal Methods in Industry 7:17

The main difference between hardware and software is the impossibility to apply late patches to
circuits, as usually done to fix bugs and design mistakes in software systems (such as the famous
“patch Tuesday” [74]). Some degree of patching is possible for processors, e.g., by releasing updates
for the firmware, or by embedding slow yet reliable fall-back algorithms, to be used as replacements
for modern, highly optimized algorithms if these happen to be wrong or cause run-time errors.
Yet, in most cases, patching circuits after they are shipped is nearly impossible (if these circuits are
embedded in larger systems) and very expensive. For instance, the design error in the Intel Sandy
Bridge chipset cost an estimated US$ 700 million [176].

Formal verification led to many success stories in the hardware-design industry, e.g., for check-
ing the correctness of implementations of instruction sets, for checking the many communication
protocols and distributed algorithms (as modern circuits heavily rely on concurrency), for check-
ing that code generation produces correct results (this is known as “equivalence checking”), for
checking that asynchronous logic performs well, and so on.

Theorem proving is instrumental in the design of correct circuits. For instance, the ACL2 theo-
rem prover38 [190, 191] has been used by companies such as AMD, Arm, Centaur Technology, IBM,
Intel, Oracle, and Collins Aerospace. For example, it gave a formal proof that the security policy of
the Rockwell Collins AAMP7 microprocessor enforces a static separation kernel and is thus able
to concurrently process information ranging from unclassified to top secret [155, 165].

Model checking also plays an important role in hardware verification. For instance, the Murϕ
model checker [115, 285] and its many derivatives have been helpful for checking cache-coherence
and security protocols. Also, the CADP model-checking toolbox [136] has been used by hardware
companies such as Bull, CEA/Leti, STMicroelectronics, and Tiempo in numerous case studies (cf.,
e.g., [60, 101, 196, 202, 221, 301]).

CAD tool vendors (e.g., Cadence and Synopsis) provide tools that, to a certain extent, embody
formal methods under the hood. High-level languages such as VHDL or SystemVerilog are used to
describe the components, while languages based on temporal logic, such as SVA or PSL, are used to
describe the expected properties. Further dissemination of formal methods in the hardware indus-
try is currently limited by the insufficient number of experts, an issue that is addressed in various
ways: in-house training by experienced engineers, tutorials given by CAD tool vendors, and—more
recently—specific training delivered by small, dedicated service companies.39 In [81], the specific
shortage of verification engineers in the hardware design domain of microelectronics is addressed,
emphasizing the importance of teaching the “verification mindset,” accelerating the learning curve
for verification techniques, and incorporating new paradigms like AI into the verification process.

3.8 Formal Methods for Lithography Manufacturing

ASML40 is one of the world’s leading manufacturers of chip-making equipment, such as lithogra-
phy machines which drive Moore’s Law [229] forward. Lithography machines are complex cyber-
physical systems which use light to print tiny patterns on silicon; a fundamental step in mass
producing microchips.

ASML’s lithography machines aim to print microchip patterns as accurately and consistently as
possible, even in high-volume manufacturing environments. Reliable chip manufacturing requires
extremely tailored processes for each customer, so any unexpected change — even an improve-
ment — comes at a cost. To make ASML’s lithography systems run reliably and consistently ASML
needs software that sends unambiguous instructions in every situation to the carefully engineered

38The Boyer–Moore theorem prover, a precursor to ACL2, received the 2005 ACM Software System Award.
39Cf., e.g., https://aedvices.com
40https://asml.com

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://aedvices.com
https://asml.com


7:18 M. H. ter Beek et al.

hardware. One way that ASML ensures this is by formally verifying (model checking) the specified
machine behaviour and automatically generating correct and semantically equivalent code from
those models [54].

To this aim, ASML uses the Coco platform,41 which integrates the imperative programming lan-
guage Coco, designed for (a)synchronous event-driven software systems based on state machines,
with the model checker Cosmos, designed to formally verify Coco programs (e.g., absence of dead-
locks, livelocks, and race conditions, responsiveness, etc.), and is capable of generating executable
code. Cosmos uses a customized process model with respect to the FDR refinement model checker
for CSP that can be resolved without state-space explosion.

ASML applies this development methodology to systems ranging from high-level supervi-
sory machine control components to low-level drivers, by expressing behaviour in many asyn-
chronously communicating (via formally defined interfaces) state machines. Some of these state
machines have billions of states (reflecting the complexity of the machine’s behaviour), but even
in much smaller ones there are inherent risks of issues like deadlocks and race conditions. ASML’s
experience is that humans have difficulty overseeing all parallel behaviour of even the smaller
state machines. This is a potential risk to consistent machine operation and might even result in
downtime. Formal verification helps ASML engineers to uncover many of these notoriously hard-
to-find issues in an early development phase and has therefore become a critical and cost-effective
design aid for ASML.

Formally verifying all desired (e.g., end-to-end) properties is currently infeasible due to various
reasons, including the size and complexity of ASML’s systems. Therefore, ASML incorporates run-
time verification techniques in the testing process, which focus on aspects not already covered by
formal verification.

The more code that is generated from formally verified models, the less chance of customers
encountering bugs in ASML’s software. Although that rarely happens, ASML wants it to never
happen. By formally verifying more behaviour and more properties, ASML can get even closer to
that goal.

3.9 Formal Testing of Mobile Devices from Natural Language Requirements and

Other Stories from Brazil

Motorola Mobility, a Lenovo Company, has a partnership of over two decades with the Federal
University of Pernambuco, in Brazil, to conceive a sound, automated, and industrial-scale testing
strategy that can be applied in the mobile device domain. In the period from November 2022 to No-
vember 2023, Motorola was ranked second in the mobile vendor market share in Brazil42 and eighth
worldwide.43 This is clearly not a safety-critical domain but rather a mission-critical domain, in the
sense that escaped defects can severely affect the reputation of the company and cause significant
financial losses. The overall strategy was implemented in a tool named TaRGeT [129]. It has been
used by some Motorola teams that reported gains between 40% and 50% in productivity related to
the overall testing process [130, 242]. Prior to this cooperation, testing was mainly a manual task
in Motorola. Currently, Motorola instead adopts a formal, model-based, testing approach based on
hidden formal methods.

The input to the developed testing strategy [243] is a text document written in a Controlled
Natural Language (CNL), suitable for writing requirements, use cases and test cases, but with
formal syntax and semantics. Benefitting from natural language processing techniques, a formal

41https://cocotec.io/
42https://gs.statcounter.com/vendor-market-share/mobile/brazil
43https://gs.statcounter.com/vendor-market-share/mobile/worldwide

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://cocotec.io/
https://gs.statcounter.com/vendor-market-share/mobile/brazil
https://gs.statcounter.com/vendor-market-share/mobile/worldwide


Formal Methods in Industry 7:19

model (in CSP [171, 269]) is automatically derived from these requirements. Using the CSP model
checker FDR [143], test cases are automatically generated as CSP traces and then translated back
into CNL (for manual execution) or into scripts for several automation frameworks, for automated
execution. The defined formal conformance relation is cspio, a CSP-based conformance relation
distinguishing input and output based on the input/output conformance (ioco) implementation
relation for input/output labelled transition systems (IOLTS) [53], formalized in the traces model of
CSP. The reason for adopting an ioco-based relation is that ioco captures both partial specifications
(important in the context of testing mobile devices, as the testing is on a feature-by-feature basis)
and allows reduction of nondeterminism, also useful for allowing implementation choices. Many
variants of ioco have been proposed in the literature (e.g., uioco, mioco, wioco, and sioco) to deal
with under-specification, time, data, and so on. However, while model-based (conformance) testing
has been studied intensively, today only a few tools based on variants of the ioco conformance
relation are still maintained actively, such as TESTOR, implemented on top of CADP [220].

Typically, the underlying formal models of test case generation approaches are IOLTS or other
operational models. The main reason to use CSP as a semantic foundation for the project was
that CSP, being a process algebra, offers a variety of process operators, semantic models, and
process refinement notions. This provides a rich infrastructure to support the characterization
of test generation at a very high level of abstraction, and, particularly, agnostic to algorithms that
rely on the model structure. Test generation is accomplished using refinement assertions in the
CSP traces model. The initial generation strategy considered only control flow behaviour, but,
subsequently, it was straightforward to evolve it, in a conservative way, to incorporate data and
time as orthogonal aspects.. Concerning the time to generate the test cases, a tool like TaRGeT
is incomparably faster than designing test cases manually. Nevertheless, there are other activities
in the process, beyond test design, that need to be performed both in case the tests are designed
manually and when they are generated automatically. Particularly, the inspection phase takes a
significant amount of time.

Currently, more elaborate frameworks are being developed with the aim of covering the full
life cycle of test generation and execution. An exciting area for future investigation is the use of
robotic arms to automate test execution that needs human interaction, based on AI, as well as
voice, image, and natural language processing techniques.

Concerning other initiatives on the application of formal methods in Brazil, we single out a
cooperation with Embraer, a Brazilian commercial aircraft company that is currently one of the
largest in the world. This partnership has involved both formal verification using Simulink and
the probabilistic model checker PRISM [151] and rigorous approaches to software testing [79],
using so-called expanded data-flow reactive systems encoded as TIOTS, an alternative timed model
based on IOLTS and ioco. Another successful cooperation was the one with Bang & Olufsen (B &
O) in the context of the EU project COMPASS. The particular application was a verified design
of a leadership election protocol that ensures the absence of deadlock in the (possibly dynamic)
configuration of a network of B & O audio and video equipments [8], using CSP and the model
checker FDR.

4 Educating for Formal Methods in Industry

It is our firm belief that formal methods, from formal specification to refinement and verifica-
tion, constitute a core knowledge area in Computer Science with widespread relevance in many
of today’s innovative applications, like reliable autonomous vehicles and (robotic) systems, in a
society that increasingly relies on software. Yet in most of today’s Computer Science curricula,
discrete mathematics and logic courses are often perceived by Computer Science students as early
challenges in their education, apparently disconnected from modern programming languages. “A

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.



7:20 M. H. ter Beek et al.

knowledge area directly focused on formal methods can help contextualize discrete mathemat-
ics courses for students, and can demonstrate why such courses are taught so early as a starting
foundation for a solid computer science education” [70].

Formal methods do not appear in CS2023, the ACM/IEEE-CS/AAAI Computer Science Curric-
ula44 [197], to the extent that reflects their pivotal role in Computer Science and the benefits
that formal methods education can bring to industry. CS2023 encompasses 17 knowledge areas.45

In [34, 70, 118], it is argumented that eight of them are related to formal methods. Here we list
these areas and provide suggestions for what to teach in relation with formal methods:

Algorithmic Foundations Teach to reason (at least informally) about the correctness of the
classical algorithms (e.g., a bug was found in the TimSort sorting algorithm of the Java stan-
dard library using formal methods [153]).

Architecture and Organization Teach to validate the accuracy of hardware designs and that
the interface behaviour of (software and hardware) components in architectural designs ad-
here to their specifications (e.g., by verifying security requirements in hardware security
architectures [124]).

Artificial Intelligence Teach to capture the assumptions of the designs of deep neural net-
works as used in large language models as well as their verification or counterexample-based
retraining (e.g., with model checking or interactive theorem proving [71]).

Parallel and Distributed Computing Teach how to understand and justify the correctness
of systems in the presence of the topics addressed in this knowledge area (e.g., program paral-
lelisation, atomicity, concurrency, progress, deadlocks, faults, safety, and liveness), which in
essence lists formal methods as a prerequisite (viz., logic, discrete mathematics, and software
engineering foundations).

Security Teach how to understand vulnerabilities of, and threats against, software systems,
algorithms and protocols, ensuring resilience against attacks and providing assurance of
security properties (including concepts like privacy, cryptography, and encryption proper-
ties [96]).

Software Development Fundamentals Teach to reason (at least informally) about the cor-
rectness of programs (e.g., by specifying requirements and justifying why these are met by
the proposed program [230]) and to understand how algorithms impact the performance of
programs.

Databases Teach description logic for reasoning on data management (e.g., expressing ontolo-
gies, integrating multiple data sources, and expressing and evaluating queries [59]).

Software Engineering Teach formal methods, which is actually recommended in this knowl-
edge area (defined as “mathematically rigorous mechanisms to apply to software, from spec-
ification to verification”) as a non-core knowledge unit with suggested learning outcomes
like “describe the role formal specification and analysis techniques can play in the develop-
ment of complex software and compare their use as validation and verification techniques
with testing” and “apply formal specification and analysis techniques to software designs
and programs with low complexity,” while testing is the primary validation technique in
other modules. As mentioned in Section 2.1, formal methods and testing are not mutually
exclusive.

We believe in the importance of formal methods, and in particular of the capacity to abstract and
mathematical reasoning that are taught as part of any formal methods course, as fundamental
Computer Science skills that industry would profit from when hiring computer scientists. This is

44https://csed.acm.org/
45https://csed.acm.org/knowledge-areas/

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://csed.acm.org/
https://csed.acm.org/knowledge-areas/


Formal Methods in Industry 7:21

highly relevant, since we have seen that formal methods are becoming widely applied in indus-
try. In Section 3, we have provided evidence of formal-methods applications in industry through
papers and testimonies from representatives who, either directly or indirectly, use or have used
formal methods in their industrial project endeavours. Importantly, they are spread geographically,
including Europe, Asia, North and South America, and involve well-known worldwide companies
such as Alstom, Amazon, ASML, Bang & Olufsen, Boeing, Collins Aerospace, Embraer, Facebook,
Google, Huawei, IBM, Intel, Microsoft, Motorola, Oracle, Siemens, and Volvo. The current offering
of formal methods in Computer Science education is inadequate because every Computer Sci-
ence graduate needs to be educated in formal methods, since they can support algorithmic prob-
lem solving, model-driven engineering, requirements engineering, security, software architecture,
software product lines, and many more areas of Computer Science, and they are applicable in
numerous industrial domains, not limited to safety-critical applications.

This is confirmed by the aforementioned recent survey among 130 experts in formal methods,
which also contained five questions on formal methods in education [138, Section 6: Formal Meth-
ods in Education]. The first two questions addressed the course level and the level of importance,
while further questions concerned the content of such courses. In particular, the first question
asked the experts to indicate the most suitable place for formal methods in an ideal teaching cur-
riculum: When and where should formal methods be taught? A convincing 79.2% responded “in
bachelor courses at the university.” The second question asked the experts about the situation
of formal methods in Computer Science education: What is your opinion on the level of impor-

tance currently attributed to teaching of formal methods at universities? Exactly 50% responded “not
enough attention” and 31.5% responded “sufficient attention, but scattered all over.” These results
indicate a consensus about the essential role of education to give the next generations of stu-
dents a sufficient background and practical experience in formal methods. This is of paramount
importance because in the same survey, 71.5% of the respondents identified as the single most
important limiting factor for a wider adoption of formal methods by industry the fact that “engi-
neers lack proper training in formal methods” [138, Section 5: Formal Methods in Industry]. This
conclusion is shared by a recent white paper [82], which advocates “the inclusion of a compul-
sory formal methods course in Computer Science and software engineering curricula” based on
the observation that “there is a lack of Computer Science graduates who are qualified to apply
formal methods in industry,” and by a recent textbook [268] on formal methods in software en-
gineering, which claims that “in computer science and software engineering education, Formal
Methods usually play a minor role only.” In the context of safety-critical and mission-critical appli-
cations, a very recent paper recognizes “an urgent need to emphasize and integrate Formal Meth-
ods into the undergraduate curriculum in Computer Science in the United States,” since “the lack
of a well-structured exposure to formal methods is a serious shortcoming in our computing cur-
ricula” [261]. The authors also provide several concrete suggestions for introducing the concepts
and use of formal methods into existing Computer Science curricula (e.g., Data Structures, Logic
circuit design, Concepts of programming languages, Software Engineering). “We cannot expect
graduates to become experts in program verification as professionals if they never encountered
the ideas as students.” The authors of [105] propose to approach formal methods already in basic
education (i.e., primary and secondary education) through five fundamental notions (viz., specifi-
cation, formalization, modelling, verification, and reasoning) and they report on their experience
in doing so (by means of gamification of transformation rules of typed graph grammars using
Pac-Man).

Support for teachers is available, for instance through recent textbooks on formal methods [43,
175, 240, 246, 268] and advanced lectures on formal methods [44–48, 263], but also via Formal

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.



7:22 M. H. ter Beek et al.

Methods Europe (FME)46 and the ERCIM working group on Formal Methods for Industrial Critical
Systems (FMICS).47

5 Conclusion

We have demonstrated that formal methods are important to quite a number of industry segments,
not limited to safety-critical domains, and we have made a case for the inclusion of formal methods
as a separate topic in Computer Science education. This strengthens the evidence put forward
in [70] for claiming that formal methods should be taught as a separate topic in undergraduate
curricula, not only because of their importance in industry but also because of the discipline they
instil in students as they learn to develop systems through abstraction and mathematical reasoning,
as demonstrated in [118, 261]. Moreover, we have shown that this can be done without displacing
the other “engineering” aspects of Computer Science already widely accepted as essential. On the
contrary, we have shown that formal methods have the potential to support and strengthen at
least 8 of the 17 knowledge areas of CS2023.

The formal methods community recently received support from a rather unexpected source. The
White House advocates the use of formal methods over testing for demonstrating the correctness
of software and considers it vital to make formal methods widely accessible to accelerate broad
adoption [297, Part II: Securing the Building Blocks of Cyberspace—Formal Methods]: “Given the
complexities of code, testing is a necessary but insufficient step in the development process to fully
reduce vulnerabilities at scale. If correctness is defined as the ability of a piece of software to meet
a specific security requirement, then it is possible to demonstrate correctness using mathemati-
cal techniques called formal methods. These techniques, often used to prove a range of software
outcomes, can also be used in a cybersecurity context and are viable even in complex environ-
ments like space. While formal methods have been studied for decades, their deployment remains
limited; further innovation in approaches to make formal methods widely accessible is vital to
accelerate broad adoption. Doing so enables formal methods to serve as another powerful tool
to give software developers greater assurance that entire classes of vulnerabilities, even beyond
memory safety bugs, are absent.” This report highlights static analysis and model checkers as spe-
cific examples of types of formal methods.

To conclude, creating correct software is an engineering problem and software development
should therefore be an engineering discipline. Mastering the complexity of software systems is a
formidable intellectual challenge and Computer Science graduates need to understand the power-
ful formal methods and tools that are available. Then they can choose the right technique and tool
for each task and with suitable humility deserve the title of Software Engineer.

Acknowledgments

Sadly, our co-author Rance Cleaveland passed away unexpectedly on March 27, 2024, during the
revision of this paper. Rance has written most of the Introduction and he was very passionate
about this paper:

“I wanted to, on the one hand, give a sense of the history of formal methods but also tie the rest
of the paper together. I also wanted to make a pedagogical point, which I don’t see right now in
the paper: that students who learn formal methods are better developers, because they learn to
think about correctness while they are building systems.”

“As to whether the point that FM is only for safety-critical system comes out in the rest of the
paper, I would say the safety-critical aspects still seem to dominate a bit, although other industrial

46https://fmeurope.org/
47https://fmics.inria.fr/

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://fmeurope.org/
https://fmics.inria.fr/


Formal Methods in Industry 7:23

applications also are apparent. However, having said that, I think the ACM CS curricula commit-
tee’s position is, frankly, silly. There are lots of things we teach in CS curricula that don’t have
“broad industrial relevance”: functional programming, computer architecture / organization, O(-)
notation, etc. And yet these topics are not controversial, because there is an agreement that stu-
dents who learn these topics are better computer scientists. Even if FM is *only* for safety-critical
systems, there is a great case to make for its inclusion in CS curricula.”

We honor Rance with this paper and acknowledge his seminal contributions to formal methods
and concurrency [284], in particular the development and application of process-algebraic mod-
elling and verification techniques and tools, like the Concurrency Workbenches [91–93].

Several domain experts provided us with useful information or feedback. June Andronick from
Proofcraft (Australia) checked the references to the formal verification of the seL4 general-purpose
commercial microkernel. Gunnar Smith from Prover Technology (Sweden) provided many mean-
ingful experiences from an engineer’s perspective and successful stories of Prover using formal
methods. Finally, we thank Manfred Broy and the four anonymous reviewers for their valuable
comments on earlier versions of this paper.

References

[1] Robert Abo and Laurent Voisin. 2013. Formal implementation of data validation for railway safety-related systems
with OVADO. In Revised Selected Papers of the SEFM 2013 Collocated Workshops: BEAT2, WS-FMDS, FM-RAIL-Bok,

MoKMaSD, and OpenCert (LNCS, Vol. 8368), Steve Counsell and Manuel Núñez (Eds.). Springer, Germany, 221–236.
https://doi.org/10.1007/978-3-319-05032-4_17

[2] Jean-Raymond Abrial. 1996. The B-Book: Assigning Programs to Meanings. Cambridge University Press, UK. https://
doi.org/10.1017/CBO9780511624162

[3] Jean-Raymond Abrial. 2010. Modeling in Event-B: System and Software Engineering. Cambridge University Press, UK.
https://doi.org/10.1017/CBO9781139195881

[4] Aeronautical Radio Inc. (ARINC) Airlines Electronic Engineering Committee. 2015. ARINC 653: Avionics Application
Software Standard Interface, Part 1 — Required Services. https://www.sae.org/standards/content/arinc653p1-4/

[5] Gul Agha and Karl Palmskog. 2018. A survey of statistical model checking. ACM Trans. Model. Comput. Simul. 28,
1 (2018), 6:1–6:39. https://doi.org/10.1145/3158668

[6] Ehsan Ahmad, Yunwei Dong, Brian R. Larson, Jidong Lü, Tao Tang, and Naijun Zhan. 2015. Behavior modeling and
verification of movement authority scenario of Chinese Train Control System using AADL. Sci. China Inf. Sci. 58,
11 (2015), 1–20. https://doi.org/10.1007/s11432-015-5346-2

[7] José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, and Simão Melo de Sousa. 2011. An overview of formal
methods tools and techniques. In Rigorous Software Development: An Introduction to Program Verification. Springer,
Germany, 15–44. https://doi.org/10.1007/978-0-85729-018-2_2

[8] Pedro R. G. Antonino, Marcel Medeiros Oliveira, Augusto C. A. Sampaio, Klaus E. Kristensen, and Jeremy W. Bryans.
2014. Leadership election: An industrial SoS application of compositional deadlock verification. In Proceedings of the

6th International NASA Formal Methods Symposium (NFM’14) (LNCS, Vol. 8430), Julia M. Badger and Kristin Y. Rozier
(Eds.). Springer, Germany, 31–45. https://doi.org/10.1007/978-3-319-06200-6_3

[9] Muhammad Atif and Jan Friso Groote. 2023. Understanding Behaviour of Distributed Systems Using mCRL2. Studies
in Systems, Decision and Control, Vol. 458. Springer, Germany. https://doi.org/10.1007/978-3-031-23008-0

[10] Ralph-Johan R. Back. 1980. Correctness Preserving Program Refinements: Proof Theory and Applications. Mathematical
Centre Tracts, Vol. 131. Mathematisch Centrum, The Netherlands.

[11] John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew Gacek, Kasper Søe Luckow, Neha Rungta,
Oksana Tkachuk, and Carsten Varming. 2018. Semantic-based automated reasoning for AWS access policies using
SMT. In Proceedings of the 18th Conference on Formal Methods in Computer-Aided Design (FMCAD’18), Nikolaj S.
Bjørner and Arie Gurfinkel (Eds.). IEEE, USA, 1–9. https://doi.org/10.23919/FMCAD.2018.8602994

[12] John Backes, Pauline Bolignano, Byron Cook, Andrew Gacek, Kasper Søe Luckow, Neha Rungta, Martin Schäf, Cole
Schlesinger, Rima Tanash, Carsten Varming, and Michael W. Whalen. 2019. One-click formal methods. IEEE Softw.

36, 6 (2019), 61–65. https://doi.org/10.1109/MS.2019.2930609
[13] Frédéric Badeau, Julien Chappelin, and Joris Lamare. 2022. Generating and verifying configuration data with OVADO.

In Proceedings of the 4th International Conference on Reliability, Safety, and Security of Railway Systems: Modelling,

Analysis, Verification, and Certification (RSSRail’22) (LNCS, Vol. 13294), Simon Collart-Dutilleul, Anne E. Haxthausen,
and Thierry Lecomte (Eds.). Springer, Germany, 143–148. https://doi.org/10.1007/978-3-031-05814-1_10

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://doi.org/10.1007/978-3-319-05032-4_17
https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1017/CBO9781139195881
https://www.sae.org/standards/content/arinc653p1-4/
https://doi.org/10.1145/3158668
https://doi.org/10.1007/s11432-015-5346-2
https://doi.org/10.1007/978-0-85729-018-2_2
https://doi.org/10.1007/978-3-319-06200-6_3
https://doi.org/10.1007/978-3-031-23008-0
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.1109/MS.2019.2930609
https://doi.org/10.1007/978-3-031-05814-1_10


7:24 M. H. ter Beek et al.

[14] Tom Badgett, Corey Sandler, and Glenford J. Myers. 2015. The Art of Software Testing. Wiley, UK. https://www.wiley.
com/en-gb/The+Art+of+Software+Testing%2C+3rd+Edition-p-x000565567

[15] Jos C. M. Baeten and W. Peter Weijland. 1990. Process Algebra. Cambridge Tracts in Theoretical Computer Science,
Vol. 18. Cambridge University Press, UK. https://doi.org/10.1017/CBO9780511624193

[16] Christel Baier, Luca de Alfaro, Vojtech Forejt, and Marta Kwiatkowska. 2018. Model checking probabilistic systems.
In Handbook of Model Checking, Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.).
Springer, Germany, 963–999. https://doi.org/10.1007/978-3-319-10575-8_28

[17] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. MIT Press, USA. https://mitpress.mit.edu/
9780262026499/principles-of-model-checking/

[18] Thomas Ball, Ella Bounimova, Rahul Kumar, and Vladimir Levin. 2010. SLAM2: Static driver verification with under
4% false alarms. In Proceedings of the 10th International Conference on Formal Methods in Computer-Aided Design

(FMCAD’10), Roderick Bloem and Natasha Sharygina (Eds.). IEEE, USA, 35–42. https://ieeexplore.ieee.org/document/
5770931/

[19] Thomas Ball, Ella Bounimova, Vladimir Levin, Rahul Kumar, and Jakob Lichtenberg. 2010. The static driver verifier
research platform. In Proceedings of the 22nd International Conference on Computer Aided Verification (CAV’10) (LNCS,

Vol. 6174), Tayssir Touili, Byron Cook, and Paul B. Jackson (Eds.). Springer, Germany, 119–122. https://doi.org/10.
1007/978-3-642-14295-6_11

[20] Thomas Ball, Sagar Chaki, and Sriram K. Rajamani. 2001. Parameterized verification of multithreaded software li-
braries. In Proceedings of the 7th International Conference on Tools and Algorithms for the Construction and Anal-

ysis of Systems (TACAS’01) (LNCS, Vol. 2031), Tiziana Margaria and Wang Yi (Eds.). Springer, Germany, 158–173.
https://doi.org/10.1007/3-540-45319-9_12

[21] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. 2011. A decade of software model checking with SLAM.
Commun. ACM 54, 7 (2011), 68–76. https://doi.org/10.1145/1965724.1965743

[22] Fabrizio Banci Buonamici, Gina Belmonte, Vincenzo Ciancia, Diego Latella, and Mieke Massink. 2020. Spatial logics
and model checking for medical imaging. Int. J. Softw. Tools Technol. Transf. 22, 2 (2020), 195–217. https://doi.org/10.
1007/s10009-019-00511-9

[23] Mário Baptista, Susanne Graf, Jean-Luc Richier, Luís E. T. Rodrigues, Carlos Rodriguez, Paulo Veríssimo, and Jacques
Voiron. 1991. Formal specification and verification of a network independent atomic multicast protocol. In Proceed-

ings of the 3rd IFIP TC6/WG6.1 International Conference on Formal Description Techniques for Distributed Systems and

Communication Protocols (FORTE’90), Juan Quemada, José A. Mañas, and Enrique Vázquez (Eds.). North-Holland,
The Netherlands, 345–352.

[24] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mo-
hamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying
Sheng, Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A versatile and industrial-strength SMT solver. In Proceedings of

the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’22)

(LNCS, Vol. 13243), Dana Fisman and Grigore Rosu (Eds.). Springer, Germany, 415–442. https://doi.org/10.1007/978-
3-030-99524-9_24

[25] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King, Andrew
Reynolds, and Cesare Tinelli. 2011. CVC4. In Proceedings of the 23rd International Conference on Computer Aided

Verification (CAV’11) (LNCS, Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer, Germany, 171–177.
https://doi.org/10.1007/978-3-642-22110-1_14

[26] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David Pichardie, and Alix Trieu.
2020. Formal verification of a constant-time preserving C compiler. Proc. ACM Program. Lang. 4, POPL (2020),
7:1–7:30. https://doi.org/10.1145/3371075

[27] Ezio Bartocci and Yliès Falcone (Eds.). 2018. Lectures on Runtime Verification: Introductory and Advanced Topics. LNCS,
Vol. 10457. Springer, Germany. https://doi.org/10.1007/978-3-319-75632-5

[28] Davide Basile, Alessandro Fantechi, Luigi Rucher, and Gianluca Mandò. 2021. Analysing an autonomous tramway
positioning system with the Uppaal statistical model checker. Form. Asp. Comput. 33, 6 (2021), 957–987. https://doi.
org/10.1007/s00165-021-00556-1

[29] Davide Basile, Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, Franco Mazzanti, Andrea Piattino, Daniele
Trentini, and Alessio Ferrari. 2018. On the industrial uptake of formal methods in the railway domain. In Proceedings

of the 14th International Conference on Integrated Formal Methods (iFM’18) (LNCS, Vol. 11023), Carlo A. Furia and
Kirsten Winter (Eds.). Springer, Germany, 20–29. https://doi.org/10.1007/978-3-319-98938-9_2

[30] Davide Basile, Maurice H. ter Beek, Alessio Ferrari, and Axel Legay. 2022. Exploring the ERTMS/ETCS full moving
block specification: An experience with formal methods. Int. J. Softw. Tools Technol. Transf. 24, 3 (2022), 351–370.
https://doi.org/10.1007/s10009-022-00653-3

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://www.wiley.com/en-gb/The+Art+of+Software+Testing%2C+3rd+Edition-p-x000565567
https://doi.org/10.1017/CBO9780511624193
https://doi.org/10.1007/978-3-319-10575-8_28
https://mitpress.mit.edu/9780262026499/principles-of-model-checking/
https://ieeexplore.ieee.org/document/5770931/
https://doi.org/10.1007/978-3-642-14295-6_11
https://doi.org/10.1007/3-540-45319-9_12
https://doi.org/10.1145/1965724.1965743
https://doi.org/10.1007/s10009-019-00511-9
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1145/3371075
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/s00165-021-00556-1
https://doi.org/10.1007/978-3-319-98938-9_2
https://doi.org/10.1007/s10009-022-00653-3


Formal Methods in Industry 7:25

[31] Jan Baumeister, Bernd Finkbeiner, Sebastian Schirmer, Maximilian Schwenger, and Christoph Torens. 2020. RTLola
cleared for take-off: Monitoring autonomous aircraft. In Proceedings of the 32nd International Conference on Computer

Aided Verification (CAV’20) (LNCS, Vol. 12225), Shuvendu K. Lahiri and Chao Wang (Eds.). Springer, Germany, 28–39.
https://doi.org/10.1007/978-3-030-53291-8_3

[32] Maurice H. ter Beek. 2024. Formal methods and tools applied in the railway domain. In Proceedings of the

10th International Conference on Rigorous State Based Methods (ABZ’24) (LNCS, Vol. 14759), Silvia Bonfanti, An-
gelo Gargantini, Michael Leuschel, Elvinia Riccobene, and Patrizia Scandurra (Eds.). Springer, Germany, 3–21.
https://doi.org/10.1007/978-3-031-63790-2_1

[33] Maurice H. ter Beek, Arne Borälv, Alessandro Fantechi, Alessio Ferrari, Stefania Gnesi, Christer Löfving, and Franco
Mazzanti. 2019. Adopting formal methods in an industrial setting: The railways case. In Proceedings of the 3rd World

Congress on Formal Methods: The Next 30 Years (FM’19) (LNCS, Vol. 11800), Maurice H. ter Beek, Annabelle McIver,
and José N. Oliveira (Eds.). Springer, Germany, 762–772. https://doi.org/10.1007/978-3-030-30942-8_46

[34] Maurice H. ter Beek, Manfred Broy, and Brijesh Dongol. 2024. CS2023: The role of formal methods in computer
science education. ACM InRoads (2024).

[35] Maurice H. ter Beek and Alessio Ferrari. 2022. Empirical formal methods: Guidelines for performing empirical studies
on formal methods. Softw. 1, 4 (2022), 381–416. https://doi.org/10.3390/software1040017

[36] Maurice H. ter Beek, Stefania Gnesi, and Alexander Knapp. 2018. Formal methods for transport systems. Int. J. Softw.

Tools Technol. Transf. 20, 3 (2018), 355–358. https://doi.org/10.1007/s10009-018-0487-4
[37] Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. 1999. Météor: A successful application of B in a

large project. In Proceedings of the 1st World Congress on Formal Methods in the Development of Computing Systems

(FM’99) (LNCS, Vol. 1708), Jeannette M. Wing, Jim Woodcock, and Jim Davies (Eds.). Springer, Germany, 369–387.
https://doi.org/10.1007/3-540-48119-2_22

[38] Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier Lime. 2007.
UPPAAL-Tiga: Time for playing games!. In Proceedings of the 19th International Conference on Computer Aided

Verification (CAV’07) (LNCS, Vol. 4590), Werner Damm and Holger Hermanns (Eds.). Springer, Germany, 121–125.
https://doi.org/10.1007/978-3-540-73368-3_14

[39] Gerd Behrmann, Alexandre David, Kim G. Larsen, John Håkansson, Paul Pettersson, Wang Yi, and Martijn Hen-
driks. 2006. UPPAAL 4.0. In Proceedings of the 3rd International Conference on the Quantitative Evaluation of Systems

(QEST’06). IEEE, USA, 125–126. https://doi.org/10.1109/QEST.2006.59
[40] Dimitri Belli, Alessandro Fantechi, Stefania Gnesi, Laura Masullo, Frando Mazzanti, Lisa Quadrini, Daniele Trentini,

and Carlo Vaghi. 2023. The 4SECURail case study on rigorous standard interface specifications. In Proceedings of

the 28th International Conference on Formal Methods for Industrial Critical Systems (FMICS’23) (LNCS, Vol. 14290),
Alessandro Cimatti and Laura Titolo (Eds.). Springer, Germany, 22–39. https://doi.org/10.1007/978-3-031-43681-9_2

[41] Gina Belmonte, Giovanna Broccia, Vincenzo Ciancia, Diego Latella, and Mieke Massink. 2021. Feasibility of spatial
model checking for nevus segmentation. In Proceedings of the 9th IEEE/ACM International Conference on Formal

Methods in Software Engineering (FormaliSE’21). IEEE, USA, 1–12. https://doi.org/10.1109/FormaliSE52586.2021.00007
[42] Gina Belmonte, Vincenzo Ciancia, Diego Latella, Mieke Massink, Michelangelo Biondi, Gianmarco De Otto, Valerio

Nardone, Giovanni Rubino, Eleonora Vanzi, and Fabrizio Banci Buonamici. 2017. A topological method for auto-
matic segmentation of glioblastoma in MR FLAIR for radiotherapy. Magn. Reson. Mater. Phys. Biol. Med. 30, Suppl 1
(2017), S437–S438. https://doi.org/10.1007/s10334-017-0634-z Proceedings of the 34th Annual Scientific Meeting of the

European Society for Magnetic Resonance in Medicine and Biology (ESMRMB’17).
[43] Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. 2017. Formal Methods for Discrete-Time Dynamical Systems.

Springer, Germany. https://doi.org/10.1007/978-3-319-50763-7
[44] Marco Bernardo and Alessandro Cimatti (Eds.). 2006. Formal Methods for Hardware Verification: Advanced Lectures

of the 6th International School on Formal Methods for the Design of Computer, Communication, and Software Systems

(SFM’06). LNCS, Vol. 3965. Springer, Germany. https://doi.org/10.1007/11757283
[45] Marco Bernardo, Vittorio Cortellessa, and Alfonso Pierantonio (Eds.). 2012. Formal Methods for Executable Software

Models: Advanced Lectures of the 12th International School on Formal Methods for the Design of Computer, Communica-

tion, and Software Systems (SFM’12). LNCS, Vol. 7320. Springer, Germany. https://doi.org/10.1007/978-3-642-30982-3
[46] Marco Bernardo, Ferruccio Damiani, Reiner Hähnle, Einar Broch Johnsen, and Ina Schaefer (Eds.). 2014. Formal

Methods for Executable Software Models: Advanced Lectures of the 14th International School on Formal Methods

for the Design of Computer, Communication, and Software Systems (SFM’14). LNCS, Vol. 8483. Springer, Germany.
https://doi.org/10.1007/978-3-319-07317-0

[47] Marco Bernardo and Jane Hillston (Eds.). 2007. Formal Methods for Performance Evaluation: Advanced Lectures of

the 7th International School on Formal Methods for the Design of Computer, Communication, and Software Systems

(SFM’07). LNCS, Vol. 4486. Springer, Germany. https://doi.org/10.1007/978-3-540-72522-0

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-031-63790-2_1
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.3390/software1040017
https://doi.org/10.1007/s10009-018-0487-4
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/978-3-031-43681-9_2
https://doi.org/10.1109/FormaliSE52586.2021.00007
https://doi.org/10.1007/s10334-017-0634-z
https://doi.org/10.1007/978-3-319-50763-7
https://doi.org/10.1007/11757283
https://doi.org/10.1007/978-3-642-30982-3
https://doi.org/10.1007/978-3-319-07317-0
https://doi.org/10.1007/978-3-540-72522-0


7:26 M. H. ter Beek et al.

[48] Marco Bernardo, Rocco De Nicola, and Jane Hillston (Eds.). 2016. Formal Methods for the Quantitative Evaluation of

Collective Adaptive Systems: Advanced Lectures of the 16th International School on Formal Methods for the Design of

Computer, Communication, and Software Systems (SFM’16). LNCS, Vol. 9700. Springer, Germany. https://doi.org/10.
1007/978-3-319-34096-8

[49] Gérard Berry, Amar Bouali, Xavier Fornari, Emmanuel Ledinot, Eric Nassor, and Robert de Simone. 2000. ESTEREL:
A formal method applied to avionic software development. Sci. Comput. Program. 36, 1 (2000), 5–25. https://doi.org/
10.1016/S0167-6423(99)00015-5

[50] Antonia Bertolino. 2007. Software testing research: Achievements, challenges, dreams. In Proceedings of the ICSE

2007 Workshop on the Future of Software Engineering (FoSE’07), Lionel C. Briand and Alexander L. Wolf (Eds.). IEEE,
USA, 85–103. https://doi.org/10.1109/FOSE.2007.25

[51] Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program Development — Coq’Art: The Calculus

of Inductive Constructions. Springer, Germany. https://doi.org/10.1007/978-3-662-07964-5
[52] Aysu Betin Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, and Stefan Topp. 2007. Eliminating synchronization

faults in air traffic control software via design for verification with concurrency controllers. Autom. Softw. Eng. 14,
2 (2007), 129–178. https://doi.org/10.1007/s10515-007-0008-2

[53] Machiel van der Bijl, Arend Rensink, and Jan Tretmans. 2003. Compositional testing with ioco. In Proceedings of

the 3rd International Workshop on Formal Approaches to Testing of Software (FATES’03) (LNCS, Vol. 2931), Alexandre
Petrenko and Andreas Ulrich (Eds.). Springer, Germany, 86–100. https://doi.org/10.1007/978-3-540-24617-6_7

[54] Lewis Binns. 2023. By Computers, for Computers: Improving Scanner Metrology Software with Generated Code.
https://www.linkedin.com/pulse/computers-improving-scanner-metrology-software-code-lewis/

[55] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. 2006. Formal verification of a C compiler front-end. In Proceedings

on the 14th International Symposium on Formal Methods (FM’06) (LNCS, Vol. 4085), Jayadev Misra, Tobias Nipkow, and
Emil Sekerinski (Eds.). Springer, Germany, 460–475. https://doi.org/10.1007/11813040_31

[56] Hans Blom, Henrik Lönn, Frank Hagl, Yiannis Papadopoulos, Mark-Oliver Reiser, Carl-Johan Sjöstedt, De-Jiu Chen,
and Ramin Tavakoli Kolagari. 2013. EAST-ADL – An Architecture Description Language for Automotive Software-

Intensive Systems. White Paper. https://maenad.eu/public/conceptpresentations/EAST-ADL_WhitePaper_M2.1.12.
pdf

[57] Tommaso Bolognesi and Ed Brinksma. 1987. Introduction to the ISO specification language LOTOS. Comput. Netw.

14 (1987), 25–59. https://doi.org/10.1016/0169-7552(87)90085-7
[58] Paulo Borba, Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock (Eds.). 2010. Testing Techniques in Software En-

gineering: Revised Lectures of the 2nd Pernambuco Summer School on Software Engineering (PSSE’07). LNCS, Vol. 6153.
Springer, Germany. https://doi.org/10.1007/978-3-642-14335-9

[59] Alexander Borgida, Maurizio Lenzerini, and Riccardo Rosati. 2007. Description logics for databases. In The Description

Logic Handbook: Theory, Implementation, and Applications, Franz Baader, Diego Calvanese, Deborah L. McGuinness,
Daniele Nardi, and Peter F. Patel-Schneider (Eds.). Cambridge University Press, UK, Chapter 16, 500–524. https://
doi.org/10.1017/CBO9780511711787.018

[60] Aymane Bouzafour, Marc Renaudin, Hubert Garavel, Radu Mateescu, and Wendelin Serwe. 2018. Model-checking
synthesizable SystemVerilog descriptions of asynchronous circuits. In 24th IEEE International Symposium on Asyn-

chronous Circuits and Systems (ASYNC’18). IEEE, USA, 34–42. https://doi.org/10.1109/ASYNC.2018.00021
[61] Jonathan P. Bowen, Ricky W. Butler, David L. Dill, Robert L. Glass, David Gries, Anthony Hall, Michael G. Hinchey,

C. Michael Holloway, Daniel Jackson, Cliff B. Jones, Michael J. Lutz, David L. Parnas, John M. Rushby, Jeannette M.
Wing, and Pamela Zave. 1996. An invitation to formal methods. IEEE Comput. 29, 4 (1996), 16–30. https://doi.org/10.
1109/MC.1996.488298

[62] Jonathan P. Bowen and Michael G. Hinchey. 1995. Seven more myths of formal methods. IEEE Softw. 12, 4 (1995),
34–41. https://doi.org/10.1109/52.391826

[63] Jonathan P. Bowen and Michael G. Hinchey. 1995. Ten commandments of formal methods. IEEE Comput. 28, 4 (1995),
56–63. https://doi.org/10.1109/2.375178

[64] Jonathan P. Bowen and Michael G. Hinchey. 2006. Ten commandments of formal methods ...ten years later. IEEE

Comput. 39, 1 (2006), 40–48. https://doi.org/10.1109/MC.2006.35
[65] Jonathan P. Bowen and Victoria Stavridou. 1993. The industrial take-up of formal methods in safety-critical and

other areas: A perspective. In Proceedings of the 1st International Symposium of Formal Methods Europe (FME’93)

(LNCS, Vol. 670), Jim Woodcock and Peter Gorm Larsen (Eds.). Springer, Germany, 183–195. https://doi.org/10.1007/
BFb0024646

[66] Robert S. Boyer and J. Strother Moore. 1979. A Computational Logic Handbook. Perspectives in Computing, Vol. 23.
Academic Press, USA.

[67] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen Nguyen, Thomas Noll, and Marco Roveri. 2009.
The COMPASS approach: Correctness, modelling and performability of aerospace systems. In Proceedings of the 28th

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://doi.org/10.1007/978-3-319-34096-8
https://doi.org/10.1016/S0167-6423(99)00015-5
https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/s10515-007-0008-2
https://doi.org/10.1007/978-3-540-24617-6_7
https://www.linkedin.com/pulse/computers-improving-scanner-metrology-software-code-lewis/
https://doi.org/10.1007/11813040_31
https://maenad.eu/public/conceptpresentations/EAST-ADL_WhitePaper_M2.1.12.pdf
https://doi.org/10.1016/0169-7552(87)90085-7
https://doi.org/10.1007/978-3-642-14335-9
https://doi.org/10.1017/CBO9780511711787.018
https://doi.org/10.1109/ASYNC.2018.00021
https://doi.org/10.1109/MC.1996.488298
https://doi.org/10.1109/52.391826
https://doi.org/10.1109/2.375178
https://doi.org/10.1109/MC.2006.35
https://doi.org/10.1007/BFb0024646


Formal Methods in Industry 7:27

International Conference on Computer Safety, Reliability, and Security (SAFECOMP’09) (LNCS, Vol. 5775), Bettina Buth,
Gerd Rabe, and Till Seyfarth (Eds.). Springer, Germany, 173–186. https://doi.org/10.1007/978-3-642-04468-7_15

[68] Marco Bozzano, Alessandro Cimatti, Anthony Fernandes Pires, David Jones, Greg Kimberly, Tyler Petri, Richard
Robinson, and Stefano Tonetta. 2015. Formal design and safety analysis of AIR6110 wheel brake system. In Proceed-

ings of the 27th International Conference on Computer Aided Verification (CAV’15) (LNCS, Vol. 9206), Daniel Kroening
and Corina S. Pasareanu (Eds.). Springer, Germany, 518–535. https://doi.org/10.1007/978-3-319-21690-4_36

[69] Robert K. Brayton and Alan Mishchenko. 2010. ABC: An academic industrial-strength verification tool. In Proceedings

of the 22nd International Conference on Computer Aided Verification (CAV’10) (LNCS, Vol. 6174), Tayssir Touili, Byron
Cook, and Paul B. Jackson (Eds.). Springer, Germany, 24–40. https://doi.org/10.1007/978-3-642-14295-6_5

[70] Manfred Broy, Achim Brucker, Alessandro Fantechi, Mario Gleirscher, Klaus Havelund, Markus Alexander Kuppe,
Alexandra Mendes, André Platzer, Jan Ringert, and Allison Sullivan. 2024. Does every computer scientist need to
know formal methods? Form. Asp. Comput. (2024). https://doi.org/10.1145/36707

[71] Achim D. Brucker and Amy Stell. 2023. Verifying feedforward neural networks for classification in Isabelle/HOL. In
Proceedings of the 25th International Symposium on Formal Methods (FM’23) (LNCS, Vol. 14000), Marsha Chechik,
Joost-Pieter Katoen, and Martin Leucker (Eds.). Springer, Germany, 427–444. https://doi.org/10.1007/978-3-031-
27481-7_24

[72] Jean-Marie Brunet. 2023. A Systematic Approach to Verification & Validation Using Hardware-Assisted Verifi-
cation. Global Semiconductor Alliance. https://www.gsaglobal.org/forums/a-systematic-approach-to-verification-
validation-using-hardware-assisted-verification

[73] Antonio Bucchiarone, Jordi Cabot, Richard F. Paige, and Alfonso Pierantonio. 2020. Grand challenges in model-driven
engineering: An analysis of the state of the research. Softw. Syst. Model. 19, 1 (2020), 5–13. https://doi.org/10.1007/
S10270-019-00773-6

[74] Christopher Budd. 2013. Ten Years of Patch Tuesdays: Why It’s Time to Move On. GeekWire. https://www.geekwire.
com/2013/ten-years-patch-tuesdays-time-move/

[75] Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P. de Vink, Wieger Wesselink,
Anton Wijs, and Tim A. C. Willemse. 2019. The mCRL2 toolset for analysing concurrent systems: Improvements
in expressivity and usability. In Proceedings of the 25th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’19) (LNCS, Vol. 11428), T. Vojnar and L. Zhang (Eds.). Springer, Germany,
21–39. https://doi.org/10.1007/978-3-030-17465-1_2

[76] Michael Butler, Thai Son Hoang, Alexander Raschke, and Klaus Reichl. 2020. Introduction to special section on
the ABZ 2018 case study: Hybrid ERTMS/ETCS Level 3. Int. J. Softw. Tools Technol. Transf. 22, 3 (2020), 249–255.
https://doi.org/10.1007/s10009-020-00562-3

[77] Michael Butler, Philipp Körner, Sebastian Krings, Thierry Lecomte, Michael Leuschel, Luis-Fernando Mejia, and Lau-
rent Voisin. 2020. The first twenty-five years of industrial use of the B-method. In Proceedings of the 25th International

Conference on Formal Methods for Industrial Critical Systems (FMICS’20) (LNCS, Vol. 12327), Maurice H. ter Beek and
Dejan Ničković (Eds.). Springer, Germany, 189–209. https://doi.org/10.1007/978-3-030-58298-2_8

[78] Ricky W. Butler, George E. Hagen, and Jeffrey M. Maddalon. 2013. The Chorus Conflict and Loss of Separation Resolu-

tion Algorithms. Technical Report NASA/TM–2013-218030. NASA. https://ntrs.nasa.gov/citations/20140001006
[79] Gustavo Carvalho, Ana Cavalcanti, and Augusto Sampaio. 2016. Modelling timed reactive systems from natural-

language requirements. Form. Asp. Comput. 28, 5 (2016), 725–765. https://doi.org/10.1007/S00165-016-0387-X
[80] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, Andrea Micheli, Sergio

Mover, Marco Roveri, and Stefano Tonetta. 2014. The nuXmv symbolic model checker. In Proceedings of the 26th

International Conference on Computer Aided Verification (CAV’14) (LNCS, Vol. 8559), Armin Biere and Roderick Bloem
(Eds.). Springer, Germany, 334–342. https://doi.org/10.1007/978-3-319-08867-9_22

[81] François Cerisier. 2023. How to Build the Future Verification Engineers? Verification Futures Confer-
ence (VF’23). https://www.tessolve.com/wp-content/uploads/2023/06/2-Francois-Cerisier-2023-How-to-build-the-
future-verification-engineers-Francois-Cerisier-AEDVICES-V1-1.pdf

[82] Antonio Cerone, Markus Roggenbach, James Davenport, Casey Denner, Marie Farrell, Magne Haveraaen, Faron
Moller, Philipp Körner, Sebastian Krings, Peter Csaba Ölveczky, Bernd-Holger Schlingloff, Nikolay Shilov, and Rus-
tam Zhumagambetov. 2021. Rooting formal methods within higher education curricula for computer science and
software engineering – a white paper. In Revised Selected Papers of the 1st International Workshop on Formal Meth-

ods – Fun for Everybody (FMFun’19) (CCIS, Vol. 1301), Antonio Cerone and Markus Roggenbach (Eds.). Springer,
Germany, 1–26. https://doi.org/10.1007/978-3-030-71374-4_1

[83] William Chan, Richard J. Anderson, Paul Beame, Steve Burns, Francesmary Modugno, David Notkin, and Jon Damon
Reese. 1998. Model checking large software specifications. IEEE Trans. Softw. Eng. 24, 7 (1998), 498–520. https://doi.
org/10.1109/32.708566

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://doi.org/10.1007/978-3-642-04468-7_15
https://doi.org/10.1007/978-3-319-21690-4_36
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1145/36707
https://doi.org/10.1007/978-3-031-27481-7_24
https://www.gsaglobal.org/forums/a-systematic-approach-to-verification-validation-using-hardware-assisted-verification
https://doi.org/10.1007/S10270-019-00773-6
https://www.geekwire.com/2013/ten-years-patch-tuesdays-time-move/
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/s10009-020-00562-3
https://doi.org/10.1007/978-3-030-58298-2_8
https://ntrs.nasa.gov/citations/20140001006
https://doi.org/10.1007/S00165-016-0387-X
https://doi.org/10.1007/978-3-319-08867-9_22
https://www.tessolve.com/wp-content/uploads/2023/06/2-Francois-Cerisier-2023-How-to-build-the-future-verification-engineers-Francois-Cerisier-AEDVICES-V1-1.pdf
https://doi.org/10.1007/978-3-030-71374-4_1
https://doi.org/10.1109/32.708566


7:28 M. H. ter Beek et al.

[84] Roderick Chapman and Florian Schanda. 2014. Are we there yet? 20 years of industrial theorem proving with SPARK.
In Proceedings of the 5th International Conference on Interactive Theorem Proving (ITP’14) (LNCS, Vol. 8558), Gerwin
Klein and Ruben Gamboa (Eds.). Springer, Germany, 17–26. https://doi.org/10.1007/978-3-319-08970-6_2

[85] Angelo Chiappini, Alessandro Cimatti, Luca Macchi, Oscar Rebollo, Marco Roveri, Angelo Susi, Stefano Tonetta,
and Berardino Vittorini. 2010. Formalization and validation of a subset of the European Train Control System. In
Proceedings of the 32nd International Conference on Software Engineering (ICSE’10). ACM, USA, 109–118. https://doi.
org/10.1145/1810295.1810312

[86] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore, Marco Roveri,
Roberto Sebastiani, and Armando Tacchella. 2002. NuSMV 2: An opensource tool for symbolic model checking. In Pro-

ceedings of the 14th International Conference on Computer Aided Verification (CAV’02) (LNCS, Vol. 2404), Ed Brinksma
and Kim G. Larsen (Eds.). Springer, Germany, 359–364. https://doi.org/10.1007/3-540-45657-0_29

[87] Edmund M. Clarke and E. Allen Emerson. 1981. Design and synthesis of synchronization skeletons using branching-
time temporal logic. In Proceedings of the 1981 Workshop on Logics of Programs (LNCS, Vol. 131), Dexter Kozen (Ed.).
Springer, Germany, 52–71. https://doi.org/10.1007/BFB0025774

[88] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.). 2018. Handbook of Model Check-

ing. Springer, Germany. https://doi.org/10.1007/978-3-319-10575-8
[89] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. 2004. A tool for checking ANSI-C programs. In Proceedings

of the 10th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’04)

(LNCS, Vol. 2988), Kurt Jensen and Andreas Podelski (Eds.). Springer, Germany, 168–176. https://doi.org/10.1007/978-
3-540-24730-2_15

[90] Edmund M. Clarke, Jeannette M. Wing, et al. 1996. Formal methods: State of the art and future directions. ACM

Comput. Surv. 28, 4 (1996), 626–643. https://doi.org/10.1145/242223.242257
[91] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. 1993. The concurrency workbench: A semantics-based

tool for the verification of concurrent systems. ACM Trans. Program. Lang. Syst. 15, 1 (1993), 36–72. https://doi.org/
10.1145/151646.151648

[92] Rance Cleaveland, A. W. (Bill) Roscoe, and Scott A. Smolka. 2018. Process algebra and model checking. In Handbook

of Model Checking, Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.). Springer,
Germany, Chapter 32, 1149–1195. https://doi.org/10.1007/978-3-319-10575-8_32

[93] Rance Cleaveland and Steve Sims. 1996. The NCSU concurrency workbench. In Proceedings of the 8th International

Conference on Computer Aided Verification (CAV’96) (LNCS, Vol. 1102), Rajeev Alur and Thomas A. Henzinger (Eds.).
Springer, Germany, 394–397. https://doi.org/10.1007/3-540-61474-5_87

[94] Christian Colombo and Gordon J. Pace. 2022. Runtime Verification. Springer, Germany. https://doi.org/10.1007/978-
3-031-09268-8

[95] Mathieu Comptier, Michael Leuschel, Luis-Fernando Mejia, Julien Molinero Perez, and Mareike Mutz. 2019. Property-
based modelling and validation of a CBTC zone controller in Event-B. In Proceedings of the 3rd International Confer-

ence on Reliability, Safety, and Security of Railway Systems: Modelling, Analysis, Verification, and Certification (RSS-

Rail’19) (LNCS, Vol. 11495), Simon Collart-Dutilleul, Thierry Lecomte, and Alexander B. Romanovsky (Eds.). Springer,
Germany, 202–212. https://doi.org/10.1007/978-3-030-18744-6_13

[96] Byron Cook. 2018. Formal reasoning about the security of Amazon Web Services. In Proceedings of the 30th Inter-

national Conference on Computer Aided Verification (CAV’18) (LNCS, Vol. 10981), Hana Chockler and Georg Weis-
senbacher (Eds.). Springer, Germany, 38–47. https://doi.org/10.1007/978-3-319-96145-3_3

[97] Byron Cook. 2022. Automated Reasoning’s Scientific Frontiers. https://www.amazon.science/blog/automated-
reasonings-scientific-frontiers

[98] Byron Cook, Kareem Khazem, Daniel Kroening, Serdar Tasiran, Michael Tautschnig, and Mark R. Tuttle. 2018.
Model checking boot code from AWS data centers. In Proceedings of the 30th International Conference on Computer

Aided Verification (CAV’18) (LNCS, Vol. 10982), Hana Chockler and Georg Weissenbacher (Eds.). Springer, Germany,
467–486. https://doi.org/10.1007/978-3-319-96142-2_28

[99] Jodie Cook. 2023. Shiny Object Syndrome: The Biggest Problem for Today’s Entrepreneurs. Forbes. https://
www.forbes.com/sites/jodiecook/2023/02/20/shiny-object-syndrome-the-biggest-problem-for-todays-
entrepreneurs/?sh=5a90cb4b6709

[100] Thierry Coquand and Gérard P. Huet. 1985. Constructions: A higher order proof system for mechanizing mathemat-
ics. In Proceedings of the European Conference on Computer Algebra (EUROCAL’85) (LNCS, Vol. 203), Bruno Buchberger
(Ed.). Springer, Germany, 151–184. https://doi.org/10.1007/3-540-15983-5_13

[101] Nicolas Coste, Holger Hermanns, Etienne Lantreibecq, and Wendelin Serwe. 2009. Towards performance prediction
of compositional models in industrial GALS designs. In Proceedings of the 21st International Conference on Computer

Aided Verification (CAV’09) (LNCS, Vol. 5643), Ahmed Bouajjani and Oded Maler (Eds.). Springer, Germany, 204–218.
https://doi.org/10.1007/978-3-642-02658-4_18

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://doi.org/10.1007/978-3-319-08970-6_2
https://doi.org/10.1145/1810295.1810312
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/BFB0025774
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/242223.242257
https://doi.org/10.1145/151646.151648
https://doi.org/10.1007/978-3-319-10575-8_32
https://doi.org/10.1007/3-540-61474-5_87
https://doi.org/10.1007/978-3-031-09268-8
https://doi.org/10.1007/978-3-030-18744-6_13
https://doi.org/10.1007/978-3-319-96145-3_3
https://www.amazon.science/blog/automated-reasonings-scientific-frontiers
https://doi.org/10.1007/978-3-319-96142-2_28
https://www.forbes.com/sites/jodiecook/2023/02/20/shiny-object-syndrome-the-biggest-problem-for-todays-entrepreneurs/?sh=5a90cb4b6709
https://doi.org/10.1007/3-540-15983-5_13
https://doi.org/10.1007/978-3-642-02658-4_18


Formal Methods in Industry 7:29

[102] Jean-Pierre Courtiat, Piotr Dembinski, Gerard J. Holzmann, Luigi Logrippo, Harry Rudin, and Pamela Zave. 1996.
Formal methods after 15 years: Status and trends. Comput. Netw. ISDN Syst. 28, 13 (1996), 1845–1855. https://doi.org/
10.1016/0169-7552(96)00083-9

[103] Patrick Cousot. 2021. Principles of Abstract Interpretation. MIT Press, USA. https://mitpress.mit.edu/9780262044905/
principles-of-abstract-interpretation/

[104] Russ Cox, Robert Griesemer, Rob Pike, Ian Lance Taylor, and Ken Thompson. 2022. The Go programming language
and environment. Commun. ACM 65, 5 (2022), 70–78. https://doi.org/10.1145/3488716

[105] Braz Araujo da Silva Junior, Simone André da Costa Cavalheiro, Luciana Foss, and Júlia Veiga da Silva. 2023. Formal
specification in basic education: What does it take?. In Proceedings of the 53rd IEEE/ASEE International Conference on

Frontiers in Education (FIE’23). IEEE, USA, 1–9. https://doi.org/10.1109/FIE58773.2023.10343074
[106] James B. Dabney, Julia M. Badger, and Pavan Rajagopal. 2021. Adding a verification view for an autonomous

real-time system architecture. In Proceedings of the 2021 AIAA SciTech Forum. AIAA, USA, Article 0566, 12 pages.
https://doi.org/10.2514/6.2021-0566

[107] James B. Dabney, Julia M. Badger, and Pavan Rajagopal. 2023. Trustworthy autonomy for gateway vehicle system
manager. In Proceedings of the 14th IEEE Space Computing Conference (SCC’23). IEEE, USA, 57–62. https://doi.org/10.
1109/SCC57168.2023.00018

[108] Clara DaSilva, Babak Dehbonei, and Fernando Mejia. 1992. Formal specification in the development of industrial
applications: Subway speed control system. In Proceedings of the IFIP TC6/WG6.1 5th International Conference on

Formal Description Techniques for Distributed Systems and Communication Protocols (FORTE’92) (IFIP Transactions,

Vol. C-10), Michel Diaz and Roland Groz (Eds.). North-Holland, The Netherlands, 199–213.
[109] Alexandre David, Peter G. Jensen, Kim G. Larsen, Marius Mikucionis, and Jakob H. Taankvist. 2015. Uppaal Stratego.

In Proceedings of the 21st International Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’15) (LNCS, Vol. 9035), Christel Baier and Cesare Tinelli (Eds.). Springer, Germany, 206–211. https://doi.org/
10.1007/978-3-662-46681-0_16

[110] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, and Danny B. Poulsen. 2015. Uppaal SMC tutorial.
Int. J. Softw. Tools Technol. Transf. 17, 4 (2015), 397–415. https://doi.org/10.1007/S10009-014-0361-Y

[111] Julien Delange. 2017. AADL In Practice: Design and Validate the Architecture of Critical Systems. Reblochon, France.
[112] David Delmas and Jean Souyris. 2007. Astrée: From research to industry. In Proceedings of the 14th International Sym-

posium on Static Analysis (SAS’07) (LNCS, Vol. 4634), Hanne Riis Nielson and Gilberto Filé (Eds.). Springer, Germany,
437–451. https://doi.org/10.1007/978-3-540-74061-2_27

[113] Edsger W. Dijkstra. 1968. A constructive approach to the problem of program correctness. BIT Numer. Math. 8,
3 (1968), 174–186. https://doi.org/10.1007/BF01933419

[114] Edsger W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall, USA.
[115] David L. Dill. 1996. The Murphi verification system. In Proceedings of the 8th International Conference on Computer

Aided Verification (CAV’96) (LNCS, Vol. 1102), Rajeev Alur and Thomas A. Henzinger (Eds.). Springer, Germany,
390–393. https://doi.org/10.1007/3-540-61474-5_86

[116] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. 2019. Scaling static analyses at Face-
book. Commun. ACM 62, 8 (2019), 62–70. https://doi.org/10.1145/3338112

[117] Daniel Dollé, Didier Essamé, and Jérôme Falampin. 2003. B dans le transport ferroviaire: L’expérience de Siemens
Transportation Systems. Tech. Sci. Inform. 22, 1 (2003), 11–32. https://doi.org/10.3166/tsi.22.11-32

[118] Brijesh Dongol, Catherine Dubois, Stefan Hallerstede, Eric Hehner, Carroll Morgan, Peter Müller, Leila Ribeiro,
Alexandra Silva, Graeme Smith, and Erik de Vink. 2024. On formal methods thinking in computer science educa-
tion. Form. Asp. Comput. (2024). https://doi.org/10.1145/36704

[119] Parasara Sridhar Duggirala, Le Wang, Sayan Mitra, Mahesh Viswanathan, and César A. Muñoz. 2014. Temporal
precedence checking for switched models and its application to a parallel landing protocol. In Proceedings of the 19th

International Symposium on Formal Methods (FM’14) (LNCS, Vol. 8442), Cliff B. Jones, Pekka Pihlajasaari, and Jun Sun
(Eds.). Springer, Germany, 215–229. https://doi.org/10.1007/978-3-319-06410-9_16

[120] Bruno Dutertre. 2011. Probabilistic Analysis of Distributed Fault-Tolerant Systems. Technical Report NASA/CR–2011-
217090. NASA. https://ntrs.nasa.gov/citations/20110011564

[121] Didier Essamé and Daniel Dollé. 2007. B in large scale projects: The Canarsie Line CBTC experience. In Proceedings

of the 7th International Conference of B Users (B’07) (LNCS, Vol. 4355), Jacques Julliand and Olga Kouchnarenko (Eds.).
Springer, Germany, 252–254. https://doi.org/10.1007/11955757_21

[122] European Committee for Electrotechnical Standardization. 2011. CENELEC EN 50128: Railway Applications – Com-
munication, Signalling and Processing Systems – Software for Railway Control and Protection Systems. https://
standards.globalspec.com/std/1678027/cenelec-en-50128

[123] Marie Farrell, Matt Luckcuck, Oisín Sheridan, and Rosemary Monahan. 2022. FRETting about requirements: For-
malised requirements for an aircraft engine controller. In Proceedings of the 28th International Working Conference

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://doi.org/10.1016/0169-7552(96)00083-9
https://mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation/
https://doi.org/10.1145/3488716
https://doi.org/10.1109/FIE58773.2023.10343074
https://doi.org/10.2514/6.2021-0566
https://doi.org/10.1109/SCC57168.2023.00018
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/S10009-014-0361-Y
https://doi.org/10.1007/978-3-540-74061-2_27
https://doi.org/10.1007/BF01933419
https://doi.org/10.1007/3-540-61474-5_86
https://doi.org/10.1145/3338112
https://doi.org/10.3166/tsi.22.11-32
https://doi.org/10.1145/36704
https://doi.org/10.1007/978-3-319-06410-9_16
https://ntrs.nasa.gov/citations/20110011564
https://doi.org/10.1007/11955757_21
https://standards.globalspec.com/std/1678027/cenelec-en-50128


7:30 M. H. ter Beek et al.

on Requirements Engineering: Foundation for Software Quality (REFSQ’22) (LNCS, Vol. 13216), Vincenzo Gervasi and
Andreas Vogelsang (Eds.). Springer, Germany, 96–111. https://doi.org/10.1007/978-3-030-98464-9_9

[124] Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C. Myers, and G. Edward Suh. 2017. Verification of a practical
hardware security architecture through static information flow analysis. In Proceedings of the 22nd International

Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’17), Yunji Chen,
Olivier Temam, and John Carter (Eds.). ACM, USA, 555–568. https://doi.org/10.1145/3037697.3037739

[125] Alessio Ferrari, Alessandro Fantechi, Gianluca Magnani, Daniele Grasso, and Matteo Tempestini. 2013. The Metrô
Rio case study. Sci. Comput. Program. 78, 7 (2013), 828–842. https://doi.org/10.1016/j.scico.2012.04.003

[126] Alessio Ferrari, Franco Mazzanti, Davide Basile, and Maurice H. ter Beek. 2022. Systematic evaluation and usability
analysis of formal methods tools for railway signaling system design. IEEE Trans. Softw. Eng. 48, 11 (2022), 4675–4691.
https://doi.org/10.1109/TSE.2021.3124677

[127] Alessio Ferrari, Franco Mazzanti, Davide Basile, Maurice H. ter Beek, and Alessandro Fantechi. 2020. Comparing
formal tools for system design: A judgment study. In Proceedings of the 42nd International Conference on Software

Engineering (ICSE’20). ACM, USA, 62–74. https://doi.org/10.1145/3377811.3380373
[128] Alessio Ferrari and Maurice H. ter Beek. 2022. Formal methods in railways: A systematic mapping study. ACM

Comput. Surv. 55, 4 (2022), 69:1–69:37. https://doi.org/10.1145/3520480
[129] Felype Ferreira, Laís Neves, Michelle Silva, and Paulo Borba. 2010. TaRGeT: A Model Based Product Line Testing

Tool. Tools Session of the 1st Brazilian Conference on Software: Theory and Practice (CBSoft’10). https://twiki.cin.
ufpe.br/twiki/pub/SPG/SoftwareEstimationModels/TargetCBSOFT.pdf

[130] Larissa Ferreira, Sidney C. Nogueira, Lucas Lima, Liliane Fonseca, and Waldemar Ferreira. 2019. Initial findings on the
evaluation of a model-based testing tool in the test design process. In Proceedings of the 13th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM’19). IEEE, USA, 1–6. https://doi.org/10.1109/
ESEM.2019.8870140

[131] Predrag Filipovikj, Nesredin Mahmud, Raluca Marinescu, Cristina Seceleanu, Oscar Ljungkrantz, and Henrik Lönn.
2016. Simulink to UPPAAL statistical model checker: Analyzing automotive industrial systems. In Proceedings of the

21st International Symposium on Formal Methods (FM’16) (LNCS, Vol. 9995), John S. Fitzgerald, Constance L. Heitmeyer,
Stefania Gnesi, and Anna Philippou (Eds.). Springer, Germany, 748–756. https://doi.org/10.1007/978-3-319-48989-
6_46

[132] Michael Fisher, Viviana Mascardi, Kristin Y. Rozier, Bernd-Holger Schlingloff, Michael Winikoff, and Neil Yorke-
Smith. 2021. Towards a framework for certification of reliable autonomous systems. Auton. Agents Multi Agent Syst.

35, 1 (2021), 8:1–8:65. https://doi.org/10.1007/s10458-020-09487-2
[133] Robert W. Floyd. 1967. Assigning meanings to programs. In Proceedings of Symposia in Applied Mathematics (Math-

ematical Aspects of Computer Science, Vol. 19), J. T. Schwartz (Ed.). American Mathematical Society, USA, 19–32.
[134] Song Gao, Bohua Zhan, Depeng Liu, Xuechao Sun, Yanan Zhi, David N. Jansen, and Lijun Zhang. 2021. Formal

verification of consensus in the Taurus distributed database. In Proceedings of the 24th International Symposium on

Formal Methods (FM’21) (LNCS, Vol. 13047), Marieke Huisman, Corina S. Pasareanu, and Naijun Zhan (Eds.). Springer,
Germany, 741–751. https://doi.org/10.1007/978-3-030-90870-6_42

[135] Hubert Garavel and Susanne Graf. 2013. Formal Methods for Safe and Secure Computer Systems. BSI Study 875.
Bundesamt für Sicherheit in der Informationstechnik. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
Publikationen/Studien/formal_methods_study_875/formal_methods_study_875.html

[136] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. 2013. CADP 2011: A toolbox for the con-
struction and analysis of distributed processes. Int. J. Softw. Tools Technol. Transf. 15, 2 (2013), 89–107. https://
doi.org/10.1007/s10009-012-0244-z

[137] Hubert Garavel, Frédéric Lang, and Wendelin Serwe. 2017. From LOTOS to LNT. In ModelEd, TestEd, TrustEd (LNCS,

Vol. 10500), Joost-Pieter Katoen, Rom Langerak, and Arend Rensink (Eds.). Springer, Germany, 3–26. https://doi.org/
10.1007/978-3-319-68270-9_1

[138] Hubert Garavel, Maurice H. ter Beek, and Jaco van de Pol. 2020. The 2020 expert survey on formal methods. In
Proceedings of the 25th International Conference on Formal Methods for Industrial Critical Systems (FMICS’20) (LNCS,

Vol. 12327), Maurice H. ter Beek and Dejan Ničković (Eds.). Springer, Germany, 3–69. https://doi.org/10.1007/978-3-
030-58298-2_1

[139] Marco Gario, Alessandro Cimatti, Cristian Mattarei, Stefano Tonetta, and Kristin Y. Rozier. 2016. Model checking
at scale: Automated air traffic control design space exploration. In Proceedings of the 28th International Conference

on Computer Aided Verification (CAV’16) (LNCS, Vol. 9780), Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer,
Germany, 3–22. https://doi.org/10.1007/978-3-319-41540-6_1

[140] Stephen J. Garland and John V. Guttag. 1988. LP: The larch prover. In Proceedings of the 9th International Conference

on Automated Deduction (CADE’88) (LNCS, Vol. 310), Ewing L. Lusk and Ross A. Overbeek (Eds.). Springer, Germany,
748–749. https://doi.org/10.1007/BFB0012879

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://doi.org/10.1007/978-3-030-98464-9_9
https://doi.org/10.1145/3037697.3037739
https://doi.org/10.1016/j.scico.2012.04.003
https://doi.org/10.1109/TSE.2021.3124677
https://doi.org/10.1145/3377811.3380373
https://doi.org/10.1145/3520480
https://twiki.cin.ufpe.br/twiki/pub/SPG/SoftwareEstimationModels/TargetCBSOFT.pdf
https://doi.org/10.1109/ESEM.2019.8870140
https://doi.org/10.1007/978-3-319-48989-6_46
https://doi.org/10.1007/s10458-020-09487-2
https://doi.org/10.1007/978-3-030-90870-6_42
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/formal_methods_study_875/formal_methods_study_875.html
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-319-41540-6_1
https://doi.org/10.1007/BFB0012879


Formal Methods in Industry 7:31

[141] Dimitra Giannakopoulou, Falk Howar, Malte Isberner, Todd Lauderdale, Zvonimir Rakamaric, and Vishwanath Ra-
man. 2014. Taming test inputs for separation assurance. In Proceedings of the 29th ACM/IEEE International Conference

on Automated Software Engineering (ASE’14). ACM, USA, 373–384. https://doi.org/10.1145/2642937.2642940
[142] Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Julian Rhein, Johann Schumann, and Nija Shi.

2020. Formal requirements elicitation with FRET. In Joint Proceedings of the Co-Located Events of the 26th International

Conference on Requirements Engineering: Foundation for Software Quality (REFSQ-JP’20) (CEUR Proceedings, Vol. 2584),
Mehrdad Sabetzadeh, Andreas Vogelsang, Sallam Abualhaija, Markus Borg, Fabiano Dalpiaz, Maya Daneva, Nelly
Condori-Fernández, Xavier Franch, Davide Fucci, Vincenzo Gervasi, Eduard C. Groen, Renata S. S. Guizzardi, Andrea
Herrmann, Jennifer Horkoff, Luisa Mich, Anna Perini, and Angelo Susi (Eds.). CEUR-WS.org, Germany, 6 pages.
https://ceur-ws.org/Vol-2584/PT-paper4.pdf

[143] Thomas Gibson-Robinson, Philip J. Armstrong, Alexandre Boulgakov, and A. W. Roscoe. 2014. FDR3 – a modern
refinement checker for CSP. In Proceedings of the 20th International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems (TACAS’14) (LNCS, Vol. 8413), Erika Ábrahám and Klaus Havelund (Eds.). Springer,
Germany, 187–201. https://doi.org/10.1007/978-3-642-54862-8_13

[144] Mario Gleirscher and Diego Marmsoler. 2020. Formal methods in dependable systems engineering: A survey of
professionals from Europe and North America. Empir. Softw. Eng. 25, 6 (2020), 4473–4546. https://doi.org/10.1007/
s10664-020-09836-5

[145] Stefania Gnesi and Tiziana Margaria (Eds.). 2013. Formal Methods for Industrial Critical Systems: A Survey of Applica-

tions. Wiley, UK. https://doi.org/10.1002/9781118459898
[146] Patrice Godefroid. 2020. Fuzzing: Hack, art, and science. Commun. ACM 63, 2 (2020), 70–76. https://doi.org/10.1145/

3363824
[147] Patrice Godefroid, Jonathan de Halleux, Aditya V. Nori, Sriram K. Rajamani, Wolfram Schulte, Nikolai Tillmann,

and Michael Y. Levin. 2008. Automating software testing using program analysis. IEEE Softw. 25, 5 (2008), 30–37.
https://doi.org/10.1109/MS.2008.109

[148] Patrice Godefroid, Shuvendu K. Lahiri, and Cindy Rubio-González. 2011. Statically validating must summaries for
incremental compositional dynamic test generation. In Proceedings of the 18th International Symposium on Static

Analysis (SAS’11) (LNCS, Vol. 6887), Eran Yahav (Ed.). Springer, Germany, 112–128. https://doi.org/10.1007/978-3-
642-23702-7_12

[149] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated whitebox fuzz testing. In Proceedings

of the 15th Network and Distributed System Security Symposium (NDSS’08). The Internet Society, USA, 16 pages.
https://www.ndss-symposium.org/ndss2008/automated-whitebox-fuzz-testing/

[150] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2012. SAGE: Whitebox fuzzing for security testing. Com-

mun. ACM 55, 3 (2012), 40–44. https://doi.org/10.1145/2093548.2093564
[151] Adriano Gomes, Alexandre Mota, Augusto Sampaio, Felipe Ferri, and Edson Watanabe. 2012. Constructive model-

based analysis for safety assessment. Int. J. Softw. Tools Technol. Transf. 14, 6 (2012), 673–702. https://doi.org/10.1007/
S10009-012-0238-X

[152] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. 1979. Edinburgh LCF: A Mechanised Logic of

Computation. LNCS, Vol. 78. Springer, Germany. https://doi.org/10.1007/3-540-09724-4
[153] Stijn de Gouw, Frank S. de Boer, Richard Bubel, Reiner Hähnle, Jurriaan Rot, and Dominic Steinhöfel. 2019. Verifying

OpenJDK’s sort method for generic collections. J. Autom. Reason. 62, 1 (2019), 93–126. https://doi.org/10.1007/S10817-
017-9426-4

[154] Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel, and Reiner Hähnle. 2015. OpenJDK’s
Java.utils.Collection.sort() is broken: The good, the bad and the worst case. In Proceedings of the 27th International

Conference on Computer Aided Verification (CAV’15) (LNCS, Vol. 9206), Daniel Kroening and Corina S. Pasareanu
(Eds.). Springer, Germany, 273–289. https://doi.org/10.1007/978-3-319-21690-4_16

[155] David Greve, Matthew Wilding, and W. Mark Vanfleet. 2005. High assurance formal security policy modeling. In
Proceedings of the 17th Systems and Software Technology Conference (SSTC’05). IEEE, USA.

[156] Alex Groce, Klaus Havelund, Gerard J. Holzmann, Rajeev Joshi, and Ru-Gang Xu. 2014. Establishing flight software
reliability: Testing, model checking, constraint-solving, monitoring and learning. Ann. Math. Artif. Intell. 70, 4 (2014),
315–349. https://doi.org/10.1007/s10472-014-9408-8

[157] Jan Friso Groote and Mohammad Reza Mousavi. 2014. Modeling and Analysis of Communicating Systems. MIT Press,
USA. https://mitpress.mit.edu/9780262547871/modeling-and-analysis-of-communicating-systems/

[158] Rong Gu, Raluca Marinescu, Cristina Seceleanu, and Kristina Lundqvist. 2019. Towards a two-layer framework for
verifying autonomous vehicles. In Proceedings of the 11th International NASA Formal Methods Symposium (NFM’19)

(LNCS, Vol. 11460), Julia M. Badger and Kristin Yvonne Rozier (Eds.). Springer, Germany, 186–203. https://doi.org/10.
1007/978-3-030-20652-9_12

[159] Gérard Guiho and Claude Hennebert. 1990. SACEM software validation. In Proceedings of the 12th International

Conference on Software Engineering (ICSE’90). IEEE, USA, 186–191.

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://doi.org/10.1145/2642937.2642940
https://ceur-ws.org/Vol-2584/PT-paper4.pdf
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/s10664-020-09836-5
https://doi.org/10.1002/9781118459898
https://doi.org/10.1145/3363824
https://doi.org/10.1109/MS.2008.109
https://doi.org/10.1007/978-3-642-23702-7_12
https://www.ndss-symposium.org/ndss2008/automated-whitebox-fuzz-testing/
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1007/S10009-012-0238-X
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/S10817-017-9426-4
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/s10472-014-9408-8
https://mitpress.mit.edu/9780262547871/modeling-and-analysis-of-communicating-systems/
https://doi.org/10.1007/978-3-030-20652-9_12


7:32 M. H. ter Beek et al.

[160] George Hagen, Ricky Butler, and Jeffrey Maddalon. 2011. Stratway: A modular approach to strategic conflict resolu-
tion. In Proceedings of the 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. AIAA, USA,
Article 6892, 13 pages. https://doi.org/10.2514/6.2011-6892

[161] Anthony Hall. 1990. Seven myths of formal methods. IEEE Softw. 7, 5 (1990), 11–19. https://doi.org/10.1109/52.57887
[162] Anthony Hall. 2007. Realising the benefits of formal methods. J. Univers. Comput. Sci. 13, 5 (2007), 669–678. https://

doi.org/10.3217/jucs-013-05-0669
[163] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. 2004. Guide to Elliptic Curve Cryptography. Springer, Ger-

many. https://doi.org/10.1007/b97644
[164] Dominik Hansen, Michael Leuschel, Philipp Körner, Sebastian Krings, Thomas Naulin, Nader Nayeri, David Schnei-

der, and Frank Skowron. 2020. Validation and real-life demonstration of ETCS hybrid level 3 principles using a formal
B model. Int. J. Softw. Tools Technol. Transf. 22, 3 (2020), 315–332. https://doi.org/10.1007/s10009-020-00551-6

[165] David S. Hardin, Eric W. Smith, and William D. Young. 2006. A robust machine code proof framework for highly
secure applications. In Proceedings of the 6th International Workshop on the ACL2 Prover and its Applications (ACL2’06).
ACM, USA, 11–20. https://doi.org/10.1145/1217975.1217978

[166] David Harel. 1987. Statecharts: A visual formalism for complex systems. Sci. Comput. Program. 8, 3 (1987), 231–274.
https://doi.org/10.1016/0167-6423(87)90035-9

[167] John Harrison. 2023. s2n-bignum GitHub Repository. https://github.com/awslabs/s2n-bignum
[168] Hans-Dieter A. Hiep, Olaf Maathuis, Jinting Bian, Frank S. de Boer, and Stijn de Gouw. 2022. Verifying OpenJDK’s

LinkedList using KeY. Int. J. Softw. Tools Technol. Transf. 24, 5 (2022), 783–802. https://doi.org/10.1007/s10009-022-
00679-7

[169] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Derrick, Jeremy Dick, Marian Ghe-
orghe, Mark Harman, Kalpesh Kapoor, Paul J. Krause, Gerald Lüttgen, Anthony J. H. Simons, Sergiy A. Vilkomir,
Martin R. Woodward, and Hussein Zedan. 2009. Using formal specifications to support testing. ACM Comput. Surv.

41, 2 (2009), 9:1–9:76. https://doi.org/10.1145/1459352.1459354
[170] C. A. R. (Tony) Hoare. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10 (1969), 576–580.

https://doi.org/10.1145/363235.363259
[171] C. A. R. (Tony) Hoare. 1985. Communicating Sequential Processes. Prentice Hall, USA.
[172] Gerard J. Holzmann. 2003. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley, USA.
[173] Gerard J. Holzmann. 2014. Mars code. Commun. ACM 57I, 2 (2014), 64–73. https://doi.org/10.1145/2560217.2560218
[174] Marieke Huisman, Dilian Gurov, and Alexander Malkis. 2020. Formal Methods: From Academia to Industrial Prac-

tice – A Travel Guide. arXiv:2002.07279
[175] Marieke Huisman and Anton Wijs. 2023. Concise Guide to Software Verification: From Model Checking to Annotation

Checking. Springer, Germany. https://doi.org/10.1007/978-3-031-30167-4
[176] Intel. 2011. Intel Identifies Chipset Design Error, Implementing Solution. Press release. https://intc.com/news-events/

press-releases/detail/688/intel-identifies-chipset-design-error-implementing-solution
[177] International Electrotechnical Commission. 2023. IEC TC 107: Process Management for Avionics. https://www.iec.

ch/dyn/www/f?p=103:7:0::::FSP_ORG_ID:1304
[178] International Electrotechnical Commission. 2023. IEC TC 97: Electrical Installations for Lighting and Beaconing of

Aerodromes. https://www.iec.ch/dyn/www/f?p=103:7:0::::FSP_ORG_ID:1294
[179] International Organization for Standardization. 2018. ISO 26262: Road Vehicles — Functional Safety — Parts 1–12.

https://www.iso.org/standard/68383.html
[180] International Organization for Standardization and International Electrotechnical Commission. 2017. ISO/IEC 19514 -

Information Technology – Object Management Group Systems Modeling Language (OMG SysML). https://www.iso.
org/standard/65231.html

[181] Raj Jain. 1991. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Mea-

surement, Simulation, and Modeling. Wiley, UK. https://www.wiley.com/en-us/The+Art+of+Computer+Systems+
Performance+Analysis%3A+Techniques+for+Experimental+Design%2C+Measurement%2C+Simulation%2C+and+
Modeling-p-9780471503361

[182] Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni Kouskoulas, Ryan W. Gardner, Aurora C. Schmidt, Erik Zawadzki, and
André Platzer. 2015. A formally verified hybrid system for the next-generation airborne collision avoidance system.
In Proceedings of the 21st International Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’15) (LNCS, Vol. 9035), Christel Baier and Cesare Tinelli (Eds.). Springer, Germany, 21–36. https://doi.org/10.
1007/978-3-662-46681-0_2

[183] Hanru Jiang, Hongjin Liang, Siyang Xiao, Junpeng Zha, and Xinyu Feng. 2019. Towards certified separate compilation
for concurrent programs. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’19). ACM, USA, 111–125. https://doi.org/10.1145/3314221.3314595
[184] He Jifeng. 1994. From CSP to hybrid systems. In A Classical Mind: Essays in Honour of C. A. R. Hoare, A. W. (Bill)

Roscoe (Ed.). Prentice Hall, UK, 171–189.

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://doi.org/10.2514/6.2011-6892
https://doi.org/10.1109/52.57887
https://doi.org/10.3217/jucs-013-05-0669
https://doi.org/10.1007/b97644
https://doi.org/10.1007/s10009-020-00551-6
https://doi.org/10.1145/1217975.1217978
https://doi.org/10.1016/0167-6423(87)90035-9
https://github.com/awslabs/s2n-bignum
https://doi.org/10.1007/s10009-022-00679-7
https://doi.org/10.1145/1459352.1459354
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/2560217.2560218
https://arxiv.org/abs/2002.07279
https://doi.org/10.1007/978-3-031-30167-4
https://intc.com/news-events/press-releases/detail/688/intel-identifies-chipset-design-error-implementing-solution
https://www.iec.ch/dyn/www/f?p=103:7:0::::FSP_ORG_ID:1304
https://www.iec.ch/dyn/www/f?p=103:7:0::::FSP_ORG_ID:1294
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/65231.html
https://www.wiley.com/en-us/The+Art+of+Computer+Systems+Performance+Analysis%3A+Techniques+for+Experimental+Design%2C+Measurement%2C+Simulation%2C+and+Modeling-p-9780471503361
https://doi.org/10.1007/978-3-662-46681-0_2
https://doi.org/10.1145/3314221.3314595


Formal Methods in Industry 7:33

[185] Chris Johannsen, Phillip H. Jones, Brian Kempa, Kristin Y. Rozier, and Pei Zhang. 2023. R2U2 version 3.0: Re-
Imagining a toolchain for specification, resource estimation, and optimized observer generation for runtime ver-
ification in hardware and software. In Proceedings of the 35th International Conference on Computer Aided Veri-

fication (CAV’23) (LNCS, Vol. 13966), Constantin Enea and Akash Lal (Eds.). Springer, Germany, 483–497. https://
doi.org/10.1007/978-3-031-37709-9_23

[186] Chris Johannsen, Brian Kempa, Phillip H. Jones, Kristin Y. Rozier, and Tichakorn Wongpiromsarn. 2023. Impossible
made possible: Encoding intractable specifications via implied domain constraints. In Proceedings of the 28th Interna-

tional Conference on Formal Methods for Industrial Critical Systems (FMICS’23) (LNCS, Vol. 14290), Alessandro Cimatti
and Laura Titolo (Eds.). Springer, Germany, 151–169. https://doi.org/10.1007/978-3-031-43681-9_9

[187] Stephen C. Johnson. 1977. Lint, a C Program Checker. Technical Report 65. Bell Labs.
[188] Clifford B. Jones. 1991. Systematic Software Development using VDM (2 ed.). Prentice Hall, USA.
[189] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2021. Safe systems programming in Rust.

Commun. ACM 64, 4 (2021), 144–152. https://doi.org/10.1145/3418295
[190] Matt Kaufmann, Panagiotis Manolios, and J. Strother Moore. 2000. Computer-Aided Reasoning: An Approach. Ad-

vances in Formal Methods, Vol. 3. Springer, Germany. https://doi.org/10.1007/978-1-4615-4449-4
[191] Matt Kaufmann, Panagiotis Manolios, and J. Strother Moore (Eds.). 2000. Computer-Aided Reasoning: ACL2 Case

Studies. Advances in Formal Methods, Vol. 4. Springer, Germany. https://doi.org/10.1007/978-1-4757-3188-0
[192] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David A. Cock, Philip Derrin, Dhammika Elka-

duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2010.
seL4: Formal verification of an operating-system kernel. Commun. ACM 53, 6 (2010), 107–115. https://doi.org/10.
1145/1743546.1743574

[193] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David A. Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009.
seL4: Formal verification of an OS kernel. In Proceedings of the 22nd ACM Symposium on Operating Systems Princi-

ples (SOSP’09), Jeanna Neefe Matthews and Thomas E. Anderson (Eds.). ACM, USA, 207–220. https://doi.org/10.1145/
1629575.1629596

[194] Nikolai Kosmatov and Julien Signoles. 2016. Frama-C, A collaborative framework for C code verification: Tutorial
synopsis. In Proceedings of the 16th International Conference on Runtime Verification (RV’16) (LNCS, Vol. 10012), Yliès
Falcone and César Sánchez (Eds.). Springer, Germany, 92–115. https://doi.org/10.1007/978-3-319-46982-9_7

[195] Jörg Kreiker, Andrzej Tarlecki, Moshe Y. Vardi, and Reinhard Wilhelm. 2011. Modeling, analysis, and verification –
the formal methods manifesto 2010. Dagstuhl Manifestos 1, 1 (2011), 21–40. https://doi.org/10.4230/DAGMAN.1.1.21

[196] Abderahman Kriouile and Wendelin Serwe. 2015. Using a formal model to improve verification of a cache-coherent
system-on-chip. In Proceedings of the 21st International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS’15) (LNCS, Vol. 9035), Christel Baier and Cesare Tinelli (Eds.). Springer, Germany,
708–722. https://doi.org/10.1007/978-3-662-46681-0_62

[197] Amruth N. Kumar, Rajendra K. Raj, Sherif G. Aly, Monica D. Anderson, Brett A. Becker, Richard L. Blumenthal, Eric
Eaton, Susan L. Epstein, Michael Goldweber, Pankaj Jalote, Douglas Lea, Michael Oudshoorn, Marcelo Pias, Susan
Reiser, Christian Servin, Rahul Simha, Titus Winters, and Qiao Xiang. 2024. Computer Science Curricula 2023. ACM,
IEEE, and AAAI, USA. https://doi.org/10.1145/3664191

[198] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2007. Stochastic model checking. In Formal Methods

for Performance Evaluation: Advanced Lectures of the 7th International School on Formal Methods for the Design of

Computer, Communication, and Software Systems (SFM’07) (LNCS, Vol. 4486), Marco Bernardo and Jane Hillston (Eds.).
Springer, Germany, 220–270. https://doi.org/10.1007/978-3-540-72522-0_6

[199] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of probabilistic real-time
systems. In Proceedings of the 23rd International Conference on Computer Aided Verification (CAV’11) (LNCS, Vol. 6806),
Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer, Germany, 585–591. https://doi.org/10.1007/978-3-642-
22110-1_47

[200] Marta Z. Kwiatkowska and David Parker. 2012. Advances in probabilistic model checking. In Software Safety and

Security: Tools for Analysis and Verification, Tobias Nipkow, Orna Grumberg, and Benedikt Hauptmann (Eds.). NATO
Science for Peace and Security Series, Vol. 33. IOS Press, The Netherlands, 126–151. https://doi.org/10.3233/978-1-
61499-028-4-126

[201] Leslie Lamport. 1980. “Sometime” is sometimes “not never”: On the temporal logic of programs. In Proceedings of

the 7th ACM Symposium on Principles of Programming Languages (POPL’80). ACM, USA, 174–185. https://doi.org/10.
1145/567446.567463

[202] Etienne Lantreibecq and Wendelin Serwe. 2014. Formal analysis of a hardware dynamic task dispatcher with CADP.
Sci. Comput. Program. 80 (2014), 130–149. https://doi.org/10.1016/j.scico.2013.01.003

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://doi.org/10.1007/978-3-031-37709-9_23
https://doi.org/10.1007/978-3-031-43681-9_9
https://doi.org/10.1145/3418295
https://doi.org/10.1007/978-1-4615-4449-4
https://doi.org/10.1007/978-1-4757-3188-0
https://doi.org/10.1145/1743546.1743574
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/978-3-319-46982-9_7
https://doi.org/10.4230/DAGMAN.1.1.21
https://doi.org/10.1007/978-3-662-46681-0_62
https://doi.org/10.1145/3664191
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.3233/978-1-61499-028-4-126
https://doi.org/10.1145/567446.567463
https://doi.org/10.1016/j.scico.2013.01.003


7:34 M. H. ter Beek et al.

[203] Brian R. Larson, Patrice Chalin, and John Hatcliff. 2013. BLESS: Formal specification and verification of behaviors for
embedded systems with software. In Proceedings of the 5th International NASA Formal Methods Symposium (NFM’13)

(LNCS, Vol. 7871), Guillaume Brat, Neha Rungta, and Arnaud Venet (Eds.). Springer, Germany, 276–290. https://doi.
org/10.1007/978-3-642-38088-4_19

[204] Julia Lawall and Gilles Muller. 2018. Coccinelle: 10 years of automated evolution in the Linux kernel. In Proceedings

of the 2018 USENIX Annual Technical Conference (USENIX ATC’18). USENIX Association, USA, 601–613. https://www.
usenix.org/conference/atc18/presentation/lawall

[205] Julia Lawall and Gilles Muller. 2022. Automating program transformation with Coccinelle. In Proceedings of the

14th International NASA Formal Methods Symposium (NFM’22) (LNCS, Vol. 13260), Jyotirmoy V. Deshmukh, Klaus
Havelund, and Ivan Perez (Eds.). Springer, Germany, 71–87. https://doi.org/10.1007/978-3-031-06773-0_4

[206] Thierry Lecomte, Lilian Burdy, and Michael Leuschel. 2020. Formally checking large data sets in the railways.
arXiv:1210.6815 Proceedings of the Workshop on the Experience of and Advances in Developing Dependable Systems

in Event-B (DS-Event-B’12).
[207] Thierry Lecomte, David Déharbe, Étienne Prun, and Erwan Mottin. 2017. Applying a formal method in industry: A

25-year trajectory. In Proceedings of the 20th Brazilian Symposium on Formal Methods: Foundations and Applications

(SBMF’17) (LNCS, Vol. 10623), Simone Cavalheiro and José Fiadeiro (Eds.). Springer, Germany, 70–87. https://doi.org/
10.1007/978-3-319-70848-5_6

[208] Axel Legay, Anna Lukina, Louis-Marie Traonouez, Junxing Yang, Scott A. Smolka, and Radu Grosu. 2019. Statistical
model checking. In Computing and Software Science: State of the Art and Perspectives, Bernhard Steffen and Gerhard J.
Woeginger (Eds.). LNCS, Vol. 10000. Springer, Germany, 478–504. https://doi.org/10.1007/978-3-319-91908-9_23

[209] K. Rustan M. Leino. 2023. Program Proofs. MIT Press, USA. https://mitpress.mit.edu/9780262546232/program-proofs/
[210] Valentina Lenarduzzi, Fabiano Pecorelli, Nyyti Saarimäki, Savanna Lujan, and Fabio Palomba. 2023. A critical

comparison on six static analysis tools: Detection, agreement, and precision. J. Syst. Softw. 198 (2023), 111575.
https://doi.org/10.1016/J.JSS.2022.111575

[211] Michael Leuschel and Michael J. Butler. 2008. ProB: An automated analysis toolset for the B method. Int. J. Softw.

Tools Technol. Transf. 10, 2 (2008), 185–203. https://doi.org/10.1007/s10009-007-0063-9
[212] Michael Leuschel, Jérôme Falampin, Fabian Fritz, and Daniel Plagge. 2011. Automated property verification for large

scale B models with ProB. Form. Asp. Comput. 23, 6 (2011), 683–709. https://doi.org/10.1007/s00165-010-0172-1
[213] Nancy G. Leveson. 2017. The Therac-25: 30 years later. IEEE Comput. 50, 11 (2017), 8–11. https://doi.org/10.1109/MC.

2017.4041349
[214] Nancy G. Leveson and Clark S. Turner. 1993. An investigation of the Therac-25 accidents. IEEE Comput. 26, 7 (1993),

18–41. https://doi.org/10.1109/MC.1993.274940
[215] Henrik Lönn. 2019. Model based continuous integration of automotive embedded systems. In Proceedings of the 13th

MODPROD Workshop 2019: Cyber-Physical Product Development (Linköping Electronic Press Workshop and Conference

Collection, Vol. 21). Linköping University, Sweden, 36 pages. https://wcc.ep.liu.se/index.php/MODPROD/article/view/
116

[216] Nesredin Mahmud, Cristina Seceleanu, and Oscar Ljungkrantz. 2015. ReSA: An ontology-based requirement spec-
ification language tailored to automotive systems. In Proceedings of the 10th International Symposium on Industrial

Embedded Systems (SIES’15). IEEE, USA, 1–10. https://doi.org/10.1109/SIES.2015.7185035
[217] Nesredin Mahmud, Cristina Seceleanu, and Oscar Ljungkrantz. 2016. ReSA tool: Structured requirements specifica-

tion and SAT-based consistency-checking. In Proceedings of the 18th Federated Conference on Computer Science and

Information Systems (FedCSIS’16) (ACSIS, Vol. 8), Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki (Eds.).
IEEE, USA, 1737–1746. https://doi.org/10.15439/2016F404

[218] Raluca Marinescu, Henrik Kaijser, Marius Mikucionis, Cristina Seceleanu, Henrik Lönn, and Alexandre David. 2014.
Analyzing industrial architectural models by simulation and model-checking. In Revised Selected Papers of the 3rd

International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS’14) (CCIS, Vol. 476), Cyrille Artho and
Peter Csaba Ölveczky (Eds.). Springer, Germany, 189–205. https://doi.org/10.1007/978-3-319-17581-2_13

[219] Nadja Marko, Eike Möhlmann, Dejan Ničković, Jürgen Niehaus, Peter Priller, and Martijn Rooker. 2021. Challenges

of Engineering Safe and Secure Highly Automated Vehicles: Whitepaper. arXiv:2103.03544
[220] Lina Marsso, Radu Mateescu, and Wendelin Serwe. 2018. TESTOR: A modular tool for on-the-fly conformance test

case generation. In Proceedings of the 24th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’18) (LNCS, Vol. 10806), Dirk Beyer and Marieke Huisman (Eds.). Springer, Germany,
211–228. https://doi.org/10.1007/978-3-319-89963-3_13

[221] Radu Mateescu, Wendelin Serwe, Aymane Bouzafour, and Marc Renaudin. 2020. Modeling an asynchronous circuit
dedicated to the protection against physical attacks. In Proceedings of the 4th Workshop on Models for Formal Analysis

of Real Systems (MARS’20) (EPTCS, Vol. 316), Ansgar Fehnker and Hubert Garavel (Eds.). Open Publishing Association,
Australia, 200–239. https://doi.org/10.4204/EPTCS.316.8

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://doi.org/10.1007/978-3-642-38088-4_19
https://www.usenix.org/conference/atc18/presentation/lawall
https://doi.org/10.1007/978-3-031-06773-0_4
https://arxiv.org/abs/1210.6815
https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1007/978-3-319-91908-9_23
https://mitpress.mit.edu/9780262546232/program-proofs/
https://doi.org/10.1016/J.JSS.2022.111575
https://doi.org/10.1007/s10009-007-0063-9
https://doi.org/10.1007/s00165-010-0172-1
https://doi.org/10.1109/MC.2017.4041349
https://doi.org/10.1109/MC.1993.274940
https://wcc.ep.liu.se/index.php/MODPROD/article/view/116
https://doi.org/10.1109/SIES.2015.7185035
https://doi.org/10.15439/2016F404
https://doi.org/10.1007/978-3-319-17581-2_13
https://arxiv.org/abs/2103.03544
https://doi.org/10.1007/978-3-319-89963-3_13
https://doi.org/10.4204/EPTCS.316.8


Formal Methods in Industry 7:35

[222] Cristian Mattarei, Alessandro Cimatti, Marco Gario, Stefano Tonetta, and Kristin Y. Rozier. 2015. Comparing different
functional allocations in automated air traffic control design. In Proceedings of the 15th Conference on Formal Methods

in Computer-Aided Design (FMCAD’15), Roope Kaivola and Thomas Wahl (Eds.). IEEE, USA, 112–119. https://doi.org/
10.1109/FMCAD.2015.7542260

[223] Franco Mazzanti, Alessio Ferrari, and Giorgio O. Spagnolo. 2018. Towards formal methods diversity in railways: An
experience report with seven frameworks. Int. J. Softw. Tools Technol. Transf. 20, 3 (2018), 263–288. https://doi.org/10.
1007/s10009-018-0488-3

[224] Peter C. Mehlitz. 2008. Trust your model – verifying aerospace system models with Java™ pathfinder. In Proceedings

of the 29th IEEE Aerospace Conference (AERO’08). IEEE, USA, 1–11. https://doi.org/10.1109/AERO.2008.4526573
[225] John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for scalable synchronization on shared-memory

multiprocessors. ACM Trans. Comput. Syst. 9, 1 (1991), 21–65. https://doi.org/10.1145/103727.103729
[226] Bertrand Meyer. 2008. Seven principles of software testing. IEEE Comput. 41, 8 (2008), 99–101. https://doi.org/10.1109/

MC.2008.306
[227] Steven P. Miller. 2012. Lessons from twenty years of industrial formal methods. In Proceedings of the 20th High

Confidence Software and Systems Conference (HCSS’12). Cyber-Physical Systems Virtual Organization, USA, 25 pages.
http://cps-vo.org/node/3434

[228] Robin Milner. 1980. A Calculus of Communicating Systems. LNCS, Vol. 92. Springer, Germany. https://doi.org/10.1007/
3-540-10235-3

[229] Gordon E. Moore. 1965. Cramming more components onto integrated circuits. Electronics 38, 8 (1965), 114–117.
Reprinted in Proc. IEEE 86, 1 (1998), 82–85. https://doi.org/10.1109/jproc.1998.658762.

[230] Carroll Morgan. 1990. Programming from Specifications. Prentice-Hall, USA.
[231] Joseph M. Morris. 1987. A theoretical basis for stepwise refinement and the programming calculus. Sci. Comput.

Program. 9, 3 (1987), 287–306. https://doi.org/10.1016/0167-6423(87)90011-6
[232] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the 14th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’08) (LNCS, Vol. 4963), C. R.
Ramakrishnan and Jakob Rehof (Eds.). Springer, Germany, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[233] Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 theorem prover and programming language. In Proceed-

ings of the 28th International Conference on Automated Deduction (CADE’21) (LNCS, Vol. 12699), André Platzer and
Geoff Sutcliffe (Eds.). Springer, Germany, 625–635. https://doi.org/10.1007/978-3-030-79876-5_37

[234] Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels, and Benjamin Monate. 2013. Testing or formal
verification: DO-178C alternatives and industrial experience. IEEE Softw. 30, 3 (2013), 50–57. https://doi.org/10.1109/
MS.2013.43

[235] Cesar Munoz, Radu Siminiceanu, Victor A. Carreno, and Gilles Dowek. 2005. KB3D Reference Manual. Technical
Report NASA/TM-2005-213769. NASA. https://ntrs.nasa.gov/citations/20050186553

[236] César A. Muñoz, Victor Carreño, and Gilles Dowek. 2006. Formal analysis of the operational concept for the
small aircraft transportation system. In Rigorous Development of Complex Fault-Tolerant Systems (LNCS, Vol. 4157),
Michael J. Butler, Cliff B. Jones, Alexander B. Romanovsky, and Elena Troubitsyna (Eds.). Springer, Germany, 306–325.
https://doi.org/10.1007/11916246_16

[237] Anthony Narkawicz, César A. Muñoz, and Gilles Dowek. 2012. Provably correct conflict prevention bands algorithms.
Sci. Comput. Program. 77, 10-11 (2012), 1039–1057. https://doi.org/10.1016/j.scico.2011.07.002

[238] Monty Newborn. 2001. Automated Theorem Proving. Springer, Germany. https://doi.org/10.1007/978-1-4613-0089-2
[239] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Ama-

zon Web Services uses formal methods. Commun. ACM 58, 4 (2015), 66–73. https://doi.org/10.1145/2699417
[240] Flemming Nielson and Hanne Riis Nielson. 2019. Formal Methods: An Appetizer. Springer, Germany. https://doi.org/

10.1007/978-3-030-05156-3
[241] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel (Eds.). 2002. Isabelle/HOL: A Proof Assistant for Higher-

Order Logic. LNCS, Vol. 2283. Springer, Germany. https://doi.org/10.1007/3-540-45949-9
[242] Sidney Nogueira, Emanuela Cartaxo, Dante Torres, Eduardo Aranha, and Rafael Marques. 2011. Model based test

generation: An industrial experience. In Proceedings of the 1st Brazilian Workshop on Systematic and Automated

Software Testing (SAST’07). SBC, Brazil, 6 pages.
[243] Sidney Nogueira, Augusto Sampaio, and Alexandre Mota. 2014. Test generation from state based use case models.

Form. Asp. Comput. 26 (2014), 441–490. https://doi.org/10.1007/s00165-012-0258-z
[244] Jonas Oberhauser, Rafael Lourenco de Lima Chehab, Diogo Behrens, Ming Fu, Antonio Paolillo, Lilith Oberhauser,

Koustubha Bhat, Yuzhong Wen, Haibo Chen, Jaeho Kim, and Viktor Vafeiadis. 2021. VSync: Push-button verification
and optimization for synchronization primitives on weak memory models. In Proceedings of the 26th ACM Interna-

tional Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’21). ACM,
USA, 530–545. https://doi.org/10.1145/3445814.3446748

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://doi.org/10.1109/FMCAD.2015.7542260
https://doi.org/10.1007/s10009-018-0488-3
https://doi.org/10.1109/AERO.2008.4526573
https://doi.org/10.1145/103727.103729
https://doi.org/10.1109/MC.2008.306
http://cps-vo.org/node/3434
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1109/jproc.1998.658762
https://doi.org/10.1016/0167-6423(87)90011-6
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1109/MS.2013.43
https://ntrs.nasa.gov/citations/20050186553
https://doi.org/10.1007/11916246_16
https://doi.org/10.1016/j.scico.2011.07.002
https://doi.org/10.1007/978-1-4613-0089-2
https://doi.org/10.1145/2699417
https://doi.org/10.1007/978-3-030-05156-3
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/s00165-012-0258-z
https://doi.org/10.1145/3445814.3446748


7:36 M. H. ter Beek et al.

[245] Peter W. O’Hearn. 2020. Incorrectness logic. Proc. ACM Program. Lang. 4, POPL (2020), 10:1–10:32. https://doi.org/10.
1145/3371078

[246] Gerard O’Regan. 2017. Concise Guide to Formal Methods: Theory, Fundamentals and Industry Applications. Springer,
Germany. https://doi.org/10.1007/978-3-319-64021-1

[247] Ammar Osaiweran, Mathijs Schuts, Jozef Hooman, Jan Friso Groote, and Bart J. van Rijnsoever. 2016. Evaluating
the effect of a lightweight formal technique in industry. Int. J. Softw. Tools Technol. Transf. 18, 1 (2016), 93–108.
https://doi.org/10.1007/S10009-015-0374-1

[248] Sam Owre, John M. Rushby, and Natarajan Shankar. 1992. PVS: A prototype verification system. In Proceedings of

the 11th International Conference on Automated Deduction (CADE’92) (LNCS, Vol. 607), Deepak Kapur (Ed.). Springer,
Germany, 748–752. https://doi.org/10.1007/3-540-55602-8_217

[249] David L. Parnas. 2010. Really rethinking ‘formal methods’. IEEE Comput. 43, 1 (2010), 28–34. https://doi.org/10.1109/
MC.2010.22

[250] Zhaoguang Peng, Yu Lu, Alice Miller, Chris W. Johnson, and Tingdi Zhao. 2013. A probabilistic model checking
approach to analysing reliability, availability, and maintainability of a single satellite system. In Proceedings of the 7th

UKSim/AMSS European Modelling Symposium (EMS’13). IEEE, USA, 611–616. https://doi.org/10.1109/EMS.2013.102
[251] Ivan Perez, Frank Dedden, and Alwyn Goodloe. 2020. Copilot 3. Technical Report NASA/TM–2020–220587. NASA.

https://ntrs.nasa.gov/citations/20200003164
[252] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for conducting systematic mapping studies

in software engineering: An update. Inf. Softw. Technol. 64 (2015), 1–18. https://doi.org/10.1016/j.infsof.2015.03.007
[253] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. 2010. Copilot: A hard real-time runtime monitor. In

Proceedings of the 1st International Conference on Runtime Verification (RV’10) (LNCS, Vol. 6418), Howard Barringer,
Yliès Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon J. Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai
Tillmann (Eds.). Springer, Germany, 345–359. https://doi.org/10.1007/978-3-642-16612-9_26

[254] André Platzer. 2018. Logical Foundations of Cyber-Physical Systems. Springer, Germany. https://doi.org/10.1007/978-
3-319-63588-0

[255] André Platzer and Jan-David Quesel. 2008. KeYmaera: A hybrid theorem prover for hybrid systems (system descrip-
tion). In Proceedings of the 4th International Joint Conference on Automated Reasoning (IJCAR’08) (LNCS, Vol. 5195),
Alessandro Armando, Peter Baumgartner, and Gilles Dowek (Eds.). Springer, Germany, 171–178. https://doi.org/10.
1007/978-3-540-71070-7_15

[256] Amir Pnueli. 1977. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on Foundations of

Computer Science (FOCS’77). IEEE, USA, 46–57. https://doi.org/10.1109/SFCS.1977.32
[257] Radio Technical Commission for Aeronautics (RTCA). 1992. DO-178B: Software Considerations in Airborne Systems

and Equipment Certification. https://www.rtca.org/products/
[258] Radio Technical Commission for Aeronautics (RTCA). 2000. DO-254: Design Assurance Guidance for Airborne Elec-

tronic Hardware. https://www.rtca.org/products/
[259] Radio Technical Commission for Aeronautics (RTCA). 2011. DO-333: Formal Methods Supplement to DO-178C and

DO-278A. https://www.rtca.org/content/standards-guidance-materials
[260] Radio Technical Commission for Aeronautics (RTCA). 2012. DO-178C/ED-12C: Software Considerations in Airborne

Systems and Equipment Certification. https://www.rtca.org/products/
[261] Sarnath Ramnath and Stephen Walk. 2024. Structuring formal methods into the undergraduate computer science

curriculum. In Proceedings of the 16th International NASA Formal Methods Symposium (NFM’24) (LNCS, Vol. 14627),
Nathaniel Benz, Divya Gopinath, and Nija Shi (Eds.). Springer, Germany, 399–405. https://doi.org/10.1007/978-3-031-
60698-4_24

[262] Goutham Rao. 2022. Verification and Validation in VLSI. ChipEdge Technologies. https://chipedge.com/verification-
and-validation-in-vlsi

[263] Anne Remke and Mariëlle Stoelinga (Eds.). 2014. Stochastic Model Checking: Advanced Lectures of the International

Autumn School on Rigorous Dependability Analysis using Model Checking Techniques for Stochastic Systems (ROCKS’12).
LNCS, Vol. 8453. Springer, Germany. https://doi.org/10.1007/978-3-662-45489-3

[264] Alexandre Riazanov and Andrei Voronkov. 1999. Vampire. In Proceedings of the 16th International Conference on

Automated Deduction (CADE’99) (LNCS, Vol. 1632), Harald Ganzinger (Ed.). Springer, Germany, 292–296. https://doi.
org/10.1007/3-540-48660-7_26

[265] Xavier Rival and Kwangkeun Yi. 2020. Introduction to Static Analysis. MIT Press, USA. https://mitpress.mit.edu/
9780262043410/introduction-to-static-analysis/

[266] J. Alan Robinson and Andrei Voronkov (Eds.). 2001. Handbook of Automated Reasoning. Elsevier, The Netherlands.
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning

[267] Luis R. Rodriguez and Julia Lawall. 2015. Increasing automation in the backporting of Linux drivers using Coccinelle.
In Proceedings of the 11th European Dependable Computing Conference (EDCC’15). IEEE, USA, 132–143. https://doi.
org/10.1109/EDCC.2015.23

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://doi.org/10.1145/3371078
https://doi.org/10.1007/978-3-319-64021-1
https://doi.org/10.1007/S10009-015-0374-1
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1109/MC.2010.22
https://doi.org/10.1109/EMS.2013.102
https://ntrs.nasa.gov/citations/20200003164
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1109/SFCS.1977.32
https://www.rtca.org/products/
https://www.rtca.org/products/
https://www.rtca.org/content/standards-guidance-materials
https://www.rtca.org/products/
https://doi.org/10.1007/978-3-031-60698-4_24
https://chipedge.com/verification-and-validation-in-vlsi
https://doi.org/10.1007/978-3-662-45489-3
https://doi.org/10.1007/3-540-48660-7_26
https://mitpress.mit.edu/9780262043410/introduction-to-static-analysis/
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
https://doi.org/10.1109/EDCC.2015.23


Formal Methods in Industry 7:37

[268] Markus Roggenbach, Antonio Cerone, Bernd-Holger Schlingloff, Gerardo Schneider, and Siraj Ahmed Shaikh. 2022.
Formal Methods for Software Engineering: Languages, Methods, Application Domains. Springer, Germany. https://doi.
org/10.1007/978-3-030-38800-3

[269] A. W. (Bill) Roscoe. 1997. The Theory and Practice of Concurrency. Prentice Hall, USA.
[270] Kristin Y. Rozier. 2011. Linear temporal logic symbolic model checking. Comput. Sci. Rev. 5, 2 (2011), 163–203. https://

doi.org/10.1016/j.cosrev.2010.06.002
[271] Kristin Y. Rozier. 2016. Specification: The biggest bottleneck in formal methods and autonomy. In Proceedings of the

8th Working Conference on Verified Software: Theories, Tools, and Experiments (VSTTE’16) (LNCS, Vol. 9971), Marsha
Chechik and Sandrine Blazy (Eds.). Springer, Germany, 1–19. https://doi.org/10.1007/978-3-319-48869-1_2

[272] Kristin Y. Rozier. 2019. From simulation to runtime verification and back: Connecting single-run verification tech-
niques. In Proceedings of the 13th Spring Simulation Conference (SpringSim’19). IEEE, USA, 1–10. https://doi.org/10.
23919/SpringSim.2019.8732915

[273] Kristin Y. Rozier and Johann Schumann. 2017. R2U2: Tool overview. In Proceedings of the International Workshop

on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools (RV-CuBES’17)

(Kalpa Publications in Computing, Vol. 3), Giles Reger and Klaus Havelund (Eds.). EasyChair, UK, 138–156. https:
//doi.org/10.29007/5pch

[274] Harry Rudin, Colin H. West, and Pitro Zafiropulo. 1978. Automated protocol validation: One chain of development.
Comput. Networks 2 (1978), 373–380. https://doi.org/10.1016/0376-5075(78)90016-8

[275] Neha Rungta. 2022. A billion SMT queries a day. In Proceedings of the 34th International Conference on Computer

Aided Verification (CAV’22) (LNCS, Vol. 13371), Sharon Shoham and Yakir Vizel (Eds.). Springer, Germany, 3–18.
https://doi.org/10.1007/978-3-031-13185-1_1

[276] John Rushby. 1993. Formal Methods and the Certification of Critical Systems. Technical Report SRI-CSL-93-7. Com-
puter Science Laboratory, SRI International. http://www.csl.sri.com/papers/csl-93-7/

[277] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg, and Collin Winter. 2015. Tricorder: Building a
program analysis ecosystem. In Proceedings of the 37th International Conference on Software Engineering (ICSE’15).
IEEE, USA, 598–608. https://doi.org/10.1109/ICSE.2015.76

[278] SAE International. 2022. Architecture Analysis & Design Language (AADL). https://doi.org/10.4271/AS5506D
[279] Monika Seisenberger, Maurice H. ter Beek, Xiuyi Fan, Alessio Ferrari, Anne E. Haxthausen, Phillip James, Andrew

Lawrence, Bas Luttik, Jaco van de Pol, and Simon Wimmer. 2022. Safe and secure future AI-driven railway technolo-
gies: Challenges for formal methods in railway. In Proceedings of the 11th International Symposium on Leveraging

Applications of Formal Methods, Verification and Validation: Practice (ISoLA’22) (LNCS, Vol. 13704), Tiziana Margaria
and Bernhard Steffen (Eds.). Springer, Germany, 246–268. https://doi.org/10.1007/978-3-031-19762-8_20

[280] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic unit testing engine for C. In Proceedings of

the 10th European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT International Symposium on

Foundations of Software Engineering (ESEC/FSE’05). ACM, USA, 263–272. https://doi.org/10.1145/1081706.1081750
[281] Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny. 2009. Formal verification of avionics software prod-

ucts. In Proceedings of the 2nd World Congress on Formal Methods (FM’09) (LNCS, Vol. 5850), Ana Cavalcanti and
Dennis Dams (Eds.). Springer, Germany, 532–546. https://doi.org/10.1007/978-3-642-05089-3_34

[282] J. Michael Spivey. 1988. Understanding Z: A Specification Language and its Formal Semantics. Cambridge Tracts in
Theoretical Computer Science, Vol. 3. Cambridge University Press, UK.

[283] Tirumale Sreemani and Joanne M. Atlee. 1996. Feasibility of model checking software requirements: A case study.
In Proceedings of 11th Annual Conference on Computer Assurance (COMPASS’96). IEEE, USA, 77–88. https://doi.org/
10.1109/CMPASS.1996.507877

[284] Bernhard Steffen. 2024. Rance Cleaveland: A life for formal methods. Int. J. Softw. Tools Technol. Transf. 26, 3 (2024),
247–248. https://doi.org/10.1007/s10009-024-00746-1

[285] Ulrich Stern and David L. Dill. 1995. Automatic verification of the SCI cache coherence protocol. In Proceedings of

the 8th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware Design and Verification Methods

(CHARME’95) (LNCS, Vol. 987), Paolo Camurati and Hans Eveking (Eds.). Springer, Germany, 21–34. https://doi.org/
10.1007/3-540-60385-9_2

[286] Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: Brute Force Vulnerability Discovery. Addison-
Wesley, USA.

[287] Martyn Thomas. 1990. The role of formal methods in developing safety-critical software. In Proceedings of the IEE

Colloquium on Safety Critical Software in Vehicle and Traffic Control. IET, UK, 9/1–9/3. https://doi.org/10.1016/0141-
9331(90)90127-H

[288] Muffy Thomas. 1994. A proof of incorrectness using LP: The editing problem from the Therac-25. High Integrity

Systems 1, 1 (1994), 35–49.
[289] Muffy Thomas. 1994. The story of the Therac-25 in LOTOS. High Integrity Systems 1, 1 (1994), 3–17.

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://doi.org/10.1007/978-3-030-38800-3
https://doi.org/10.1016/j.cosrev.2010.06.002
https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.23919/SpringSim.2019.8732915
https://doi.org/10.29007/5pch
https://doi.org/10.1016/0376-5075(78)90016-8
https://doi.org/10.1007/978-3-031-13185-1_1
http://www.csl.sri.com/papers/csl-93-7/
https://doi.org/10.1109/ICSE.2015.76
https://doi.org/10.4271/AS5506D
https://doi.org/10.1007/978-3-031-19762-8_20
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1007/978-3-642-05089-3_34
https://doi.org/10.1109/CMPASS.1996.507877
https://doi.org/10.1007/s10009-024-00746-1
https://doi.org/10.1007/3-540-60385-9_2
https://doi.org/10.1016/0141-9331(90)90127-H


7:38 M. H. ter Beek et al.

[290] Jan Tretmans. 2017. On the existence of practical testers. In ModelEd, TestEd, TrustEd (LNCS, Vol. 10500), Joost-Pieter
Katoen, Rom Langerak, and Arend Rensink (Eds.). Springer, Germany, 87–106. https://doi.org/10.1007/978-3-319-
68270-9_5

[291] Kishor S. Trivedi. 2016. Probability and Statistics with Reliability, Queuing, and Computer Science Applications. Wiley,
UK. https://www.wiley.com/en-us/Probability+and+Statistics+with+Reliability%2C+Queuing%2C+and+Computer+
Science+Applications%2C+2nd+Edition-p-x000204691

[292] Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and Flavio Lerda. 2003. Model checking programs.
Autom. Softw. Eng. 10, 2 (2003), 203–232. https://doi.org/10.1023/A:1022920129859

[293] Werner Vogels. 2021. Diving Deep on S3 Consistency. https://www.allthingsdistributed.com/2021/04/s3-strong-
consistency.html

[294] Christian von Essen and Dimitra Giannakopoulou. 2014. Analyzing the next generation airborne collision avoidance
system. In Proceedings of the 20th International Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS’14) (LNCS, Vol. 8413), Erika Ábrahám and Klaus Havelund (Eds.). Springer, Germany, 620–635.
https://doi.org/10.1007/978-3-642-54862-8_54

[295] Shuling Wang, Naijun Zhan, and Liang Zou. 2015. An improved HHL prover: An interactive theorem prover for
hybrid systems. In Proceedings of the 17th International Conference on Formal Engineering Methods (ICFEM’15) (LNCS,

Vol. 9407), Michael J. Butler, Sylvain Conchon, and Fatiha Zaïdi (Eds.). Springer, Germany, 382–399. https://doi.org/
10.1007/978-3-319-25423-4_25

[296] Colin H. West. 1978. General technique for communications protocol validation. IBM J. Res. Dev. 22, 4 (1978), 393–404.
https://doi.org/10.1147/rd.224.0393

[297] The White House. 2024. Back to the Building Blocks: A Path Toward Secure and Measurable Software. Technical Report.
White House Office of the National Cyber Director (ONCD). https://www.whitehouse.gov/wp-content/uploads/2024/
02/Final-ONCD-Technical-Report.pdf

[298] Jeannette M. Wing. 1990. A specifier’s introduction to formal methods. IEEE Comput. 23, 9 (1990), 8–24. https://doi.
org/10.1109/2.58215

[299] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. 2009. Formal methods: Practice and experi-
ence. ACM Comput. Surv. 41, 4 (2009), 19:1–19:36. https://doi.org/10.1145/1592434.1592436

[300] Bohua Zhan, Yi Lv, Shuling Wang, Gehang Zhao, Jifeng Hao, Hong Ye, and Bican Xia. 2022. Compositional verifi-
cation of interacting systems using event monads. In Proceedings of the 13th International Conference on Interactive

Theorem Proving (ITP’22) (LIPIcs, Vol. 237), June Andronick and Leonardo de Moura (Eds.). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, Germany, 33:1–33:21. https://doi.org/10.4230/LIPIcs.ITP.2022.33

[301] Zhen Zhang, Wendelin Serwe, Jian Wu, Tomohiro Yoneda Hao Zheng, and Chris Myers. 2016. An improved fault-
tolerant routing algorithm for a Network-on-Chip derived with formal analysis. Sci. Comput. Program. 118 (2016),
24–39. https://doi.org/10.1016/j.scico.2016.01.002

[302] Yang Zhao and Kristin Y. Rozier. 2014. Formal specification and verification of a coordination protocol for an auto-
mated air traffic control system. Sci. Comput. Program. 96 (2014), 337–353. https://doi.org/10.1016/j.scico.2014.04.002

[303] Yang Zhao and Kristin Y. Rozier. 2014. Probabilistic model checking for comparative analysis of automated air traffic
control systems. In Proceedings of the 33rd IEEE/ACM International Conference on Computer-Aided Design (ICCAD’14).
IEEE, USA, 690–695. https://doi.org/10.1109/ICCAD.2014.7001427

Received 19 September 2023; revised 13 July 2024; accepted 15 August 2024

Form. Asp. Comput., Vol. 37, No. 1, Article 7. Publication date: December 2024.

https://doi.org/10.1007/978-3-319-68270-9_5
https://www.wiley.com/en-us/Probability+and+Statistics+with+Reliability%2C+Queuing%2C+and+Computer+Science+Applications%2C+2nd+Edition-p-x000204691
https://doi.org/10.1023/A:1022920129859
https://www.allthingsdistributed.com/2021/04/s3-strong-consistency.html
https://doi.org/10.1007/978-3-642-54862-8_54
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1147/rd.224.0393
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://doi.org/10.1109/2.58215
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.4230/LIPIcs.ITP.2022.33
https://doi.org/10.1016/j.scico.2016.01.002
https://doi.org/10.1016/j.scico.2014.04.002
https://doi.org/10.1109/ICCAD.2014.7001427

