
Equivalence Checking for Comparing User Interfaces
Raquel Oliveira Sophie Dupuy-Chessa Gaëlle Calvary

Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France
CNRS, LIG, F-38000 Grenoble, France
Emails: FirstName.LastName@imag.fr

ABSTRACT
Plastic User Interfaces (UIs) have the capacity to adapt to
changes in their context of use while preserving usability.
This exposes users to different versions of UIs that can di-
verge from each other at several levels, which may cause loss
of consistency. This raises the question of similarity between
UIs. This paper proposes an approach to comparing UIs by
measuring to what extent UIs have the same interaction ca-
pabilities and appearance. We use the equivalence checking
formal method. The approach verifies whether two UI mod-
els are equivalent or not. When they are not equivalent, the UI
divergences are listed, thus providing the possibility of leav-
ing them out of the analysis. In this case, the two UIs are
said equivalent modulo such divergences. Furthermore, the
approach shows that one UI can contain at least all interac-
tion capabilities of another. We apply the approach to a case
study in the nuclear power plant domain in which several UI
versions are analyzed, and the equivalence and inclusion re-
lations are demonstrated.

Author Keywords
User interface; comparison; critical systems; formal
verification; equivalence checking; bisimulation.

ACM Classification Keywords
D.2.4. Software/Program Verification: Formal method;
H.5.2. User Interfaces: Evaluation/methodology; I.6.4.
Model Validation and Analysis

INTRODUCTION
The variety of interaction devices has increased over the past
years. These devices range from ultra-small devices, such as
smartwatches, to very large devices, such as wall-sized touch
screens. UIs are expected to cope with this variety. Thevenin
and Coutaz [19] introduced the concept of Plasticity as the
capacity of a UI to withstand variations of its context of use
(platform, user, environment) while preserving usability.

Plasticity provides users with different versions of a UI. De-
pending on the transformations, these versions may diverge
in several directions. In this context, one may be interested in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
EICS’15, June 23 - 26, 2015, Duisburg, Germany .
Copyright is held by the owner/author(s). Publication rights licensed to ACM. ACM
978-1-4503-3646-8/15/06...$15.00.
DOI: http://dx.doi.org/10.1145/2774225.2774844

knowing if all UI properties (e.g., UI interaction capabilities
and appearance) are preserved once the UI is adapted. If it is
not the case, which properties are discarded/added.

Our contribution is a technique to automatically compare
plastic UIs. The main motivation is to verify to which ex-
tent plastic UIs are similar, meaning that at least a minimum
set of interactions are preserved after the adaptation. More
precisely, this technique covers two aspects of UIs: interac-
tion capabilities and appearance. We provide a means to rep-
resenting both interaction capabilities and appearance in one
single model, which is used afterwards for comparison.

We cover four cases when comparing UI models: equivalent,
equivalent modulo some functionalities, non equivalent at all
and when one UI contains at least all functionalities of an-
other one (inclusion). The approach is applicable to any plas-
tic UI, but it is more legitimate in critical systems, due to the
strong implications of bad UIs in such systems.

The reminder of the paper starts by explaining a nuclear
power plant case study. Then several versions of a plastic UI
are illustrated, and the comparison criteria are explained. An
approach to compare UIs is described, followed by definitions
to support UI comparison. We illustrate how the approach is
applied to the case study, how it is validated and some discus-
sions. Finally, the related work is presented, concluding with
current results and perspectives.

CASE STUDY
This case study relies on a nuclear power plant system pro-
totype that provides an overview of the plant state (Fig. 1, in
French). It notifies the control room operator about all unex-
pected events in the plant. The main UI contains four zones:

1. The top part displays six tabs for selecting the plant status,
which can range from RP (working at full capacity) to RCD
(completely stopped).

2. The Default Signals (“Signaux de défaut”) zone synthe-
sizes signals triggered in reactor functions, according to
unexpected events occurred in the parameters.

3. At the bottom (“Paramètres”), various reactor parameters
are displayed (e.g. pressure), each one represented by a
widget containing: the parameter name, its current value, a
curve with the value evolution over time, a min/max value
bounds, which sensor monitors the parameter and its mea-
surement unit. If unexpected events occur in some param-
eter, the same is highlighted (e.g. a stronger frame around
it), and a signal is triggered in the zone two of the UI.

EICS'15, June 23–26, 2015, Duisburg, Germany

266

Testing and Validation

Figure 1: Prototype of a nuclear power plant control room
system. Main UI of the system - PC Version

4. On the left, operators access other UIs by a menu. Some
of these UIs (covered by this study) have the same layout
of this main UI, varying the parameters and signals. Other
UIs (not covered by this study) have different purposes.

HCI CONTEXT
Two adaptation means among the seven identified by Vander-
donckt, Calvary et al. [21] have been explored for this case
study: re-molding and redistribution. UI re-molding denotes
any UI reconfiguration that is perceivable by the user and that
results from transformations in the UI, while redistribution
denotes the re-allocation of the UI components to different
interaction devices. These adaptation means do not mutually
exclude one another. A redistribution can be followed by a
re-molding on the target device, for instance.

Fig. 2a illustrates an example of re-molding: the control room
UI is adapted to the target platform (a Smartphone). This UI
makes operators mobile, which is useful when an unexpected
event occurs in the plant. While on the PC version (Fig. 1)
all reactor signals and parameters are always displayed, on
the Smartphone the display is limited to those currently af-
fected by a failure. Besides, the widget representing reactor
parameters is re-molded to fit on the size-reduced screen of

(a) Smartphone UI (b) Tablet UI

Figure 2: UI Platform adaptation

Figure 3: UI in Training Mode

a Smartphone. Furthermore, while on the PC the menu is
always visible (in the zone four), on the Smartphone it is ac-
cessible by a circled button on the top-left corner.

Fig. 3 and 4 illustrate another example of re-molding, in
which the UI is adapted to the target user. This adaptation
considers two outermost cases in operators training process:
Training mode (Fig. 3), for operators learning how to use the
system, and Expert mode (Fig. 4). Fig. 1 is an intermediate
mode. The following elements are added in Training mode:
1) at the top, a breadcrumb trail helps navigation; 2) UI zones
2 and 3 are entitled; 3) Non-failure signal symbols have a
disabled appearance (e.g. the four symbols beside the “Air
Comprimé” function in the Default Signals zone); and 4) Re-
actor functions are line-grouped according to their systems:
Safety (“Sureté”), Production, or Support. In Expert mode,
all this guidance is removed.

A Tablet version (Fig. 2b) of the UI illustrates redistribution.
The UI is re-distributed on a tablet, but only part of the UI is
migrated (i.e. the “Parameters” zone), the other part is dis-
played on other devices, such as kiosks.

Re-molding and redistribution transform a UI into various
versions. We propose an approach to show to what extent
these UIs differ. This work covers two UI aspects: interac-
tion capabilities and appearance.

Figure 4: UI in Expert Mode

EICS'15, June 23–26, 2015, Duisburg, Germany

267

Testing and Validation

UI interaction capabilities concerns the ways users can in-
teract with the UI (and, reversely, how the UI reacts to this
interaction). When comparing two UIs, we want to know
whether users can perform the same actions in both of them,
and whether the UIs react in the same way or not. In this
point of view, we are interested in what the user can do (e.g.,
“select menu option 1”) , and in what the UI does in reaction
(e.g., “display main UI”). It concerns neither how such inter-
action capabilities are provided (e.g., which widget is used to
display the menu) nor how the UI displays the outputs. This
relates to UI appearance.

UI appearance concerns the elements present in the UI
(where they are presented, in which color, etc.). For instance,
we may want to know which symbol represents the absence
of unexpected events in the reactor.

OVERVIEW OF THE APPROACH
The first step (1) of our approach (Fig. 5) consists in creating
a formal model of the UIs. A formal model is an abstraction
of the system. Abstractions done in this phase should not
penalize the analysis, meaning that the formal model should
reflect as much as possible the real system.

Figure 5: Comparison of UIs

The formal model is used to automatically generate (2) an
ISLTS (Interactive System LTS). We derived ISLTS from LTS
(Labelled Transition System), a graph representing all the
system states, and the actions that trigger state transitions.

The verification of ISLTS equivalence (3) is performed thanks
to the equivalence checking formal method (Fig. 6). First, we
verify whether the two ISLTS (UI models) are equivalent or
not. If they are, considering interaction capabilities and ap-
pearance, the two UIs are equivalent. Otherwise, we verify if

Figure 6: Equivalence checking of UIs

one includes the other, which means that one UI contains at
least all interaction capabilities (and corresponding appear-
ance) of the other one. The third possibility is that the two
UI models are neither equivalent nor included. The analysis
is supported by three abstraction techniques, which are ex-
plained in the following. The results of the comparison allow
a refinement of the formal models and/or the real UIs.

UI COMPARISON
We enhance LTS to model UIs. LTS is a 4-tuple 〈Q,A, T, q0〉
consisting of: a set Q of states; a set A of actions; a transition
relation T ⊆ Q× A× Q and an initial state q0 ∈ Q.
Definition 1 (ISLTS). An ISLTS (Interactive System LTS) is
a 6-tuple 〈Q,C,L,A, T, q0〉 where:

• Q is a set of states the UI can be in;

• C is a set of UI components;

• L is a set of action names;

• A is a set of actions. They model the system dynamics:
actions users can perform in the UI and the UI response to
these actions. Each action a ∈ A has the form l(c1, ..., cm),
where l ∈ L, m ≥ 0 and (∀i ∈ [1..m]), ci ∈ C. Intuitively,
actions can carry a list of UI components, representing the
UI appearance after the action is performed;

• T ⊆ Q × A × Q is a transition relation that changes the
UI state once an action a ∈ A is performed. We also use

the notation q
a−→ q′ for (q, a, q′) ∈ T ;

• q0 ∈ Q is the initial state of the UI.

An ISLTS provides a means to representing both UI interac-
tion capabilities and appearance in one single model: they are
represented in the set A of actions. Each action represents an
interaction capability, and ISLTS enriches LTS actions with
data (the set C of components) to represent UI appearance.
According to the domain, the set C is composed by subsets
detailing the components of the UI.

Figure 7: UI appearance in an ISLTS

Fig. 7 illustrates an example of an action representing the dis-
play of reactor parameters, their current value and failure con-
dition. Consider a subset S = {normal, fail} of reactor pa-
rameter status and a subset P = {Pth moy,GroupeR, ...}
of reactor parameter names. Concerning UI appear-
ance, the C set represents how the reactor parame-
ters are displayed in the UI, i.e with their values and
failure condition. In this example, c ∈ C has the
form p(v, s), where p ∈ P , v ∈ R and s ∈ S, i.e.
C = {Pth moy(70, normal), GroupeR(276, fail)}.
The C set is domain-dependent and can have other
formats, not changing the way it is integrated
in ISLTS actions, i.e. a ∈ A = l(c1, ..., cm).

EICS'15, June 23–26, 2015, Duisburg, Germany

268

Testing and Validation

In this example, L = {ShowParams} and
A = {ShowParams(Pth moy(70, normal), GroupeR(276, fail))}.

Equivalent user interfaces
Once the UIs are modeled as ISLTS, we can perform UI
comparison thanks to equivalence checking formal technique.
We introduce now several definitions we derived from formal
techniques to apply to HCI. We combine the notion of equiv-
alence with several abstract criteria.
Definition 2 (Equivalent user interfaces). Given two ISLTS
M and H , if a specific relation R exists (called a bisimula-
tion) between the states of M and H , then M and H are
equivalent (written M ∼ H).

We derived this definition from bisimulation equivalence
formal definition. The relation R can be defined by sev-
eral bisimulation relations available in the literature, such
as strong bisimulation [16] and branching bisimulation [20].
Which relation to choose depends on the level of details of the
model and the verification goals. We use strong and branch-
ing bisimulation relations, due to the strong implications pro-
vided by former and to the flexibility provided by the latter.

Strong bisimulation relation is the most restrictive relation.
It relates two standard LTS in the following way: two LTS
M and H are strongly bisimilar if there exists a relation
R ⊆ Qm × Qh (called strong bisimulation) such that:

1. The initial states of M and H are related by R;

2. If R(m,h) and m
a−→ m′, then there exists a state h′ such

that h
a−→ h′ and R(m′, h′);

3. Conversely, if R(m,h) and h
a−→ h′, then there exists a

state m′ such that m
a−→ m′ and R(m′, h′).

This formal definition concerns the LTS states and the ac-
tions that trigger state transitions. Such concern for LTS ac-
tions suits our UI interaction and appearance modeling in the
ISLTS actions. Since in an ISLTS every action a has the form
l(c1, ..., cm), where l ∈ L, m ≥ 0 and ∀i ∈ [1..m] , ci ∈ C,
when comparing ISLTS actions both UI interaction capabili-
ties and UI appearance are taken into account.

Strong bisimulation is intuitively illustrated in Figure 8.
Two systems (represented by ISLTS) are strongly equiva-
lent whenever they can perform the same actions (possibly
enriched by UI components) to reach strongly bisimulation
equivalent states, i.e. they agree on each step they take.

Diversely, there are cases in which certain actions (together
with the UI appearance after the action execution) may be
skipped in the analysis. These actions receive a special label

Figure 8: Two strongly equivalent ISLTS

(i.e. τ) in the LTS, and several bisimulation relations exist
that deal with τ actions in a special way (branching bisimula-
tion is one of the most commonly used). τ ∈ A represents an
action that is considered irrelevant in the context of the anal-
ysis, and can be ignored, although it is still present in the UI
model. We call this abstraction technique an omission:
Definition 3 (Omission). Given an ISLTS

U = 〈Q,C,L,A, T, q0〉, Omit(O,U) = 〈Q,C,L,A\O, T ′, q0〉, where
T ′ = {(q, a, q′) | (q, a, q′) ∈ T and a /∈ O}∪ {(q, τ, q′) | (q, a, q′) ∈ T

and a ∈ O}.

Tagging some actions a ∈ A with a special label (i.e. τ)
allows weaker bisimulation relations to bypass such actions
when checking the equivalence between models. Since in an
ISLTS every action a has the form l(c1, ..., cm), once an ac-
tion a is ignored, a UI interaction capability is intentionally
disregarded, together with the UI appearance that results from
such action (possibly modeled in the body of the a action).

This abstraction is useful, for instance, when users are pro-
vided with a functionality activated in different ways in two
UIs: for example, two UIs U1 and U2 that have menus with
the same options, as illustrated by the sets A1 and A2 of ac-
tions below. The menu is always visible in U1 and hidden
in U2, as illustrated by the absence (resp. presence) of the
“open menu” action in the set A1 of actions (resp. A2). Once
unfolded, the U2 menu behaves exactly like in U1. By includ-
ing “open menu” in the set O of omitted actions, omission
permits the menu activation action to be ignored when com-
paring the UIs, although it is still present in the U2 model.

A1 = {choose menu option1, choose menu option2};

A2 = {open menu, choose menu option1,
choose menu option2};

O = {open menu}.

When omitted actions (τ) are present in the model, weaker
bisimulation relations are more appropriate. Branching
bisimulation equivalence is one of the most commonly used.
It considers sequences of τ -actions. We write m =⇒ m′ for
a path from m to m′ having an arbitrary number (≥ 0) of τ -
actions. Branching bisimulation relates two standard LTS in
the following way: two LTS M and H are branching bisimilar
if there exists a relation R ⊆ Qm × Qh (called branching
bisimulation) between the states of M and H such that:

1. The initial states of M and H are related by R;

2. If R(m,h) and m
a−→ m′, then either a = τ and R(m′, h),

or there exists a path h =⇒ h′ a−→ h′′ such that R(m,h′) and
R(m′, h′′);

3. Conversely, if R(m,h) and h
a−→ h′, then either a = τ and

R(m,h′), or there exists a path m =⇒ m′ a−→ m′′ such that
R(m′, h) and R(m′′, h′).

EICS'15, June 23–26, 2015, Duisburg, Germany

269

Testing and Validation

(a) Without τ -steps (b) With τ -steps

Figure 9: Two branching equivalent ISLTS

Similarly to strong bisimulation equivalence, branching
bisimulation also concerns LTS states and actions. The lat-
ter compares UI interaction capabilities and appearance as
the former: given the form of an action in an ISLTS (i.e.
l(c1, ..., cm)), actions are taken into account with the com-
ponents present in the UI after the execution of the action.

The essence of branching bisimulation equivalence is illus-
trated in Fig. 9. These two ISLTS are branching equivalent
because for each state, the same actions (preceded by zero or
more τ actions) can be triggered.

Regardless the chosen bisimulation relation, our approach
permits to reason over UI models at different levels of details.
As an illustration, consider a UI fragment of our case study
(Fig. 10). This UI fragment displays the number of unex-
pected events in the “Production” reactor function. The UI on
the left represents the absence of unexpected events by a “0”
beside “Production”, while the UI on the right displays noth-
ing in the same zone. In a more abstract version of these UIs,
this information is represented by “default empty symbol”.
We call this kind of abstraction a generalization, and it con-
cerns only UI appearance (not interaction capabilities).

Figure 10: Generalization abstraction technique

Definition 4 (Generalization). Given an ISLTS
U = 〈Q,C,L,A, T, q0〉 and a set B of UI ab-
stract components, generalization is a total function
G ⊆ C → B = 〈Q,C,L,A′, T ′, q0〉 that maps every
element c in C to an element b in B, such that:

• A′ = {τ} ∪ {l(b1, ..., bm) | l(c1, ..., cm) ∈ A and (∀i ∈
[1..m]), G(ci) = bi};

• T ′ = {(q, τ, q′) | (q, τ, q′) ∈ T} ∪ {(q, l(b1, ..., bm), q′) |
(q, l(c1, ..., cm), q′) ∈ T and (∀i ∈ [1..m]), G(ci) = bi}.

An example of generalization is illustrated below:

B = {default empty symbol, UI bottomzone title};

C = {zero, Parameters};

G = {(default empty symbol, zero),
(UI bottomzone title, Parameters)}.

In the original UI model, the absence of unexpected events
in the reactor function is represented by the number “zero”.
While in a more abstract UI model, the absence of unex-
pected events in the reactor function is generalized to “de-
fault empty symbol”.

As for the set C of components in the Definition 1 of ISLTS,
the set B of abstract components are also domain-dependent.
Besides, the use of regular expressions enables sophisti-
cated transformations in the UI appearance representation.
Consider A={ShowParams(Pth moy(70,normal), GroupeR(276,fail))},
an example of the set A of actions formalized in the Def-
inition 1. This action represents the display (in the UI)
of reactor parameters with their current value and failure
condition. Instead of displaying all reactor parameters, this
action could be generalized in a more abstract visualization,
where only failed parameters are displayed. In this case,
the set B would be defined as B = {Failure in “X”}
and regular expressions permit the transformation from
A= {ShowParams(Pth moy(70,normal), GroupeR(276,fail))} into
A= {ShowParams(Failure in GroupeR)}.

Non-equivalent user interfaces
From the definition of equivalent user interfaces, we propose
the definition of non-equivalence:
Definition 5 (Non-equivalent user interfaces). Two ISLTS
M and H are non-equivalent with respect to a relation R if
the relation R between the states of M and H can not be
shown.

Equivalent user interfaces modulo “X”
There are cases in which certain divergences between two UIs
are considered acceptable. For instance, when a navigation
aid is present in one UI and absent in another one. Knowing
that the UIs present this difference, we may still want to an-
alyze the remaining aspects of the UIs. Equivalence modulo
“X” permits this reasoning. We introduce an abstract tech-
nique that allows the elimination of elements in the UI model
before performing the analysis:
Definition 6 (Elimination). Given an ISLTS

U = 〈Q,C,L,A, T, q0〉, Eliminate(X,U) = 〈Q,C,L,A\X,T ′, q0〉,
where T ′ = {(q, a, q′) | (q, a, q′) ∈ T and a /∈ X}.

Each action x ∈ X also has the form l(c1, ..., cm), where
l ∈ L, m ≥ 0 and ∀i ∈ [1..m] , ci ∈ C, so both UI in-
teraction capabilities and appearance are taken into account.
Intuitively, X ⊂ A is a set of actions (and UI appearance)
eliminated in U before the comparison analysis. In this case,
some UI aspects are left out of the analysis. Contrary to omis-
sion, in which the elements are still present in the model and
are just ignored.

EICS'15, June 23–26, 2015, Duisburg, Germany

270

Testing and Validation

In the example below, extracted from the case study, a bread-
crumb trail is present in U1 and not in U2. To verify if both
UIs are equivalent disregarding this divergence, we eliminate
the representation of this functionality in the U1 model:

A1 = {select breadcrumb trail, choose plant state,
show params};

A2 = {choose plant state, show params};

X = {select breadcrumb trail};

A1 \X = {choose plant state, show params}.

In this case, the two UIs are said equivalent modulo the ele-
ments of X:
Definition 7 (Equivalent user interfaces modulo “X”).
Given two ISLTS, M and H , and a set X such that:

• X ⊂ (Am∪ Ah) is the set of actions (with the correspond-
ing UI components) simultaneously eliminated in both UI
models before performing the analysis,

if a specific relation R exists (called a bisimulation) between
the states of M and H , then M and H are said equivalent
modulo “X”.

To show that two UI models are equivalent modulo “X”, we
consider strong and branching bisimulations. Elimination is
necessarily used and generalization/omission can be used.

Inclusion of user interfaces
Finally, there are cases in which two UIs present a large num-
ber of divergences, becoming no longer interesting to elimi-
nate these divergences of the analysis because it will compro-
mise the usefulness of the results.

In this case, the UIs are not equivalent. Even though, they can
still relate to each other: one can include the other. For in-
stance, in a control room, operators have at their disposal UIs
displayed on PCs to monitor the reactor. Once a UI highlights
a failure in a reactor component, mobile operators (provided
with a tablet containing only part of the PC-version UI) are
charged to perform a maintenance in the proper place and can
observe the system reaction on the tablet.
Definition 8 (Inclusion of user interfaces). Given two
ISLTSM and H , if a specific relation R exists (called a sim-
ulation) between the states of M and H , then M and H are
included one in the other.

Intuitively, it means that a given user interface U1 contains at
least all interaction capabilities (and the appearance) of an-
other user interface U2.

The same bisimulation relations used to show equivalence
between two LTS are also used to show their inclusion (i.e.
strong, branching, etc.). We derived our definition of inclu-
sion of UIs from strong simulation formal definition, which
is achieved when only the conditions 1 and 2 of strong bisim-
ulation equivalence hold (Definition 2). Two LTS M and H

Figure 11: Example of a simulation relation

are strongly similar if there exists a relation R ⊆ Qm × Qh

(called simulation) between the states of M and H such that:

1. The initial states of M and H are related by R;

2. If R(m,h) and m
a−→ m′, then there exists a state h′ such

that h
a−→ h′ and R(m′, h′).

Similarly to bisimulation equivalence, simulation also con-
cerns LTS states and actions. The latter compares UI interac-
tion capabilities and appearance as the former: given the form
of an action in an ISLTS (i.e. l(c1, ..., cm)), actions are taken
into account with the components (c1, ..., cm) present in the
UI after the execution of the action.

Fig. 11 illustrates a simulation between two ISLTS. H ≤ M
intuitively means that M can do everything that H can do.
M simulates (or includes) H . Generalization and omission
abstractions can also be used to show that one UI model in-
cludes another one.

DISCUSSION
The abstraction techniques introduced in this paper support
UI model comparison. The principle is to first create abstract
models of the UIs, used afterwards to perform equivalence
checking. Fig. 12 compares the abstraction techniques ap-
plied to a UI fragment that considers only appearance. Con-
cerning the level of abstraction, generalization technique is
the one that abstracts the least, by mapping components into
generic representations. Omission abstracts more, by obfus-
cating aspects in the model, and elimination is the most sig-
nificant abstraction, that eliminates UI aspects of the model.

The strongest equivalence relation two UI models can have
is when, with none of these abstractions, they are equiva-
lent. This is achieved only when two UIs are almost identical,
which is possible, but rare.

In practice, since plastic UIs have to cope with several
changes in the context of use, a number of divergences is

Figure 12: Summary of the abstraction techniques

EICS'15, June 23–26, 2015, Duisburg, Germany

271

Testing and Validation

present within the UI versions. The challenge is to verify
equivalence between the UI models in spite of these diver-
gences. Abstraction techniques provide a means to doing that,
and weaker equivalence relations between the models can be
shown. The more abstractions are used within the models, the
weaker the equivalence between the models becomes.

Once the appearance of two UIs diverges, generalization is
the first technique to be considered. By generalizing the rep-
resentation of UI components in the models, this technique
permits to show a weaker equivalence between models.

Omission and elimination are more likely to be used when
the UI interaction capabilities diverge. First, by omitting in
the UI models interaction capabilities that are punctual, like
opening a menu, or opening a combobox, and that do not
have a considerable impact in the UIs functionalities. Di-
versely, elimination is recommended for complex interaction
capabilities. In particular, UI functionalities that depend on
the system core, that load information in the UI or that enable
other UI functionalities. Once such interaction capabilities
are present in one UI and absent in the other, elimination pro-
vides a means to verifying a weaker equivalence between the
two UI models, disregarding (modulo) that.

However, abstraction techniques should be carefully used.
The abstraction should never exceed a threshold (manually
identified) over which the analysis will no longer be interest-
ing. One should keep in mind that things that are abstracted
away are left out of analysis, and interesting situation may be
overlooked when the system models become a black box.

APPROACH IN ACTION
This section illustrates an application of the approach to the
case study. We show two equivalent UIs, two equivalent UIs
modulo one functionality and two non-equivalent UIs that
are, even though, included one in the other.

A) Equivalent user interfaces
In order to demonstrate equivalence between two UIs, con-
sider a UI adaptation according to the platform, to which re-
molding was applied: PC (Fig. 1) and Smartphone (Fig. 2a).

Regarding the UI interaction capabilities, operators have two
ways to interact with the UIs: by selecting the plant state and
by accessing other UIs using the menu. Users can select the
plant status in the same way on both UIs. This was reflected
in the ISLTS of both UI formal models by identical states, ac-
tions and transitions. The menu, though, is made available in
distinct ways: on the PC version the menu is always visible
and on the Smartphone it is accessible by a button in the UI
top-left corner. Due to these differences in the UIs, the cor-
responding ISLTS are different. This is illustrated in Fig. 13,
with the ISLTS fragments representing part of the menu. Each
transition of these ISLTS fragments represents the action of
choosing the corresponding menu and sub-menu options.

In this case, “open menu” is an example of τ action: it is
a user action that does not have an impact on the available
menu options: they are always the same. We used omission
abstraction to ignore the “open menu” action in the analysis,
as if the menu was always visible on the Smartphone UI.

Figure 13: ISLTS fragments of PC and Smartphone UIs

Concerning the UI appearance, both signals and parameters
are displayed in the same zones. Due to the lack of space,
for this analysis we will deliberately neglect the re-molding
in the parameter widgets. We will focus on the way the two
UIs display failures: on the Smartphone only the reactor pa-
rameters and signals with some failure are displayed, while
on the PC all items are always displayed, even non-failure
ones. Fig. 14 illustrates such differences in an ISLTS frag-
ment. Both frames on top of the figure represent at a given
moment the display of reactor parameters in the UI. While
on the PC ISLTS this transition is labeled with an action con-
taining the whole list of reactor parameters, the Smartphone
ISLTS contains only the problematic parameter (i.e. “Groupe
R”). In this case, we use generalization abstraction. Ac-
tions containing detailed information are generalized in less
detailed actions (i.e. the bottom frames in Fig. 14, with the
“Failure in x” renamed action).

Using generalization and omission abstractions, together with
branching bisimulation equivalence relation, the PC UI model
and the Smartphone UI model were said equivalent.

B) Equivalent user interfaces modulo breadcrumb trail
We demonstrate now two equivalent UIs modulo a particular
functionality. Consider a UI adaptation according to the user
expertise, to which re-molding was applied: Training Mode
(Fig. 3) and Expert Mode (Fig. 4).

Regarding the appearance, there are several differences be-
tween the two UIs (detailed in the Section HCI Context). We
use generalization to represent differences 2, 3 and 4 (Fig. 3).
In Fig. 15 we illustrate the difference 3: in Training Mode
(i.e. the top-left frame), once a given signal is in non-failure
status (e.g., “Reactivité”), the corresponding symbols are dis-

Figure 14: Generalization in an ISLTS - case 1

EICS'15, June 23–26, 2015, Duisburg, Germany

272

Testing and Validation

Figure 15: Generalization in an ISLTS - case 2

played with a disabled appearance (i.e. “disabled sig”); in
Expert Mode (i.e. the top-right frame), no symbols are dis-
played beside the signal (i.e. “empty”). Using generalization
abstraction, in both ISLTS these actions were generalized into
“default symbol” label.

Concerning the UIs interaction capabilities, the Training-
mode UI contains one additional navigation aid: a bread-
crumb trail (i.e. the difference 1 in Fig. 3). We set the equiv-
alence checking to be done disregarding this feature. We use
elimination abstraction (Fig. 16) to search (in the ISLTS) ac-
tions corresponding to the breadcrumb trail (i.e. the pattern
bct). Once a match occurred, all the successor states (and
transitions) were eliminated in cascade from the ISLTS.

Using generalization abstraction (for the items n. 2, 3, and
4 of Fig. 3) and elimination abstraction (for the item n.1),
together with strong bisimulation equivalence relation, the
Training and Expert UI models were said equivalent modulo
the breadcrumb trail. The precise identification of UI diver-
gences is a key contribution of this work.

C) Non-equivalent user interfaces and UI inclusion
We demonstrate now two non-equivalent UIs. Consider a UI
adaptation according to the target platform, to which redistri-
bution was applied: PC (Fig. 1) and Tablet version (Fig. 2b).

Regarding UI interaction capabilities, the functionalities that
permit user interactions are available only on the PC version
(i.e. the menu and the plant status selection). With respect
to their appearance, the UIs also differ from each other: the
Tablet version does not contain the plant status, the reactor
signals and the menu zones.

Figure 16: Elimination in an ISLTS

The divergences of these two UIs are too large to consider
the use of elimination abstraction. Indeed, the Tablet-version
UI is equivalent to the PC version modulo [“plant-status-
related actions”, “signals-related action” and “menu-related
actions”]. As said in the Section Discussion, if we abstract
all these actions away, many aspects will be overlooked.

In this case, we applied no abstraction techniques, and the
two UI models were shown non-equivalent, because the user
can perform several actions on the PC version which are not
available on the Tablet version.

Even though, we showed that the PC version contains
at least all functionalities (regarding interaction capabili-
ties, and appearance) of the Tablet version. The PC-
version UI model included the Tablet-version UI model (i.e.
Tablet model ≤ PC model).

VALIDATION
A LNT [5] formal model was manually written for the five
contexts of use (Table 1). Such manual specification adds a
certain overhead to the process, which is lightened by the fact
that the formal languages we use were designed to facilitate
formal modeling. This comes mainly from the fact that LNT

is an imperative formal language, which easies learning for
programmers used to classic programming languages.

Hand-written modeling adds subjectivity to the formal model.
To avoid this, the formal models were validated with an expert
in the nuclear power plant domain. Such manual modeling re-
quires a considerable knowledge in the UI system, necessary
for the analysis of the diagnosis provided by the verification.

Table 1: Summary of the formal models

Context of use # loc # states # transitions
PC 2462 33,053,947 189,539,691

Smartphone 2558 41,944,680 208,554,613

Tablet 1686 4438 5547

Training Mode 2579 160,681,601 946,293,368

Expert Mode 2410 16,678,151 76,202,201

The case study shows that the approach scales well. It was
initially designed for one context of use (i.e. PC), later ex-
tended to five contexts of use. Each formal model contains
three UIs. Each UI model describes about 20 curves and
symbols (UI appearance) and 14 user interactions (UI inter-
action capabilities), generating significantly large ISLTS for
the analysis in a reasonable time (maximum 3h). The formal
models included also part of the system core, allowing the
simulation of several reactor parameters failures. CADP1 [11]
toolbox was used to support the formal verification process,
due to the large number of verification tools it provides, spe-
cially for performing equivalence checking. Table 1 summa-
rizes the number of lines of the LNT specifications and the
ISLTS size. For larger case studies, CADP provides means
(e.g. compositional verification) to handle state space explo-
sion, a concern all model checkers have to handle. Model
checkers address it by various manners, but human intuition
is always needed in the process.
1http://cadp.inria.fr/

EICS'15, June 23–26, 2015, Duisburg, Germany

273

Testing and Validation

Figure 17: ISLTS in LNT code

Fig. 17 illustrates how the C, L and A ISLTS sets are coded in
LNT. Types are defined, and data of such types are exchanged
in ports by rendez-vous, resulting in the ISLTS of Fig. 7.

The abstract criteria were implemented using SVL2 (Script
Verification Language) [10]. While LNT was chosen mainly
for its capacity to facilitate modeling, the choice of SVL con-
siderably strengths the approach. SVL offers means to de-
scribing operations over LTS, which can hardly be done by
hand in large LTS. Generalization abstraction was imple-
mented using the “rename” SVL operator, omission was im-
plemented using the “hide” operator and elimination using
the “cut” operator, all together with regular expressions.

SVL scripts implement the three cases described in the Sec-
tion Approach in action. Such scripts transform the ISLTS
by means of abstractions, before performing the equiva-
lence verification. Such isolation provided by the SVL

scripts spares the original formal models from the abstrac-
tions. Fig. 18 illustrates an example of generalization in
SVL, representing the example illustrated in Fig. 14. Given
the “LTS PC”, this script renames all transitions labeled
with “SHOW PARAMS [anyUI] ([anyParam], FAIL)” into
“SHOW PARAMS (FAILURE in [paramName])”, generat-
ing a new LTS with the renamed transitions.

Figure 18: Example of a SVL script

Table 2 illustrates the summary of the comparisons, where
O indicates the number of omissions done, G the number
of generalizations and E the number of eliminations. The
comparison of the ISLTS was done using BCG CMP3 and
BISIMULATOR4 tools of CADP.

RELATED WORK
Existing approaches deal with UI comparison in different
ways. Some of them compare UIs by user experiments [8, 9],
others by classical testing [1, 12, 2] and others are supported
by formal methods [3, 7, 13, 6, 17, 18, 14].

2http://cadp.inria.fr/man/svl.html
3http://cadp.inria.fr/man/bcg cmp.html
4http://cadp.inria.fr/man/bisimulator.html

Table 2: Summary of the comparisons

Models # O # G # E Result Comp. time
PC x Smartphone 1 22 0 Equivalent 7min

Training x Expert 0 6 1 Equiv\breadcrumb 19min

PC x Tablet 0 0 0 Tablet included in PC 4s

In [8] several factors to conduct more comprehensive user
evaluations of adaptive UIs were defined . In [9], user exper-
iments were actually performed with four versions of a UI, in
order to measure user satisfaction and preferences. In spite of
interesting feedback one can obtain from user experiments,
they are very sensitive to the sample of users, and selecting
representative users is always a key issue.

In [1] the GUIDIFF toll performs regression testing of dif-
ferent versions of a UI, providing a list of their detected de-
viations. In [12] Capture-and-Replay technique was used to
perform regression testing of UIs. This technique allows one
to re-execute (replay part) test cases that had their execution
recorded once (capture part). However, the scripts generated
in the capture part are fragile to GUI layout change, which
can render entire automated test suites inept [2]. In [2] Vi-
sual GUI Testing uses image recognition and it is less hard-
coded than Capture-and-Replay to the GUI element position-
ing. Such approaches compare different versions of UIs.
However, the coverage of testing is never exhaustive, and a
runnable version of the system under test is required. This
requirement is bypassed with formal verification approaches.

In [3] a formal method to verify if a UI is a refinement of an-
other UI is proposed, by verifying functional equivalence, for
instance. This verification is similar to our inclusion verifica-
tion: it verifies if a UI provides at least as much as another UI.
However, they do not verify different levels of equivalence.

Degani and Heymann [7] used a formal approach to compare
UI and user models (which reflects how users perceive the
system). Their approach permits to identify if users elabo-
rate an inadequate mental model of the system, leading them
to confusion and errors. Similarly, in [13] an approach to
reasoning over a device and a user model is proposed, using
Symbolic Analysis Laboratory. In [6] a model inherited by
LTS was also proposed, called HMI LTS, to represent system
and user models. It mainly derives the kind of actions that
can trigger state changing. However, these approaches do not
reason over different versions of a UI.

Other formal approaches were proposed [15, 17, 18, 14] to
reason over UIs. However, instead of comparing UIs, they
verify the satisfiability of UI model with respect to some
properties, using model checking and/or theorem proving.

CONCLUSION
We present an approach to comparing UIs using equivalence
checking. Two UI aspects are covered: interaction capabil-
ities and appearance. We show whether two UIs are equiv-
alent, equivalent modulo some features, included one in the

EICS'15, June 23–26, 2015, Duisburg, Germany

274

Testing and Validation

other, or neither one. The approach was successfully applied
to a case study in the nuclear power plant domain.

One limitation of the approach is that it relies on the ISLTS
representation of the model. Depending on the abstractions,
the number of ISLTS states/transitions may largely increase.
Alternatives exist in CADP to handle big models, avoiding
state space explosion (e.g. compositional verification), but
they need further investigation with larger case studies.

The approach was thought to compare plastic UIs, in which
some similarity between UIs exists. In the future, we plan to
study when and how to apply the approach, for instance dur-
ing the design process to the respective task, abstract, con-
crete and final UI models [4]. The approach could also be
valuable to compare UI versions along product evolutions.
More generally, it can also be used to compare any UIs. In
such case, a large use of abstraction techniques is required.
These perspectives show that equivalence is promising for UI
comparison in any context.

ACKNOWLEDGMENTS
This work is funded by the French Connexion Cluster (Pro-
gramme d’Investissements d’avenir / Fonds national pour la
société numérique / Usages, services et contenus innovants).
We warmly thank Frédéric Lang and Hubert Garavel, re-
searchers at INRIA Rhône-Alpes, for their strong contribu-
tion to the work.

REFERENCES
1. Bauersfeld, S. GUIdiff - A Regression Testing Tool for

Graphical User Interfaces. In ICST, IEEE (2013),
499–500.

2. Borjesson, E., and Feldt, R. Automated System Testing
Using Visual GUI Testing Tools: A Comparative Study
in Industry. In ICST, IEEE (2012), 350–359.

3. Bowen, J., and Reeves, S. Refinement for user interface
designs. Electronic Notes in Theoretical Computer
Science 208 (2008), 5–22.

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., and Vanderdonckt, J. A unifying reference
framework for multi-target user interfaces. Interacting
with Computers 15, 3 (2003), 289–308.

5. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y.,
McKinty, C., Powazny, V., Lang, F., Serwe, W., and
Smeding, G. Reference Manual of the LNT to LOTOS
Translator (Version 6.1), 131 pages. 2014.

6. Combéfis, S. A Formal Framework for the Analysis of
Human-Machine Interactions, vol. 459. Doctoral thesis,
Universit catholique de Louvain, 2013.

7. Degani, A., and Heymann, M. Formal Verification of
Human-Automation Interaction. Human Factors 44
(2002), 28–43.

8. Findlater, L., and McGrenere, J. Comprehensive user
evaluation of adaptive graphical user interfaces. In
Workshop on Usable AI at CHI (2008), 41–44.

9. Gajos, K. Z., Czerwinski, M., Tan, D. S., and Weld,
D. S. Exploring the Design Space for Adaptive
Graphical User Interfaces. In AVI (2006), 201–208.

10. Garavel, H., and Lang, F. SVL : a Scripting Language
for Compositional Verification. Research Report
RR-4223, 2001.

11. Garavel, H., Lang, F., Mateescu, R., and Serwe, W.
CADP 2011: A Toolbox for the Construction and
Analysis of Distributed Processes. International Journal
on STTT (2013), 89–107.

12. Jung, H., Lee, S., and Baik, D.-K. An Image
Comparing-based GUI Software Testing Automation
System. In SERP (2012), 318–322.

13. Masci, P., Rukšėnas, R., Oladimeji, P., Cauchi, A.,
Gimblett, A., Li, Y., Curzon, P., and Thimbleby, H. The
benefits of formalising design guidelines: A case study
on the predictability of drug infusion pumps.
Innovations in Systems and Software Engineering
(2013), 1–21.

14. Navarre, D., Palanque, P. A., Ladry, J.-F., and Barboni,
E. ICOs: A model-based user interface description
technique dedicated to interactive systems addressing
usability, reliability and scalability. ACM TOCHI
(2009), 18:1–18:56.

15. Oliveira, R., Dupuy-Chessa, S., and Calvary, G. Formal
Verification of UI Using the Power of a Recent Tool
Suite. In ACM SIGCHI symposium on EICS (2014),
235–240.

16. Park, D. Concurrency and Automata on Infinite
Sequences. In GITCS, Springer-Verlag (1981), 167–183.

17. Paternó, F. Formal Reasoning About Dialogue
Properties With Automatic Support. Interacting with
Computers (1997), 173–196.

18. Sousa, M., Campos, J., Alves, M., and Harrison, M.
Formal Verification of Safety-Critical User Interfaces: a
space system case study. In Formal Verification and
Modeling in Human Machine Systems: AAAI Spring
Symposium, AAAI Press (2014), 62–67.

19. Thevenin, D., and Coutaz, J. Plasticity of User
Interfaces: Framework and Research Agenda. Proc
Interact (1999), 110–117.

20. van Glabbeek, R. J., and Weijland, W. P. Branching
Time and Abstraction in Bisimulation Semantics.
Journal of the ACM (1996), 555–600.

21. Vanderdonckt, J., Calvary, G., Coutaz, J., and
Stanciulescu, A. Multimodality for Plastic User
Interfaces: Models, Methods, and Principles. 2008,
chapter 4, 61–84.

EICS'15, June 23–26, 2015, Duisburg, Germany

275

Testing and Validation

