
Software and Systems Modeling

Software Engineering and Formal Methods

SEFM 2019 Special Section

Peter Csaba Ölveczky · Gwen Salaün

This special section of Software and Systems Modeling contains extended ver-
sions of selected papers from the 17th International Conference on Software Engi-
neering and Formal Methods (SEFM), which was held in Oslo, Norway, in Septem-
ber 2019. SEFM 2019 was the seventeenth edition of an annual series of conferences
that aims at bringing together leading researchers and practitioners from academia
and industry to advance the state of the art in formal methods, to facilitate their
uptake in the software industry, and to encourage their integration within practical
software engineering methods and tools.

SEFM 2019 received 89 paper submissions, from which the program commit-
tee accepted 27 papers for inclusion in the proceedings of SEFM 2019 that was
published as volume 11724 in Springer’s Lecture Notes in Computer Science series.
The conference also featured invited talks by Wil van der Aalst, David Basin, and
Koushik Sen. Out of those 27 accepted papers, we invited the authors of eight
papers to submit to this special section. After an extensive and rigorous reviewing
process, in which each paper was reviewed by at least three expert reviewers, we
decided to include six of them in this special section.

With the increasing use of machine learning methods in critical applications,
such as self-driving cars, there is a need to reason formally about machine learn-
ing. The paper “An epistemic approach to the formal specification of statistical
machine learning” by Yusuke Kawamoto presents a logical formalization of sta-
tistical properties of machine learning. The author proposes a formalization of
supervised learning models and test datasets using a distributional Kripke model.
An extension of statistical epistemic logic is then introduced as a formal language
to describe various properties of machine learning models. This formalization also
shows some relationships among properties of classifiers, such as different levels of
robustness, and relationships between classification performance and robustness.

P. C. Ölveczky

Department of Informatics, University of Oslo

E-mail: peterol@ifi.uio.no

G. Salaün

University Grenoble Alpes

E-mail: gwen.salaun@univ-grenoble-alpes.fr



2 Peter Csaba Ölveczky, Gwen Salaün

Session types are a syntax-based approach and behavioral contracts are an op-
erational approach for describing the communication behavior of processes. The
correspondence between these two approaches has previously been studied for
synchronous communication. In their paper “Asynchronous session subtyping as
communicating automata refinement,” Mario Bravetti and Gianluigi Zavattaro
study the relationship between session types and behavioral contracts, formalized
as communicating finite state machines (CFSMs), when processes communicate
asynchronously. This paper provides a new theory of asynchronous behavioral
contracts that coincide with CFSMs and includes the notions of contract compli-
ance and contract refinement. Bravetti and Zavattaro show under what conditions
refinement coincides with asynchronous session subtyping, and also provide an op-
erational interpretation of session types and asynchronous subtyping thanks to a
mapping to behavioral contracts and refinement.

Runtime verification is a lightweight formal method which aims to check whether
the current system execution satisfies a property that is being monitored. Moni-
torability deals with classifying which properties can be monitored by observing
finite (prefixes) of an execution. There are a number of different notions and defi-
nitions of monitorability, which differ in their specification formalisms, operational
models, and semantic domains. In their paper “An operational guide to monitora-
bility with applications to regular properties,” Adrian Francalanza, Luca Aceto,
Antonis Achilleos, Anna Ingolfsdottir, and Karoliina Lehtinen therefore propose a
unified, operational view on existing notions of monitorability. In particular, they
study different notions of monitorability, define them in an uniform operational
view, and characterize these monitorability notions with their corresponding mon-
itorable syntactic fragments of recursive Hennessy-Milner logic.

Verifying, say, C and C++ programs which interact heavily with their exe-
cution environments (e.g., operating system) is hard, also because results may
not be reproducible due to the side effects of running the program in the first
place. The paper “Reproducible execution of POSIX programs with DiOS” by
Petr Rockai, Zuzana Baranová, Jan Mrázek, Kataŕına Kejstová, and Jiri Barnat
therefore presents DiOS, a POSIX-compatible operating system designed to offer
reproducible execution, with special focus on applications in program verification.
DiOS is modular, extensible, and implemented mostly in portable C and C++,
although its primary platform is DiVM, a verification-oriented virtual machine.
DiOS was evaluated in different ways, as a component of a program verification
platform based on DiVM, by combining it with the symbolic executor KLEE, and
as a standalone user-mode kernel.

In model-based testing, a model describing the intended behavior of the system
is used to guide the testing, to systematically explore and test the system’s states.
When the model is nondeterministic, it may be impossible to know which states
in the model have been visited by a series of tests. Calculating the probability of
covering a given coverage goal (where each nondeterministic choice in the model is
annotated with probabilities) is the topic of the paper “Test model coverage anal-
ysis under uncertainty” by Wishnu Prasetya and Rick Klomp, which introduces
a notion of probabilistic coverage to express the coverage of a test suite in this
setting. This paper also presents an algorithm to efficiently calculate the proba-
bilistic coverage of both aggregate and non-aggregate coverage goals. Experiments
show that in most cases the algorithm is very efficient compared to the brute force
approach.



Software Engineering and Formal Methods 3

Model-based testing is also the topic of the final paper in this special section.
A mutant is a small modification of the description of the system under test, and
the aim of mutation-based test generation is to construct tests that reveal these
modifications. The goal of the paper “Mutation testing with hyperproperties” by
Andreas Fellner, Georg Weissenbacher, and Mitra Tabaei Befrouei is to automati-
cally generate high quality test suites, for which they present a method by solving
mutation-based test generation via hyperproperty model checking, where hyper-
properties allow us to express properties over multiple executions. The authors
formalize several notions of mutation killing for both deterministic and nondeter-
ministic models. In addition to reusing an existing model checking tool to generate
test cases for hyperproperties, the authors also propose an alternative approach
to obtain such test cases for nondeterministic models.

Acknowledgments We would like to express our most sincere thanks to all the people who

have made this special section possible: to the authors for writing the papers and incorporating

all the corrections and improvements required by a thorough reviewing process; to the reviewers

for kindly contributing their time and effort to ensure the highest quality of each paper; and to

Martin Schindler for agreeing to publish this special section in Software and Systems Modeling

and for his very valuable and friendly assistance in bringing it to publication.


