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ABSTRACT
This paper presents an approach to verify the quality of user
interfaces in the context of a critical system for nuclear power
plants. The technique uses formal methods to perform verifi-
cation. The user interfaces are described by means of a formal
language called LNT and ergonomic properties are formally
defined using temporal logics written in MCL language. Our
approach moves towards the powerfulness of formal verifica-
tion of user interfaces, thanks to recent tools to support the
process.
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INTRODUCTION
User interfaces (UI) play an important role in the Human
Computer Interaction (HCI) [6], specially in safety-critical
systems, where failures may have disastrous consequences.
This calls for high quality of user interfaces, which can be
ensured by several ways. For example, [13] proposes four
ways of evaluation: formally by some analysis techniques,
automatically by a computerized procedure, empirically by
experiments with users and heuristically by looking at the UI
and passing judgement according to an expert opinion.

Although each approach has advantages and drawbacks, for-
mal verification is suitable for safety-critical systems [11]. It
allows exhaustive reasoning on the system models, unveiling
subtle bugs that could be undetectable by testing or by simu-
lation. In [11], an experiment was performed to compare the
effectiveness of formal verification and testing at discover-
ing errors, showing how testing failed to find errors that were
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found by formal verification. Besides, user testing can be ex-
pensive [15] considering that users in safety-critical systems
are highly specialized and their time has a high cost.

Formal verification approaches can be seen as a complement
of classical testing techniques to ensure UI quality. It allows
an exhaustive analysis of the system, handling complex cases
that are difficult for a human to reason about. For this pur-
pose, it requires a model of the system to be verified. The
formal model is an abstraction of the system’s behavior. It
is crucial for the model to be a meaningful approximation of
the system in order to have a useful evaluation [15]. By us-
ing formal verification one can avoid the need for a runnable
version of the UI, thus enabling design errors to be detected
earlier in the development cycle.

In this paper we propose a formal approach to ensure qual-
ity of user interfaces in safety-critical systems. We revisit
some techniques proposed in the ’90s ([14, 8]), with changes
in several directions. Besides, we use the newest versions
of tools specialized in formal verification, namely the tool-
box CADP (Construction and Analysis of Distributed Pro-
cesses) [7], the formal language LNT (Lotos NT) [16], and
MCL (Model Checking Language) [10], a language to express
temporal logic formulas. We illustrate how features added in
recent versions of these tools facilitate the formal verification
of UIs. Our ideas are being applied in an industrial case study
in the nuclear power plant domain.

The reminder of this paper starts by giving an overview over
several ways to ensure quality of UIs using formal meth-
ods. Then it will present our approach step by step. A case
study on which the approach has been applied will then be
described to illustrate model checking in action. Finally the
conclusion will summarize our current results and propose
some perspectives.

RELATED WORK
Several approaches [12, 5, 11, 17, 9, 14, 8] propose to ensure
quality of user interfaces using formal verification. Originally
formulated for the modelling of user interfaces, and nowa-
days covering the modelling of full interactive systems (not
only the user interfaces), the ICO (Interactive Cooperative
Objects) formalism [12] enables one to prototype and to ver-
ify applications before they are fully implemented. ICO uses
concepts from object-oriented approach to describe the static
aspects of systems, and it uses high-level Petri nets to de-
scribe their dynamic aspects. The specification is validated
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using proof tools, by the analysis of Petri net properties. The
use of Petri net properties has limitations [12]. In particular,
the analysis is usually performed on the underlying Petri net
(a simplified version of the original Petri net), and the veri-
fication of properties in underlying Petri nets does not imply
that these properties also hold in the original Petri net.

Other approaches that use formal methods to verify safety-
critical systems (in the avionic domain) are described in [5,
11, 17]. In [5] the authors explore the UIs-related causes of
several air plane accidents. In the context of a NASA project,
[11] proposes a framework to translate some graphical mod-
els (e.g. Simulink and Stateflow) into textual specifications
that can be given as inputs to model checkers (e.g. NuSMV,
BAT, Kind). These approaches do not verify properties over
models, but rather offer a support for formal techniques. In
[17], however, the authors propose the computer-aided veri-
fication of properties (written in CTL - Computational Tree
Logic) over a safety-critical system model developed in the
MAL (Modal Action Logic) Interactors language. Similarly,
the approach described in [9] uses models that were originally
developed using MAL, and proposes a method to verify some
requirements in the context of medical devices regulators.

Closer to our approach than the aforementioned ones, in [14]
(later enriched by [8]) the authors use model checking to ver-
ify properties of user interfaces. With this goal, the UIs are
first represented by a CTT (Concur task trees), later used
to generate a formal specification in the LOTOS formal lan-
guage using the CTTE tool.

Once the formal model describing the UI behavior is created,
properties that need to be verified on the UI are specified
using the ACTL temporal logic. Properties like continuous
feedback, reachability, reversibility, etc. are verified over the
formal specification. Then the authors use CADP toolbox to
verify the satisfiability of these properties on the UI model.

We revisit this technique using a more powerful support,
which enlarges the possibilities of UI verification. The main
differences between our approach and this one will be deeply
detailed in the next sections.

OUR APPROACH
Our approach is illustrated in Figure 1. It consists in verifying
properties over a formal model of the user interface. In the
following sections, we detail it step by step.

Figure 1: Formal verification of UI properties

Entry point
The starting point before any verification is to understand the
UI in depth, i.e. the purpose and behavior of each UI element.
This can be done using either the real system, or a prototype,
or informal descriptions as entry point. We focus on the UI
and thus consider only the UI and the parts of the functional
core that have an impact on the UI behavior.

LNT Formal Model
Once the user interface behavior is well known, a model of it
can be created. We use LNT to write the specification. Nowa-
days this model is manually written, in contrast to the work
proposed in [14], that generates a LOTOS specification di-
rectly from a task model. In our case, a task model per se
does not contain sufficient information to permit automatic
generation of the formal model. It turns out that our formal
model covers the user interface behavior and some aspects of
the system’s core. It is so written manually, to be as realist as
possible.

The LNT model of the UIs is the first input of the formal
verification in our approach. We apply model checking as
technique, and for this purpose, a LTS (labelled transition
system) of the formal model is needed. We use CADP [7] to
generate the LTS from the LNT specification.

MCL Temporal Logic
With the UI formal model in hands, one can verify a set of
properties on it. The right branch of Figure 1 illustrates this
second input of our approach. A lot of works have been
done [2, 1, 18, 13] to guide the identification of user interface
properties. In our approach, the usability properties from the
framework [1] was chosen. In contrast to [14], our approach
suggest the usage of these ergonomic guidelines in order to
identify UI properties, rather than defining them on demand.

In order to verify if the user interface satisfies the identified
properties, the verification technique requires these proper-
ties to be written in a formal way too. We use MCL (Model
Checking Language) to re-write them in a formal way.

Formal Verification
There are several techniques that can be used for verifica-
tion, including (but not limited to) model checking, equiva-
lence checking, visual checking [7]. Our approach applies
model checking: we use CADP toolbox to reason over the
LTS model of the UI and to verify properties satisfiability.

To end the process, as usual in model checking [14], once
a property is not satisfied (meaning that it is false over the
user interface in study), the tool provides a counter-example.
A counter example is a set of ordered steps that should be
followed, by interacting with the user interface, that leads to
a UI state where the property is false. This diagnosis is one
of the main benefits of using formal methods to verify UIs,
furnishing a precise way to identify UI problems.

Advantages of our approach
The key enhancements brought by our approach is the usage
of a more powerful support. In order to describe the UI behav-
ior, we use the LNT formal language [16], which improves

2



LOTOS, and can be translated to LOTOS automatically. LO-
TOS is a formal description technique originally devised to
support standardization of OSI (Open Systems Interconnec-
tion), but that has been used now more widely to model con-
current systems. In [14] the authors point out how difficult
it is to model a system using LOTOS, when quite simple UI
behaviors can easily generate complex LOTOS expressions.

Our approach alleviates this difficulty, by proposing the usage
of LNT, which is a more intuitive language. In terms of ex-
pressiveness, LOTOS and LNT are equivalent, but they differ
in terms of format and appearance. LOTOS consists of two
orthogonal sub-languages: the data part, based on algebraic
abstract data types (using equational programming style) and
the control part, based on process algebra. In LNT, both parts
(data and control) share a common syntax, using the impera-
tive programming style (easier to learn and to read). In [16]
the authors deeply argue about the benefits of LNT over LO-
TOS, notably the user friendliness and the richer data type
definition, to mention only two advantages.

A user-friendly language decreases the learning curve of de-
signers in the formal analysis domain, and it decreases the
required labor time of writing a formal specification of the
UI, enabling one to bypass the complexity of formal methods
and more quickly take advantages of them.

The richer data type definitions of LNT permits more realis-
tic UI models, thus widening the capabilities of verification,
covering verifications on the data type of the UI fields, for
instance.

Another point of improvement in our approach is the use of
MCL to formalize the properties. MCL is more expressive
than the ACTL logic used in [14]. As a matter of fact, MCL
is an enhancement of the modal µ-calculus, a fixed point-
based logic that subsumes all other temporal logics, aiming
at improving the expressiveness and conciseness of formulas
[10]. This allows us to identify, for example, the existence of
complex unfair (infinite) cycles in the model’s graph (i.e. the
LTS generated from the formal model in Figure 1). An un-
fair cycle is an infinite sequence made by the concatenating
sub-sequences satisfying the formula [10], e.g. a sequence of
actions over the user interface that once started loops forever.
For instance, in MCL it can be expressed that:

The UI will potentially respond (meaning provide a feedback)
after at most three user interactions (requests) occurring in
any order.

This is stated as follows in MCL:

νY (c : nat := 0 ).

〈not(req1 ∨ req2 ∨ req3 )
∗ . resp〉true

or

((c < 3 ) and [req1 ∨ req2 ∨ req3 ] Y (c + 1 ))

and read as follows:

“Starting from the initial state, there exists a path leading to
a UI response before the user has interacted three times with
the UI.”

The interest of this property is that, for instance, when user’s
requests require a large processing time on the system (e.g. in
a website), it is guaranteed that at most after three interactions
the UI is able to give some feedback to the user. Under the
chosen framework for our approach [1], this is an example of
robustness property, more precisely, a response time property.

The support to data-handling mechanisms on temporal logic
formula is another advantage of MCL language (i.e. the dec-
laration and initialization of the variable “c” in the formula
above). This is possible to be expressed on classical modal
µ-calculus, but it requires bigger (thus more difficult to read)
formulas, and it is not possible to express in ACTL [10].

The set of tools is important to support formal analysis.
Rather than developing our own tool to perform formal veri-
fication, we work in collaboration with the authors of CADP
toolbox. Their know-how in formal methods and the maturity
of their tools increased the confidence in our approach. In par-
ticular, CADP has continuously evolved in the past years. The
last published work covering a similar technique [15] uses an
earlier version of the CADP toolbox that dates from 2001,
while we used the latest version of CADP (2014-c). In [7] the
authors list the capabilities of the toolbox added in the last ten
years.

By taking advantage of the new capabilities added to CADP,
it is now possible for example to perform compositional ver-
ification on individual processes of the model, enabling to
handle much larger state spaces. As explained in the Sub-
section LNT Formal Model, CADP creates a LTS from the
formal model, and the reasoning is performed over this LTS.
The more complex the system under evaluation is, the larger
its LTS will be. Compositional verification is a way to avoid
state space explosion, by creating an equivalent LTS for each
process of the model [7], replacing a state space by an equiv-
alent but smaller one. In practice, bigger models can be han-
dled, so that we can consider more realistic UI models.

CASE STUDY
Our approach has been applied on a system’s prototype of a
nuclear power plant control room. The main UI of the proto-
type is illustrated in Figure 2a (in French).

The main goal of the system is to provide a general overview
of the plant status, advertising the control room operator in
case of some discrepancies on the reactor [3].

On top of the user interface there are six tabs, namely RP,
ANGV, ANRRA, API, APR and RCD. These tabs indicate
the current status of the plant, which ranges from completely
stopped to working on full capacity. For the purpose of this
case study, we do not take into account neither who changes
these states, nor how they are changed.

Depending on the plant status, different reactor’s parameters
are displayed in the middle of the UI. Each parameter is rep-
resented by the widget illustrated in Figure 2b. The top of
the widget displays the name of the parameter (for instance,
Pth Moy, standing for average thermal power). The middle
displays the current value of this parameter (90.00) and a line
that shows the last values. This value varies between a min-
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(a) Main view of the system (b) One parameter zoomed out

Figure 2: UI prototype of a nuclear power plant overview

imum and a maximum range (0 – 120). Finally, the bottom
of the widget displays the name of the sensor that monitors
the parameter (RPN906XX) and also its measurement unit
(%PN).

The system monitors the evolution of these reactor’s param-
eters. If discrepancies occur in these values (for instance, if
one achieves a value which is higher than the maximum ex-
pected value), then the parameter is highlighted in different
ways, e.g. a colored frame around it (Figure 2a). Besides, the
system generates an alarm signal in the reactor’s function that
is affected by this discrepancy, e.g. the box under the function
reactivity (réactivite) in Figure 2a.

This system prototype has several other functionalities. How-
ever, we will not detail them here.

Formal model
Since LNT proposes a modular-based programming style
[16] (inherited from LOTOS), the UI is described as several
modules (Figure 3). Modularity is key for scalability. Which
provides a means for structuring, abstraction, and reusability
[16].

The modules are related to Presentation, Abstraction and
Control, as defined in the PAC architecture style [4] (Fig-
ure 4). The presentation is in charge of the perceivable inputs
and outputs for the user. The abstraction encompasses the
functional core. The control ensures consistency between the
abstraction and presentation [4].

LNT modules
The modules are identified as follows (Figure 3): Plan state
describes the area in the UI where the plant state can be cho-
sen, i.e.the 6 available states, and the current one. The module
menu models the left part of the UI, where the operator has

access to detailed views of the reactor according to the con-
cerned function (e.g. reactivity, core cooling, confinement,
etc.). This menu provides a hierarchical access to the UIs.
By accessing a given function, for instance the menu option
“reactivity”, the user has access to other UIs that synthesize
informations about this function [3], e.g. “boron concentra-
tion”, “rods position”, “boration/dilution” and “reactor con-
trol”. The middle of the user interface is modelled by reactor
and generate signals modules. The former has functions to
evolve the reactor’s parameter values in time, while the later
generates discrepancies in these values, in order to simulate
disturbances on the reactor. All those modules communicate
with a central module called selection, that mediates the in-
teractions on the UI and the calculations in the system’s core.

PAC components
The separation of concerns is one of PAC’s characteristic.
Each one of the three components provides a way to address
a different problem in the system under study. In our case,
each LNT module of the UI is classified in the following way
(Figure 4): Plan state and menu are in the presentation com-
ponent, since they model the operator’s input and the corre-
sponding system’s output in the UI. The reactor and generate
signals are in the abstraction component, describing part of
the functional core of the reactor. Selection is in the control
component, providing the communication between presenta-
tion and abstraction components.

Beyond the PAC style, a special module called user model
is included in the architecture, in order to describe part of
the user’s behavior. In this case study, the operator perceives
the UI displayed by the system (arrow interface that exits the
module selection in Figure 4) and reacts to it by interacting
with the menu options (arrow relevant menu options that exits
the module user model in Figure 4). This simulates a common
monitoring activity of the operator [3]: the reaction to dis-
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Figure 3: UI organized by modules

crepancies in the reactor. Consisting in accessing the views
that have more details about the reactor failure.

The communication between the modules is done as follows:
the plant state is set, and its value is passed to the module re-
actor. For its part, the reactor will evolve different parameters
according to the plant state and to the scenarios that we have
implemented. The parameters values are then passed to two
modules: generate signals and selection. The former simu-
lates failures in the parameters and the later identifies which
UI should be displayed in order to monitor these failures. The
user model module represents a human user, who perceives
changes in the UI (e.g. the display of a failure), and interacts
with the menu module to access the UI that provides detailed
information about the failure. Menu, in its turn, passes to the
selection module the option chosen by the operator, that in its
part displays the corresponding UI.

All these modules are part of the whole LNT specification of
the user interface, which contains 15 modules in total, and
3,339 lines of code.

Ergonomic properties
The properties that need to be verified have to be written in
a formal way too. In our case, considering the framework
[1], all the identified properties are classified as robustness
properties, with the subcategory observability>reachability,
which refers to the possibility of navigating through the ob-
servable system states of the system [1].

Five properties were identified as key for the project. We
wrote them in MCL language. For example, the property:

“from any view, one can always go directly to the main view
(i.e. without passing through any other view)”

is expressed in MCL in the following way:

[true∗]

〈(not(view))
∗
. ′GLOBAL SYNTHESIS ′〉true

and may be read as:

From every reachable state

〈there exists a sequence of steps...

...not passing through any view...

Figure 4: Formal model architecture

...and leading to the GLOBAL SYNTHESIS view 〉
This property ensures that, in all user interfaces, there is al-
ways the possibility to come back to the main view (called
global synthesis, Figure 2a) with one single user interaction,
i.e. without the need to access intermediate views before.

The other four properties are:

• a view is only accessible along the hierarchy of views 1

• one can always come back to the parent view

• the SIGNAL DETAILS view is always directly accessible

• from any state one can always reach any view

Verification
We use CADP toolbox to perform formal verification. More
precisely, we use OCIS (Open/Caesar Interactive Simulator,
for step-by-step simulation with backtracking. We simulate
scenarios over the formal model, and we test it interactively
while an execution tree is created in the OCIS tool. This
simulation allows one to explore all the possible executions
of the model.

Another tool available in CADP is the EVALUATOR 4.0
model checker (for handling MCL formulas [7]). We used
it to evaluate the formula over the LTS of the formal model.
In the end, we had a diagnosis of the evaluation: an example
of steps that lead to a state where the property is true, or a
counter-example otherwise (meaning a sequence of steps that
leads to a state where the property is false).

The five properties defined before are evaluated to true over
the model in question. In the case a property is evaluated as
false, one can reconsider the essential questions in formal ver-
ification: is it a pertinent property? Is the property properly
written in MCL language? Is the formal model a meaningful
representation of the real system? Is the formal model prop-
erly written in LNT? If the answers for these questions are
yes, then the formal verification rigorously indicates a prob-
lem in the system under verification, with a precise way to
reproduce it.

1See in Subsection LNT modules the concept of hierarchy of views
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CONCLUSION
The approach described in this paper aims at verifying the
quality of user interfaces for a safety-critical system using
model checking. Specifically, we verify the satisfiability of
some ergonomic properties over formal models of the UIs.
The UI models have been conceived in terms of PAC architec-
ture, while the LNT formal language describes it. The MCL
language is used to write the usability properties formally.
The model checker used belongs to the CADP toolbox. Our
approach is supported by recent versions of those tools, mov-
ing towards the powerfulness of formal verification of user
interfaces.

The technique is being applied and validated in an industrial
case study in the nuclear power plants domain. This corrob-
orates the advantages of applying the strong capabilities of
formal methods to ensure the quality of user interfaces in a
real case study. It can be generalized for other safety-critical
domains, though.

The following for the approach is to enrich the formal model,
to cover visual aspects of the user interface. This would allow
one to verify “static” properties, i.e. not necessarily requiring
user interactions, for instance, color or position of widgets.

There are also other features of CADP that we aim to ex-
plore, for instance, the BISIMULATOR tool, which performs
equivalence checking over models. This would allow us for
instance to verify if different versions of the same user in-
terface are equivalent or not. Such an approach would be
applicable for adaptive user interfaces.
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