
THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée par

Raquel Araújo de Oliveira

Thèse dirigée par Sophie Dupuy-Chessa et Hubert Garavel
et co-encadrée par Frédéric Lang et Gaëlle Calvary

préparée au sein du Laboratoire d’Informatique de Grenoble,
du Centre de Recherche Inria Grenoble-Rhône-Alpes
et de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Formal Specification and
Verification of Interactive
Systems with Plasticity:
Applications to Nuclear-Plant Supervision

Thèse soutenue publiquement le 03 décembre 2015,
devant le jury composé de :

M. Ioannis Parissis
Professeur à l’Institut Polytechnique de Grenoble, Président
M. Philippe Palanque
Professeur à l’Institut de Recherche en Informatique de Toulouse (IRIT),
Rapporteur
M. Yamine Aït-Ameur
Professeur à l’École Nationale Supérieure d’Électronique, d’Électrotechnique,
d’Informatique, d’Hydraulique et des Télécommunications, Toulouse, Rapporteur
M. José Creissac Campos
Maître de conférence à University of Minho, Portugal, Examinateur
M. François Chériaux
Ingénieur-chercheur à Électricité de France (EDF), Paris, Examinateur
Mme Sophie Dupuy-Chessa
Professeur à l’Université Pierre-Mendès-France, Grenoble, Directrice de thèse
M. Hubert Garavel
Directeur de Recherche à l’Inria, Grenoble, Co-directeur de thèse
M. Frédéric Lang
Chargé de Recherche à l’Inria, Grenoble, Co-encadrant de thèse
Mme Gaëlle Calvary
Professeur à l’Institut Polytechnique de Grenoble, Co-encadrante de thèse

ii

iii

I dedicate this thesis to you, NH. Your continuous
support and love throughout the writing of this thesis and also within my own life
helped me in more ways than you probably realize. In the vastness of space and

immensity of time, it is my joy to spend a planet and an epoch with you.

iv

v

Acknowledgments

I am very grateful to my thesis committee members: Philippe Palanque and Yamine Aït-Ameur,
for accepting to evaluate this manuscript, Ioannis Parissis, for agreeing to head the committee,
José Creissac Campos and François Chériaux, for agreeing to be examiners. I would like
to express my gratitude to Laurence Nigay and Radu Mateescu, directors of the IIHM and
CONVECS teams, where I worked for the past three years, for their words of encouragement.
Immeasurable appreciation and deepest gratitude to my Ph.D. advisors: Frédéric Lang, whose
strong theoretical and technical skills were of immense help for the accomplishment of this work;
Hubert Garavel, whose rigor required me to produce high quality work in all my endeavors,
inspiring me to always pursue excellence in every piece of work I have ever done; Gaëlle Calvary,
who is very passionate and enthusiastic about human-computer interaction. I am specially
grateful to Gaëlle for giving me the first opportunity to teach, and for her feedbacks during
the course of this thesis; finally, I am deeply thankful for the strong implication of Sophie
Dupuy-Chessa in this thesis. For always being receptive to dialog, for her remarkable patience
in guiding a young researcher like me, and for her valuable comments and suggestions in all my
writings and rehearsals. Her ultimate concern for the welfare of her students is noteworthy.

I acknowledge the funding sources from the Connexion Project that made this work possible.
Especially Catherine Devic (EDF), Danièle Dadolle (Atos Worldgrid), and François-Xavier
Dormoy (Esterel Technologies), for providing the reading material and support needed to
accomplish this work. My sincere thanks to Franck Etienne and Olivier Deschamps, for
welcoming me several times at Atos Worldgrid.

I am thankful to colleagues of both IIHM and CONVECS teams who have helped me in
one way or another: François Bérard, Éric Céret, Yann Laurillau, William Delamare, Maxime
Guillon, Élisabeth Rousset, my good friend Miratul Mufida, and all members of the IIHM team;
José Ignacio, Eric Léo, Hugues Evrard, Rim Abid, Jingyan, and all members of the CONVECS
team. Special thanks to Fatma Jebali for being a wonderful and generous friend, for the time
spent on weekends in the final stages of this thesis. I also thank the administration staff from
both teams for kindly helping me with the French bureaucracy: Myriam Etienne, Helen Pouchot,
Pascale Poulet, Antoine Alexandre, and Stéphanie Bellier. I appreciate working with Vanda
Luengo, Vincent Lestideau, and Aurélien Faravelon, with whom I had the pleasure to teach.

I warmly thank my family for always supporting me: my grandmother, Cleonice, my father
Valdeci, and my other relatives: Vanice, Valterli, Vilson, Anidia, Odorico, Regina, Rosangela,
Roberto, and Rafael: your positive thoughts and cheering could be felt despite the miles of
distance separating us. I also thank Jander, who motivated me to come to France in the first
place; Kiev and Liviany, who helped me to get settled in France; and Thiago Mori, who shared a
roof and his friendship with me when my Ph.D. journey started. I would like to express my warm
thanks to Hélène Deladoire and Pascal Gaillard, for their cheering. I acknowledge the help of
friends who offered me the comfort one needs, making my time in France pass smoothly: Hamid
Mirisaee, Saman Noorzadeh, Laura Venuti, Divya Gupta, Vania, Zeina Wazani, Muhammad
Sam, Kassiana Lima, Ana Maria, Pauline Nasatto, Andon Tchechmedjiev, and all those I have
not mentioned, but who I’ll always think about. I cannot thank enough my boyfriend, Nicolas
Hili, for making the conclusion of this Ph.D. less burdensome. Your endless patience during the
“writing nights and weekends” of a finishing Ph.D. candidate, your taking care of whatever was
needed without complaining, just so I could focus on completing my dissertation, and constant
presence during the tough moments were immeasurable helpful.

Contents

List of Figures viii

List of Tables xii

1 Introduction 1

1.1 Human-Computer Interaction . 1
1.2 Interactive Systems . 2
1.3 Plastic User Interfaces . 3
1.4 Safety-Critical Systems . 6
1.5 Nuclear-Plant Systems . 7
1.6 Research Question . 8
1.7 Quality of Interactive Systems . 9
1.8 Context of the Thesis . 10
1.9 Outline of the Thesis . 10

2 State of the Art 13

2.1 Goals . 13
2.2 Modeling . 14
2.3 Model-based Testing . 14
2.4 Formal Verification . 15
2.5 Criteria to Analyze the State of the Art . 17
2.6 Verification of Properties . 18
2.7 Assessing Consistency . 54
2.8 Summary . 68

3 The Nuclear Reactor Supervision Case Study 69

3.1 Goals . 69
3.2 Nuclear-Plant Control Rooms . 69
3.3 The EDF Prototype . 72
3.4 The LIG Prototype . 76
3.5 The ADACS-NTM Prototype . 80
3.6 Summary . 82

4 An Approach to Verifying Interactive Systems 83

4.1 Goals . 83
4.2 Formal Techniques . 84

vii

4.3 Global Approach . 85
4.4 Formal Models Based on the ARCH Architecture 87
4.5 Languages and Tool Support . 88
4.6 Summary . 93

5 Verification of Industrial Interactive Systems 95

5.1 Goals . 95
5.2 Formal Model of the Case Study . 96
5.3 Propositions to Connect to Industrial Systems . 109
5.4 On the Connection to an Industrial System . 113
5.5 Conclusions of the Connection . 128
5.6 Summary . 129

6 Verification of Plastic Interactive Systems 131

6.1 Goals . 131
6.2 Improvements in the Formal Model . 132
6.3 Needs Raised by Plasticity . 136
6.4 Propositions to Verify Plasticity . 137
6.5 On the Comparison of User Interfaces . 144
6.6 Application of the Approach . 151
6.7 Summary . 159

7 Validation of the Use of Formal Verification for Interactive Systems 161

7.1 Goals . 161
7.2 The SRI Display System . 162
7.3 Formal Model . 164
7.4 Verification Approach . 167
7.5 Properties . 168
7.6 Results and Discussion . 169
7.7 Summary . 172

8 Conclusion and Perspectives 173

8.1 Summary of Contributions . 173
8.2 Perspectives . 175

Appendices 179

A Reactor Parameters 179

B An Excerpt of a LNT Specification 181

C MCL Properties 201

D SVL Scripts 207

Bibliography 211

viii

LIST OF FIGURES ix

List of Figures

1 An overview of the disciplines which contribute towards HCI. 2
2 Examples of bad user interfaces . 3
3 Various platforms in which interactive systems can execute 4
4 The problem space of plastic user interfaces . 5
5 A home heating control system . 6

6 Model checking . 17
7 Equivalence checking . 17
8 A button modeled as an agent . 21
9 Architecture of a CNUCE interactor . 23
10 Scrollbar modeling with three CNUCE interactors: mouse, cursor and scrollbar . 23
11 The TLIM approach . 24
12 The ADC interactor . 26
13 A scrollable list as a composition of ADC interactors 26
14 The York interactor . 27
15 An icon modeled with a York interactor . 28
16 IVY - a tool for verifying interactive systems . 30
17 The CERT interactor . 31
18 Boolean flows of a CERT interactor representing a push button 31
19 A verification environment using CERT interactors 32
20 UI prototyping and verification . 33
21 An example of a user interface with a dial and a slider 34
22 Example of an object in the ICO formalism – an ATM system 35
23 Example of a Petri net for the Obtain_Cash task 36
24 The PIE model . 38
25 The Red-PIE model . 38
26 Presentation model of a user interface . 40
27 Presentation and interaction model of a home heating control system 40
28 The IFADIS framework . 44
29 Property specification patterns in CTL . 44
30 Examples of infusion pumps . 46
31 Verification approach using PVS . 47
32 The Gryphon translator framework . 48
33 Lustre specification transformations . 49
34 Automated UI testing process . 54
35 Example of a image comparison . 55

x LIST OF FIGURES

36 GUIDiff representation of the current state of a UI as a widget tree 56
37 Example of user interfaces for displaying shapes 57
38 PMs of the user interfaces . 58
39 Behavioral sets of the user interfaces . 58
40 PIMs for UIA and UIC5 . 59
41 Comparing systems with their user manuals . 60
42 The Niki T34 Syringe pump . 61
43 Mode-control panel . 62
44 Degani et al.’s approach based on the composition of finite-state machines 63
45 Rushby et al.’s approach based on invariant verification 64
46 Classification of actions for human-machine interactions 65

47 Overall architecture of a control room system . 70
48 A conventional nuclear power plant control room 70
49 A computerized nuclear power plant control room 71
50 A monitoring system of nuclear-plant control rooms 73
51 One reactor parameter zoomed out . 73
52 Signals triggered on reactor functions . 75
53 Example of the zoom metaphor : from one UI, the user can access other UIs that

give more details about what is displayed on the previous UI 76
54 Two versions of a control room system . 77
55 UI platform adaptation . 79
56 UI after user adaptation . 79
57 ADACS-NTM: synoptic representations of the installation 80
58 ADACS-NTM: examples of user interfaces . 81
59 ADACS-NTM objects . 81
60 ADACS-NTM: simulation mode and data logging 82

61 Model checking applied to interactive systems . 85
62 Equivalence checking applied to interactive systems 86
63 Global approach to verifying interactive systems 87
64 ARCH architecture usage in the formal modeling 88
65 The Ocis (Open/Caesar Interactive Simulator) tool 90
66 A Labeled Transition System (LTS) . 91
67 A UI fragment represented in an LTS . 92
68 Tools used in the global approach . 94

69 Main modules of the formal model . 97
70 Formal model structure of the EDF system . 97
71 The plant status module - an excerpt of Lnt code 99
72 A menu of the control room system . 99
73 Extract of the reactor parameter modeling in Lnt 100
74 The threshold overflow (“dépassement haut”) scenario simulated in a reactor

parameter . 101
75 In five cycles of anomalies all reactor parameters are affected by all anomaly

scenarios . 102

LIST OF FIGURES xi

76 The user module - an excerpt of Lnt code . 105
77 Models of the case study . 110
78 Analysis of traces proposition . 111
79 Test case generation proposition . 112
80 Co-simulation proposition . 113
81 New thresholds in the reactor parameters . 114
82 Analysis of traces in details . 117
83 Example of inclusion verification of traces . 118
84 The super threshold underflow anomaly scenario on a reactor parameter 118
85 Example of an ADACS-NTM input file . 119
86 An ADACS-NTM log file (adapted) . 121
87 A sequence of transition labels . 122
88 A property containing a sequence of transition labels 123
89 The Parser class diagram . 123
90 Correspondence between the ADACS-NTM log files and the translated traces . . 124
91 Property verification . 124
92 Validation coverage of ADACS-NTM × the Lnt formal model 126
93 Intersection zone of ADACS-NTM and the Lnt formal model which is analyzed . 128

94 The LIG prototype of the control room system running on a PC 132
95 New formal model structure . 133
96 The parameters module - an excerpt of Lnt code 134
97 The signals module - an excerpt of Lnt code . 135
98 Common part to all propositions . 137
99 Modeling UI versions . 138
100 Excerpt of Lnt code describing the UI modules 139
101 Modeling a plasticity engine . 140
102 Excerpt of Lnt code describing the adaptation rules 140
103 Excerpt of Lnt code of each UI version . 142
104 Comparison of user interfaces . 144
105 Equivalence checking of user interfaces . 145
106 An ISLTS (Interactive System LTS) . 145
107 UI appearance in an ISLTS . 146
108 Two strongly equivalent ISLTS . 147
109 Two branching equivalent ISLTS . 148
110 Generalization abstraction technique . 149
111 Example of an inclusion relation . 151
112 The five UI versions are compared by means of the ISLTS comparison 152
113 ISLTS fragments of PC and Smartphone UIs . 153
114 Generalization in an ISLTS - case 1 . 153
115 Generalization in an ISLTS - case 2 . 154
116 Elimination in an ISLTS . 154
117 The PC version includes the Tablet version . 155
118 ISLTS in LNT code . 156
119 Example of a Svl script . 157
120 Summary of the abstraction techniques . 158

121 Different levels of equivalence between UI models 159
122 The abstraction problem . 159

123 Displayer modes . 162
124 Main UI of the SRI system . 163
125 Organization of the UI zones and data . 163
126 The Settings UI of the SRI system . 164
127 Formal model structure of the SRI system . 165
128 Functionalities of the displayer. In green, the ones covered by the formal model.

In red, otherwise . 167
129 Verification approach of the SRI system . 168
130 Graph of UI navigation of the SRI system . 169
131 A property of the SRI system in MCL . 170
132 Counter-example of the non-satisfied property (in French) 170
133 The Settings UI does not provide direct access to the SRI Status UI 171

List of Tables

1 Summary of approaches to verifying system properties 53
2 Summary of approaches which assess consistency 67

3 Reactor parameters anomalies and their UI representation 74

4 Anomaly scenarios and the number of instants 102
5 Summary of the formal model of the EDF system 106
6 Size of the LTS of the EDF system model . 106
7 Summary of properties of the EDF system . 107
8 Summary of the new version of the formal model, to connect to ADACS-NTM . . 115
9 Size of the LTS of the new version of the formal model 115
10 Summary of the Parser . 124

11 Summary of the new version of the formal model, to include plastic UIs 135
12 Size of the LTS of the new version of the formal model, to include plastic UIs . . 136
13 Summary of propositions to verify plastic user interfaces 143
14 Summary of the formal models in the different contexts of use 156
15 Summary of the comparisons . 157

16 Summary of the formal model of the SRI system 166
17 Size of the LTS of the SRI formal model . 166

xii

LIST OF TABLES xiii

18 Summary and comparison with the state of the art 175

19 Some reactor parameters of the EDF case study 179

xiv LIST OF TABLES

Chapter 1

Introduction

Contents

1.1 Human-Computer Interaction . 1

1.2 Interactive Systems . 2

1.3 Plastic User Interfaces . 3

1.4 Safety-Critical Systems . 6

1.5 Nuclear-Plant Systems . 7

1.6 Research Question . 8

1.7 Quality of Interactive Systems . 9

1.8 Context of the Thesis . 10

1.9 Outline of the Thesis . 10

1.1 Human-Computer Interaction

Human-Computer Interaction (HCI) is a discipline that studies the use of computer technology
by humans and the means to improve this interaction. As noticed by [Bertino 1985, Mital &
Pennathur 2004, Baecker & Buxton 2014], anger and frustration are the norm rather than the
exception: “Users of advanced hardware machines are often disappointed by the cumbersome
data entry procedures, obscure error messages, intolerant error handling and confusing sequences
of cluttered screens. In particular, novice users feel frustrated, insecure and even frightened
when they have to deal with a system whose behavior is incomprehensible, mysterious and
intimidating.” [Bertino 1985].

A lot of research has been conducted in the past years to mitigate such problems, making
HCI a complex (nonetheless, rich) field: beyond computer science, several disciplines contribute
to research in HCI. A list of such disciplines is illustrated in Figure 1. In particular, Software
Engineering and Ergonomics are domains that have largely contributed to HCI in the past
years [Abowd et al. 1992, Bastien & Scapin 1993, Vanderdonckt 1994, Long 1989, Bevan 2001,
Imaz & Benyon 2007, Coutaz & Calvary 2012]. Human-Computer Interaction needs Software
Engineering to address the design and development of useful and usable systems [Göransson
et al. 2003]. They are both concerned with requirements analysis, incremental and iterative
design, as well as quality assurance [Coutaz & Calvary 2012]. Ergonomics, on the other hand,
gives principles of design and/or evaluation to be observed to obtain and/or to guarantee
an ergonomic, usable, and useful human-computer interfaces [Vanderdonckt 1994]. All such
improvements in human-computer interfaces improves the human-computer interaction.

Although computer systems had been largely used for commercial and industrial purposes
long ago, HCI became an important issue only since the 80s. According to [Booth 1989], the

1

2 CHAPTER 1. INTRODUCTION

Figure 1: An overview of the disciplines which contribute towards HCI. Adapted
from [Booth 1989]

main reason is that in previous decades early users were themselves programmers and designers
of computer systems. There has been since then a substantial growth in the number of users who
are neither programmers nor designers. This occurred with the emergence of personal computing
in the late 70s. Personal computing, including both personal software (text editors, spreadsheets,
and computer games) and personal computer platforms (operating systems, programming
languages, and hardware), made everyone a potential computer user, and vividly highlighted the
deficiencies of computer systems for those who wanted to use computers as tools [Carroll 2013].
This shifts the attention to one kind of computing systems: the interactive systems.

1.2 Interactive Systems

Interactive systems are computer systems characterized by significant amounts of interaction
between humans and computers [Spring 2002]. Prime examples of interactive systems are
Macintosh or Windows computer operating systems. Other examples are games, editors, web
browsers, and Integrated Development Environments (IDE). All such systems involve a high
degree of human-computer interaction [Spring 2002].

The first interactive systems were command-line based [Spring 2002]: in these applications,
users were required to know the commands for each task they would like to perform. DOS
(Disk Operating System) was a classic example. Gradually, this kind of systems was replaced by
menu-form and dialog-based systems, in which data was entered through forms or dialog boxes,
providing users with a limited set of choices. Automatic Teller Machines were an example of
this generation of interactive systems. A third generation was introduced by Xerox Corporation
in the 80s. The Xerox Star prototype made mouse, icons, desktop, windows and bitmap
displays to work together, replicated in the Lisa and Macintosh in the mid-80s. Later in the
90s, Microsoft made the windows, icon, menu, and pointer (WIMP) approach universal. In this
period, attention started to be paid to graphical user interfaces (GUI) [Spring 2002].

In this thesis, we call “user interface” (UI) a group of graphical components which are
displayed at the same time on a screen, and permit users to interact with the system. Used in
plural form, “user interfaces” can designate either the set of user interfaces of a specific system
or the user interfaces of any system.

1.3. PLASTIC USER INTERFACES 3

According to [Preece et al. 1994], the purpose of an interactive system is to help the user in
accomplishing his goals for some application domain. User interfaces play a central role in the
accomplishment of these goals. They are expected to provide users with all information and
functions they need, and no more than that, to accomplish their goal in a correct manner.

However, one can observe nowadays that many user interfaces do not achieve this require-
ment [Nielsen & Landauer 1993, Olsen Jr 2007, Miñón et al. 2014]. For instance, overloaded UIs
can disturb users and delay them from identifying useful information (Figure 2a), and confusing
UIs can lead users to mistakes (Figure 2b). Nowadays, UIs are expected not only to provide
means for users to accomplish a goal in a correct manner, but also to do so in an intuitive and
non-ambiguous manner.

(a) website: “Rules to Better Interfaces General” (b) blog: “Recognizing a bad UI at first glance”

Figure 2: Examples of bad user interfaces

1.3 Plastic User Interfaces

With the advent of technology over the past years, new forms of interaction and new devices
emerged: user interfaces are expected to cope with this innovation (Figure 3). The advance
of ubiquitous computing and the increasing diversity of platforms and devices change user
expectations. Systems should be able to adapt themselves to their context of use [Calvary
et al. 2003], which consists of: the platform (e.g., a smartphone or a tablet), the user who
interacts with the system (e.g., experts or novices), and the environment in which the system is
executed (e.g., a dark room or outdoor). User interfaces are expected to be sensitive to this
context. Plasticity is the capacity of a user interface to withstand variations in the context of
use (platform, user, environment) while preserving usability [Thevenin & Coutaz 1999].

The dimensions of adaptation have been studied over the past years [Vanderdonckt et al. 2008,
Calvary et al. 2011]. In [Vanderdonckt et al. 2008] the problem space of plastic UIs was defined,
in which seven dimensions were identified (Figure 4):

1. Adaptation means: defines the means used for adaptation. UI re-molding denotes any UI
reconfiguration that is perceivable by the user and that results from transformations on
the UI. By contrast, UI redistribution denotes the re-allocation of the UI components to
different interaction devices;

4 CHAPTER 1. INTRODUCTION

Figure 3: Various platforms in which interactive systems can execute

2. UI component granularity: denotes the smallest software UI unit that can be affected by
re-molding and/or redistribution;

3. State recovery granularity: characterizes the granularity after adaptation has occurred
(from the session level to the user’s last action);

4. UI deployment: is a way to characterize how much adaptation has been pre-defined at
design-time vs computed at runtime;

5. Context of use: is defined by the triplet 〈platform, user, environment〉 in which the UI
is executed;

6. Technological spaces coverage: is a way to characterize the degree of technical heterogeneity
supported by the system;

7. Existence of a meta-UI : a meta-UI allows end-users to program (configure, and control)
their interactive spaces, to debug (evaluate) them, and to maintain and re-use programs.

Plasticity provides users with UIs that respond better to their needs. For example, a heating
control system [Coutaz et al. 2000] can be controlled at home, through a dedicated wall-mounted
device or through a handheld device connected to a wireless home-net; it can be used in the
office, through the Web, using a standard work station, or anywhere using a mobile phone.
Figure 5 illustrates two examples of a user interface of such heating control system, adapted
according to the platform: the UI can be executed either in a large screen (Figure 5a) or in a
small screen (Figure 5c). Users of this system are provided with the same functionality on both
versions of the UI: the task of consulting and modifying the temperature of a particular room.

We discuss now the adaptation applied on the UI versions of Figures 5a and 5c, with respect
to the plasticity problem space axes. The axes of which the characteristics are unknown are not

1.3. PLASTIC USER INTERFACES 5

Figure 4: The problem space of plastic user interfaces [Vanderdonckt et al. 2008]

discussed (i.e., the state recovery granularity, the UI deployment, and the technological space
coverage). Re-molding is the adaptation means, since the UI visual components are re-molded
to adjust the size of the screen; the UI component granularity of the adaptation is defined at
the interactor level, since the widget allowing a room temperature to be changed is re-molded;
only changes in the platform are taken into account in the context of use of the UI: the system
can be used, for instance, on large or small screens; and finally, this example does not contain
meta-UIs.

In this adaptation, the appearance of the UI changed (i.e., in Figure 5a the temperature of
all the rooms are available, in contrast to Figure 5c, in which one room at a time is available), as
well as the UI behavior (i.e., in Figure 5c one additional action is required to the task of changing
a room temperature: first to select the room). It can be the case that only the appearance of
the UI changes, or only its behavior. Such decision can be made either at design-time or at
runtime. At runtime, a plasticity engine (or adaptation engine) contains transformation rules
(or adaptation rules) which can calculate a user interface adapted to its context of use. At
design-time, several versions of the UI are created by the designer, one for each context of use.
Then the plasticity engine chooses at runtime the most suitable one for the current context of
use.

The adaptation may privilege some ergonomic criteria over others. The benefits plasticity
brings to a UI justify to neglect some ergonomic criteria, as long as it does not deteriorate
usability. For instance, one ergonomic criteria defined by [Bastien & Scapin 1993] is minimal
actions, which is a matter of limiting as much as possible the steps users must go through to
accomplish a task. The UI in Figure 5c undervalues this criterion by adding one more action to
the user task, in order to privilege another ergonomic criteria called information density [Bastien
& Scapin 1993], which concerns the users’ workload from a perceptual and cognitive point of
view with regard to the whole set of information presented to the users.

6 CHAPTER 1. INTRODUCTION

(a) Large screen: the temperature of

the rooms are available at a glance

(b) The engine contains

the UI adaptation rules

(c) Small screen: the temperature of

a single room is displayed at a time

Figure 5: A home heating control system [Coutaz et al. 2000]

Plasticity provides users with different versions of a user interface. Since these versions
diverge from each other at different levels, they may not be consistent with each other. Regarding
the UI behavior, for instance, critical features that are expected to be provided on all UI versions
may not be. And regarding the UI appearance, for instance, a given symbol may be displayed
with different colors in different UI versions. The number of such inconsistencies may increase
depending on the number (and complexity) of UIs provided by plasticity.

Although plasticity enhances UI capabilities, it adds complexity to the development of user
interfaces. UIs are expected not only to provide correct, intuitive and non-ambiguous means for
users to accomplish a goal in a reliable way, but also to be sensitive to changes in their context
of use and to adapt themselves while preserving the aforementioned requirements. Furthermore,
different versions of the UIs are expected to cope with all these requirements. This complexity
is further increased when it comes to user interfaces of safety-critical systems.

1.4 Safety-Critical Systems

Safety-critical systems are systems in which a failure has severe consequences (e.g., death or
injury to people, environmental harm, loss or damage to equipment). While in interactive
systems in general bad user interfaces can be the source of frustrated, annoyed or intimidated
users, causing waste of time, steeper learning curve, or even user rejection of new systems,
bad UIs in safety-critical systems can be the source of deathly accidents/incidents. Examples
of such systems are: transportation (e.g., avionics, trains), automotive (e.g., airbag systems,
braking systems), health care (e.g., medication administration, radiation therapy machines),
nuclear industry (i.e., nuclear reactor control systems, cooling systems), and even recreation

1.5. NUCLEAR-PLANT SYSTEMS 7

(e.g., amusement rides).
According to [Leveson 1995], risks have changed as society and the natural environment

have changed. In the past, the greatest concerns were natural disasters. Today, industrialization
has substituted nature-rooted disasters by man-made hazards. Some factors that may affect the
emergence of risks are [Leveson 1995]:

• the appearance of new hazards due to advances in science and technology;

• the increasing complexity in the systems;

• the increasing exposure of society to hazard (e.g., passenger capacity in aircraft is increasing
to satisfy economic concerns);

• the discovery and use of high-energy sources, which have increased the magnitude of the
potential losses;

• the increasing automation of manual operations;

• the increasing centralization and scale of industrial production such as power plants; and

• the increasing pace of technological changes.

In particular, the increasing complexity in the systems is a reality in safety-critical systems.
Complexity is a source of design errors: subtle faults can emerge during the integration phase.
For instance, overly large redundancy-management software may lessen, rather than enhance,
the overall reliability [Rushby & von Henke 1993].

This increasing complexity of systems is reflected in user interfaces. Several issues have been
reported in the safety-critical domain due to bad user interfaces (e.g., in avionics [Degani &
Heymann 2000], in radiation therapy machines [Turner 1993], in infusion pumps to deliver drugs
in hospitals [Thimbleby 2010], etc.). UIs are now expected not only to provide correct, intuitive,
non-ambiguous and adaptable means for users to accomplish a goal, but also to cope with safety
requirements aiming to make sure that systems are reasonably safe before they enter into the
market.

1.5 Nuclear-Plant Systems

Safety-critical systems are used, for instance, in nuclear plants. Nuclear power plants generally
have large complex systems, which are redundant to recover whenever an emergency occurs.
The environment of such systems is highly secure and protected, and only a restricted number
of qualified users have access to the system functionalities. Therefore, the development and
verification tools of these systems should be appropriately selected [Lutz 2000]. For instance,
a simulated environment should be provided to each nuclear-plant unit, and systems should
be tested in such environment before reaching the real plant [Yoshikawa 2005]. Besides, the
nuclear-plant domain have specificities that distinguish it from other safety-critical domains:

1. Usually this kind of environment integrates several systems into sophisticated and complex
equipments [Yoshikawa 2005]. Assessing the quality of such systems is hard, yet the
verification of such systems is expected to be as exhaustive as possible.

8 CHAPTER 1. INTRODUCTION

2. The user interfaces of these systems are expected to provide high-quality support to
operators in their daily activities and, more importantly, during incidents/accidents. In
such conditions, operators must take action as instructed by the emergency operating
procedures. It is known that the reasoning capabilities of humans deteriorate under
stressful conditions [Niwa et al. 2001]: therefore, even though user interfaces of such
systems are complex, they are expected to well support users in their activities. In
addition, critical information should be constantly monitored and displayed: thus, critical
user interfaces should always be visible, i.e., the display of another UI over these critical
UIs is not authorized. A way to verify these constraints are needed.

3. Multidisciplinary users have access to system functionalities, i.e., chemists, physicians,
managers, nuclear engineers, etc. Besides, operators pass through a significant number of
hours of training before starting their activity [Commission et al. 1997]. Systems in this
kind of environment should adapt to this variety of user profiles. In particular, the user
interfaces of such systems should fulfill such variety while preserving usability.

4. Such systems should be conform to legal and regulatory requirements such as the IEC61513
international standard [IEC 2011], a standard for the nuclear industry under which a
system is required to be developed. Therefore, a precise way to verify whether the system
fulfill such requirements is needed.

These constraints should be taken into account by a methodology to assess the quality of
such systems.

1.6 Research Question

Combining safety-critical systems with advances in human-computer interactive, such as Plas-
ticity, leads to new problems. Given the large number of possible versions of UIs an adaptation
engine can provide, it is time consuming and error prone to check the aforementioned re-
quirements of plastic UIs by hand: some automation must be provided. In particular, plastic
user interfaces in the context of safety-critical systems may have to preserve some critical
functionalities in all contexts of use.

The severe consequences failures in safety-critical interactive systems call for a rigorous way
to ensure the quality of such systems, a way which can handle in particular their complexity. In
the context of nuclear plants, safety-critical systems are provided on conventional panels in the
control rooms. Some production and monitoring systems are usually integrated into sophisticated
and complex equipments. A rigorous way that is capable to explore the combination of these
sources of complexity can help.

Besides, safety-critical systems can be used in industrial contexts, which make them large
systems. A proposition to ensure quality of these systems should scale to large systems, in order
to be used in industrial contexts.

Our research question is:

“How to improve quality of safety-critical interactive systems with plastic user

interfaces, in a way which permits a rigorous verification of the system and is

scalable for industrial applications?”

1.7. QUALITY OF INTERACTIVE SYSTEMS 9

1.7 Quality of Interactive Systems

Several techniques to ensure quality of interactive systems in general exist, which can also be
used to safety-critical systems: requirement validation, code review, static analysis, dynamic
analysis (which can have four forms: simulation, testing, run-time analysis and log analysis),
and formal verification [Garavel & Graf 2013]:

• Requirement validation aims to ensure that good-quality requirements are used to the next
steps of the system development. This can be ensured in several ways, such as reviews by
a panel of examiners or translation to other notations (e.g., informal requirements can be
translated into semi-formal ones, which can reveal defects);

• Code review consist in submitting the code to a committee who searches for defects,
enabling to catch flaws that are difficult to be caught for the design artifact author;

• Static analysis attempts at finding errors in design artifacts without executing them. It
permits an automated review of the system artifact (i.e., the code, system diagrams, etc.)
to ensure, for instance, that the artifacts are of sufficient quality to be reviewed;

• Simulation refers to the dynamic analysis of virtual design artifacts. It is commonly
used to access the functional correctness of a system under design and to estimate its
performance;

• Testing refers to the dynamic analysis of real design artifacts, after the system is developed,
and before it is deployed. It is the most widely used analysis;

• Run-time analysis refers to the dynamic analysis of real design artifacts, after the system
is developed and deployed, and during its execution. For instance, the memory of the
design artifact is scrutinized to check for internal properties;

• Log analysis is a technique that seeks to make sense out of computer-generated records
(also called log or audit trail records). It refers to the dynamic analysis of real design
artifacts, after the system is developed and deployed, and after its execution; and finally,

• Formal verification relies, in whole or in part, on formal methods to the development of
safe and secure systems. It refers to the dynamic analysis of virtual design artifacts, and
before the system is developed and deployed.

Each one of these techniques have merits and shortcomings [Garavel & Graf 2013]. In this
thesis, we mainly focus on two techniques: testing, since it is the most widely used one, even in
safety-critical systems; and formal verification, since it is a suitable technique for safety-critical
systems [Lutz 2000].

Testing a system consists in executing a runnable version of the system and observing
whether the system is conform to the specifications or not. Testing can be either manually
performed (by a human) or automatically performed (by testing softwares). In either way, the
expected behavior of the system is described by means of test cases. Test cases are sequences of
steps to be followed in order to check correctness of a given functionality of the system under
test, and they can be created either manually or automatically, by model-based techniques.

Formal verification also relies on models of the system under analysis. It consists in the
application of techniques that are strongly rooted in mathematics to reason over a model of the

10 CHAPTER 1. INTRODUCTION

system, providing a rigorous way to perform system verification. This permits, for instance, the
simulation of the system, the early verification of properties, or the detection of inconsistencies
in requirements.

However, relatively few case studies of formal methods to industrial systems were re-
ported [Miller 2009]. Some causes are [Cofer 2012]:

1. Usability: formal notation and tools are unknown to developers;

2. Cost: a model that reproduces the behavior of the original system must be created, using
a formal language. The creation / maintenance of this model is expensive;

3. Fidelity: there is no guarantees that the models really correspond to the system.

All these factors and others more have been studied, to reduce the gap between formal methods
and industrial systems [Godefroid et al. 1998, Knight 1998, Hall 1999, Lutz 2000, Abrial 2006,
Ameur et al. 2010, Newcombe et al. 2015]. New ways to reduce the gap between industrial
systems and formal methods are also needed.

We present in this thesis an approach to assessing the quality of plastic interactive systems,
in the context of nuclear power plants. The approach applies formal methods and is scalable to
industrial systems. In order to reduce the gap between industrial systems and formal methods,
the use of an intuitive formal specification language mitigates the usability and cost issues, and
the connection of the formal specification with the modeled system mitigates the fidelity issue.

1.8 Context of the Thesis

This thesis was elaborated within the Connexion Project1 (Contrôle Commande Nucléaire
Numérique pour l’export et la rénovation), a R&D program to propose and validate an innovative
architecture platform for control room systems of new generation nuclear power plants in France.

The project gathers the major actors in the nuclear power plant domain in France, including
partners from academic research (CEA, INRIA, ENS Cachan, CNRS/CRAN, LIG, Telecom
ParisTech), techno-providers of embedded software (Rolls-Royce Civil Nuclear, Corys TESS,
Atos Worldgrid, Esterel Technologies, ALL4TEC, Predict), and AREVA, ALSTOM and EDF,
groups specialists in energy, electricity, and electric power generation. The expertise brought by
our laboratory (LIG) to the project is twofold: the experience in model driven engineering of
user interfaces, specifically, plastic user interfaces (IIHM Research Group2), and the experience
in the verification and validation (V&V) of systems (CONVECS Research project-team3). Based
on this expertise, the main contributions of LIG to the project are the application of recent
advances of plasticity in the context of the project (out of scope of this thesis), and a proposition
of a V&V approach for plastic user interfaces in safety-critical systems (the scope of this thesis).

1.9 Outline of the Thesis

This thesis is structured in eight chapters, organized as follows:

1http://www.cluster-connexion.fr/
2http://iihm.imag.fr/
3http://convecs.inria.fr/

1.9. OUTLINE OF THE THESIS 11

• Chapter 2 presents a representative list of propositions applying a variety of techniques and
tools to improve the quality of systems (state of the art). Two main classes of approaches
are identified to split the related work: approaches that verify whether the system follows
a given specification and approaches that compare the system with another artifact to
assess consistency. The related work is analyzed with respect to a set of criteria, and the
limitations and needs for a new approach are highlighted.

• Chapter 3 describes the main nuclear power plant case study used to validate the approach
proposed in this thesis. The improvements brought by plasticity to this case study are
presented in the chapter. Finally, an industrial implementation to this case study is
presented, to which our work is applied with different variants.

• Chapter 4 introduces our global approach to verifying interactive systems. With this goal,
two formal techniques are integrated: model checking, for the verification of the system
with respect to a given specification, and equivalence checking, to check for consistency of
different versions of plastic user interfaces. The ideas common to both parts are presented
in this chapter, as well as the rationale of the global approach unifying both parts.

• Chapter 5 details the first part of our approach: the verification of interactive systems with
respect to a given specifications, and a connection to an industrial system. The case study
presented in Chapter 3 is used to illustrate the approach, and a set of properties is verified
over the system model. A connection with a real industrial system in the nuclear-plant
domain is described.

• Chapter 6 details the second part of our approach: how interactive systems with plastic
user interfaces are verified by our comparison method. User interfaces are classified
according to their levels of similarity and several abstraction techniques are introduced.
The proposed approach is also illustrated and validated in the case study presented in
Chapter 3.

• Chapter 7 validates the approach by applying it to a second case study in the nuclear-plant
domain, in which a system flaw is identified thanks to the verification of properties.

• Chapter 8 reviews the contributions of the thesis, gives concluding remarks and proposes
possible directions for future work.

12 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

Contents

2.1 Goals . 13

2.2 Modeling . 14

2.3 Model-based Testing . 14

2.4 Formal Verification . 15

2.5 Criteria to Analyze the State of the Art . 17

2.6 Verification of Properties . 18

2.6.1 Interactive Systems Modeled as a Composition of Parts 19

2.6.2 Interactive Systems Modeled Globally 37

2.6.3 Synthesis . 51

2.7 Assessing Consistency . 54

2.7.1 System × System . 54

2.7.2 System × User Manual . 59

2.7.3 Synthesis . 66

2.8 Summary . 68

We recall that the goal of this thesis is to propose an approach to verifying plastic interactive
systems, in the context of safety-critical domains, which can be used in industrial systems.

2.1 Goals

This chapter gives an overview of several approaches to assessing the quality of interactive
systems. We structure them in two categories:

• Approaches that verify properties over the system model, which guarantee that the system
copes with a certain level of quality before it is deployed. We are specially interested in
approaches that are applied to industrial systems in the safety-critical domain.

• Approaches that checks for consistency of the system with another artifact. These
approaches are particularly important in the context of this thesis, because they could
give ideas about ways of comparing different versions of plastic user interfaces.

We give an overview of these approaches and compare them according to a set of criteria. A
table summarizing the presented approaches is provided at the end of each category. Model-based
testing approaches are briefly described, since they are also largely used to assess the quality of
safety-critical interactive systems. We start by describing the modeling technique.

13

14 CHAPTER 2. STATE OF THE ART

2.2 Modeling

Modeling is a well-accepted engineering technique. It is a central part of all the activities that
lead up to the deployment of good softwares [Booch et al. 2005]. A model is a representation,
often in mathematical terms, of what is perceived as relevant characteristics of the object or
system under study [Peterson 1981].

Models can be used for a variety of purposes [Booch et al. 2005, Turchin & skĭı 2006]:

• to communicate the desired structure and behavior of the system;

• to visualize and control the system’s architecture;

• to better understand the system under development;

• to help users to visualize the final product;

• to derivate specific predictions from theory that can be tested with data;

• to help the identification of relationships between various components of the system.

The use of models is an effective support for the development of interactive systems. There
are limits to the human ability to understand complexity. Modeling helps designers to break
complex applications into small manageable parts [Navarre et al. 2005]. Models of interactive
systems describe the behavior of the input and output devices used by the systems and the
interactions between the user and the systems. Model construction, thus, often requires making
simplified assumptions. The extent to which a model helps in the development of human
understanding is the basis for deciding how good the model is [Hallinger et al. 2000].

System models can be subject to a variety of techniques to assess the quality of interactive sys-
tems. For instance, model-based testing analyzes the real system, before its deployment [Garavel
& Graf 2013].

2.3 Model-based Testing

Several authors use model-based testing to assess the quality of interactive systems. For instance,
in [Tsai et al. 2000] UI navigation of interactive systems is modeled by a directed graph model
called SNet, in which a node represents a UI and a link between two nodes represents a navigation
path from one UI to another. Links have pre-conditions ans post-conditions. The pre-condition
is the current status of the UI when a particular event is triggered. The post-condition is the
expected status of the target UI after it is displayed. Based on this model, test cases can be
generated systematically from various navigation paths and scenarios based on a given coverage
criteria. While this work proposes a way to model UI navigation in order to generate test cases,
user interface functionalities and appearance are not covered, which limits the approach.

Also based on system models, but this time on UML Statechart models, the authors of [Hjort
et al. 2009] propose the usage of UPPAAL and UPPAAL-CORA to generate test cases from UI
state machines. Alternatively, task trees are used in [Madani & Parissis 2009]; more precisely,
task trees enriched with operational profiles (i.e., probabilities assigned to the user actions).
Such enriched task trees are translated into finite-state machines (FSM), which are then used
to generate the test data using the Lutess testing tool. The probabilities injected into the

2.4. FORMAL VERIFICATION 15

FSM can be used to guide the test generation. Also using task models, the authors of [Bin
& Anbao 2012] propose a method to formally integrate use case models and task models, so
as to create a composite FSM that are used afterwards to generate test cases that capture
more complete and detailed user interactions. The strength of these propositions is that their
approaches are integrated to models currently used by developers (i.e., UML Statemachines,
task models and use case models), which mitigate the barriers of adopting a new technique.
However, supporting the communication from one specific model to another specific model (e.g.,
from UML Statemachines to UPPAAL) limits the approaches to those models.

In order to improve testing aspects such as effectiveness, coverage, etc., a number of techniques
are proposed. For example, the authors of [Lu & Huang 2012, Huang & Lu 2012] propose
the use of ant colony algorithm to dynamically generate feasible test cases from UIs modeled
by event-flow graphs. However, in the UI models, only navigation and functionalities are
covered, appearance is not modeled. Alternatively, the authors of [Bhasin et al. 2013] propose
an orthogonal testing technique, which is based on genetic algorithms to efficiently reduce the
number of generated test cases and improve effectiveness. However, only web-pages can be
analyzed by this approach. Last but not least, mutation testing is used in [Alsmadi 2013] to
improve UI test coverage. It consists in modifying the program source code in small ways. Each
mutated version is called a mutant, and tests suites are measured by the capacity to detect and
reject such mutants. However, the code source of the system under test should be available.
While these approaches improve the effectiveness of testing, which by consequence improves
the quality of interactive systems, their limitations avoid them to be used in a larger range of
interactive systems.

The test-based work presented here is not an exhaustive list. Other approaches have been
proposed in the literature to assess the quality of interactive systems by model-based testing
(e.g., [Mariani et al. 2011, Memon et al. 2003, Nguyen et al. 2010, Nguyen et al. 2014, White
& Almezen 2000]). Test cases are an intuitive way to express specifications: they do not
require any additional knowledge in formal notations. However, they are usually used to asses
the system functionalities, while in safety-critical systems there is also the need to assess the
safety requirements and ergonomic properties, which is provided by approaches based on formal
methods.

2.4 Formal Verification

Models are expressed in some modeling language, and depending on the nature of the language,
can be informal, semi-formal, and formal [Garavel & Graf 2013]:

• informal models are expressed using natural language or loose diagrams, charts, tables,
etc. They are genuinely ambiguous, heavily rely on human intuition, and no software tool
can analyze them objectively;

• semi-formal models are expressed in a modeling language that has a precisely-defined
syntax, conveys some intuitive meaning, but has no formal (i.e., mathematical, self-
contained, unambiguous) semantics. Examples of semi-formal specification languages
are class diagrams, data flow diagrams, decision trees, entity relationship models, object
models, pseudocode, state diagrams, etc.;

16 CHAPTER 2. STATE OF THE ART

• formal models are written in a language that has a precisely defined syntax and a
formal semantics. Examples of formal specification languages are algebraic data types,
synchronous languages, process calculi, input/output automata, etc.

Formal models are system descriptions translated into a very precise language which, unlike
natural human languages, does not allow for any double meanings. Once we have framed a
system in a formal model, we can deduce precisely what are the consequences of the assumptions
we made – no more, no less [Turchin & skĭı 2006].

A formal model of a system is useful in several aspects. A non-exhaustive list of usages of a
formal model follows: the simulation of the system behavior, an overview of the system state
space and behavior, the generation of test cases, the reasoning over such system representation
in several ways, for instance, by performing formal verification of requirements written as
properties, etc.

Formal verification applies techniques that are strongly rooted in mathematics. Errors
detected by formal verification may indicate system defects. In this case, the system is modified
to correct these. This modified system can then be modeled and analyzed again. The verification
results provide a feedback to the whole approach, by revisiting the specifications, by refining
the formal model, and by assessing the quality of the real system. This cycle is repeated until
the analysis reveals no problems anymore. Examples of formal verification techniques are model
checking, equivalence checking, and theorem proving.

Theorem proving is a deductive approach for the verification of systems [Boyer & Moore 1983].
Proofs are performed in the traditional mathematical style, using some formal deductive system.
Both the system under verification and the specifications against which the systems are verified
are modeled as logic formulas, and the satisfaction relation between them is proved as a theorem
using the deductive proof calculus. Proofs progress by transforming a set of premises into a
desired conclusion, using the axioms and the deduction rules. The process is not fully automated:
user guidance is needed regarding the proof strategy to follow. Theorem proving techniques can
handle infinite-state systems. They are applied not only to models of the system, but also to
source code [Ameur et al. 2010].

Model checking (Figure 6) permits to verify whether a model satisfies a set of requirements,
which are specified as properties. A property is a general statement expressing an expected
behavior of the system. In model checking, a formal model of the system under analysis is needed
to be created, which is afterwards represented as a finite-state machine (FSM). This FSM is then
subject to exhaustive analysis of its entire state space to determine whether the properties hold
or not. The analysis is fully automated and the validity of a property is always decidable [Clarke
et al. 1983]. Even though it is easier for a human being to express properties in natural language,
it can result in imprecise, unclear and ambiguous properties, which are undesired characteristics
in formal methods. Expected properties should, thus, be also formalized by means of a temporal
logic. The analysis is mainly supported by the generation of counter-examples when a property
is not satisfied. A counter-example can be a set of steps that when followed, by interacting with
the system, leads to a state in which the property is false. The results of the analysis permits a
refinement of the modeled system.

Since the introduction of model checking in the early 80s, it has advanced significantly. The
development of algorithmic techniques (e.g., partial-order reduction, compositional verification,
etc.) and data structures (e.g., binary decision diagrams) allows for automatic and exhaustive
analysis of finite-state models with several thousands of state variables [Ameur et al. 2010]. For

2.5. CRITERIA TO ANALYZE THE STATE OF THE ART 17

������
�����

	����

��
���

������
���������

���
�
����

���
�
����

������

Figure 6: Model checking

this reason, model checking has been used in the past years to verify interactive systems in
safety-critical systems of several domains, such as avionics [Degani & Heymann 2002], radiation
therapy [Turner 1993], healthcare [Thimbleby 2010], etc.

Rather than verifying the satisfiability of properties, equivalence checking (Figure 7) permits
to formally prove whether two representations of the system exhibit exactly the same behavior or
not. In order to verify whether two systems are equivalent or not, a model of each system should
also be created, and then both models are compared in the light of a given equivalence relation.
Several equivalence relations are available in the literature (e.g., strong bisimulation [Park 1981]
and branching bisimulation [van Glabbeek & Weijland 1996]). Which relation to choose depends
on the level of details of the model and the verification goals. The results of the analysis also
permits a refinement of the modeled systems.

��������	
��

��
�	�

������
�������

������
�������

���
���
����	

���
���
����	

��������

��������

Figure 7: Equivalence checking

These are the main formal verification techniques applied in the following approaches to
verifying interactive systems. In the sequel, we identify the criteria we will use to compare the
proposed approaches in the state of the art.

2.5 Criteria to Analyze the State of the Art

In the sequel, we will focus on formal verification for interactive systems. Each approach is
presented with respect to the following structure: after a brief introduction of the approach, we
unfold it step by step, identifying which language/formalism is used to model the interactive
system, followed by an example of a system modeled with the approach. Then, the properties the
approach verifies are listed, together with the language/formalism used to formalize them, the

18 CHAPTER 2. STATE OF THE ART

verification technique employed and whether the approach is tool supported. Then, an analysis
is performed according to the following criteria:

1. Modeling coverage: the verification of the system relies on the system model. For this
reason, the model coverage should be large enough for the verification to be useful. We
analyze whether the studied approach covers aspects of the functional core and the user
interfaces or not. The functional core of a system implements the domain-dependent
concepts and functions, and the user interfaces implement the look and feel of the interactive
system [Bass et al. 1991]. In this thesis, we call a “user interface” (UI) a group of graphical
components which are displayed at the same time on a screen, and permit users to interact
with the system. Used in plural form, “user interfaces” can designate either the set of user
interfaces of a specific system or the user interfaces of any system. In addition, we also
analyze if aspects of the users are included in the model, in order to take into account
user behaviors.

2. Verification of plastic user interfaces: plasticity enhances regular user interfaces. A
verification approach is expected to cope with such enhancements. In case the model
covers user interfaces, we analyze whether the verification approach is applied to plastic
user interfaces or not.

3. Kinds of properties: one kind of verification that can be performed over a system model is
property verification. In the context of safety-critical systems, we believe that the focus
should be directed both to safety requirements (to ensure that the system is correct) and
to usability requirements (to ensure that the system prevents users from making mistakes)
of such systems. For each author, we analyze the kinds of properties that can be verified
using the approach.

4. Application to the nuclear plant domain: since the scope of this thesis is the nuclear plant
domain, we analyze whether each approach is applied to this domain or not. This domain
has its own specificities (cf. Section 1.5 on page 7) and applications of formal verification
to this domain is needed.

5. Scalability: since we are interested in approaches that can be applied to industrial
applications, we investigate the scalability of the studied approaches.

2.6 Verification of Properties

Interactive systems are described by a specification. A specification is a general statement about
the behavior that is necessary to be satisfied by the system. It can be represented in several
ways, such as test cases, safety requirements, desired properties, etc. When used for verification,
the goal is to give insights about whether the system satisfies the specifications or not.

When the specifications are expressed as properties, the identified properties depend on
the verification goals. For instance, properties can be extracted from the system requirements
document, to guarantee that the system was developed according to the documentation. Alter-
natively, ergonomic frameworks aiming at guiding the development of good-quality interactive
systems are available, such as [Abowd et al. 1992, Bastien & Scapin 1993, Vanderdonckt 1994]:
ergonomic properties can be extracted from such frameworks. Last but not least, safety-critical

2.6. VERIFICATION OF PROPERTIES 19

systems are constrained to several regulations to ensure their safety before they enter in the
market. In this case, properties can be extracted from the safety requirement documents.

Several authors propose different categories of properties. For instance, three kinds of
properties are identified in [Campos & Harrison 1997]: visibility properties, which concern the
users’ perception, i.e., what is shown on the user interface and how it is shown; reachability
properties, which concern the user interfaces, and deal with what can be done at the user interface
and how it can be done (in the users’ perspective); and reliability properties, which concern the
underlying system, i.e., the behavior of the interactive system. Reliability properties do not
directly analyze the interaction between users and the user interfaces, but how the UIs and the
underlying system collaborate. Alternatively, [Yamine et al. 2005] defines validation properties
as the behavior of the UI expected, or desired, by the user (e.g., completeness, flexibility, task
achievement, and so on); and robustness properties concern the successful achievement and
assessment of the user goals when interacting with the system.

Since the scope of our work is safety-critical systems, we believe that the focus should be
directed both to safety requirements (to ensure that the system follows the regulations) and
to usability requirements (to ensure that the system prevents users from making mistakes).
In this chapter, we propose to analyze whether existing approaches verify or not two kinds of
properties:

• usability properties, which express whether the system follows ergonomic properties to
ensure a good usability. These are generic properties that can be applied to any interactive
system; They include visibility properties [Campos & Harrison 1997] and cover also other
aspects, allowing more than the desirable visible effects on the UIs to be verified. They
also include robustness properties [Yamine et al. 2005], i.e., the successful achievement and
assessment of the user goals when interacting with the system may relate with usability
aspects.

• functional properties, which express whether the system follows the requirements specifying
its expected behavior, defined in requirement documents and/or safety requirement
documents. These are specific properties that are identified and applied only to the
modeled system. They include reachability properties as it is defined in [Campos &
Harrison 1997]: what can be done at the user interface and how it can be done are defined
in the requirements, and functional properties also aim at verifying that. They also include
reliability properties [Campos & Harrison 1997]: they can verify how the UIs and the
underlying system collaborate, but also only the underlying system. Finally, they also
include validation properties [Yamine et al. 2005]: ensuring that the system follows the
requirements also requires the verification of validation properties that characterize the
UI behavior expected by a user.

The following subsections detail a representative list of approaches to verifying properties
over a system model. They are structured in two main groups: (1) formal approaches that
model interactive systems as a composition of smaller parts; and (2) formal approaches that
model interactive systems globally.

2.6.1 Interactive Systems Modeled as a Composition of Parts

In this section we present several approaches that use formal notations to model interactive
systems as a composition of smaller parts named agents, interactors, components, and objects,

20 CHAPTER 2. STATE OF THE ART

in order to perform verification afterwards. Such approaches are suitable to model large and
complex systems, since systems are subdivided in smaller and manageable parts.

a) Abowd et al. (USA, 1991–1995)

In [Abowd 1991], a framework for the formal description of users, systems and user interfaces is
proposed. The interactive system is modeled as a collection of agents, which closely relates this
model to other multi-agent architecture models, such as PAC [Coutaz 1987]. But, contrary to
PAC, in [Abowd 1991] the agents are formally described.

The language to describe the agents borrows notations from several formal languages. For
the internal description of the agent, the language is similar to a model-oriented notation such as
Z or VDM and for the external description, it is similar to process calculus, such as CSP or CCS.
The verification of specifications written in these notations can be tool supported (for instance,
ProZ for Z specifications). However, such a verification is not described in [Abowd 1991]. An
example of a button modeled in this language is illustrated in Figure 8.

This formalization of agents was the basis for the definition of a framework of desired
properties to be verified. A catalog of usability and functional properties is presented, each
discussed in terms of the interaction framework and/or the agent model. For instance, the
informal definition of predictability is that “a predictable system is one in which it would be
possible for the user to internalize a model that would be of benefit to future interactions”. In
this agent model framework, the properties are formally defined by means of mathematical
templates which can be instantiated to the studied interactive system.

Alternatively, another approach to property verification is proposed in [Wang & Abowd 1994,
Abowd et al. 1995], in which interactive systems are described by means of a tabular interface
using the Action Simulator tool. Action Simulator is a tool for describing PPS (Propositional
Production System) specifications. A propositional production system makes it easier to
enumerate states and state transitions by factoring the state space into fields of mutually
exclusive conditions [Abowd et al. 1995].

The dialog model is a specification of the constraints on the behavior of a user interface [Abowd
et al. 1995]. In PPS, the dialog is specified as a number of production rules using pre- and
post-conditions. Action Simulator permits such PPS specification to be represented in a tabular
format, in which the columns are the system states, and the production rules are expressed at
the crossings of lines and columns.

A translation from such a tabular specification of the interactive system to SMV input
language is described in [Wang & Abowd 1994]. The CTL temporal language is used to formalize
the properties, allowing the following usability properties to be verified:

• reversibility [Abowd et al. 1995]: can the effect of a given action be reversed in a single
action?

• deadlock freedom [Abowd et al. 1995]: from an initial state, is it true that the dialog will
never get into a state in which no actions can be taken?

• livelock freedom [Wang & Abowd 1994]: from any state of a given state set, can the user
escape from that state set?

• undo within N steps [Wang & Abowd 1994]: from any state of a given state set, if the
next step leads the system out of the state set, can a user go back to the given state set

2.6. VERIFICATION OF PROPERTIES 21

Figure 8: A button modeled as an agent [Abowd 1991]

within N steps?

In addition, the following functional properties can be verified:

• rule set connectedness [Abowd et al. 1995]: from an initial state, can an action be enabled?

• state avoidability [Wang & Abowd 1994]: can a user go from one state to another without
entering some undesired state?

• accessibility [Wang & Abowd 1994]: from any reachable state, can the user find some way
to reach some critical state set (such as the help system)?

• accessibility within N steps [Wang & Abowd 1994]: from any reachable state, no matter
which enabled action a user is going to take, can the user find some way to reach some
critical state set (such as the help system) within N steps?

• event constraint [Wang & Abowd 1994]: does the dialog model ensure/prohibit a particular
user action for a given state set?

• feature assurance [Wang & Abowd 1994]: does the dialog model guarantee a desired
feature in a given state set?

22 CHAPTER 2. STATE OF THE ART

• weak task completeness [Abowd et al. 1995]: can a user find some way to accomplish a
goal from initialization?

• strong task completeness [Abowd et al. 1995]: does the dialog model ensure that a user
can always accomplish a goal?

• state inevitability [Abowd et al. 1995]: from any state in the dialog, will the model always
allow the user to get to some critical state?

• weak task connectedness [Abowd et al. 1995]: from any state, can the user find some way
of getting to a goal state?

• strong task connectedness [Abowd et al. 1995]: from any state, can the user find some way
to get to a goal state via a particular action?

The automatic translation of the tabular format of the system states into the SMV input
language is an advantage of the approach, since it allows model checking of properties to be
performed. The tabular format of the system states and the actions that trigger state changes
provides a reasonable compact representation in a comprehensible form. However, it looks like
the approach does not scales well to larger specifications, unless an alternative way to store a
large sparse matrix is provided. The approach covers the modeling of the functional core and
the UIs, and to some extent the modeling of the users, by describing the user actions that “fire”
the system state changes. However, no application to safety-critical systems is reported.

b) Paterno et al. (Italy, 1990–2003)

Interactive systems can be formally described as a composition of interactors [Faconti &
Paternó 1990]. Interactors are more concrete than the agent model previously described, in
that they introduce more structure to the specification by describing an interactive system as a
composition of independent entities [Markopoulos 1997]. Interactors have a state, they receive
input events, send output events, and can be connected one to another. Interactors have a
reactive behavior and can operate in parallel [Yamine et al. 2005]. The external communication
of interactors are formally defined, as well as their internal behavior. Notations to describe
interactors cover the specification of the state, the behavior and the communication capabilities
of the interactor [Campos & Harrison 1998].

The interactors of CNUCE [Paternò & Faconti 1992] provide a communication means between
the user and the system (Figure 9). Data manipulated by the interactors can be sent and received
through events in both directions: towards the system and towards the user [Paternó 1994],
which are both abstracted in the model by a description of the possible system and user actions.

A CNUCE interactor is described by four sub-components:

• collection: represents the external appearance of the interactor in an abstract way;

• feedback: outputs to the user the data generated inside the interactor;

• measure: receives data from the user and manipulates them before sending to the feedback
and control sub-components;

• control: sends the data produced inside the interactor to other interactors or to the system.

2.6. VERIFICATION OF PROPERTIES 23

Figure 9: Architecture of a CNUCE interactor, adapted from [Paternò & Faconti 1992]

Interactors can be composed in the following way: the feedback sub-component of one
interactor is connected to the collection sub-component of another interactor, and the control
sub-component of one interactor to the measure sub-component of the other one.

Figure 10: Scrollbar modeling with three CNUCE interactors: mouse, cursor and scrollbar.
Adapted from [Paternò & Faconti 1992]

24 CHAPTER 2. STATE OF THE ART

Figure 10 illustrates an example of a scrollbar modeled with three CNUCE interactors:
mouse, cursor and scrollbar. In this example, the interactors are seen as black boxes, i.e.,
the four sub-components of each interactor are hidden. A flow of data passes through the
interactors: the mouse interactor sends to the cursor its current position and if it has moved.
The cursor handles the display of the cursor (visualizecursor arrow). When a mouse button
is pressed (buttonpress arrow), the scrollbar interactor recovers the cursor position (through
positionmouse arrow) and displays the scrollbar new position (through scrollbarposition

arrow). The CNUCE interactors are specified using Lotos [ISO/IEC 1989]. This formal model
of the interactive system can be afterwards used for verification.

Figure 11: The TLIM approach [Paternó 1997]

The verification approach proposed in [Paternó 1997] is called TLIM (Tasks, Lotos, In-
teractors Modeling), and is depicted in Figure 11. In this approach, the user interfaces of
the interactive system are represented by a CTT (Concur Task Trees) task model [Paternò
et al. 1997] (i.e., “UIS Specification” in Figure 11), built using the CTTE tool [Mori et al. 2002].
This task model is later used to automatically generate [Paternò & Santoro 2003] the Full Lotos

specifications of the interactors. Such Lotos models are then transformed into a Basic Lotos

specification using the LITE tool, in order to remove information on the data types. This new
UI Lotos model is then translated into a finite-state machine (FSM) of the model, which are
afterwards used to verify properties. A set of properties is identified from the user interfaces and
formalized using an action-based temporal logic called ACTL, a kind of branching-time temporal
logic which allows one to reason about the actions a system can perform [Paternó 1997]. The
properties are verified by model checking, using the Cadp model checker [Garavel et al. 2013],
and the verification results are used to refine the user interfaces.

This approach has been used to verify the following usability properties:

• visibility [Paternó & Mezzanotte 1994]: each user action is associated with a modification
of the presentation of the user interface to give feedback on the user input;

• continuous feedback [Paternó & Mezzanotte 1994]: this property is stronger than visibility:
besides requiring a feedback associated with all possible user actions, this has to occur
before any new user action is performed;

2.6. VERIFICATION OF PROPERTIES 25

• reversibility [Paternó & Mezzanotte 1994]: this property is a generalization of the undo
concept. It means that users can perform part of the actions needed to fulfill a task and
then perform them again, if necessary, before the task is completed in order to modify its
result;

• existence of messages explaining user errors [Paternó & Mezzanotte 1994]: whenever there
is a specific error event, a help window will appear.

In addition, the following functional property can be verified:

• reachability [Paternó & Mezzanotte 1994]: this property verifies that a user interaction
can generate an effect on a specific part of the user interface.

Besides, the approach also permits other functional properties expressing the expected
behavior of specific case studies to be verified [Paterno 1993, Paternò & Mezzanotte 1996, Paternò
& Santoro 2001].

Despite the fact that the approach covers mainly the modeling of user interfaces, a math-
ematical framework is provided to illustrate how to model the user and the functional core
too [Paternó 1994].

The approach has been applied to several case studies of safety-critical systems in the avionics
domain [Paternó & Mezzanotte 1994, Paternò & Mezzanotte 1996, Paternó 1997, Paternò &
Santoro 2001, Navarre et al. 2001, Paternò & Santoro 2003]. These examples show that the
approach scales well to real-life applications. Large formal specifications are obtained, which
describe the behavior of the system, permitting meaningful properties to be verified. However,
no case study applied this approach to the nuclear power plant domain. For instance, the
multidisciplinary users of nuclear-plant systems are not considered by this approach.

A practical limitation of this approach is that the designer needs an in-depth understanding
of both the Lotos specification of the interactive system and the temporal logic formulation of
the properties [Markopoulos et al. 1998]. Besides, the approach does not cover the modeling
and verification of plastic user interfaces.

c) Markopoulos et al. (England, 1995–1998)

ADC (Abstraction-Display-Controller) [Markopoulos 1995] is an interactor model that also uses
Lotos to specify the interactive system (specifically, the user interfaces). In addition, the
expression of properties is facilitated by templates.

An ADC interactor is composed of two units (Figure 12): an abstraction and display unit
(ADU) and a controller unit (CU). The ADU is a component that receives, modifies, and sends
the interactor data through gates named ainp, aout, dout and dinp (Figure 12). The CU
component enables/disables the interaction on these gates.

The interactor handles two types of data: display data, which come (and are sent to) either
directly from the UI or indirectly through other interactors, and abstraction data, which are sus-
tained by the interactor to provide input to the application or to other interactors [Markopoulos
et al. 1998].

A UI is modeled as a composition of ADC interactors. For example, Figure 13 shows the
modeling of a scrollable list. Two slider interactors allow the displayed portion of the list to
be scrolled in two dimensions. Each slider receives interactions and displays coordinates from

26 CHAPTER 2. STATE OF THE ART

Figure 12: The ADC interactor [Markopoulos et al. 1998]

Figure 13: A scrollable list as a composition of ADC interactors [Markopoulos et al. 1998]

its display side, and interprets its input to instruct the list interactor to scroll [Markopoulos
et al. 1998].

Once formalized in Lotos, the ADC interactors can be used to perform formal verification
of usability properties using model checking. The properties to be verified over the formal model
are specified in the ACTL temporal logic. For example, the following properties can be verified:

• determinism [Markopoulos 1997]: a user action, in a given context, has only one possible
outcome;

• restartability [Markopoulos 1995]: a command sequence is restartable if it is possible to
extend it so that it returns to the initial state;

• undoability [Markopoulos 1995]: any command followed by undo should leave the system
in the same state as before the command (single step undo);

• eventual feedback [Markopoulos et al. 1998]: a user-input action shall eventually generate
a feedback.

In addition, the following functional properties can be verified:

2.6. VERIFICATION OF PROPERTIES 27

• completeness [Markopoulos 1997]: the specification has specified all intended and plausible
interactions of the user with the interface;

• reachability [Markopoulos 1997]: it qualifies the possibility and ease of reaching a target
state, or a set of states, from an initial state, or a set of states.

In this approach, the Cadp [Garavel et al. 2013] toolbox is used to verify properties by
model checking [Markopoulos et al. 1996]. Specific tools to support the formal specification of
ADC interactors are not provided [Markopoulos et al. 1998].

The ADC approach concerns mostly the formal representation of the interactor model.
Regarding the coverage of the model, the focus is to provide an architectural model for user
interface software. The functional core and the user modeling are not covered. Besides, no
case study applying the approach to the verification of critical systems is reported. In fact, the
approach is applied to several small scale examples [Markopoulos 1995] and to a case study on a
graphical interface of Simple Player for playing movies [Markopoulos et al. 1996], which makes
it difficult to measure whether it can scale up to realistic applications or not.

d) Duke and Harrison et al. (England, 1993–1995)

Another interactor model is proposed by the University of York [Duke & Harrison 1995] to
represent interactive systems. Compared to the CNUCE interactor model, the main enhancement
brought by the interactors of York is an explicit representation of the state of the interactor.

The York interactor (Figure 14) has an internal state and a rendering function (i.e., rho in
Figure 14) that provides the environment with a perceivable representation (P) of the interactor
internal state. The interactor communicates with the environment by means of events. Two
kinds of events are modeled:

• stimuli events: they come from either the user or the environment, and modify the internal
state of the interactor. Such state changes are then reflected to the external presentation
through the rendering function;

• response events: they are events generated by the interactor and sent to the user or to the
environment.

Figure 14: The York interactor [Harrison & Duke 1995]

Figure 15 illustrates an example of an icon modeled with a York interactor. It has two
possible internal states: active or inactive, which are modified according to two stimuli events
ON and OFF. Each interactor state change generates a response event called ALERT, and
triggers the rendering function rho, which returns the corresponding perceivable representation
among the space of possible renderings P.

28 CHAPTER 2. STATE OF THE ART

The York interactor model defines an interactive system by the composition of a set of
interactors acting in parallel, each of which representing a part of the system, some entity in
the operating environment, or some aspect of the behavior of the user [Fields et al. 1995b].

Figure 15: An icon modeled with a York interactor [Duke & Harrison 1993]

York interactors are described using the Z notation [Spivey 1989]. This notation facilitates
the modeling of the state and operations of a system, by specifying it as a partially ordered sets
of events in first-order logic [Duke & Harrison 1993].

This approach permits usability properties to be verified. Properties are also specified in
first-order logic formulas. Unlike the previous approaches, the York interactor model uses
theorem proving as formal verification technique. Examples of properties that can be verified
are [Duke & Harrison 1995]:

• honesty: the effects of a command are intermediately made visible to the user;

• weak reachability: it is possible to reach any state through some interaction;

• strong reachability: each state can be reached after any interaction p;

• restartability: any interaction p is a prefix of another q such that q can achieve any of the
states that p initially achieves.

The York interactor model served as a basis to other interaction frameworks [d’Ausbourg
et al. 1998, Campos & Harrison 2001], some of them used to reason over safety-critical sys-
tems [Sousa et al. 2014]. Besides Z, this interactor model is also modeled with other for-
malisms, such as modal action logic (MAL) [Duke et al. 1995, Duke et al. 1999], VDM [Fields
et al. 1995a, Harrison et al. 1996], and structured MAL and PVS (Prototype Verification
System) [Campos 1999].

The York interactor model provides an abstract framework for structuring the description
of interactive systems in terms of layers. It encapsulates two specific system layers: the state
and the display [Harrison & Duke 1995], thus covering both the functional core and the UIs in
the modeling. The approach is applied to a case study in a safety-critical system, an aircraft’s
fuel system [Fields et al. 1995b] in which the pilot’s behavior is modeled, thus showing that the
approach also covers the modeling of users. No further case studies applying the approach were
found in the literature, which makes it difficult to tell whether the approach scales up to larger
interactive systems or not. Besides, no application was found in the nuclear plant domain.

e) Campos et al. (Portugal, 1997–2015)

The York interactor model is the basis of the work proposed in [Campos 1999]. Here, Campos
chooses MAL (Modal Action Logic) language to implement the York interactor model, since
MAL’s structure facilitates the modeling of the interactor behavior.

2.6. VERIFICATION OF PROPERTIES 29

In this work, Campos conducts a deep investigation of two different techniques to verify
interactive systems, namely model checking and theorem proving, the goal being to increase the
capabilities of reasoning about specifications of interactive systems. Campos describes how to
specify interactors using the PVS language and applies theorem proving to verify properties
that mainly express the system side of the design (functional properties).

The approach is applied to several case studies. An application of both model checking and
theorem proving to a common case study is described. Campos gives the following conclusions
regarding theorem proving [Campos 1999]:

• Theorem provers are usually not so well suited for temporal reasoning as model checkers
are;

• Theorem provers wins in the expressiveness of the logics they use, when the problem
involves reasoning about the system state;

• But such expressive power comes at the cost of decidability, which requires human
intervention in the proof process;

• Both model checkers and theorem provers have pros and cons. In model checking, the
effort goes mainly into developing the model and tuning the checking process, while in
theorem proving, the effort goes mainly into guiding the theorem prover through the
proofs.

Further, deeper investigations are performed (and tools developed) into the usage of model
checking (only), in order to verify interactive systems. In [Campos & Harrison 2001], the authors
propose the MAL interactor language to describe interactors that are based on MAL, and a
tool called i2smv is proposed to translate MAL specifications into the input language of the
SMV model checker.

To support the whole process, a toolbox called IVY is developed [Campos & Harrison 2009].
In this toolbox, the XtrmSwing tool performs reverse engineering of user interfaces written
in Java/Swing (Figure 16), generating specifications in the MAL interactor language. Such
specifications can be modified in the Model Editor provided by the toolbox, and the translation
into an SMV specification is provided by the i2smv tool. Besides, an editor of properties is
provided, in which the designer can select from a number of patterns of properties that best suit
the analysis needs, and instantiate them with actions and attributes from the model [Campos &
Harrison 2009].

In this framework, the properties are specified using the CTL (Computational Tree Logic)
temporal logic, allowing the verification of usability and functional properties [Campos &
Harrison 2008]. Particularly, the following usability properties can be expressed:

• feedback [Campos & Harrison 2008]: a given action provides a response;

• behavioral consistency [Campos & Harrison 2008]: a given action causes consistent effect;

• reversibility [Campos & Harrison 2008]: the effect of an action can be eventually re-
versed/undone;

• completeness [Campos & Harrison 2009]: one can reach all possible states with one action.

30 CHAPTER 2. STATE OF THE ART

Figure 16: IVY - a tool for verifying interactive systems [Silva et al. 2007]

The approach covers the three aspects we are considering in this thesis: in [Campos &
Harrison 2011], the approach is used to model the functional core and user interfaces of an
infusion pump; and assumptions about user behaviors are covered in [Campos & Harrison 2007],
by strengthening the pre-conditions on the actions the user might execute.

The approach is applied to several case studies [Campos & Harrison 2001, Harrison et al. 2013],
specifically, in safety-critical systems (e.g., healthcare systems [Campos & Harrison 2009, Campos
& Harrison 2011, Campos et al. 2014, Harrison et al. 2015] and avionics systems [Campos &
Harrison 2007, Doherty et al. 1998, Sousa et al. 2014]), showing that the approach scales well to
real-life applications. However, no case study applies this approach to plastic user interfaces.

f) D’Ausbourg et al. (France, 1996–2002)

Another approach based on the York interactor model is proposed in [d’Ausbourg et al. 1998,
d’Ausbourg 1998]. These authors push further the modeling of an interactive system by events
and states initially proposed by the York approach.

Their interactor model is called CERT (Figure 17). It also contains an internal state, and
the interface between an interactor and its environment consists of a set of input and output
events. Both internal state and events are described as flows. Informally, a flow is a sequence of
values [d’Ausbourg et al. 1998], and the Boolean flows used to define a CERT interactor are:

• Fs: flow describing the internal state of the interactor;

• Fu: flow describing events associated with user actions;

• Fe: flow describing events sent by the environment;

• Fp: flow describing the presentations displayed to the user;

• Fa: flow describing actions triggered by the interactor.

The relation between events and states found in the CERT interactor model is illustrated
in Figure 18, in which the behavior of a push button is described by the following Boolean
flows: Fu = {on, press}, Fe = {∅}, Fs = {selected}, Fp = {highlighted} and Fa = {trigger}.
Boolean flows are represented by leading or trailing edges – a leading edge indicates a true value
and an trailing edge a false value. For instance, a leading edge of the press flow expresses

2.6. VERIFICATION OF PROPERTIES 31

Figure 17: The CERT interactor, adapted from [d’Ausbourg et al. 1998]

than the user pressed the mouse button (push event), while a trailing edge indicates that the
user released it.

Figure 18: Boolean flows of a CERT interactor representing a push button [d’Ausbourg et al. 1998]

In this example [d’Ausbourg et al. 1998], the on and press flows take a true value, respectively,
when the user places the mouse on the button and while the user presses the button. When
both events take place, the internal state of the interactor changes to selected (represented in
the image by the third horizontal flow), and the presentation changes to highlighted. Finally, the
trigger flow takes a true value when an action is triggered by the interactor. The configuration
of these flows shows that this push button is selected only if the mouse button is pressed while
the pointing device is already on the interactor. So, the sequence of events [Arrives, Push] leads
to the Selected state of this interactor.

Such representation of interactors by flows allows their specification using the Lustre data
flow language. A system described in Lustre is represented as a network of nodes acting in
parallel. Each node transforms input flows into output flows at each clock tick.

The proposed verification approach is depicted in Figure 19. The UIs are first described in
a user interface generator called UIM/X. This tool generates a UIL file (a text file containing

32 CHAPTER 2. STATE OF THE ART

Figure 19: A verification environment using CERT interactors, adapted from [d’Ausbourg
et al. 1998]

the structure and hierarchy of widgets of the UI) and a C file (which contains the instructions
of the callback procedures). Both the UIL and the C files are used to automatically generate
the CERT interactors in Lustre [d’Ausbourg et al. 1996]. The analyzers that automatically
generate these Lustre models have been developed using the system Centaur.

The Lustre formal model is then verified by model checking. Verification is achieved by
augmenting the system model with Lustre nodes describing the intended properties, and using
the Lesar tool to traverse the state space generated from this new system. The properties can
be either specific or generic properties. Specific properties deal with how presentations, states,
and events are dynamically linked into the UIs, and they are automatically generated from the
UIL file (they correspond to functional properties). Generic properties might be checked on any
user interface system, and they are manually specified (they correspond to usability properties).
The verification process allows the generation of test cases, using the behavior traces that lead
to particular configurations of the UI where the properties are satisfied.

In particular, the following usability properties are verified [d’Ausbourg et al. 1998]:

• reactivity: the UI emits a feedback on each user action;

• conformity: the presentation of an interactor is modified when its internal state changes;

• deadlock freedom: the impossibility for a user to get into a state where no actions can be
taken;

• unavoidable interactor : the user must interact with the interactor at least once in any
interactive session of the UIs.

As well as the following functional property:

2.6. VERIFICATION OF PROPERTIES 33

• rule set connectedness: an interactor is reachable from any initial state.

A drawback of the approach is that it does not handle sophisticated data types in the
system modeling. The representation of the internal system state and events by Boolean flows
considerably limits the modeling capabilities of the approach.

The approach is applied to critical systems, specifically, to the avionics field [d’Ausbourg 2002].
In this case study, the interactions of the pilot with the system and the behavior of the functional
core are modeled, which shows that the approach scales well to real-life applications. Besides,
the previous push button example (Figure 18) demonstrates that the approach also covers the
modeling of the UIs. No application was found, however, to plastic user interfaces.

g) Bumbulis et al. (Canada, 1995–1996)

Similar to interactor models, user interfaces can be described by a set of interconnected primitive
components [Bumbulis et al. 1995a, Bumbulis et al. 1995b, Bumbulis et al. 1996]. The notion
of component is similar to that of interactor, but a component is more closely related to the
widgets of the UI. Such component-based approach allows both rapid prototyping and formal
verification of user interfaces from a single UI specification (Figure 20).

Figure 20: UI prototyping and verification [Bumbulis et al. 1995a]

In the Bumbulis et al.’s approach, user interfaces are described as a hierarchy of intercon-
nected component instances using the Interconnection Language (IL). Investigations have been
conducted into the automatic generation of IL specifications by re-engineering the UIs [Bumbulis
et al. 1995a]. However, such automatic generation is not described in the paper. From such
component-based IL specification of the UI, a Tcl/Tk code is mechanically generated, in order to
provide a UI prototype for experimentation (Figure 20), as well as a HOL (Higher-Order Logic)
specification for formal reasoning using theorem proving [Bumbulis et al. 1995a]. Higher-order
logic extends first-order logic by allowing higher-order variables (i.e., variables whose values are
functions) and higher-order functions (i.e., functions whose arguments and/or results are other
functions).

Properties are specified as predicates in Hoare logic, a formal system with a set of logical
rules for reasoning about the correctness of computer programs. Proofs are constructed manually,
even though investigations to mechanize the process have been conducted [Bumbulis et al. 1995a].
No usability properties are verified in this approach. Instead, the approach permits functional
properties to be verified, which are directly related to the expected behavior of the modeled UI.

34 CHAPTER 2. STATE OF THE ART

Figure 21a illustrates a user interface to which the approach is applied [Bumbulis et al. 1995b].
It consists of a dial and a slider related to each other so that the slider will track the motion
of the dial and vice-versa. The corresponding IL specification (Figure 21b) consists of two
primitive components, Dial and Slider, which are connected by means of the changed and set
ports. Each port has a polarity specifying whether the port requires (<) or provides (>) values.
Ports are then bound in order to exchange values. Values sent to a set port update the value of
the component; values are sent to a changed port when the component’s value changes (either
as a result of the user’s actions, or as a result of a value being sent to the set port [Bumbulis
et al. 1995a]).

(a) User interface (b) The IL description of the UI

Figure 21: An example of a user interface with a dial and a slider [Bumbulis et al. 1995a]

The approach covers only the modeling and verification of user interfaces. The user and
the functional core are not modeled. No application to safety-critical systems was found in the
literature. The slider user interface (Figure 21a) is quite simple: neither bigger nor more realistic
examples are provided. In the IL language, UIs are described by means of bound components,
thus, it is not clear how to model more complex UIs in this approach, since UI components are
not always bound to each other. In addition, it is not clear how multiple UIs could be modeled,
neither the navigation modeling between such UIs. All these aspects indicate that the approach
does not scale well for larger applications.

h) Palanque et al. (France, 1990–2015)

In [Palanque & Bastide 1995], another approach is proposed to modeling and verifying interactive
systems with a different formalism: Petri nets [Carl 1962]. Being a graphical model, Petri nets
can be easier to understand than textual descriptions.

Originally designed for the modeling and implementation of event-driven interfaces [Bastide
& Palanque 1990] and nowadays covering the modeling of a full interactive system (not only the
user interfaces), the ICO formalism (Interactive Cooperative Objects) permits applications to be
prototyped and tested before they are fully implemented, by means of cooperative objects.

A system described via ICO is modeled as a set of objects that cooperate to perform the system
tasks. ICO uses concepts borrowed from the object-oriented formalism (such as inheritance,
polymorphism, encapsulation, and dynamic instantiation) to describe the structural or static
aspects of systems, such as its attributes and the operations it provides to its environment. In
addition, ICO uses high-level Petri nets to describe the dynamics and behavioral aspects of
the system, such as the spontaneous activity of the object, the activation (on the UI) of the

2.6. VERIFICATION OF PROPERTIES 35

operations the object provides according to its internal state, and the effect of these operations
on the internal state of the object [Navarre et al. 2009].

An object in the ICO formalism is characterized by five components [Navarre et al. 2005],
partially illustrated in Figure 22 with an example of an ATM (Automated teller machine):

• Cooperative object: (item 1 in Figure 22) models the behavior of the interactive system.
This behavior is described by a high-level Petri net called ObCS (Object Control Structure),
where the tokens that circulate in the network can carry data;

• Presentation: (item 2 in Figure 22) describes the UI appearance, i.e., a set of widgets;

• Activation function: (item 3 in Figure 22) is responsible for linking user actions on the UI
with the services offered by the objects;

• Rendering function: provides consistency between the internal state of the system and its
external appearance;

• Availability function: guarantees that the services provided by an object will only be
available if the corresponding Petri net transition is available.

Figure 22: Example of an object in the ICO formalism – an ATM systemadapted from [Palanque
et al. 1996]

An ATM enables users to manage their bank account. In the case study of this example, the
bank’s clients can perform tasks such as obtaining cash, getting a statement about their account,
ordering a check book, etc. The example shown in Figure 23 describes the Obtain_Cash task,
which is included in the Petri net describing the ATM class (item 1 in Figure 22). The system
states are modeled at each moment by tokens placed in the Petri net places (e.g., the initial

36 CHAPTER 2. STATE OF THE ART

Figure 23: Example of a Petri net for the Obtain_Cash task [Palanque et al. 1996]

state of the system modeled in Figure 23, where the tokens are in card in pocket, ready to use
ATM, etc., places).

Once the system is modeled, it is possible to apply model checking to verify usability and
functional properties. For instance, the following usability properties can be verified [Palanque
& Bastide 1995]:

• predictability: the user is able to foresee the effects of a command;

• deadlock freedom: the impossibility for a user to get into a state where no actions can be
taken;

• reinitiability: the ability for the user to reach the initial state of the system.

As well as the following functional properties:

• exclusion of commands: commands which must never be offered at the same time (or, on
the contrary, must always be offered simultaneously);

• succession of commands: the proper order in which commands may be issued; for instance
a given command must or must not be followed by another one, immediately after or with
some other commands in between;

• availability: a command is offered all the time, regardless of the state of the system (e.g.,
a help command).

The specification is verified using Petri net property analysis tools [Palanque et al. 1996].
In order to automate the process of property verification, the ACTL temporal logic can be
used to express the properties, which are then proved by model checking the Petri net marking
graph [Palanque et al. 1999]. A marking is a certain distribution of tokens in the Petri net
places. A marking graph of a Petri net is a finite-state machine that illustrates all the possible

2.6. VERIFICATION OF PROPERTIES 37

configurations of the tokens in the Petri net, in accordance with the transitions between places
that are defined by the Petri net.

The ICO approach also permits user’s cognitive behavior to be modeled by a common Petri
net for system, device and user [Moher et al. 1996]. An environment called PetShop (for Petri
net Workshop) [Bastide & Palanque 1995] is developed for supporting the design of interactive
systems according to the ICO methodology. Alternatively, the Java PathFinder model checker
is used to verify a set of properties on a safety-critical application in the interactive cockpit
systems modeled with ICO [Brat et al. 2013].

The approach has been applied to other case studies in safety-critical systems in the space
domain (for instance: [Palanque et al. 1997, Bastide et al. 2003, Bastide et al. 2004, Brat
et al. 2013]). These case studies and the maturity of the tools show that the approach scales
well to real-life applications. However, no case study applies this approach to the nuclear power
plant domain. It is not clear, for instance, how the multidisciplinary users would be considered
by this approach. Generation of contextual user interfaces are proposed in [Martinie et al. 2014],
but there is no change in the context of use: UIs are generated and distributed across another
display, to support operators in executing specific procedures. Finally, dynamic reconfiguration
of user interfaces are proposed in [Navarre et al. 2008], allowing operators to continue interacting
with the interactive system even though part of the hardware side of the user interface is failing.
This could be seen as an application of plasticity: UI adaptation in order to recover from faults
in the hardware such as displays. However, this is more related to fault-tolerant issues than to
the capacity of the UI to adapt to changes in the user, platform, and/or environment.

Besides, the verification based on Petri net properties has limitations exposed in [Navarre
et al. 2009]. The analysis is usually performed on the underlying Petri net (a simplified version
of the original Petri net). A drawback is that properties verified on the underlying Petri net are
not necessarily true on the original Petri net. Thus, the results of the analysis are essentially
indicators of potential problems in the original Petri net.

2.6.2 Interactive Systems Modeled Globally

Some approaches do not use compositions of smaller parts (i.e., agents, interactors, components,
or objects) to model interactive systems. Yet, realist and complex case studies can be modeled
and verified using these approaches. In this section we present several of such approaches.

a) Dix et al. (England, 1985–1995)

The PIE model [Dix et al. 1987] considers interactive systems as a “black-box” entity that
receives a sequence of inputs (keystrokes, clicks, etc.) and produces a sequence of perceivable
effects (displays, LEDs, printed documents, etc.). The main idea is to describe the user interfaces
in terms of the possible inputs and their effects [Dix 1991]. Such practice is called surface
philosophy [Dix 1988] and aims at omitting parts of the system that are not apparent to the user
(the internal details of systems, such as hardware characteristics, languages used, or specification
notations). The domain of input sequences is called P (standing from programs), the domain
of effects is called E and both are related by an interpretation function I that determines the
effects of every possible command sequence (Figure 24).

The effects E can be divided into permanent results (e.g., print-out) and ephemeral displays
(the actual UI image). Such specialization of the effects constitutes another version of the PIE

38 CHAPTER 2. STATE OF THE ART

Figure 24: The PIE model [Dix 1991]

model, called Red-PIE model [Dix 1991] (Figure 25).

Figure 25: The Red-PIE model, adapted from [Dix 1991]

In such models, user inputs are called commands (C), and can be used at various levels
of granularity (e.g., individual keystrokes, or operations on a spreadsheet) [Dix 1995]. The
command history is called P, and defined as a sequence of commands (P=seq C). For instance,
a calculator that adds up single elements is formalized as follows [Dix 1991]:

C = 0, ..., 9

P = seq C

E = N − the natural numbers

I(null) = 0

I(pc) = I(p) + c

The interpretation function basically says: one starts off with a running sum of zero; if at
any stage one enters a new number (c) it gets added to the current running sum (I(p)).

The PIE model provides a generic way of modeling interactive systems and permits the
following usability properties to be formalized:

• predictability [Dix 1995]: the UI shall be predictable, i.e., from the current effect it should
be possible to predict the effect of future commands. Such property is formalized as
follows:

predict : D > R

∀s ∈ E : predict(display(s)) = result(s)

The first line says that predict is a function that from a display produces a result. Using
the ∀ (the universal quantifier) operator, the second line states that, considering any state
s, the display of that state applied to the predict function results in exactly the same as if
applied to the result function directly;

2.6. VERIFICATION OF PROPERTIES 39

• simple reachability [Dix 1991]: all system effects can be obtained by applying some
sequences of commands;

• strong reachability [Dix 1988]: one can get anywhere from anywhere;

• undoability [Dix et al. 1987]: for every command sequence there is a function “undo” which
reverses the effect of any command sequence;

• result commutativity [Dix et al. 1987]: irrespective of the order in which different UIs are
used, the result is the same.

The PIE and Red-PIE models are ones of the first approaches that used formal notations
for the modeling of interactive systems and desired properties. However, their mathematical
notations are very abstract, and no tool support is provided neither for modeling nor for property
verification. For this reason, the scalability of the approach cannot be measured. Considering
the modeling coverage, the framework describes how to formalize interactive systems and the
user interfaces in an abstract way. Users are not described, though. Besides, no application to
safety-critical systems is reported.

b) Bowen and Reeves (New Zealand, 2005–2015)

In [Bowen & Reeves 2007a, Bowen & Reeves 2008a], an approach is proposed to bridge the
gap between user interface (UI) design and formal methods. In this approach, UIs are formally
described using a presentation model (PM) and a presentation and interaction model (PIM). In
order to support the use of formal methods for non-expert designers, an approach is described
in [Bowen 2015] for reverse-engineering Java applications to automatically generate these formal
models. The presentation model is specified using Z and µCharts (a Statechart-like language),
and the presentation and interaction model is specified using finite-state machines.

The presentation model is used to formally capture the meaning of an informal design artifact
such as a scenario, a storyboard, or a UI prototype [Bowen & Reeves 2007a]. Since it describes
such informal design artifact in terms of the widgets of the design, the presentation model
permits static properties of a UI to be expressed.

Figure 26 illustrates an example of a presentation model, in which UIs are described by
two components, p and q (these may be different windows, or different states of the UIs).
In this example, r describes the entire UI (i.e., the combination of p and q), and p has two
widgets, aCtrol and bCtrl. The behaviors associated with aCtrl (resp. bCtrl) are eAction

and fAction (resp. dAction). Here, q has one widget, cSel, which is a SValSelector with
the eAction and fAction behaviors. Therefore, the presentation model r is the combination
of all the widgets of p and q (the “:” operator acts as a composition), and describes the total
possible behaviors of the UI [Bowen & Reeves 2007a].

The use of the triplet 〈p, q, r〉 for each widget in the presentation model does not hold enough
information to accurately represent the UI dynamic behavior. In order to address this issue, the
authors use finite-state machines, which in conjunction with the presentation model, forms the
presentation and interaction model (PIM) [Bowen & Reeves 2007a]. The PIM model consists in
a finite-state machine decorated with parts of the presentation model. A software application
with four distinct windows/dialogs have four PMs, each describing the widgets and behaviors of
one of the windows. The PIM then have four states, each state corresponding to one of the PMs.

40 CHAPTER 2. STATE OF THE ART

(a) User interfaces (b) Presentation model

Figure 26: Presentation model of a user interface [Bowen & Reeves 2008a]

An example of a presentation and interaction model is given in Figure 27. It consists of a
home heating control system accessible via a mobile phone, which supports the monitoring and
control of temperatures in a number of different rooms [Bowen & Reeves 2007a]. The application
has four UIs (C1,C2,C3 and C4). The corresponding PIM captures the way in which one moves
from one part of the interface to another.

(a) User interface prototype (b) PIM

Figure 27: Presentation and interaction model of a home heating control system [Bowen &
Reeves 2007a]

The approach is applied to several case studies. In [Bowen & Reeves 2007b], the authors use
the models in the design process of UIs for the PIMed tool, a software editor for the presentation
models and PIMs. However, in this work, no automated verification of the presentation model
and the PIMs of the editor is proposed. The formal models are manually inspected. For example,
in order to verify the deadlock freedom property, the authors use a manual walk-through
procedure in the PIMs, which is an error-prone and time-consuming procedure.

In [Bowen & Reeves 2013a], the verification is automatized by the ProZ tool, allowing
usability properties to be verified using model checking. The toll is used to analyze the models,
to animate them during design and to model check properties expressed in LTL. The kinds of
properties that can be verified are:

• total reachability [Bowen & Reeves 2007b]: one can get to any state from any other state;

• deadlock freedom [Bowen & Reeves 2007b]: a user cannot get into a state where no action

2.6. VERIFICATION OF PROPERTIES 41

can be taken;

• behavioral consistency [Bowen & Reeves 2008a]: controls with the same behavior have the
same name;

• minimum memory load on user [Bowen & Reeves 2008a]: users do not have to remember
long sequences of actions to navigate through the UI.

The presentation model and PIMs can be used to derive tests [Bowen & Reeves 2013b, Bowen
& Reeves 2011]. Abstract tests are generated from the formal models. These tests are then
manually instantiated and executed against the application under test.

Another case study to which these formal models have been applied relates to a safety-critical
system in the healthcare domain [Bowen & Reeves 2013a]: this time, the verification is tool
supported. The authors model a syringe pump, a device commonly used to deliver pain-relief
medication in hospitals and respite care homes. The device has ten widgets, which include
the display screen, eight soft keys and an audible alarm. Temporal safety properties and
invariants (to check boundary values) are verified against the formal models using ProZ and
Z/EVES [Bowen & Reeves 2005, Bowen & Reeves 2013a].

Although the approach mainly focuses on modeling the user interfaces, the presentation
model can also be used to model the user operations. The main goal is to ensure that all user
operations described in the formal specification have been described in the UI design [Bowen &
Reeves 2007a]. In addition, the case study described in [Bowen & Reeves 2013a] also models
the functional core of the infusion pump system, showing that the approach covers all three
aspects: users, UIs and functional core.

Finally, despite the fact that the approach is tool supported and has been applied to real case
studies in healthcare systems, there is no evidence that the approach scales well. The models
are always manually written and relatively small, especially the PIM. In the given examples,
the number of states and transitions of the finite-state machine ranges from 2 to 14 states and
from 2 to 40 transitions. For the healthcare case study described in [Bowen & Reeves 2012] the
authors indicate that the PIMs of the manual and pump are small enough to perform a manual
inspection (10 states and 14 states respectively). To be more scalable, the approach should
be evaluated on larger formal models, in which case some automations should be provided.
Investigations have started in this direction [Bowen 2015], by reverse-engineering interactive
systems to automatically generate formal models. But so far the tool was only tested on four
small applications, only the presentation model has been generated, and only Java applications
have been covered.

c) Aït-Ameur et al. (France, 1998–2014)

Another approach that also relies on theorem proving, but this time using the B
method [Abrial 1996] to specify the interactive system, is proposed in [Aït-Ameur et al. 1998b, Aït-
Ameur et al. 1999, Aït-Ameur et al. 2003a]. The approach permits task models to be validated.
Task models can be used to describe a system in terms of tasks, subtasks, and their temporal
relationships. A task has an initial state and a final state, and is decomposed in a sequence of
several subtasks.

The approach uses the B method for representing, verifying and refining specifications. A B
model is composed of state variables and a set of atomic events. State variables are described

42 CHAPTER 2. STATE OF THE ART

by guarded commands and generalized substitutions (assignment , ANY, BEGIN and SELECT).
For example, in Evt = SELECT P THEN S END; the event Evt is fired and the statement S is
executed when the Boolean condition P is true. Events modify the state of the specified system.
The authors use the set of events to define a transition system that permits the dialog controller
of the interactive system to be represented.

The CTT (Concur Task Trees) notation [Paternò et al. 1997] is used to represent task models.
In [Aït-Ameur et al. 2003a], only the CTT operator called “sequence” between tasks is covered.
In further work [Aït-Ameur et al. 2005, Yamine et al. 2005, Aït-Ameur et al. 2009] the authors
describe how the semantics of CTT can be formally described in Event B allowing to translate,
with generic translation rules, every CTT construction (interruption and disabling included) in
Event B, which is the event-based definition of B method.

This usage of Event B to encode CTT task models is described in several case studies [Aït-
Ameur & Baron 2004, Aït-Ameur & Baron 2006, Aït-Ameur et al. 2006, Cortier et al. 2007].
In particular, the approach is used to verify Java/Swing user interfaces [Cortier et al. 2007],
from which Event B models are obtained. Such Event B models encapsulate the UI behavior of
the application. Validation is achieved with respect to a task model that can be viewed as a
specification. Following the approach previously explained, this task model is encoded in Event
B, and assertions ensure that suitable interaction scenarii are accepted by the CTT task model.
Demonstrating that the Event B formal model behaves as intended comes to demonstrate that
it is a correct refinement of the CTT task model.

Moreover, the following usability properties can be verified:

• robustness [Aït-Ameur et al. 2003b]: these properties are related to system dependability;

• visibility [Aït-Ameur et al. 1999]: relates to feedback and information delivered to the
user.

As well as the following functional properties:

• reachability [Aït-Ameur et al. 1999]: these properties express what can be done at the
user interface and how can it be done;

• reliability [Aït-Ameur et al. 1999]: concerns the way the interface works with the underlying
system;

• behavioral properties [Aït-Ameur & Baron 2006]: characterize the behavior of the UI suited
by the user.

The proof of these properties is done using the invariants and assertions clauses of the
B method, together with the validation of specific aspects of the task model (i.e., functional
properties), thus permitting a full system task model to be validated. The Atelier B tool is used
for an automatic proof obligation generation and proof obligation checking [Aït-Ameur 2000].

In order to compare this theorem proving-based approach to model checking-based approaches,
the authors show how the same case study is tackled using both theorem proving (with Event
B) and model checking (with Promela/SPIN) [Aït-Ameur et al. 2003b]. The case study consists
in a franc/euro exchange application that converts from French francs to Euros and vice-versa.
The authors conclude that both techniques permit the case study to be fully described, and
that both permit robustness and reachability properties to be verified. The proof process of the
Event B-based is not fully automatic, but it does not suffer from the state-space explosion of

2.6. VERIFICATION OF PROPERTIES 43

model-checking techniques. The Promela-SPIN-based technique is fully automatic, but limited
to finite-state systems on which exhaustive exploration can be performed. The authors conclude
that a combined usage of both techniques would strengthen the verification of interactive
systems.

An integration of the approach with testing is also presented in [Aït-Ameur et al. 2004].
Here, the informal requirements are expressed using the semi-formal notation UAN [Hix &
Hartson 1993] (instead of CTT), and the B specifications are manually derived from this notation.
To validate the formal specification, the authors use a data-oriented modeling language, named
EXPRESS, to represent validation scenarios. The B specifications are translated into EXPRESS
code (the B2EXPRESS tool [Aït-Sadoune & Aït-Ameur 2008]). This translation gives data
models that represent specification tests and permits Event B models to be animated.

The approach is applied to several case studies in the avionics domain [Jambon et al. 2001, Aït-
Ameur et al. 2014]. Specifically, the authors illustrate how to explicitly introduce the context of
the systems in the formal modeling [Aït-Ameur et al. 2014]. The approach is also applied to the
design and validation of multi-modal interactive systems [Aït-Ameur et al. 2010, Aït-Ameur
et al. 2006, Aït-Ameur & Kamel 2004].

The case study described in [Aït-Ameur et al. 1998a] shows that the approach covers the
modeling of users, UIs and the functional core. The numerous case studies and the maturity of
the approach suggests that it scales well to real-life applications. However, no application was
found to plastic user interfaces.

d) Loer and Harrison et al. (Germany, 2000–2006)

Another approach to verifying interactive systems is proposed in [Loer & Harrison 2002, Loer
& Harrison 2006], also with the goal of making model checking more accessible to software
engineers. The authors claim that in the avionics and automotive domains requirements are
often expressed as Statechart models [Loer & Harrison 2002]. To introduce formal verification
in the process, they propose an automatic translation from Statechart models (created with the
Statemate toolkit) to the input language of the SMV model checker, which is relatively robust
and well supported [Loer & Harrison 2006].

Such translation is part of the IFADIS toolbox (Figure 28), which also provides guided
process of property specifications and a trace visualization to facilitate the result analysis of the
model checker. The properties can be verified using Cadence SMV or NuSMV model-checking
tools. Depending on the type of property, the model checker can output traces that demonstrate
why a property holds or not [Loer & Harrison 2006]. The TraceVis tool (Figure 28) displays
such traces using an enhanced tabular view.

The property editor helps designers to construct temporal-logic properties by making patterns
available (Figure 29) and helping the process of instantiation [Loer & Harrison 2006]. Temporal-
logic properties can be specified either in LTL (Linear Temporal Logic) or CTL (Computational
Tree Logic).

The following usability properties can be verified:

• reachability [Loer & Harrison 2000]: are all the states reachable or not?

• robustness [Loer & Harrison 2000]: does the system provide fall-back alternatives in the
case of a failure? or, alternatively, are the guards for unsafe states foolproof?

• recoverability [Loer & Harrison 2000]: does the system support undo and redo?

44 CHAPTER 2. STATE OF THE ART

Figure 28: The IFADIS framework, adapted from [Loer & Harrison 2006]

Figure 29: Property specification patterns in CTL [Loer & Harrison 2002]

• visibility of system status [Loer & Harrison 2000]: does the system always keep the users
informed about what is going on, through appropriate feedback within reasonable time?

• recognition rather than recall [Loer & Harrison 2000]: is the user forced to remember
information from one part of the dialog to another?

• behavioral consistency [Loer & Harrison 2006]: does the same input always yield the same

2.6. VERIFICATION OF PROPERTIES 45

effect?

In particular, the reachability property here is classified as a usability property because here
it is defined as generic property, which can be applied to any interactive system (i.e., “are all
the states reachable or not?”), in contrast to the classification of the reachability property in
Subsection c) on page 41, for instance, where it is classified as a functional property because
over there it expresses what can be done at the UI, and how can it be done, which is something
that is usually defined in the system requirements. See Subsection 2.6 on page 18 to recall how
we define the usability and functional properties in this thesis.

Concerning the modeling coverage of the approach, the authors describe five pre-defined
elements in which the formal model is structured [Loer & Harrison 2000]:

1. control elements: description of the widgets of the UIs;

2. control mechanism: description of the system functionalities;

3. displays: description of the output elements;

4. environment: description of relevant environmental properties;

5. user tasks: sequence of user actions that are required to accomplish a certain task.

Therefore, their model covers the three aspects we consider in this thesis: the user, UIs, and
the functional core.

Although the approach is not applied to many case studies (i.e., only to the avionics
domain [Loer & Harrison 2006]), several reasons indicate that the approach scales well to
real-life applications. The approach is supported by a tool that provides: a translation from
engineering models (Statecharts) to formal models (SMV specifications); a set of property
patterns to facilitate the specification of properties; and a trace visualizer to interpret the
counter examples generated by the model checker. It is used in the case study described in [Loer
& Harrison 2006], and an evaluation shows that the tool improves the usability of model checking
for non-experts [Loer & Harrison 2006]. However, no case study applies the approach to plastic
user interfaces.

e) Thimbleby et al. (England, 1987–2015)

In the healthcare domain, several investigations of medical device user interfaces have been
conducted in Swansea University and Queen Mary University of London. Specifically, investi-
gations are conducted of interactive hospital beds [Acharya et al. 2010], for user interfaces of
drug infusion pumps [Masci et al. 2014a, Cauchi et al. 2012a, Masci et al. 2015, Thimbleby &
Gow 2008], and interaction issues that can lead to serious clinical consequences.

Infusion pumps (Figure 30) are medical devices used to deliver drugs to patients. Deep
investigation has been done of the data entry systems of such devices [Thimbleby 2010, Oladimeji
et al. 2011, Masci et al. 2011, Thimbleby & Gimblett 2011, Cauchi et al. 2012b, Gimblett &
Thimbleby 2013, Oladimeji et al. 2013, Cauchi et al. 2014, Tu et al. 2014, Li et al. 2015]. If a
nurse makes an error in setting up an infusion (for instance, a number ten times larger than
the necessary for the patient’s therapy), the patient may die. Under-dosing is also a problem:
if a patient receives too little of a drug, recovery may be delayed or the patient may suffer
unnecessary pain [Masci et al. 2011]. Figure 30 illustrates various entry systems for infusion

46 CHAPTER 2. STATE OF THE ART

pumps. The number entry system of the user interface on the Alaris GP infusion pump has
four buttons (Figure 30a). A pair of buttons is used to increase the value, and a second pair is
used to decrease the value displayed [Masci et al. 2015]. The number entry system of B-Braun
Infusomat Space (Figure 30b) is an example of “5-keys” user interfaces: four arrow keys and
a confirmation button [Masci et al. 2015]. Figure 30c illustrates an infusion pump (which
identity is concealed for confidentiality reasons [Masci et al. 2013a]) with a numeric keypad and
a confirmation button.

(a) Alaris GP (b) B-Braun Infusomat Space (c) Pump’s identity is concealed

Figure 30: Examples of infusion pumps

The authors report several issues with the data entry system of such pumps [Masci et al. 2014a].
For instance, the infusion pump of Figure 30c mistakenly discards the decimal point in input key
sequences for fractional numbers between [100.1, 1200). For example, the input key sequence
100.1 is registered as 1001 without any warning or error message. This issue arises because of a
constraint imposed in a routine of the pump’s software: numbers above or equal to 100 cannot
have a fractional part. Due to this constraint, the pump erroneously ignores the decimal point
in the key sequence 100.1, and registers it as 1001, a value ten times larger than the intended
one.

Such issue is detected among with several others [Masci et al. 2014a] using the approach
depicted in Figure 31. In this approach, the C++ source code of the infusion pump of Figure 30c
is manually translated into a specification in the PVS formal language ([a] in Figure 31).
Usability properties such as consistency of actions and feedback are formalized ([b] in Figure 31)
as invariants to be established using theorem proving:

• consistency of actions: the same user actions should produce the same results in logically
equivalent situations;

• feedback: it ensures that the user is provided with sufficient information on what actions
have been done and what result has been achieved.

A behavioral model is then extracted ([c] in Figure 31), in a mechanized manner, from the
PVS formal specification. This model captures the control structure and behavior of the software
related to handling user interactions. Theorem proving is used to verify that the behavioral
model satisfies the usability properties. Lastly, the behavioral model is exhaustively explored to
generate a suite of test sequences ([d] in Figure 31) [Masci et al. 2014a].

2.6. VERIFICATION OF PROPERTIES 47

Figure 31: Verification approach using PVS, adapted from [Masci et al. 2014a]

A similar approach is described in [Masci et al. 2013a], in which the PVS specification
is automatically discovered [Thimbleby 2007a, Gimblett & Thimbleby 2010] from reversely
engineering the infusion pump software. Besides, functional properties are extracted from
the safety requirements provided by the US medical device regulator FDA (Food and Drug
Administration), to make sure that the medical device is reasonably safe before entering the
market [Masci et al. 2013a].

The same FDA safety requirements are used to verify a PVS formal model of another device,
the Generic Patient Controlled Analgesia (GPCA) infusion pump [Masci et al. 2013b]. In this
work, the authors propose the usage of formal methods for rapid prototyping of user interfaces.
Once verified, the formal model of the infusion pump is automatically translated into executable
code through the PVS code generator, providing a prototype of the GPCA user interface from a
verified model of the infusion pump.

An approach to integrating PVS executable specifications and Stateflow models is proposed
in [Masci et al. 2014b], aiming at reducing the barriers that prevent non-experts from using
formal methods. It permits Stateflow models to be verified, avoiding the hazards of translating
design models created in different tools.

All the work mentioned in this subsection is based on the PVS theorem prover. Nevertheless,
model checking can also be used in order to formally verify medical devices [Thimbleby 2007b,
Masci et al. 2011, Masci et al. 2015]. For example, the authors model the Alaris GP (Figure 30a)
in [Masci et al. 2015], and the B-Braun Infusomat Space (Figure 30b) infusion pumps in
the higher-order logic specification language SAL (Symbolic Analysis Laboratory) [De Moura
et al. 2004]. Afterwards, model checking is applied to verify the predictability of user interfaces,
a usability property expressed in the LTL temporal logic. Predictability is defined in [Masci
et al. 2011] as “if users look at the device and see that it is in a particular display state, then
they can predict the next display state of the device after a user interaction”.

The maturity of the approach described here, and its applications to numerous case studies
are evidences that the approach scales well to real-life applications. No applications are reported,
however, to plastic user interfaces.

Concerning the modeling coverage, the aforementioned case studies deal with the display
and functionalities of the devices, but do not cover the modeling of the users interacting with
such devices.

48 CHAPTER 2. STATE OF THE ART

f) Miller et al. (USA, 1995–2013)

Also in the safety-critical domain, but in avionics, deep investigation has been conducted at
Rockwell Collins of the usage of formal methods for industrial realistic case studies. Preliminary
usage of formal methods aimed at creating consistent and verifiable system specifications [Hamil-
ton et al. 1995], paving the way to the usage of formal methods at Rockwell Collins. Another
preliminary use of formal methods was the usage of a synchronous language called RSML
(Requirements State Machine Language) to specify requirements of a Flight Guidance System.
Algorithms to translate specifications from this language to the input languages of the NuSMV
model checker and the PVS theorem prover have been proposed [Miller et al. 2006], enabling one
to perform verification of safety properties and functional requirements expressed in the CTL
temporal logic (i.e., functional properties). Afterwards, deeper investigations are conducted to
further facilitate the usage of formal methods.

According to [Miller 2009], relatively few case studies of model checking to industrial problems
outside the field of engineering equipment are reported. One of the causes is the gap between
the descriptive notations most widely used by software developers and the notations required
by formal methods [Lutz 2000]. To alleviate the difficulties, as part of NASA’s Aviation Safety
Program (AvSP), Rockwell Collins and the research group on critical systems of the University
of Minnesota (USA) develop the Rockwell Collins Gryphon Translator Framework [Hardin
et al. 2009], providing a bridge between some commercial modeling languages and various model
checkers and theorem provers [Miller et al. 2010]. The translation framework is illustrated in
Figure 32. It supports Simulink, Stateflow, and SCADE models, and it generates specifications
for the NuSMV, Prover, and SAL model checkers, the ACL2 and PVS theorem provers, and
generates C and Ada code [Miller et al. 2010] (BAT and Kind are also included as target model
checkers in [Cofer 2012]). Alternatively, Z specifications are also covered by the approach as an
input language, since Simulink and Stateflow models can be derived from Z specifications [Hardin
et al. 2009].

Figure 32: The Gryphon translator framework [Miller et al. 2010]

The Rockwell Collins translators use the Lustre language as an intermediate representation,

2.6. VERIFICATION OF PROPERTIES 49

but Lustre is hidden from users [Miller et al. 2010]. Once in Lustre, the specification is loaded
into an abstract syntax tree (AST) and several transformations are applied to it (Figure 33). Each
transformation produces a new AST syntactically closer to the target specification language while
preserving the semantics of the original Lustre specification. The number of transformations
depends on the degree of similarity between source and target languages [Miller et al. 2010].
Tools are also developed to translate the counter-examples produced by the model checkers
back to Simulink and Stateflow models [Cofer 2010], since for large systems it can be difficult to
determine the cause of the violation of the property only by examining counter-examples [Whalen
et al. 2008].

Figure 33: Lustre specification transformations [Cofer 2010]

The technique is validated in several case studies in the avionics [Cofer et al. 2008, Whalen
et al. 2008, Miller 2009, Miller et al. 2010, Cofer 2010]. The first application of the NuSMV
model checker to an actual product at Rockwell Collins is the mode logic of the FCS 5000 Flight
Control System [Miller 2009]: 26 errors are found in the mode logic.

The largest and most successful application is the Rockwell Collins ADGS-2100 (Adaptive
Display and Guidance System Window Manager), a cockpit system that provides displays and
display management software for commercial aircrafts [Miller et al. 2010]. The Window Manager
(WM) ensures that data from different applications are displayed correctly on the display panel.
A set of properties that formally expresses the WM requirements (i.e., functional properties) is
developed in the CTL and LTL temporal logics: 563 properties are developed and verified, and
98 design errors are found and corrected.

The approach is also applied to an adaptive flight control system prototype for unmanned
aircraft modeled in Simulink [Whalen et al. 2008, Cofer 2010]. During the analysis, over 60
functional properties are verified, and 10 model errors and 2 requirement errors are found in
relatively mature models.

Concerning the modeling coverage, the approach covers only the functional core of the
avionics interactive systems [Cofer et al. 2008, Miller 2009, Miller et al. 2010], but not the user
interfaces nor the user behavior.

These applications to the avionics domain demonstrates that the approach scales well. Even
if the approach does not take user interfaces into account, it is a good example of formal
methods applied to safety-critical systems. In addition, further investigations of the usage of

50 CHAPTER 2. STATE OF THE ART

compositional verification are conducted [Cofer et al. 2012, Murugesan et al. 2013], to enhance
the proposed techniques.

g) Knight et al. (USA, 1992–2010)

Another application of formal methods to safety-critical system, specifically, to the nuclear power
plant domain, is described in [Knight & Brilliant 1997]. The authors propose the modeling of
user interfaces in three levels: lexical, syntactic, and semantic levels. Different formalisms are
used to describe each level. The notion of user interfaces as a dialog between the operator and
the computer system consisting of three components (lexical, syntactic, and semantic levels) is
proposed by [Foley & Wallace 1974]. Each level is specified separately:

• The semantic level contains the functionalities provided by the UI, more precisely, the
meaning of the actions the UI performs or provides, not the form or sequence of those
actions [Elder & Knight 1995]. This level is specified using Z;

• The syntactic level of the UI is the structure of the human-computer dialog. This structure
is defined as a language with a grammar specifying the valid sequences of user inputs and
computer outputs [Elder & Knight 1995];

• Finally, the lexical level specifies how the UI effects its dialog, i.e., which instruments and
controls the user sees and employs to pilot the system [Knight & Brilliant 1997]. The
graphical elements of the lexical level are defined using a predefined library of C++ classes.

Following this view of user interface structure, the authors develop a formal specification
of a research reactor used in the University of Virginia Reactor (UVAR) for training nuclear
engineering students, radiation damage studies, and other studies [Knight & Brilliant 1997]. In
order to illustrate the specification layers, the authors focus on the safety control rod system,
one of the reactor subsystems. They give in the paper the three specifications for this subsystem.

The approach is also applied to other safety-critical systems, such as the Magnetic Stereo-
taxis System (MSS), a healthcare application for performing human neurosurgery [Knight &
Kienzle 1992, Elder & Knight 1995].

However, the formal specification is not used to perform formal verification. According to
the authors, the main goal is to develop a formal specification approach for user interfaces
of safety-critical systems. The authors evaluate the proposed framework according to seven
criteria: expressiveness, usability, changeability, implementability, analyzability, verifiability, and
accuracy. They rate each criterion subjectively, according to their own experience. Concerning
verifiability, the authors claim that the verification of a UI specification using this approach
is simplified by the use of an executable specification for the lexical level, and by the use of
a notation from which an implementation can be synthesized for the syntactic level. For the
semantic level, they argue that all the tools and techniques developed for Z can be applied [Knight
& Brilliant 1997].

Later, a toolset called Zeus is proposed to support the Z notation [Knight et al. 1999]. The
tool permits the creation and analysis of Z documents, including syntax and type checking,
schema expansion, precondition calculation, domain checking, and general theorem proving. The
tool is evaluated in a development of a relatively large specification of an international maritime
software standard, showing that Zeus meets the expected requirements [Knight et al. 1999].

2.6. VERIFICATION OF PROPERTIES 51

Following such a separation of concerns in three levels, the authors propose another approach
called Echo [Strunk et al. 2005], this time applied to a case study in the avionics domain. In
order to decrease complexity with traditional correctness proofs, the Echo approach is based
on the refactoring of the formal specification [Yin et al. 2009a, Yin et al. 2009b], reducing the
verification burden by distributing it over separate tools and techniques. The system model to
be verified (written in PVS) is mechanically re-factored. It is refined into an implementable
specification in Spark Ada by removing any unimplementable semantics. After refactoring,
the model is documented with low-level annotations, and a specification in PVS is extracted
mechanically [Yin et al. 2008]. Proofs that the semantics of the re-factored model is equivalent
to that of the original system model, that the code conforms to the annotations, and that the
extracted specification implies the original system model constitute the verification argument [Yin
et al. 2009a].

An extension of the approach is proposed in [Yin & Knight 2010], aiming at facilitating
formal verification of large software systems by a technique called proof by parts, which improve
the scalability of the approach for larger case studies.

The authors did not clearly define the kinds of properties they can verify over interactive
systems with their approach. The case studies to which the approach is applied mainly focused
on the benefits of modeling UIs in three layers using formal notation.

UIs, users and the functional core of systems are covered by this approach. The UI syntactic
level in their approach defines valid sequences of user inputs on the UIs, which is to some extent
the modeling of the users, and the cypher system case study described in [Yin et al. 2008]
verifies the correctness of the functional core.

2.6.3 Synthesis

This section presents a representative list of approaches to verifying interactive systems with
respect to the specifications, i.e., general statements about the behavior of the system, which
are represented here as desired properties, and analyzed afterwards using formal methods. The
approaches diverge on the formalisms they use for the description of interactive systems and
for the specification of properties. The propositions that model interactive systems globally
provide a simple way to handle systems that are manageable as a whole. By contrast, the
propositions that model interactive systems as a composition of parts provide a way to handle
complex systems by breaking them into smaller manageable parts, which is more suitable for
the complexity of safety-critical systems.

Some authors use theorem proving to perform verification, which is a technique that can
handle infinite-state systems. Even though a proof done by a theorem prover is ensured to be
correct, it can quickly become a hard process [Campos 1999]: the process is not fully automated,
user guidance is needed regarding the proof strategy to follow. Simulation can also be used
to assess the quality of interactive systems. Simulation provides an environment for training
the staff before starting their daily activities. However, simulated environments are limited in
terms of training, since it is impossible to drive operators into severe and stressful conditions
even using a full-scale simulator [Niwa et al. 2001]. Simulation explores a part of the system
state space and can be used for disproving certain properties by showing examples of incorrect
behaviors. To the contrary, formal techniques such as model checking, equivalence checking,
etc., consider the entire state space and can thus prove or disprove properties for all possible
behaviors [Garavel & Graf 2013].

52 CHAPTER 2. STATE OF THE ART

The presented approaches allow either usability or functional properties to be verified over
the system models. We believe that in case of safety-critical systems, the verification approach
should cover both such properties, due to the ergonomic aspects covered by the former and the
safety aspects covered by the latter. Some approaches cover the modeling of the users, the user
interfaces, and the functional core. None of them cover, however, plastic user interfaces. Besides,
none of them was applied to the verification of nuclear-plant systems. Table 1 summarizes these
approaches.

2.6. VERIFICATION OF PROPERTIES 53

T
ab

le
1:

Su
m

m
ar

y
of

ap
pr

oa
ch

es
to

ve
ri

fy
in

g
sy

st
em

pr
op

er
ti

es

A
u

t
h

o
r

s
(

e
t

a
l.

)

M
o

d
e

li
n

g
V

e
r

ifi
c

a
t

io
n

C
r

it
e

r
ia

m
o

d
e

l

la
n

g
u

a
g

e

p
r

o
p

e
r

t
y

la
n

g
u

a
g

e
t

e
c

h
n

iq
u

e
t

o
o

l
s

u
p

p
o

r
t

m
o

d
e

li
n

g
c

o
v

e
r

a
g

e
k

in
d

o
f

p
r

o
p

e
r

t
ie

s
a

p
p

li
c

a
t

io
n

s
c

a
la

b
il

it
y

u
s

e
r

s
U

I
s

c
o

r
e

1
A

b
o

w
d

S
M

V
C

T
L

m
o

d
e

l

c
h

e
c

k
in

g

S
M

V
,

A
c

t
io

n

S
im

u
la

t
o

r

√
√

√
u

s
a

b
il

it
y

,

fu
n

c
t
io

n
a

l

n
o

n
-c

r
it

ic
a

l
n

o

2
P

a
t
e

r
n

o
C

T
T

,
L

o
t

o
s

A
C

T
L

m
o

d
e

l

c
h

e
c

k
in

g

C
T

T
E

,
L

IT
E

,

C
a

d
p

√
√

√
u

s
a

b
il

it
y

,

fu
n

c
t
io

n
a

l

a
v

io
n

ic
s

y
e

s

3
M

a
r
k

o
p

o
u

lo
s

L
o

t
o

s
A

C
T

L
m

o
d

e
l

c
h

e
c

k
in

g

C
A

D
P

√
u

s
a

b
il

it
y

,

fu
n

c
t
io

n
a

l

n
o

n
-c

r
it

ic
a

l
n

o
e

v
id

e
n

c
e

4
D

u
k

e
&

H
a

r
r
is

o
n

Z
fi

r
s
t
-o

r
d

e
r

lo
g

ic

t
h

e
o

r
e

m

p
r
o

v
in

g

Z
√

√
√

u
s
a

b
il

it
y

a
v

io
n

ic
s

n
o

e
v

id
e

n
c

e

5
C

a
m

p
o

s
M

A
L

,
S

M
V

,

P
V

S

C
T

L
m

o
d

e
l

c
h

e
c

k
in

g
,

t
h

e
o

r
e

m

p
r
o

v
in

g

i2
s
m

v
,

IV
Y

,

S
M

V
,

P
V

S

√
√

√
u

s
a

b
il

it
y

,

fu
n

c
t
io

n
a

l

a
v

io
n

ic
,

h
e

a
lt

h
c

a
r
e

y
e

s

6
D

’A
u

s
b

o
u

r
g

L
u

s
t

r
e

L
u

s
t

r
e

m
o

d
e

l

c
h

e
c

k
in

g

U
IM

/
X

,

C
e

n
t
a

u
r
,

L
e

s
a

r

√
√

√
u

s
a

b
il

it
y

,

fu
n

c
t
io

n
a

l

a
v

io
n

ic
s

y
e

s

7
B

u
m

b
u

li
s

IL
,

H
O

L
H

o
a

r
e

lo
g

ic
t
h

e
o

r
e

m

p
r
o

v
in

g

H
O

L
s
y

s
t
e

m
√

fu
n

c
t
io

n
a

l
n

o
n

-c
r
it

ic
a

l
n

o

8
P

a
la

n
q

u
e

P
e

t
r
i

n
e

t
s

A
C

T
L

m
o

d
e

l

c
h

e
c

k
in

g

P
e

t
S

h
o

p
,

J
a

v
a

P
a

t
h

F
in

d
e

r

√
√

√
u

s
a

b
il

it
y

,

fu
n

c
t
io

n
a

l

a
v

io
n

ic
s

y
e

s

9
D

ix
m

a
t
h

e
m

a
t
ic

a
l

n
o

t
a

t
io

n

m
a

t
h

e
m

a
t
ic

a
l

n
o

t
a

t
io

n

-
n

o
n

e
√

√
u

s
a

b
il

it
y

n
o

n
-c

r
it

ic
a

l
n

o
e

v
id

e
n

c
e

1
0

B
o

w
e

n
&

R
e

e
v

e
s

Z
,

µ
C

h
a

r
t
s
,

F
S

M

L
T

L
/

in
v

a
r
ia

n
t
s

m
o

d
e

l

c
h

e
c

k
in

g

P
IM

e
d

,
P

r
o

Z
,

Z
/

E
V

E
S

√
√

√
u

s
a

b
il

it
y

h
e

a
lt

h
c

a
r
e

n
o

e
v

id
e

n
c

e

1
1

A
ït

-A
m

e
u

r
B

m
e

t
h

o
d

,

E
v

e
n

t
B

,

E
X

P
R

E
S

S

B
t
h

e
o

r
e

m

p
r
o

v
in

g

A
t
e

li
e

r
B

,

B
2

E
X

P
R

E
S

S
,

P
r
o

m
e

la
-S

P
IN

√
√

√
u

s
a

b
il

it
y

,

fu
n

c
t
io

n
a

l

a
v

io
n

ic
s

y
e

s

1
2

L
o

e
r

&
H

a
r
r
is

o
n

S
M

V
C

T
L

,
L

T
L

m
o

d
e

l

c
h

e
c

k
in

g

S
t
a

t
e

m
a

t
e

,

IF
A

D
IS

,

C
a

d
e

n
c

e
S

M
V

,

N
u

S
M

V

√
√

√
u

s
a

b
il

it
y

a
v

io
n

ic
s

y
e

s

1
3

T
h

im
b

le
b

y
P

V
S

,
S

A
L

in
v

a
r
ia

n
t
s
,

L
T

L

m
o

d
e

l

c
h

e
c

k
in

g
,

t
h

e
o

r
e

m

p
r
o

v
in

g

P
V

S
,

S
A

L
,

S
t
a

t
e

fl
o

w

√
√

u
s
a

b
il

it
y

,

fu
n

c
t
io

n
a

l

h
e

a
lt

h
c

a
r
e

y
e

s

1
4

M
il

le
r

R
S

M
L

,

L
u

s
t

r
e

C
T

L
,

L
T

L
m

o
d

e
l

c
h

e
c

k
in

g
,

t
h

e
o

r
e

m

p
r
o

v
in

g

N
u

S
M

V
,

P
V

S
,

R
e

a
c

t
is

,

G
r
y

p
h

o
n

√
fu

n
c

t
io

n
a

l
a

v
io

n
ic

s
y

e
s

1
5

K
n

ig
h

t
Z

,
P

V
S

,

S
P

A
R

K
A

d
a

-
t
h

e
o

r
e

m

p
r
o

v
in

g

Z
,

Z
e

u
s
,

E
c

h
o

√
√

√
-

a
v

io
n

ic
s
,

n
u

c
le

a
r
,

h
e

a
lt

h
c

a
r
e

y
e

s

54 CHAPTER 2. STATE OF THE ART

2.7 Assessing Consistency

Plasticity provides users with different versions of a UI which can vary at different levels, raising
the need to verify consistency between such UI versions. We analyze different approaches to
verify consistency of interactive system with another artifact, which can inspire us to propose
an approach to verifying plastic UIs.

Assessing consistency consists in comparing an interactive system with another system
artifact to check to which extent they are consistent. For instance, one can compare a previous
version of the system with the most recent version, or a system against its user manual, or
different versions of a system user interface. In such approaches, a referential does not exist a
priori, contrary to the verification of properties over the system model, in which the properties
are the referential. When analyzing consistency, we mainly searches for differences between
both system artifacts. Once differences are found, analyses are needed to define whether such
divergences indicate a flaw in the modeled systems or not.

In human-computer interaction, several approaches have been proposed to assess consistency.
The following subsections describe a list of them. Interactive systems are compared either with
another version of the system, or with their user manual.

2.7.1 System × System

In this subsection we present a number of approaches that use various techniques to compare
different versions of interactive systems with each other. Specifically, when a user interface
of these systems evolves, different techniques based on testing or formal methods are used to
compare new versions of the UIs with their previous versions.

a) Jung et al. (Korea, 2012)

An image comparison approach is proposed in [Jung et al. 2012], to support regression testing
of user interfaces. Their approach automates the detection of divergences between two versions
of a user interface when the system evolves. This approach consists of two methods (Figure 34):
an event-driven testing method, and a capture and replay method. In the former, events are
sent directly to the target program, using test cases written in scripting languages. In the latter,
test scripts are recorded and repeated when needed.

Figure 34: Automated UI testing process [Jung et al. 2012]

In the event-driven testing method, the tester extracts information by parsing an XML

2.7. ASSESSING CONSISTENCY 55

script test. The tester must specify in the XML script the expected results of the interactions
with the UI. The event-driven testing communicates directly with the target program. This is
useful when the goal is to test the target program functionalities. When the focus is mainly to
test the target program appearance, the capture and replay method is more useful. It does not
communicate directly with the target program. The target program is analyzed based on the
coordinates of graphical components and a comparison of the output images is the basis of the
verification [Jung et al. 2012].

In the capture and replay method, a capture start button is used to record the actions
of the tester. When the capture is finished, a stop button is pressed to create a script that
can be further used to test new versions of the UI automatically (i.e., the replay step). To
detect deviations between the old UI and the new UI, the tool provides image comparing-based
validation using charts. When the test scenario requires output values on the UI, print screens
of the old UI and the new UI are recorded before and after the execution of the scenario. Based
on the coordinates of the UI visual components, comparison of the output images is used to
verify divergences on the old UI and the new UI [Jung et al. 2012]. For each UI (i.e., the old
UI and the new UI), a chart is generated with the coordinates of the UI visual components,
representing the UI before (Figure 35a) and after (Figure 35b) the execution of the feature. The
charts are then composed (Figure 35c), to highlight the differences on the UI before and after
the execution of the feature. Such composed chart is generated for the old and the new UI, and
both are compared to check for divergences between the UIs.

Figure 35: Example of a image comparison [Jung et al. 2012]

The approach covers mainly the analysis of the user interfaces of interactive systems. Nonethe-
less, the scenarios saved in the capture part of the approach can be seen as a representation of
the user behavior. No attention is paid, however, to the functional core. There is no evidence
that the approach scales well for larger case studies, since no other papers using the approach
was found. Besides, no application of the approach to safety-critical systems was found.

Although these methods permit both functionality and appearance of the UIs to be verified,
capture-and-replay tools require a great amount of manual effort from the tester, who needs to
record and maintain input sequences [Bauersfeld 2013]. Especially in the context of frequently
changing UIs, the scripts require high maintenance, since input sequences are significantly fragile
to UI layout change. Such fragility can render entire automated test suites inept [Borjesson &
Feldt 2012]. Instead of capture and replay, Visual UI Testing technique is used in the sequel. It
also uses image recognition, the main difference being that it is less hardcoded than capture
and replay to the UI elements positioning. Another approach to comparing UIs is proposed
in [Bauersfeld 2013], in which the position of UI controls does not matter.

56 CHAPTER 2. STATE OF THE ART

b) Bauersfeld et al. (Spain, 2011–2014)

The author of [Bauersfeld 2013] presents a regression testing library named GUIDiff to compare
two versions of a UI and to produce a list of detected deviations. A tree representation is
obtained from an operating system’s accessibility API, and used to compare both UI versions
(Figure 36). Each UI version is represented by a widget tree containing the visible UI controls
(the tree nodes) and annotations with their property values.

Figure 36: GUIDiff representation of the current state of a UI as a widget tree [Bauersfeld 2013]

GUIDiff can execute two different versions of a system in parallel and walk through the UIs,
by iteratively selecting and executing particular actions derived by the widget trees. GUIDiff
uses GUITest [Bauersfeld & Vos 2012] to obtain and to execute the possible actions on the UI
versions. GUITest is a Java library that generates test sequences automatically by randomly
selecting possible UI actions in order to drive the tests. The idea is to execute the same actions in
both UI versions, and observe the differences in the widget trees of their states [Bauersfeld 2013].

The tool is semi-automatic in the sense that it automatically finds differences and the tester
should label them as actual deviations or false positives [Bauersfeld 2013]. In order to reduce
false positives, the author recommends to take into account only the same UI controls, ignoring
controls introduced in the most recent version of the UI.

In order to improve the selection of possible actions on the UIs, the authors apply an
ant-colony algorithm [Bauersfeld et al. 2011a, Bauersfeld et al. 2011b]. At present, this approach
is implemented for Java SWT applications only. An alternative to improve the selection of
possible actions on the UIs is proposed in [Bauersfeld & Vos 2014], in which a tool called
Rogue/TESTAR (TEST Automation at the useR interface level) [Bauersfeld et al. 2014a] uses
a Prolog specification to derive sensible and sophisticated action sequences.

The approach is applied to several case studies [Bauersfeld et al. 2014a, Bauersfeld et al. 2014b]
and it is well supported by tools that have been themselves positively evaluated by users [Bauers-
feld et al. 2014b]. However, there is no evidence that this work scales well to larger applications.
Moreover, no application of the approach to safety-critical systems have been reported.

Besides, this approach only covers the user interfaces, specifically, their appearance. No

2.7. ASSESSING CONSISTENCY 57

analysis has been carried out in which the functional core and/or users would have been modeled.
This approach allows the comparison of different versions of a UI, and the identification of the
UI divergences in a fully automatic way. Even though, leaving the newly introduced UI controls
out of the analysis (to reduce false positives) limits the UI components that are covered by the
approach. Besides, the approach is not adapted to plastic user interfaces: only UIs relatively
similar to each other can be compared.

c) Bowen and Reeves (New Zealand, 2005–2008)

A formal approach to compare different user interfaces is proposed in [Bowen & Reeves 2006,
Bowen & Reeves 2008b]. Specifically, the authors propose an approach to defining whether a
user interface is a refinement of another user interface. Refinement relates to the ability to move
between different implementations of a system without having any negative impact on a user’s
view of the system in terms of functionality or usability [Bowen & Reeves 2006].

The authors of [Bowen & Reeves 2005] discuss practical ways to include design guidelines
in the formal modeling of user interfaces in order to ensure that one UI is a good refinement
of another one. The approach requires the UIs to be represented by formal models, which in
this case are the presentation model (PM) and presentation and interaction model (PIM) (the
same models introduced in Subsection 2.6.2 - b), page 39). To grasp how the authors verify
refinement, consider the UIs illustrated in Figure 37, which allow a user to display two different
shapes.

(a) Design UIA (b) Design UIC (c) Design UIC5

Figure 37: Example of user interfaces for displaying shapes [Bowen & Reeves 2008b]

Four criteria should be satisfied for the UIC to refine the UIA [Bowen & Reeves 2008b]:

1. One can substitute UIC for UIA and maintain contractual utility, i.e., when UIC is
substituted for UIA, the new UI needs to provide at least all of the functionality of the
previous UI. For the example illustrated in Figure 37, the presentation model of the UIA

and UIC are illustrated in Figure 38.

For each UI, the following behavior sets are derived from the presentation models (Fig-
ure 39): the set S_Beh represents the system functionality made available via the UI,
and the set I_Beh represents the UI functionalities. From these sets, we observe that
the sets S_Beh[UIA] and S_Beh[UIC] are equal and that I_Beh[UIA] ⊆ I_Beh[UIC].
Therefore, in that respect, UIC might be considered a correct refinement of UIA.

2. The widgets of UIC are not more abstract than those of UIA. In order to verify that,
the authors rely on a widget category hierarchy that describes widgets in terms of the

58 CHAPTER 2. STATE OF THE ART

Figure 38: PMs of the user interfaces [Bowen & Reeves 2008b]

Figure 39: Behavioral sets of the user interfaces, adapted from [Bowen & Reeves 2008b]

kind of behavior they exhibit. For a widget description, becoming less abstract means
moving down the relevant hierarchy tree from the current position. In the example given
in Figure 37, UIA has standard buttons whereas UIC has radio buttons. In the widget
category tree, as both of these are examples of ActionControls, UIC might be considered
a correct refinement of UIA [Bowen & Reeves 2008b].

3. The layout and appearance of UIC is not less defined than those of UIA. Unfortunately, the
PM and PIM formal models cannot be used to check that at this stage of the work [Bowen
& Reeves 2008b].

4. The usability of UIC is not less than that of UIA. In order to ensure that, the authors
examine some of the conditions on the PIM models, such as reachability and absence of
deadlocks. If one has a UI that produces a PIM strongly connected (i.e., any state can be
reached from any other state) and no deadlock, then it is expected that these properties
are preserved in the PIM of the new UI [Bowen & Reeves 2008b]. The PIMs for both
UIA and UIC5 from Figure 37, are given in Figure 40. The PIM for UIA consists of a
single state (since Figure 37a contains a single UI) and so it has strong reachability and
no deadlock. The PIM for UIC5 has three states, one for each UI of Figure 37c. This PIM
has no deadlock either, however, it no longer has strong reachability: it is not possible to
reach state 2 from state 3. UIC5 does not maintain the usability of UIA and is, therefore,
not a suitable refinement [Bowen & Reeves 2008b].

Such notion of refinement enables a formal-based reasoning to compare different versions
of a UI. Refinement as defined here, differs from plasticity in the sense that the user is not

2.7. ASSESSING CONSISTENCY 59

Figure 40: PIMs for UIA and UIC5 [Bowen & Reeves 2008b]

supposed to observe that a user interface has changed [Bowen & Reeves 2006], whereas this is
permitted in plastic user interfaces. Besides, in refinement, the adaptation and the choice of
the most adaptable UI occurs before the execution of the system. By contrast, in plasticity the
adaptation can either occur at design time (and the most suitable UI is chosen at runtime), or
the UI is adapted according to changes in the context of use at runtime.

Concerning the modeling coverage, although the approach mainly focuses on modeling the
user interfaces, the presentation model can also be used to model the user operations, the main
goal being to ensure that all user operations described in the specification have been described
in the UI design [Bowen & Reeves 2007a]. Besides, as described before, the S_Beh behavior
set derived from the presentation models represents the system functionality made available via
the UI. So, the approach covers the modeling of the user, UIs, and functional core.

However, the verification of UI refinement is not automated and requires manual inspection
of the UI models. This gives no evidence that the approach scales well to larger applications.
Finally, no applications to safety-critical systems have been reported.

2.7.2 System × User Manual

Consistency verification approaches can also be used to verify if users correctly understand
interactive systems. For instance, if users are aware of all system functionalities, and if the
system behaves how the user expects. The expected behavior of a system can be analyzed
though its user manual, since users can learn how to interact with the system by reading the user
manual or through targeted training sessions [Chinnapongse et al. 2009]. In either case, users
develop a mental model of the system. Analyzing this mental model helps to avoid usability
problems in the system, and may help to evaluate necessary user training and instruction
materials that accompany a given device [Chinnapongse et al. 2009].

a) Chinnapongse et al. (USA, 2009)

The authors of [Chinnapongse et al. 2009] model the expected behavior of a system by analyzing
the specifications/user manual of the system (Figure 41). The mental model is manually created
using the NModel framework [Jacky et al. 2007], a Microsoft model-based testing tool for C♯

programs. Using the model program viewer (mpv) tool from the NModel framework (Figure 41),
the mental model is used to generate a finite-state machine, in which states are identified with

60 CHAPTER 2. STATE OF THE ART

UIs, and transitions represent changing UIs in response to invoking UI elements [Chinnapongse
et al. 2009].

From this mental model, a model-based approach is used to ascertain compliance of the
system to the mental model. The mental model can be used to generate a test suite (using the
off-line test generator tool from the NModel framework in Figure 41). This test suit is then
applied to the system implementation (using the conformance tester tool from the NModel
framework in Figure 41). The application to the system implementation must be coupled to
the implementation by means of a test harness (stepper) which invokes an instance of the
implementation to be tested and causes the appropriate actions to be executed when invoked by
the conformance tester. Finally, the conformance tester is executed with the test suite and the
implementation coupled with the stepper to check for consistency between the implementation
and the mental model [Chinnapongse et al. 2009].

Figure 41: Comparing systems with their user manuals, adapted from [Chinnapongse et al. 2009]

The approach is applied to a UI-driven handheld device in the healthcare domain used
to assist personnel with diagnosis and treatment of patients. An inconsistency between the
observed behavior and the behavior described in the user manual is demonstrated. However, no
further application to larger case studies is reported, which makes it hard to conclude whether
it scales well or not to larger real-life applications.

The authors suggest an alternative to improve the approach, by extracting also a state-
machine model from the application source code and compare it to the mental model using the
notions of state machine equivalence or pre-order [Chinnapongse et al. 2009]. This improvement is
interesting in the context of plastic user interfaces: one could use a state-machine representation
for each version of the UI and verify the equivalence between them.

One limitation of this work is that it focuses on UI navigation (transitions between the
UIs). The interaction capabilities of the user interfaces (i.e., the actions the user can perform
within each user interface that are not related to the display of another UI) are not analyzed.
Concerning the modeling coverage, the approach covers the modeling of the user behaviors and
the UIs: the finite-state machine representing the user manual, which is a mental model of the

2.7. ASSESSING CONSISTENCY 61

users. The functional core is not modeled. Instead, the real system is tested using the test cases
generated by the model.

b) Bowen and Reeves (New Zealand, 2012)

In [Bowen & Reeves 2012], formal methods are applied to compare a medical device against
its respective user manual. The device under study, a syringe pump, is designed to deliver
the contents of a syringe to a patient in a controlled manner at a specified rate. Among its
functionalities, the paper focuses on the delivery of a prescribed dosage of medication of the
pump. The syringe pump has nine widgets: eight soft-keys and a display (Figure 42), all of each
are fixed and always present in all modes of the pump. The formal models used in this case
study, called presentation model (PM) and presentation and interaction model (PIM) have been
already presented in Subsection 2.6.2 - b), page 39. For each mode of the pump there is a single
presentation model, and each presentation model contains descriptions of the nine widgets, but
with different behaviors [Bowen & Reeves 2012].

Figure 42: The Niki T34 Syringe pump [Bowen & Reeves 2012]

Both the pump and the manual are modeled in the same manner, by identifying the modes
and widget behaviors within those modes and describing them in different models [Bowen
& Reeves 2012]. Concerning the modeling coverage, in this case study the operations of the
functional core are included in the formal model; however, no references are made to the UIs or
the users, since the authors do not argue that the user manual should serve as a user model.

The PIMed tool [Bowen & Reeves 2007b] is used to validate the models, as well as the
ProB and ZOOM tools. PIMed can automatically generate a set of abstract tests from a model
(either the model built from the manual, or the one built from inspecting the pump). These
tests are then manually instantiated, and one checks that the manual or the pump (depending
on which model the test relates to) passes the tests. If a test does not pass, a possible error
in the associated model is revealed [Bowen & Reeves 2012]. This technique detected several
divergences between the models.

This work illustrates an example of usage of formal methods to compare two artifacts of
a system: the system and its user manual. Contrary to [Chinnapongse et al. 2009], which
formalizes only the user manual, this work shows that consistency verification approaches can

62 CHAPTER 2. STATE OF THE ART

be supported by formal methods.
However, the comparisons described in the paper are not automated. The authors argue

that they did not need more detailed and mathematical techniques to discover the model
inconsistencies, as manual inspection already revealed problems [Bowen & Reeves 2012]. To
scale to larger case studies, such manual inspection would not be enough.

c) Degani et al. (USA, 1996–2013)

In the avionics domain, Degani et al. propose another approach to comparing systems with their
user manual. In flight control systems, a variety of different behaviors, or modes, are employed.
In this context, mode confusion is the difference between the actual machine behavior and what
it is expected by the pilot [Degani et al. 1996]. Several incidents (some fatal) involving mode
confusion are observed and documented [Degani et al. 1996, Degani & Heymann 2000, Degani
et al. 2000, Degani & Heymann 2002, Degani et al. 2013].

One example of mode confusion implicating a specific autopilot and the changes in its
altitude settings is described and modeled in Figure 43a. It illustrates the control panel through
which the pilot interacts with the autopilot. Figure 43b illustrates the display through which
the pilot obtains information about several system’s behavior [Degani & Heymann 2002].

(a) Guidance and Control Panel (b) Attitude Display Indicator

Figure 43: Mode-control panel [Degani et al. 2000]

This autopilot presents an unexpected behavior when engaging in the “capture” mode. This
is a mode to which the autopilot automatically transits (with no explicit command from the
pilot), to maneuver the aircraft to a gentle transition from climb or descent to the target altitude.
The issue is that the altitude at which the autopilot engages the “capture” mode varies, and the
pilot has no pre-knowledge of this altitude.

This is an example of mode confusion: the actual system behavior diverges from the user
expectation of the system. An approach to comparing both a system model and a user model
is proposed in [Degani et al. 2013], in which both the system model and the user model are
finite-state machines (Figure 44). The system model is created by analyzing the actual system,
and the user model is created by analyzing the user manuals. A composite model containing
the synchronous product of both state machines is computed, and an analysis (detailed in the
following) aiming at identifying error states in this composite model is conducted. An error state
is a state-pair (i.e., a user-model state and a system state) composed by a legal and an illegal

2.7. ASSESSING CONSISTENCY 63

state, and it indicates that the user model does not correctly reflect the system model [Degani
& Heymann 2002].

���������
�	��
�

���������
�	��
�

��
�������

���

���

������
��
���

��
����������

��
����������

����������
��

Figure 44: Degani et al.’s approach based on the composition of finite-state machines

The authors of [Degani et al. 2013] propose a methodology for generating correct user models
for a modeled system, e.g., free of error states. Such user model is further used to generate
simple (yet adequate) user interfaces for such systems. A web-based tool has been developed
(UIverify [Shiffman et al. 2004]) to support the approach. It accepts as input a model of the
system and a mental model, checks whether the mental model is adequate, and generates a
correct mental model, which can be used to generate correct user interfaces. Note that the input
models of the tool (the finite-state machines) have to be manually created, which is an error
prone task for real-life applications.

Several papers provide a well-structured theoretical work about how to use finite-sate
machines to model the system’s behavior, task specification, the required user interface, and
the user-model [Degani et al. 1996, Degani et al. 2000, Degani & Heymann 2000, Degani &
Heymann 2002, Heymann & Degani 2002, Degani & Heymann 2007, Heymann & Degani 2007,
Degani et al. 2013]. The goal is to ensure that a correct and unambiguous interaction between
the user and the machine is possible.

Although the approach revealed a severe flow in the design of a complex safety-critical
system for avionics, it is not automated. The authors points out that for larger systems an
automatic tool is desirable [Degani et al. 2013], which indicates a scalability issue.

Concerning the modeling coverage of the approach, the finite-state machine (modeled using
the Statecharts language) contains modules describing: the environment, the pilot functions/-
tasks, the controls of the user interfaces, the displays, and the modes of the autopilot [Degani
et al. 1996], covering the three aspects we consider: user interfaces, functional core, and users.

d) Rushby et al. (USA, 1999–2002)

Rushby et al. have been investigating the usage of formal methods in industrial safety-critical
systems, specially avionics systems, since the 80s. However, only in the 90s the focus starts
to be shifted to the analysis of the system behavior and the operators mental model [Rushby
et al. 1999, Crow et al. 2000]. In [Rushby 2001], an approach based on model checking is applied
to the same case study described in [Degani et al. 2000], to analyze the autopilot UI model
and the pilots’ mental model. Both were analyzed with the Murφ model checker, the expected
behavior of the system being described using invariants (Figure 45).

The approach is applied to several autopilot case studies [Rushby et al. 1999, Crow et al. 2000,
Rushby 2001, Rushby 2002], in which issues on real-life systems are identified. Such evidences
indicate that it scales well.

64 CHAPTER 2. STATE OF THE ART

���������
�	��
�

���������
�	��
�

��
�������

������
���
�

����������

�
�����������
�������������

��
����������

��
����������

�������
��
������������

Figure 45: Rushby et al.’s approach based on invariant verification

Concerning the modeling coverage, the approach covers all the three aspects we are analyzing:
the model specifies actions by the pilot (i.e., the user) on the user interface (e.g., pressing
a button, or changing the value set by a dial), actions corresponding to the dynamics of the
aircraft (i.e., the functional core, such as a change in the current altitude of the aircraft), and
finally those performed by the autopilot system in response to certain events.

Both Degani’s and Rushby’s approaches have shown that formal methods can be used to
compare two artifacts of the system, helping to detect divergences between them, which is
interesting in the context of plastic user interfaces.

e) Combéfis et al. (Belgium, 2009–2013)

[Combéfis 2013] also proposes a formal framework for reasoning over system and user models,
and the user models can be also extracted from user manuals. Furthermore, his work also
proposes the automatic generation of user models. Using his technique, “adequate” user models
can be generated from a given initial user model. Adequate user models capture the knowledge
that the user must have about the system, i.e., the knowledge needed to control the system,
using all its functionalities and avoiding surprises. This generated user model can be used, for
instance, to improve training manuals and courses [Combéfis & Pecheur 2009].

In order to compare the system and the user model, and to verify whether the user model
is adequate to the system model, both models should be provided. With this goal, in this
approach system and user are modeled with enriched labeled transition systems called HMI
LTS [Combéfis et al. 2011a]. An LTS represents a system by a graph composed of states and
transitions between states. Transitions between states are triggered by actions, which are
represented in LTS transitions as labels. Intuitively, an LTS represents all possible evolutions of
a system modeled by a formal model.

The enhancements brought by HMI LTS is that three kinds of actions are defined [Combéfis
et al. 2011a] (Figure 46):

1. Commands: actions triggered by the user on the system;

2. Observations: actions triggered by the system, but that the user can observe;

3. Internal actions: actions that are neither controlled nor observed by the user.

To be considered “adequate”, user models are expected to follow two specific properties:
full-control and mode-preserving. Intuitively, a user model allows full control of a system if at
any time, when using the system according to the user model [Combéfis & Pecheur 2009]: the

2.7. ASSESSING CONSISTENCY 65

Figure 46: Classification of actions for human-machine interactions [Combéfis 2013]

commands that the user model allows are exactly those available on the system; and the user
model allows at least all the observations that can be produced by the system [Combéfis &
Pecheur 2009]. A user model is said to be mode-preserving according to a system, if and only if,
for all possible executions of the system the users can perform with their user model, given the
observation they make, the mode predicted by the user model is the same as the mode of the
system [Combéfis & Pecheur 2009]. Model-checking is used to verify both properties over the
user model.

In order to automatically generate adequate user models, the authors propose a technique
based on a derivative of weak bisimulation, in which equivalence checking is used [Milner 1980].
This is called “minimization of a model modulo a equivalence relation”. Intuitively, using
equivalence checking, they generate a user model U2 from the initial user model U1, i.e., U2 is
equivalent to U1 with respect to specific equivalence relations introduced by the authors.

Two equivalence relations are proposed: full-control equivalence and mode-preserving equiv-
alence. Full-control equivalence distinguishes commands and observations: two equivalent
states must allow the same set of commands, but may permit different sets of observations.
Minimization modulo this equivalence produces a minimal user model that permits full-control
of the system. A mode-preserving equivalence is then derived from the full-control equiva-
lence, by adding an additional constraint that the modes of two equivalent states must be the
same [Combéfis & Pecheur 2009]. Using these equivalence relations, the authors can generate
mode-preserving-fully-controlled user models, which can then be used to design user interfaces
and/or training manuals. Both properties (i.e., mode-preserving and full-control) and their
combination are interesting because they propose that different levels of equivalence can be
shown between system models.

A tool named jpf-hmi has been implemented in Java and uses the JavaPathfinder model
checker [Combéfis et al. 2011a], to analyze and generate user models. The tool takes as input
a system and a user model, and can verify full-control and mode-preserving properties. The
tool produces an LTS corresponding to one minimal fully-controlled mental model, or it reports
that no such model exists by providing a problematic sequence from the system [Combéfis
et al. 2011a].

The approach is applied to several examples that are relatively large [Combéfis et al. 2011b].
In the healthcare domain, a machine that treats patients by administering X-ray or electron
beams is analyzed with the approach, which detects several issues in the system. In the avionics
domain, the approach is applied to an autopilot system of a Boeing airplane [Combéfis 2013],
and a potential mode confusion is identified. These are evidences that the approach scales well
to real-life applications.

66 CHAPTER 2. STATE OF THE ART

Concerning the coverage modeling of the approach, the users, the user interfaces and the
functional core are modeled and compared to each other, the user model being extracted from
the user manual describing the system.

2.7.3 Synthesis

This section provides a representative list of approaches to assessing the consistency of interactive
systems with another artifact. Interactive system are compared either with another version of
the system or with its user manual. Table 2 summarizes these approaches. The comparison
between the system and its user manual ensures the consistency between both. Since the user
manual is one of the tools used in the staff training, it is crucial that it represents correctly
the system, specially in safety-critical systems. From these work, we retain one of the formal
technique used: equivalence checking, which is very suitable for the comparison of user interfaces.

However, the approaches that compare two versions of a system apply either model-based
testing or manual inspection as analysis techniques. Manual inspection does not scale for large
real-life systems. Model-based testing is more promising than manual inspections. Testing
activities have significantly increased over the years, specially in safety-critical systems [Lex
& Powej 1997]. However, it has been shown that testing is not a sufficient method for such
systems [Butler & Finelli 1993]. The efficiency of testing highly relies on its coverage, and test
coverage is never exhaustive. Test cases often emphasize boundary conditions (e.g., startup,
shutdown) or anomalous conditions (failure detection and recovery), since hazards can result
from improper handling of these vulnerable states [Lutz 2000]. Besides, test-based techniques
require a runnable version of the system under test, which pushes testing to begin often late
in the system development cycle, when it is costly to find flaws in the system. Alternatively,
approaches based formal techniques bypass the need of a runnable version of the system, they
can be performed earlier in the development cycle, and they allow an exhaustive analysis of the
system model.

2.7. ASSESSING CONSISTENCY 67

T
ab

le
2:

Su
m

m
ar

y
of

ap
pr

oa
ch

es
w

hi
ch

as
se

ss
co

ns
is

te
nc

y

A
u

t
h

o
r

s
(

e
t

a
l.

)

M
o

d
e

li
n

g
V

e
r

ifi
c

a
t

io
n

C
r

it
e

r
ia

a
r

t
if

a
c

t
s

la
n

g
u

a
g

e

1
s

t
a

r
t

if
a

c
t

la
n

g
u

a
g

e

2
n

d
a

r
t

if
a

c
t

t
e

c
h

n
iq

u
e

t
o

o
l

s
u

p
p

o
r

t

m
o

d
e

li
n

g
c

o
v

e
r

a
g

e
a

p
p

li
c

a
t

io
n

s
c

a
la

b
il

it
y

u
s

e
r

s
U

I
s

c
o

r
e

1
J

u
n

g
s
y

s
t
e

m
×

s
y

s
t
e

m
im

a
g

e
im

a
g

e
m

o
d

e
l-

b
a

s
e

d

t
e

s
t
in

g

a p
r
o

t
o

t
y

p
e

√
√

n
o

n
-c

r
it

ic
a

l
n

o
e

v
id

e
n

c
e

2
B

a
u

e
r
s
fe

ld
s
y

s
t
e

m
×

s
y

s
t
e

m
t
r
e

e
t
r
e

e
m

o
d

e
l-

b
a

s
e

d

t
e

s
t
in

g

G
U

IT
e

s
t
,

G
U

ID
iff

,

R
o

g
u

e
/

T
E

S
T

A
R

√
n

o
n

-c
r
it

ic
a

l
n

o
e

v
id

e
n

c
e

3
B

o
w

e
n

a
n

d

R
e

e
v

e
s

s
y

s
t
e

m
×

s
y

s
t
e

m
Z

,
µ

C
h

a
r
t
s
,

F
S

M

Z
,

µ
C

h
a

r
t
s
,

F
S

M

m
a

n
u

a
l

m
o

d
e

l

in
s
p

e
c

t
io

n

-
√

√
√

n
o

n
-c

r
it

ic
a

l
n

o
e

v
id

e
n

c
e

4
C

h
in

n
a

p
o

n
g

s
e

s
y

s
t
e

m
×

u
s
e

r
m

a
n

u
a

l
-

F
S

M
m

o
d

e
l-

b
a

s
e

d

t
e

s
t
in

g

N
M

o
d

e
l

√
√

h
e

a
lt

h
c

a
r
e

n
o

e
v

id
e

n
c

e

5
B

o
w

e
n

a
n

d

R
e

e
v

e
s

s
y

s
t
e

m
×

u
s
e

r
m

a
n

u
a

l
Z

,
µ

C
h

a
r
t
s
,

F
S

M

Z
,

µ
C

h
a

r
t
s
,

F
S

M

m
a

n
u

a
l

m
o

d
e

l

in
s
p

e
c

t
io

n

P
IM

e
d

,

P
r
o

B
,

Z
O

O
M

√
h

e
a

lt
h

c
a

r
e

n
o

6
D

e
g

a
n

i
s
y

s
t
e

m
×

u
s
e

r
m

a
n

u
a

l
F

S
M

,

S
t
a

t
e

c
h

a
r
t
s

F
S

M
m

a
n

u
a

l
m

o
d

e
l

in
s
p

e
c

t
io

n

U
IV

e
r
if

y
√

√
√

a
v

io
n

ic
s

n
o

7
R

u
s
h

b
y

s
y

s
t
e

m
×

u
s
e

r
m

a
n

u
a

l
M

u
r
φ

M
u

r
φ

m
o

d
e

l

c
h

e
c

k
in

g

M
u

r
φ

√
√

√
a

v
io

n
ic

s
y

e
s

8
C

o
m

b
é

fi
s

s
y

s
t
e

m
×

u
s
e

r
m

a
n

u
a

l
L

T
S

L
T

S
m

o
d

e
l

c
h

e
c

k
in

g
,

e
q

u
iv

a
le

n
c

e

c
h

e
c

k
in

g

jp
f-

h
m

i,

J
a

v
a

P
a

t
h

fi
n

d
e

r

√
√

√
a

v
io

n
ic

s
,

h
e

a
lt

h
c

a
r
e

y
e

s

68 CHAPTER 2. STATE OF THE ART

2.8 Summary

A representative list of approaches to assessing the quality of interactive systems is presented in
this chapter, divided in two main classes: property verification approaches, in which a set of
properties are verified over the system model, and approaches to assessing consistency, which
compare the system with another artifact.

For the first class, we present several approaches that represent systems as a composition of
parts, which inspire us on how to manage complex systems, and several approaches that do not
model systems as compositions, which inspire us as an alternative to model systems that are
manageable without the need to break them in smaller parts.

For the second class, i.e., approaches to assessing consistency, we present approaches that
compare different versions of the system, or the user interfaces, which inspire us on how to
compare different versions of plastic UIs, followed by approaches that compare the system with
its user manual, which inspire us on how to model the users and their mental model of the
system.

Different formalisms are used in the system modeling (and property modeling, when applied).
Numerous case studies have shown that each formalism has its strengths. The criteria to choose
one over another would be more related with the knowledge and experience of the designers in
the formalisms. Different formal techniques are employed, such as model checking, equivalence
checking and theorem proving. Most of the work presented here are tool supported, even though
some authors still use manual inspection of the models to perform verification.

This study of the related work shows that:

• No approach so far verifies or compares plastic user interfaces. Investigations of both
plasticity and formal verification of interactive systems started in late 80s, thus, plastic
UIs were not mature enough to be used as case study in the aforementioned approaches.

• No approach considers the verification of nuclear power plant systems with users, user
interfaces and functional core aspects integrated, while considering usability and functional
properties. Specifically, only one approach [Knight & Brilliant 1997] is applied to interactive
systems in the nuclear-plant domain (Subsection 2.6.2 - g), page 50), but the formal
specification is not used to perform formal verification.

Chapter 3

The Nuclear Reactor Supervision Case Study

Contents

3.1 Goals . 69

3.2 Nuclear-Plant Control Rooms . 69

3.3 The EDF Prototype . 72

3.3.1 Global Synthesis User Interface . 72

3.3.2 Reactor Parameters . 72

3.3.3 Failure Signals . 74

3.4 The LIG Prototype . 76

3.4.1 The Control Room Version . 76

3.4.2 Plastic Versions . 78

3.5 The ADACS-NTM Prototype . 80

3.6 Summary . 82

3.1 Goals

In the context of the Connexion Project1, several case studies were proposed to validate the
technical propositions of the project, some case studies being shared among different partners.
The case study to which the work of this thesis was applied is a system designed to support
monitoring activities in a nuclear-plant control room. This chapter describes this case study.

3.2 Nuclear-Plant Control Rooms

In the overall architecture of a nuclear unit plant, a control room system is integrated with
several other systems, which are layered in several levels (Figure 47): level 0 consists of
the instrumentation, in which actuators and sensors perform measurements (e.g., pressure,
temperature, flow) and transform physical data into electrical signals that can be handled by
PLCs (Programmable Logic Controllers). At level 1, the PLCs interact with the physical devices
to ensure that the input data coming from level 0 remain within the limits allowed by safety; the
PLCs trigger actions in case of disturbances. Level 1 interfaces with level 2, in which the control
room is placed. In the control room, operators are provided with several terminals, control
panels, and backup panels, to manage the plant. Finally, level 2 integrates with level 3, in which
systems external to the nuclear unit process data provided by level 2 [Worldgrid 2011b].

A control room permits a centralized operation of the nuclear unit, in contrast to previous
generations of nuclear power plants, in which operators were distributed all over the nuclear

1http://www.cluster-connexion.fr/; see Section 1.8 on page 10

69

70 CHAPTER 3. THE NUCLEAR REACTOR SUPERVISION CASE STUDY

Figure 47: Overall architecture of a control room system [Worldgrid 2011b]

unit [Connexion 2012]. The RCC-E book [AFCEN 2012] defines a control room as “the whole of
electrical systems allowing to assure the monitoring and control of a nuclear unit”. Conventional
control rooms are mainly composed of large panels as the one illustrated in Figure 48, where
synoptics represent the installation, and where analog devices such as gauges, valves, pumps,
and dials, etc., permit operations on the nuclear unit.

Figure 48: A conventional nuclear power plant control room

Recent nuclear plants have computerized control rooms, which allow a fully operation (e.g.,
display of information and anomalies, execution of commands and procedures, etc.) of the

3.2. NUCLEAR-PLANT CONTROL ROOMS 71

nuclear unit by computer systems. Figure 49 illustrates an example of computerized control
room with four workstations, in which:

• each operator is provided with seven monitors: three monitors for operation, and four
monitors for displaying alerts and alarms;

• on the walls, large-size conventional displays are used to show measurements of physical
functions. Besides the mimics, some information displayed on the UIs on the operators’
workstations can also be displayed on such wall-size conventional displays, permitting rele-
vant information to be shared between all operators in the control room [Connexion 2012];

• a conventional panel (behind the wall-size conventional displays) is used when the com-
puterized systems fail. Information coming from the nuclear unit are also sent to the
conventional panel.

Figure 49: A computerized nuclear power plant control room

In such environment, several actors play different roles in the nuclear unit:

• Control-room operators: They are constantly in operation, being responsible for
monitoring and operating the nuclear reactor units. The monitoring task consists in
verifying the state of units and comparing them to referential information, in order
to identify the reason of eventual gaps. After the diagnosis of such gaps, immediate
interventions can be made from the control room;

• Operation supervisor: He is responsible for the nuclear unit. Disposing of significant
mobility, the operation supervisor moves between two control rooms, participates to
management meetings, and has an office outside the control room for the management
tasks;

• Safety engineer: He is responsible for guaranteeing the safety of the nuclear unit. He
has a workstation inside the control room. In case of an accident, the safety engineer uses
the conventional panel to monitor the safety of the plant.

72 CHAPTER 3. THE NUCLEAR REACTOR SUPERVISION CASE STUDY

The case study of this thesis concerns one of these actors: control room operators. From now
on, we refer to control-room operators as “users”.

3.3 The EDF Prototype

Numerous interactive systems assist users in their daily activities of monitoring the nuclear
unit. In the context of the Connexion Project, common case studies were proposed to several
partners, allowing them a multi-faceted exploration of real-life settings to demonstrate their
contributions within the project. Our research laboratory, together with Atos Worldgrid2

and EDF3 (Électricité de France), conducted in-depth investigation of one EDF system that
implements several control room activities. The main goal of the system is to provide a general
overview of the plant status, warning the user about anomalies regarding the plant before an
alarm occurs (to prevent in the monitoring) [Chériaux et al. 2012]. The main user interface
(UI) of the system is called Global Synthesis (Figure 50). The system contains other UIs with
different features not covered in our thesis, such as UIs that display synoptics of the nuclear
unit.

3.3.1 Global Synthesis User Interface

The Global Synthesis UI is illustrated in Figure 50 (in French). On the top line of the user
interface, six tabs indicate the current status of the plant. These status ranges from RP (working
at full capacity) to RCD (completely stopped):

1. RP (Reactor in power – “Réacteur en production”);

2. AN/GV (Normal stop on steam generator – “Arrêt normal sur générateur de vapeur”);

3. AN/RRA (Normal stop on cooling system – “Arrêt normal sur circuit de refroidissement”);

4. API (Stop by intervention – “Arrêt pour intervention”);

5. APR (Stop for reloading – “Arrêt pour rechargement”); and

6. RCD (Reactor discharged – “Réacteur complètement déchargé”).

These status indicate the current operating mode of the reactor. The transitions between these
six status take place either in the physical unit first (and the system detects this change and
updates the user interface), or if the user changes it on the user interface (affecting the physical
status of the plant).

3.3.2 Reactor Parameters

Depending on the plant status, different reactor parameters are displayed in the middle part
of the UI (for instance, the reactor average temperature, the average thermal power, etc.
Appendix A gives a full list of these parameters). The Global Synthesis UI (Figure 50) groups
the reactor parameters that should be constantly monitored. Other parameters are dispersed in
other UIs. Each parameter is represented by a widget like the one of Figure 51.

2http://fr.atos.net
3https://www.edf.fr/

3.3. THE EDF PROTOTYPE 73

Figure 50: A monitoring system of nuclear-plant control rooms

Figure 51: One reactor parameter zoomed out

The top of the parameter widget displays the parameter name (for instance, Pth_moy,
standing for average thermal power). The middle displays the current value of this parameter
(90.00) and a line displaying the past values of the parameter. These values vary between
a minimum and a maximum value (thresholds, also displayed in the widget, e.g., 0 – 120).
Finally, the bottom of the widget displays the name of the sensor that monitors the parameter
(RPN906XX) and its measurement unit (%PN).

The system monitors the evolution of all reactor parameters over time. If something unusual
occurs in a parameter displayed in the current UI, the parameter is highlighted in different ways.
Table 3 lists some kinds of parameter anomalies we considered in this case study, and how such
anomalies are highlighted on the UIs.

74 CHAPTER 3. THE NUCLEAR REACTOR SUPERVISION CASE STUDY

Table 3: Reactor parameters anomalies and their UI representation

Anomaly type Description UI representation

1
threshold overflow
(“dépassement haut”)

when a parameter achieves a value
higher than its maximum threshold

(yellow top arrow)

2
threshold underflow
(“dépassement bas”)

when a parameter achieves a value
lower than its minimum threshold

(yellow bottom arrow)

3
gradient excess
(“dépassement gradient”)

a calculation based on the variation
of the parameter value in one second,
with respect to a maximum threshold
of variation

(red square)

4
invalid measurement
(“invalidité de mesure”)

when a parameter used in the calcu-
lation is invalid

(magenta square)

5
loss of redundancy
(“perte de redondance”)

if the value measured by a partic-
ular sensor diverges by more than
5% from the average of all sensors,
this parameter is excluded from the
computation of the average

(orange bar)

3.3.3 Failure Signals

Besides anomalies in the reactor parameters, the system displays failure signals on the left and
bottom zones of the UIs, in the reactor function that is affected by the parameter anomaly (e.g.,
the yellow box under the reactivity – “réactivité” – function in Figure 50). The system monitors
three kinds of reactor functions (Figure 50):

• Safety functions: composed of the reactivity – “réactivité”, core cooling – “refroidissement”,
and confinement sub functions;

• Production functions: composed of the “R”, “V”, “G”, “C”, and “A” sub functions;

• Support functions: composed of the electric – “électricité”, pneumatic – “air comprimé”,
I&C, fire protection – “incendie”, and fan & air conditioning – “climatisation et ventilation”

3.3. THE EDF PROTOTYPE 75

sub functions.

When a parameter has an anomaly, a signal is displayed in these functions. They synthesize
failure signals according to the parameters, and even when an anomalous parameter is not
currently displayed on the UI, the failure signals is displayed on the corresponding function
anyway, to warn the user that anomalies exist on parameters that are not currently visible. Such
signals are displayed on the UI with different icons according to the kind of signal. Figure 52
illustrates the kinds of signals that can be generated:

1. nonconformity (“non-conformité”) (NC in red): indicates a nonconformity on a reactor
function, with respect to the system requirements, which are expressed in the form of logic
equations;

2. loss of redundancy (“perte de redondance”) (letter R in orange): generated when a reactor
parameter triggers a loss of redundancy anomaly;

3. variation of a measure (“variation d’une mesure”) (a black arrow): generated when a
parameter value used in the calculation significantly varies with respect to its average;

4. equipment state change (“changement d’état”) (a red square): notifies a change of state of
an equipment;

5. invalid measurement (“invalidité de mesure”) (in a pink semi border): generated when a
reactor parameter triggers an invalid measurement anomaly;

6. alerts (inside a solid yellow square): indicates the number of alerts generated by the system
in this reactor function; and

7. alarm conditions (inside a solid orange square): indicates the number of alarm conditions
generated by the system in this reactor function. An alarm condition threshold is more
severe than an alert. These defaults can be associated - or not - with an alarm, depending,
for example, on the plant status filter that does not affect these conditions (or defaults).

Figure 52: Signals triggered on reactor functions

The names of the reactor function under which the failure signals are displayed are clickable,
allowing users to access other UIs in order to get more details about the default. Such technique
is called the zoom metaphor, and it is illustrated in Figure 53: the “Global Synthesis” UI displays
a nonconformity failure signal in the “Refroidissement” function (Figure 53a); in order to detail
the impact of this failure signal, the user can click on the “Refroidissement” function; another
UI is displayed with the four “Refroidissement” sub functions, and one can see that the failure
comes from the “Sources Froides” sub function (Figure 53b); this sub function can also be
clicked, revealing that the failure comes from the “RRI” system (Figure 53c).

76 CHAPTER 3. THE NUCLEAR REACTOR SUPERVISION CASE STUDY

(a) A failure is displayed in the “Refroidisse-

ment” function ...

(b) ... the failure comes from the “Sources

Froides” sub-function ...

(c) ... precisely, from the “RRI” system.

Figure 53: Example of the zoom metaphor : from one UI, the user can access other UIs that
give more details about what is displayed on the previous UI

3.4 The LIG Prototype

One of the contributions of our research team to the Connexion Project was the application of
recent advances of plasticity to the EDF system [Connexion 2013].

3.4.1 The Control Room Version

By applying several ergonomic criteria from the framework proposed in [Bastien & Scapin 1993],
the LIG prototype improves the EDF system in several directions. Figure 54 (in French)
compares both of them. The UI of the LIG prototype was structured in four zones (instead of
the three zones of the EDF system). This organization clearly separates displaying zones from
navigation zones on the UI:

1. The top zone displays six tabs for selecting the plant status, which in the EDF version is
also on the top part of the UI, but with a different appearance;

2. Below the plant status zone, the Failure Signals (“Signaux de défaut”) zone synthesizes the

3.4. THE LIG PROTOTYPE 77

signals triggered in reactor functions. In the EDF system, such information is displayed
inside the menu on the left zone of the UI;

3. At the bottom, the Parameters – “Paramètres” – zone displays various reactor parameters.
In the EDF system, such information is displayed in the middle of the UI;

4. On the left, a menu permits other UIs to be accessed. In the EDF system, the menu is on
the left and at the bottom of the UI.

(a) The EDF version (b) The LIG version

Figure 54: Two versions of a control room system

Besides, other improvements on the LIG version of the EDF system are:

1. A better spatial organization of the user interface. For instance, in the EDF system, the
reactor functions are dispersed at the left and bottom zones of the UI;

2. Some elements on the UI that are clickable are made more prominent (e.g., the six tabs
on top of the UI);

3. At the parameter zone of the UI, the reactor parameters are grouped according to the
production system to which they relate. For instance, the Pth moy, DPAX moy, and PCNI

parameters are positioned one beside the other on the LIG prototype, since they are
related to the production system called RPN. In the EDF system, these three parameters
are dispersed on the UI;

4. In terms of navigation, on the EDF system some UIs do not provide direct access neither
to the main UI nor to UIs that were previously accessed. Such navigation capabilities are
improved with the hierarchical menu of the LIG prototype;

5. The EDF system is extended to two different modes: training and expert modes. In the
training mode, supplementary guidance is added on the UI, to aid users who are not
accustomed to operate the system, such as a breadcrumb trail4. In the expert mode, these
guidance elements are removed to provide lighter UIs to expert users;

4The graphical control element breadcrumb trail is a navigation aid used in user interfaces to allow users to
keep track of their locations within programs or documents (source: Wikipedia).

78 CHAPTER 3. THE NUCLEAR REACTOR SUPERVISION CASE STUDY

6. Minor improvements such as alignment of labels, coherence of the police size, etc.

This prototype is implemented using the following technologies: HTML 5, CSS 3, Javascript,
PHP (for the server), Server Sent Events for the communication client-server.

3.4.2 Plastic Versions

The control room system has the need to adapt to different contexts of use. For instance, to
make users mobile, a tablet version of the UIs could be provided. An example of adaptation is
illustrated in Figure 55a, where the control room UI is adapted according to the target platform
(a Smartphone). This UI makes users mobile, which is useful when an unexpected event occurs
in the plant. While on the PC version (Figure 54b) all reactor signals and parameters are always
displayed, on the Smartphone the display is limited to those currently affected by a failure.
Besides, the widget representing reactor parameters is re-molded to fit on the size-reduced screen
of a Smartphone. Furthermore, while on the PC the menu is always visible (on the left zone of
the UI), on the Smartphone it is accessible by a circled button on the top-left corner.

The adaptation applied to the Smartphone UI is placed in the plasticity problem space axes
(Figure 4) as follows: re-molding is the adaptation means, since the UI visual components are
re-molded to adjust the size of the screen; the UI component granularity of the adaptation is
defined at the interactor level, since the UI widgets are re-molded; the state recovery granularity
is at the session level: once the UI adaptation occurs, users have to restart their activity from the
initial state; the UI deployment is static: the UI adaptation is pre-defined at design-time; only
changes in the platform are taken into account in the context of use of the UI; the technological
space (TS) coverage is intra-TS, since both UIs are implemented within a single technological
space (web technologies); and finally, this example does not contain meta-UIs.

Figure 56 illustrates another example of adaptation, in which the UI is adapted according to
the target user. This adaptation considers two outermost cases in the training process of users
(i.e., control-room operators): training mode (Figure 56a), for users learning how to use the
system, and expert mode (Figure 56b). Figure 54b represents an intermediate mode. Figure 56a
illustrates the training mode. The following elements are added: (1) at the top, a breadcrumb
trail helps navigation; (2) some UI zones are entitled (Failure Signals – “Signaux de défaut” and
Parameters – “Paramètres”); (3) non-failure signal symbols have a disabled appearance (e.g.,
the four symbols beside the Pneumatic (“Air Comprimé”) function); and (4) reactor functions
are line-grouped according to their systems: Safety (“Sureté”), Production, or Support. In
expert mode, all this guidance is removed (i.e., the red crosses in Figure 56b), providing lighter
UIs for expert users.

Regarding the plasticity problem space, the adaptations applied to the Training and the
Expert mode UIs are the same as to the Smartphone UI, except for the context of use axis,
which considers only changes in the users.

A tablet version (Figure 55b) of the UI illustrates another adaptation means: redistribution.
The UI is re-distributed on a tablet, but only part of the UI is migrated (i.e., the Parameters
zone), the other part is displayed on other devices, such as kiosks. The tablet version of the UI
also makes users mobile when an unexpected event occurs in the plant.

The adaptation applied to the Tablet UI is placed in the plasticity problem space as follows:
redistribution is the adaptation means; the UI component granularity of the adaptation is defined
at the dialog-space level, since the UI zones are the smallest units for redistribution; the state

3.4. THE LIG PROTOTYPE 79

(a) Smartphone UI (b) Tablet UI

Figure 55: UI platform adaptation

(a) UI in training mode (b) UI in expert mode

Figure 56: UI after user adaptation

recovery granularity is at the session level; the UI deployment is static; only changes in the
platform are taken into account in the context of use of the UI; the technological space (TS)
coverage is intra-TS; and finally, this example contains a meta-UI with negotiation: using a
meta-UI, the user can decide where to redistribute the UI zones.

The implementation of these prototypes is out of scope of this thesis. Nonetheless, we use

80 CHAPTER 3. THE NUCLEAR REACTOR SUPERVISION CASE STUDY

them in some applications of our proposed verification approach.

3.5 The ADACS-NTM Prototype

In the context of the Connexion Project, Atos Worldgrid5 implemented the same functionalities
as the EDF system in their own product called ADACS-NTM (Advanced Data Acquisition and
Control System for Nuclear power), taking into account the conclusions and improvements
proposed by LIG. ADACS-NTM is a commercial product that is deployed in actual nuclear
plants. It is a real-time system designed to completely monitor and control a nuclear power
plant. ADACS-NTM aims at assisting users (i.e., operators) in their daily tasks in a control
room, i.e., in the analysis of a large amount of information, in taking proper actions, and in
sending them to the process [Worldgrid 2011a].

ADACS-NTM is a system positioned at level 2 of the overall architecture of a nuclear unit
plant (Figure 47), as a computerized process with high availability, integrating all necessary
functions for a nuclear control room. ADACS-NTM handles a large amount of data generated
by the previous levels at the unit architecture, organizes and displays such data efficiently in
graphical user interfaces of several forms, such as synoptic representations of the installation
(Figure 57), surveillance mimic displays (Figure 58a), technical datasheets, logbooks, etc.

Figure 57: ADACS-NTM: synoptic representations of the installation

Particularly relevant to our study are the user interfaces that implement the EDF system,
such as the UI illustrated in Figure 58b. This type of UI presents in curves the evolution of a
group of reactor parameters over time, displaying their current and past values, and potential
disturbances in the nuclear unit.

5http://fr.atos.net

3.5. THE ADACS-NTM PROTOTYPE 81

(a) Mimic display (b) Surveillance display

Figure 58: ADACS-NTM: examples of user interfaces

ADACS-NTM structures data by means of objects (Figure 59). An ADACS-NTM object
is a configurable component that has inputs, a processing unit, and outputs. Objects can be
plugged to each other. An input can be either an acquired value (measurements, signals, etc.,
accompanied by complementary information such as validity, and timestamps) or an output
computed by another object. The input data undergo several calculations in the processing
unit, generating the object outputs. In our case study, these objects implement the evolution of
reactor parameters over time.

Figure 59: ADACS-NTM objects [Worldgrid 2011b]

ADACS-NTM also has a simulation mode, which is used either for training sessions to nuclear-
plant users (i.e., control-room operators), or for data engineering and software testing. The
simulation environment is a replica of the real control room system. In this mode, ADACS-NTM

can be connected to a set of models that simulate nuclear unit processes. Alternatively, the
objects can be manually changed by the training instructors, irrespectively of the laws of physics.
Only ADACS-NTM objects that have acquired data as input can be stimulated. Objects that are

82 CHAPTER 3. THE NUCLEAR REACTOR SUPERVISION CASE STUDY

dependent of other objects (i.e., their inputs are connected to other object’s output) cannot be
stimulated. If the set of models is not available, ADACS-NTM can be connected to a stimulator
that generates input data.

The results of object calculations can be displayed on the ADACS-NTM user interfaces,
allowing users to be aware of the current status of the nuclear unit and to take actions
correspondingly. There exists a logging mechanism that records in log files the acquisition
of parameters (either real or simulated acquisition), the display of this information on the
user interfaces, and the user interactions (Figure 60). Particularly for this case study, reactor
parameters are logged in such files.

�������
��

�����
�����	
��������� �����
�

�����
�����

������
�
�

���
	����

������
���

Figure 60: ADACS-NTM: simulation mode and data logging

3.6 Summary

This chapter describes nuclear power plant control rooms, their overall architecture, and the
main actors who operate in control rooms. In this context, one specific system has been chosen
as one of the case studies of this thesis.

The case study is a system designed to support monitoring activities in the control room,
and it was proposed in the context of the Connexion Project by the EDF nuclear electric power
generation company. The main UI of this system is described, together with the main zones and
widgets displayed in this UI, which information is displayed, and, briefly, how the information
is produced. A study to improve ergonomic criteria in the EDF system was conducted in our
research laboratory, producing an improved version of this system (the LIG prototype). The
EDF and the LIG implementations of the case study are used in the following chapters to
illustrate the contributions in this thesis.

Finally, Atos Worldgrid, another partner in the Connexion Project, also studied the EDF
case study in the context of the project. Atos Worldgrid implemented the functionalities of the
EDF system in its own product called ADACS-NTM. In this chapter, we also present this part
of ADACS-NTM that implements the EDF system.

Chapter 4

An Approach to Verifying Interactive Systems

Contents

4.1 Goals . 83

4.2 Formal Techniques . 84

4.2.1 Model Checking . 84

4.2.2 Equivalence Checking . 85

4.3 Global Approach . 85

4.4 Formal Models Based on the ARCH Architecture 87

4.5 Languages and Tool Support . 88

4.5.1 CADP Toolbox . 89

4.5.2 LNT Specification Language . 89

4.5.3 LTS . 91

4.5.4 SVL Script Language . 91

4.5.5 MCL Property Language . 92

4.6 Summary . 93

4.1 Goals

The study of the state of the art described in Chapter 2 shows that:

• no approach so far verifies or compares plastic user interfaces; and

• no approach considers the verification of nuclear power plant systems with users, user
interfaces and functional core aspects integrated, while considering usability and functional
properties.

Our evaluation of the related work lead us to conclude there is a need of a verification
approach of interactive systems covering all the following items:

1. For the verification to be as wide-ranging as possible, the modeling should cover aspects
of: users, user interfaces, and functional core;

2. The approach should cover plastic user interfaces, which have specificities that should
be considered, like it is shown in the problem space [Vanderdonckt et al. 2008, Calvary
et al. 2011];

3. The kinds of properties the approach verify should include usability and functional
properties. When it comes to safety-critical systems, ergonomics and safety requirements
should be addressed;

83

84 CHAPTER 4. AN APPROACH TO VERIFYING INTERACTIVE SYSTEMS

4. The approach should be applicable to safety-critical systems. In particular, the specificities
of the nuclear-plant domain described in Section 1.5, page 7, should be addressed, such as
the multidisciplinary users that access to system functionalities;

5. For the approach to be applicable to industrial systems, it should scale well to real-life
applications. With this goal, as well as to benefit from recent advances in formal methods,
we believe that tool support is a necessity.

This chapter gives an outline of our approach to addressing these aspects. The approach
allows interactive systems provided with plastic user interfaces to be verified, and can be
applied to industrial systems. The chapter starts by describing how we apply formal verification
techniques to interactive systems, followed by a global overview of our approach integrating two
techniques. The approach is composed of two parts: verification of properties and comparison of
models. The aspects common to both parts are introduced in this chapter, such as the modeling
according to the ARCH architectural model and tool support. The toolbox and languages which
we use to implement the approach are described, as well as how these tools and languages are
integrated in the global verification approach.

4.2 Formal Techniques

The formal verification techniques we use in our approach were chosen according to our goal:
to verify plastic industrial interactive systems in the context of safety-critical systems. Two
techniques integrate our global approach: model checking and equivalence checking.

4.2.1 Model Checking

In model checking, a system is represented as a finite-state machine, which is subject to
exhaustive analysis of its entire state space to determine whether a set of properties holds or
not [Clarke et al. 1983, Queille & Sifakis 1982]. In the context of safety-critical systems, model
checking can be used to verify safety requirements expressed as properties.

Figure 61 illustrates the model checking technique applied to the verification of interactive
systems. Here, the starting point is the interactive system, from which a formal model describing
its behavior is manually created. This formal model is then used to verify expected properties.
These properties are also manually extracted from the original system, and they express the
expected behavior of the system. In our approach, we cover both usability and functional
properties. Usability properties relate to the ergonomic aspects of the system, and can follow
existing frameworks such as [Abowd et al. 1992, Bastien & Scapin 1993, Vanderdonckt 1994].
In the context of safety-critical systems, it is important to show that the system complies
with ergonomic criteria, even if it is not possible to verify all of them. Functional properties
relate to the system requirements, and can be extracted directly from the real system, from the
requirement document, and from the safety requirements. Properties should be also formalized,
which in is this case is done by means of temporal logics.

To complete the process, a satisfiability verification of the properties over the formal model
is automatically performed [Clarke et al. 1983, Queille & Sifakis 1982]. The analysis feedback is
mainly supported by the generation of counter-examples when a property is not satisfied. This
diagnosis is one of the main benefits of using formal methods to verify interactive systems. It

4.3. GLOBAL APPROACH 85

furnishes a precise way to identify potential problems in the modeled system. The results of the
analysis permits the modeled system to be refined.

���������	�

�����

�����
��������

���
��
���������

������
�����

������������

������������
��������

���������

������

Figure 61: Model checking applied to interactive systems

Model checking has been used in the past years to verify interactive systems in safety-
critical systems of several domains, such as avionics [Degani & Heymann 2002], radiation
therapy [Turner 1993], healthcare [Thimbleby 2010], etc. In this thesis, we also apply model
checking in the context of safety-critical systems, in the nuclear power plant domain.

4.2.2 Equivalence Checking

According to [Combéfis 2013], equivalence checking is a suitable technique for model comparison.
We follow this idea and propose to use this formal technique in the context of plastic interactive
systems. Rather than verifying the satisfiability of properties, equivalence checking permits
to show whether two versions of a system exhibit exactly the same behavior or not. In the
context of plastic interactive systems, different versions of a system can be generated for different
contexts of use (e.g., when executed on a PC or on a Tablet). This technique can be used to
compare these different versions of the system.

With this goal, a model of each version of the system is first created, expressing the
specificities of each context of use. Then, the models are compared two by two, in the light of a
given equivalence relation. Figure 62 illustrates the equivalence checking technique applied to
the verification of plastic interactive systems. The numerous equivalence relations available in
the literature can be used to show equivalence between two versions of the system at different
levels of abstraction. The choice of the equivalence relation depends on the verification goals.
The results of the analysis also permit the modeled systems to be refined.

Model checking and equivalence checking are the techniques used in our approach to verify
plastic industrial interactive systems.

4.3 Global Approach

We propose a global approach [Oliveira et al. 2015c] to assess the quality of safety-critical
interactive systems with plastic UIs (Figure 63). We integrate both model checking and
equivalence checking: equivalence checking can be used to compare models of the system in

86 CHAPTER 4. AN APPROACH TO VERIFYING INTERACTIVE SYSTEMS

���������	�
�����
��������
��
��
��

����	������

��������

����������

���������	�
�����
��������
��
��
��

 �����
!����
�

������������

 �����
!����
�

������������

��������

���������

������

Figure 62: Equivalence checking applied to interactive systems

different contexts of use (i.e., the central part of Figure 63), and for each context of use, a set of
properties can be verified over the model of the system by model checking (i.e., the top and
bottom parts of Figure 63).

Both parts of the approach can be used either independently or in an integrated way. Inde-
pendently, disregarding the UI adaptation capabilities of the interactive system, verification of
properties by model checking can be performed at any time over the system formal specifications.
To take into account the adaptation part of the system, comparison of the different versions of
the interactive system can be performed, one for each context of use.

Optionally, comparison of formal models can be integrated with verification of properties:
before checking for equivalence between the formal models, checking a set of properties over
the formal models can guarantee that they cope with a certain level of quality, increasing the
relevance of the equivalence checking results. In case both formal models are expected to satisfy
the same set of properties, the verification can be reduced to check the formal model of one
version of the interactive system, and to perform equivalence checking in both formal models. If
one formal model satisfies the set of properties and this formal model is equivalent to another
one, then the second formal model also satisfies the set of properties. It can also be the case
that each formal model is expected to satisfy different properties, due to particularities of their
context of use. In this case, the approach is fully performed: model checking each formal model
with respect to their set of properties, followed by an equivalence verification of the formal
models.

Our approach can be used to assess the quality of industrial interactive systems either
by verifying a set of properties using model checking, or by comparing different versions of
the system using equivalence checking, when the system implements plasticity. In such cases,
industrial systems can give inputs to the formal tool so that formal verification can be performed.
In this thesis, we will describe an application of the model-checking part of the approach in the
validation of an industrial interactive system in the nuclear-plant domain.

4.4. FORMAL MODELS BASED ON THE ARCH ARCHITECTURE 87

���������	�
�����
��������
��
���
��

����	������

��������

���������� ���������	�

	
�	����

���������	�
�����
��������
��
���
��

�����
��������

 ��
�
��
����������

�����	
�	����

 ��
�
��
����������

�����
��������

!����

����
�

�������������

�������������

�������������

�������������

!����

����
�

�����	
�	����

�������

��������

�����

Figure 63: Global approach to verifying interactive systems

4.4 Formal Models Based on the ARCH Architecture

In our approach, the formal models are written manually. Other approaches propose an
automatic generation of the formal model, for instance, the approach described in [Paternó 1997],
that generates a Lotos specification directly from a task model. In our case, task models per se
do not contain sufficient information to permit the formal model to be automatically generated,
since our formal model covers aspects of the user interfaces, the functional core and the user
behavior. We write it manually, to be as realistic as possible. Since hand-written modeling can
add subjectivity to the formal model, to increase the confidence of the formal model, they are
validated with experts in the studied domain. In addition, in order to obtain more reusable
results, in our approach interactive system models are represented according to the principles of
the ARCH architecture [Bass et al. 1991].

88 CHAPTER 4. AN APPROACH TO VERIFYING INTERACTIVE SYSTEMS

Architectural models provide a means to structure systems, using the principle of separation
of concerns. In ARCH, systems are decomposed in five main components: the functional core,
the functional core adaptor, the logical presentation, the physical presentation, and the dialog
controller (i.e., the blue boxes in Figure 64). In our approach, we group some ARCH components
into one single component: the functional core and the functional core adaptor components
into a functional core component, and the logical presentation and the physical presentation
into a UI component (i.e., the dashed boxes in Figure 64). And finally, the dialog controller
ARCH component is normally integrated in our approach. In this way, our approach can cover
the functional core and the user interfaces of interactive systems. We take into account this
separation of concerns when we create the formal models of the interactive system. In addition,
in our approach a component describing the expected user behavior is created.

Figure 64 illustrates how the formal model is organized: each dashed box represents one or
more modules of the formal model. In particular, the formal model reflects the fact that users
interact only with the user interfaces, not having access neither to the functional core of the
system, nor to the dialog controller.

���������	
��� ��

���	��
������		�

���������	
��� �������	
����������

���������	
���
������� ������	
����������

���

����
���������

���������
��

���
��������

Figure 64: ARCH architecture usage in the formal modeling

Following the classification of verification approaches we propose in Chapter 2, i.e., (i)
approaches that model interactive systems as a composition of smaller parts, and (ii) approaches
that model them globally, our approach is in the class (i): we model interactive systems as a
composition of modules.

4.5 Languages and Tool Support

One key enhancement brought by our approach is the application of a more powerful tool
support [Oliveira et al. 2014]: the Cadp1 toolbox (Construction and Analysis of Distributed
Processes) [Garavel et al. 2013].

1http://cadp.inria.fr

4.5. LANGUAGES AND TOOL SUPPORT 89

4.5.1 CADP Toolbox

The choice of the toolbox was mainly motivated by its maturity, continuous evolution, support,
and the numerous tools available. Cadp is a toolbox for verifying asynchronous concurrent
systems: systems whose components may operate at different speeds, without a global clock
to synchronize them. Such components are described by modules, and they communicate and
exchange information from time to time by channels. Asynchronous systems suit well the
modeling of human-computer interactions: the modules that describe the users, the functional
core, and the user interfaces can evolve in time at different speeds, which reflects well the
unordered sequence of events that take place in human-machine interactions.

Cadp has continuously evolved over the past years [Fernandez et al. 1996, Garavel et al. 2002,
Garavel et al. 2007, Garavel et al. 2013]. It supports the two main formal verification techniques
we are interested in: model checking and equivalence checking. Besides, Cadp implements:
reachability analysis, on-the-fly verification, compositional verification, distributed verification,
static analysis, and simulation [Garavel et al. 2013].

By taking advantage of the new capabilities added to Cadp, it is now possible to perform,
for instance, compositional verification on individual processes of the model [Garavel et al. 2013],
enabling to handle much larger state spaces. Cadp contains tools to create a graph-representation
from the formal model, and the reasoning is performed over this graph. The more complex
the system under evaluation is, the larger its graph will be. Compositional verification is a
way to avoid state-space explosion, by creating an equivalent graph for each component of the
model [Garavel et al. 2013], replacing a state space by an equivalent but smaller one. In practice,
bigger models can be handled, so that one can consider more realistic UI models.

In our approach, we mainly used the Evaluator 4.02 [Garavel et al. 2013] model checker,
the BCG_CMP3 and the Bisimulator4 [Mateescu & Oudot 2008] equivalence checkers, and
the Ocis5 interactive simulator (Open/Caesar Interactive Simulator) for step-by-step simulation
with backtracking. Ocis allows one to simulate the formal model, and to test it interactively
while an execution tree is created and displayed on the UI of the tool (Figure 65). This simulation
allows one to explore all the possible executions of the model.

4.5.2 LNT Specification Language

We use the Lnt [Champelovier et al. 2014] specification language to write formal models
of the system. Lnt is derived from the E-Lotos [ISO/IEC 2001] standard. It improves
Lotos [ISO/IEC 1989] and can be translated to Lotos automatically. Lotos was originally
devised to support standardization of OSI (Open Systems Interconnection), but has been used
now more widely to model concurrent systems.

Lotos and Lnt are equivalent with respect to expressiveness, but have a different syntax.
Lotos consists of two orthogonal sub-languages: the data part, based on algebraic abstract data
types (using equational programming style) and the control part, based on process calculus. In
Lnt, both parts (data and control) share a common syntax close to the imperative programming
style (easier to learn and to read) [Garavel 2015]. In [Paternó 1997] the authors point out

2http://cadp.inria.fr/man/evaluator4.html
3http://cadp.inria.fr/man/bcg_cmp.html
4http://cadp.inria.fr/man/bisimulator.html
5http://cadp.inria.fr/man/ocis.html

90 CHAPTER 4. AN APPROACH TO VERIFYING INTERACTIVE SYSTEMS

Figure 65: The Ocis (Open/Caesar Interactive Simulator) tool

how difficult it is to model a system using Lotos, when quite simple UI behaviors can easily
generate complex Lotos expressions. The use of Lnt alleviates this difficulty.

In [Champelovier et al. 2014] the authors show the benefits of Lnt over Lotos, notably the
user friendliness and the richer data types, to mention only these advantages. A user-friendly
language decreases the learning curve of designers in the formal analysis domain, and it decreases
the required labor time of writing a formal specification of the UI, enabling one to attenuate
the complexity of formal methods and to quicker benefit from their advantages. This mitigates
two reasons identified in [Cofer 2012] as some causes to few case studies of formal methods to
industrial systems: usability (i.e., formal notation and tools are unknown to developers); and
cost (the creation / maintenance of a formal model is expensive). Besides, the richer data types
of Lnt permit more realistic UI models, thus widening the capabilities of verification, covering

4.5. LANGUAGES AND TOOL SUPPORT 91

verifications on the data type of UI form fields, for instance.

4.5.3 LTS

Cadp can generate graph-based models called LTSs (Labeled Transition Systems) [Park 1981]
(or state-transition diagrams). An LTS (Figure 66) is a graph composed by states and transitions
between states. Transitions are triggered by actions, which are attached in the LTS transitions as
labels. Intuitively, an LTS represents all possible evolutions of a system formal model. Formally,
an LTS is a 4-tuple 〈Q, A, T, q0〉 where:

• Q is a set of states;

• A is a set of actions;

• T ⊆ Q × A × Q is a transition relation; and

• q0 ∈ Q is the initial state.

��

��

��

��

��

�������	
����	�	�
�	�	�	��	��	�	�	
�	�	�	���	��	�
�	�	�	���������	��������	�

Figure 66: A Labeled Transition System (LTS)

LTSs are suitable to describe systems that change through actions of some kind. In any
state of the system, several actions can be performed, leading the system to a new state, the
initial state residing before any of these actions have been performed. For any given interactive
system, we are generally interested in the set of actions and transitions, since they represent
the system dynamics. For example, Figure 67 illustrates how a fragment of a user interface
extracted from the case study described in Chapter 3 can be modeled using an LTS. From a
given state of the user interface, the three first menu options are available: actions offered by the
UI; once executed, these actions change the state of the system. In the LTS, they are modeled
using labeled transitions that change the system from one state into another one.

An LTS representation permits the usage of several formal techniques: model checking can
be used to verify properties on an LTS, and equivalence checking can compare two LTSs.

4.5.4 SVL Script Language

Cadp also provides a scripting language for describing elaborate verification scenarios and to
describe verification strategies called SVL6 (Script Verification Language) [Garavel & Lang 2001].
Svl can be seen as a process calculus extended with operations on LTSs, e.g., minimization (also

6http://cadp.inria.fr/man/svl.html

92 CHAPTER 4. AN APPROACH TO VERIFYING INTERACTIVE SYSTEMS

(a) A menu in a user interface

������
���	
����

���	� ������	���

���

��� ���

�������������

���

���

��� ���

(b) The menu options in an LTS

Figure 67: A UI fragment represented in an LTS

called reduction), abstraction, comparison, deadlock/livelock detection, etc. Svl orchestrate the
calls to the Cadp tools [Garavel et al. 2013]. With this goal, several Svl scripts are implemented
mainly in the equivalence checking part of the approach, an in the connection to the industrial
system.

4.5.5 MCL Property Language

We use MCL7 (Model Checking Language) [Mateescu & Thivolle 2008] to formalize the expected
properties of the interactive systems. MCL is an enhancement of the modal µ-calculus, a
fixed point-based logic that subsumes many other temporal logics, aiming at improving the
expressiveness and conciseness of formulas. Specifically, MCL adds data-handling mechanisms,
a fairness operator, and contains quantifiers over finite data domains and constructors inspired
from functional programming (e.g., let, if-else, case, while, repeat, etc.) [Mateescu
& Thivolle 2008].

The MCL fairness operator allows one to identify the existence of complex unfair (infinite)
cycles in the model. An unfair cycle is an infinite sequence made by the concatenation of
sub-sequences satisfying the formula, e.g., a sequence of actions over the user interface that once
started loops forever. Another advantage of MCL language is the support to data-handling
mechanisms on temporal logic formulas. For instance, in MCL it can be expressed that: “The
UI will potentially respond (meaning provide a feedback) after at most three user interactions
(requests) occurring in any order”. This is stated as follows in MCL:

νY (c : nat := 0) .

〈not(req1 ∨ req2 ∨ req3)∗ . resp〉 true

or

((c < 3) and [req1 ∨ req2 ∨ req3] Y (c + 1))

(4.1)

and read as follows: “Starting from the initial state, there exists a path leading to a UI response
(i.e., resp) before the user has interacted three times with the UI (i.e., req1, req2, and req3)”.

7http://cadp.inria.fr/man/evaluator4.html, section “Overview of the MCL Language”

4.6. SUMMARY 93

The support to data-handling mechanisms is illustrated in this formula by the declaration and
initialization of the variable c. The interest of this property is that, for instance, when user’s
requests require a large processing time on the system (e.g., in a website), it is guaranteed that
at most after three interactions the UI is able to give some feedback to the user.

Because it is a temporal logic, MCL permits to express modalities. Modality sentences assert
something not just about what is the case, but also about what could (or could not) be the case.
For instance, the necessity modality expresses something that must be the case, and possibility
modality expresses something that could/can/might/may be the case.

The necessity modality is written in MCL using the following pattern: [R] F . It is satisfied
by a state of the LTS iff for each transition sequence going out of this state, if this sequence
satisfies the formula R, then it must lead to a state satisfying the formula F [Mateescu &
Thivolle 2008].

The possibility modality is written in MCL using the following pattern: < R > F . It is
satisfied by a state of the LTS iff there is some transition sequence going out of this state that
satisfies the formula R and leads to a state satisfying the formula F .

Figure 68 illustrates how these tools and languages are used to instantiate our global
approach.

4.6 Summary

This chapter introduces our global approach to verifying plastic industrial interactive systems
using formal methods. The approach tackles two main needs: the usage of formal methods by
industrial systems and the verification of plastic user interfaces. We propose an approach based
of verification of properties in which model checking is used, and a comparison approach in
which equivalence checking is used.

Both parts of the approach can be used either independently or in an integrated way.
Independently, the verification of properties by model checking over the system formal specifica-
tion guarantees a certain level of quality of the system. In order to independently verify the
adaptation part of an interactive systems, we propose to compare formal models by means of
equivalence checking.

Optionally, the global approach can be used in an integrated way: by verifying a set of
properties over different versions of a system model, and comparing these versions with each
other afterwards.

Both parts of the global approach share several common points. A formal model of the
interactive system is manually created and it is afterward used as an input to the formal
verification techniques. Such formal model is structured according to ARCH architecture,
in which the functional core, the user interfaces and the dialog controller are modeled, in
addition to the users. The global approach is supported by the Cadp toolbox, since it is
actively maintained, and contains numerous verification tools. Besides, the Lnt language is
used to model interactive systems, due to its intuitive syntax and semantics. The modular-based
programming style [Champelovier et al. 2014] proposed by Lnt allows the interactive systems
to be describe as a composition of modules in the formal specification.

94 CHAPTER 4. AN APPROACH TO VERIFYING INTERACTIVE SYSTEMS

���������	�
�����
��������
��
���
��

����

����	������
�������

�
���

����������

���������	�
�����
��������
��
���
��

����
����
�������

���
�
��
���
����������

���
�
��
���
����������

����
����
�������

�	

�����
����
�

�������������

�������������

�������������

�������������

�	

�����
����
�

�������	��

������	�

������������	�

������������	�

�������

��������

�����

Figure 68: Tools used in the global approach

Chapter 5

Verification of Industrial Interactive Systems

Contents

5.1 Goals . 95

5.2 Formal Model of the Case Study . 96

5.2.1 Overview of the Formal Model . 96

5.2.2 User Interface Modules . 98

5.2.3 Functional Core Modules . 100

5.2.4 Dialog Controller Module . 104

5.2.5 User Module . 104

5.2.6 Summary of the Formal Model . 105

5.2.7 Guidelines to Formally Model Interactive Systems 105

5.2.8 Properties . 106

5.2.9 Formal Verification . 109

5.3 Propositions to Connect to Industrial Systems 109

5.3.1 Problem Definition . 109

5.3.2 Using the Formal Model to Cross Check the Implementation 110

5.3.3 Proposition 1: Analysis of Traces . 111

5.3.4 Proposition 2: Test Case Generation . 111

5.3.5 Proposition 3: Co-Simulation . 112

5.3.6 Rationale of the Chosen Proposition . 112

5.4 On the Connection to an Industrial System . 113

5.4.1 Improvements in the Formal Model . 114

5.4.2 Improvements in the ADACS-NTM Platform 116

5.4.3 Connection between ADACS-NTM and the Formal Model 116

5.5 Conclusions of the Connection . 128

5.6 Summary . 129

5.1 Goals

This chapter proposes an approach to verifying interactive systems independently of plasticity.
For this, the model checking part of our global approach (cf. Section 4.3 on page 85) is used in
an application to the case study described in Chapter 3. Some insights are given into how to
formally model interactive systems, extracted from our own experience in the modeling of this
case study. We also describe in this chapter several possibilities of the use of the formal model
to verify an industrial system. For this, we apply our approach in a common case study with an
industrial system called ADACS-NTM.

95

96 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

Besides our laboratory (LIG), an industrial partner in the Connexion Project (Atos Worldgrid)
also implemented the EDF system in one of its product, called ADACS-NTM. In order to
cross check the ADACS-NTM implementation of the EDF system, an integration of the formal
model with ADACS-NTM is described in this chapter. Three different propositions to connect
ADACS-NTM to the formal model are detailed and compared, and the chosen proposition is
then detailed.

5.2 Formal Model of the Case Study

An important step in formal methods is the modeling of the system under study. Usually,
models describe the individual behavior of each component as well as the composition of all
components to form a system [Garavel & Graf 2013]. Abstractions are always necessary, since
a model is a representation of the reality. However, they should preserve as much as possible
the usefulness of the model. This section describes how the case study introduced in Chapter 3
is modeled, the abstractions that are done to focus on the relevant aspects, and the formal
verification that the model allows to be performed.

The modeling of this case study paves the way to our verification proposition. Several insights
into how to model interactive systems and user interfaces emerge in this process, which are given
in Subsection 5.2.7, page 105. In the next subsections the formal model is described, sometimes
illustrated with pieces of Lnt code. In Appendix B, more details of the Lnt specification of
this case study is given.

5.2.1 Overview of the Formal Model

Following the separation of concerns proposed by ARCH (Figure 64), the formal model of the
control room system contains modules describing the system functional core, the user interfaces
(UIs) and the dialog controller. Figure 69 illustrates the modules of the formal model. In
order to describe the behavior of the functional core, the reactor and generate signals modules
simulate the evolution of several reactor parameters and signals over time. The selection module
mediates the calculations in the functional core and the interactions on the UIs. Two modules
are created to describe the user interfaces, namely plant status and menu. Beyond ARCH, a
special module called user is included in the formal model, in order to describe part of the
user’s behavior.

Figure 70 illustrates how the modules exchange data with each other. They are coupled as
follows: the user sets the current plant status, which determines the signals that are simulated
by the module generate signals. This module also receives from the reactor module a list of
reactor parameters with their current value and status, to simulate failure signals accordingly.
A list of reactor parameters and failure signals are then sent to the selection module from the
reactor and the generate signals modules. Selection also receives from the menu module the last
menu option selected by the user, and filters the parameters and signals for the UI accessible by
the menu option. These filtered parameters and signals are then sent to the user.

Some bridges that avoid the model to fully follow ARCH are included in the model for
optimization reasons. First, the user module receives data from the dialog controller, instead of
only communicating with the UI modules. As a matter of fact, in this modeling, no treatment
is needed in the data coming from the dialog controller. Thus, the controller sends the data

5.2. FORMAL MODEL OF THE CASE STUDY 97

Figure 69: Main modules of the formal model

directly to the user, to avoid the extra flow of these data through the UI before reaching the
user. Secondly, for the same reason, the plant status UI module communicates directly with the
generate signal module in the functional core.

Figure 70: Formal model structure of the EDF system

98 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

Each one of these modules are specified using Lnt. The Lnt language proposes a modular-
based programming style [Champelovier et al. 2014], which suits well the modeling of interactive
systems by composition. Modularity is a key for scalability: it provides a means for organization,
abstraction, and re-usability [Sighireanu et al. 2004]. The next subsections illustrate how we
formally describe each module.

5.2.2 User Interface Modules

In order to model the user interfaces, we identify the UI zones with which users can interact.
Each zone is described by one module in the formal model. In the EDF system, two UI zones
are identified: the plant status zone (at the top of Figure 69) and the menu zone (on the left of
Figure 69).

a) Plant Status

Plant status module describes the area on the UI where the plant status can be chosen. Six status
are available (cf. Section 3.3.1, page 72), and they can be changed either manually (by the user)
or automatically (thanks to a system detection). Either way, they change progressively: from
RP, the status can transit to AN/GV; from AN/GV it can transit either to AN/RRA, or back to
RP, and so forth until the RCD status. Transitions between status that take more than one step
further/backwards are not allowed. This kind of constrained accessibility is quite common in
user interfaces. We propose to model this by an operator that allows one to implement choices.
In Lnt, this is modeled using the select operator (Figure 71, lines 12-32). The command
select G1 [] G2 end select may execute either G1 or G2 nondeterministically. To represent
that the plant status is constrained to transit in a certain order, the clause where can be used:
the command select G1 where A1 [] G2 where A2 end select may execute G1 whenever
the condition A1 holds, or G2 whenever the condition A2 holds.

The plant status module currently implements six plant status.

b) Menu

The menu on the left of the UIs provides access to all user interfaces (Figure 69). Users interact
with the menu mainly to zoom into reactor parameter anomalies, by accessing other UIs that
give more details about the anomaly. Figure 72 illustrates the menu behavior. We implement
a hierarchical menu: initially, five menu options should be accessible: global synthesis, safety,
production, support, and signals. Except for global synthesis option, all menu options have
sub-options. A menu option is accessible when the last menu option accessed is:

• its parent; or

• itself; or

• one of its descendants; or

• one of its siblings; or

• one of its siblings’ descendants.

5.2. FORMAL MODEL OF THE CASE STUDY 99

Figure 71: The plant status module - an excerpt of Lnt code

Figure 72: A menu of the control room system

For instance, in Figure 72, the Reactivity menu option is accessible when the last menu
option accessed was Safety, or Reactivity, or Boron concentration (or the other descendants),
or Core cooling (or the other siblings), or Inventory (a Core cooling descendant, or the other

100 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

siblings’ descendants).
Menu is also a quite common feature of user interfaces. In the formal model, we propose

to implement the menu behavior by rules that specify when a given menu option should be
accessible, which we implement in the menu module by a recursive function (cf. Appendix B).

The menu module currently implements 45 menu options.

5.2.3 Functional Core Modules

To model the functional core, attention should be paid to the aspects we envisage to verify
afterwards. An exhaustive modeling is not advised: depending on the size of the interactive
system, the functional core aggregates numerous functions which are not necessarily subject to
formal verification. A nuclear reactor system implements complex physics laws. It is not the
goal of this work to implement complex nuclear reactor components as they are implemented
in the real system. Rather than that, the goal is to reason over such systems, with a special
focus on the user interfaces and their adaptation. For this case study, we create two modules to
implement functions from the functional core: the reactor and generate signals modules. The
former has functions allowing the reactor parameter values to evolve in time, and the latter
generates anomalies in these values, in order to simulate disturbances on the reactor.

a) Reactor

The reactor module describes the evolution of the reactor parameter values over time, and
it simulates several anomaly scenarios. The module currently includes 29 reactor parameters
(Appendix A gives a full list of these parameters). Each reactor parameter has several attributes
(cf. Section 3.3.2, page 72). We model the following ones: the parameter name, the parameter
current value, a possible anomaly of the parameter, and the minimum / maximum values that
each parameter can take. Information such as the past values of the parameter, the sensor that
monitors the parameter, and its measurement unit are not included in the model.

Figure 73 illustrates the structure defined in Lnt to model the parameters and their anomalies.
The type TParam (line 1) contains a list of 29 parameters, each with its current value and anomaly.
Five anomalies are modeled (type TDefault, line 11), in addition to a special value nil when
the parameter has no anomaly.

Figure 73: Extract of the reactor parameter modeling in Lnt

5.2. FORMAL MODEL OF THE CASE STUDY 101

Values of reactor parameters change over different anomaly scenarios. Each anomaly scenario
affects a single parameter, and it consists of several instants. At each instant, the scenario
changes the value of a reactor parameter and may trigger an anomaly on it. During the execution
of a scenario over one parameter, the other parameters are assigned to their mean values. For
instance, Figure 74 illustrates the simulation of the threshold overflow (“dépassement haut”)
scenario over the RPN010MA reactor parameter. The parameter has several attributes such as: a
minimum value, two inferior thresholds, a mean value, two superior thresholds and a maximum
value. The threshold overflow scenario has seven instants: it starts by setting the reactor
parameter to its mean value (i.e., an average between its minimum and maximum values). In
the next instants, this value is re-calculated according to the formulas indicated in the figure,
in function of the parameter’s attributes. In the fourth instant, the parameter value exceeds
its first superior threshold (i.e., 100), triggering the threshold overflow (“dépassement haut”)
anomaly. In the next instants the parameter value decreases until it reaches its mean value
again, making a parabola.

Figure 74: The threshold overflow (“dépassement haut”) scenario simulated in a reactor param-
eter

Five anomaly scenarios (cf. Table 3) are simulated in an infinite loop of cycles over all 29
parameters. Table 4 illustrates the number of instants of each anomaly scenario.

Figure 75 illustrates the order in which the five scenarios are simulated. In each cycle (i.e.,
the columns of the table), all 29 parameters simulate a different anomaly. The first cycle starts
by simulating a threshold overflow (“dépassement haut”) on the PTHMOY parameter (line 1),
followed by a simulation of a threshold underflow (“dépassement bas”) on the DPAX parameter
(line 2), etc. When the first cycle finishes, the second one takes place affecting other anomalies
to the same 29 parameters. By varying the parameter and the simulated anomaly at each time,
at the end of five cycles all parameters simulate all anomalies, and the infinite loop re-starts.

102 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

Table 4: Anomaly scenarios and the number of instants

Anomaly type # instants

1 threshold overflow 7
2 threshold underflow 7
3 gradient excess 8
4 invalid measurement 6
5 loss of redundancy 8

Figure 75: In five cycles of anomalies all reactor parameters are affected by all anomaly scenarios

At the end of the five cycles, 145 scenarios are executed before the loop re-starts (5 cycles × 29
parameters). At a finer level of granularity, i.e., considering the instants of each anomaly scenario
(Table 4), since at the end of 5 cycles all the 29 parameters simulate all the 5 anomalies, a total of
812 iterations take place before the loop restarts ((29×7)+(29×7)+(29×8)+(29×6)+(29×8)).
This level of granularity in which we model the functional core provides a model large enough
for our verification goal: a functional core whose coverage permits a reasonable combination
of anomaly scenarios. Even though the model of the functional core does not implement
complex physics laws of the nuclear-plant domain, it simulates several scenarios in numerous

5.2. FORMAL MODEL OF THE CASE STUDY 103

reactor parameters over more than 800 iterations, if we consider only the reactor formal module.
Combined with the other modules of the formal model, in particular the ones that model the
display of these anomalies on the UIs and the user interactions, this model provides a reasonable
state space for the analysis.

The reactor module currently implements five kinds of anomalies on 29 reactor parameters.

b) Generate Signals

The anomalies triggered in the reactor parameters also generate several failure signals in different
reactor functions which are displayed on the left of the UIs (cf. Section 3.3.3 on page 74). For
instance, the reactivity (réactivité) reactor function (on the left in Figure 69) aggregates the
following reactor parameters: Pth moy, DPAX moy, Cb, and NGV1, meaning that once any of
these reactor parameters has any of the five anomalies we modeled (i.e., threshold overflow,
threshold underflow, gradient excess, invalid measurement, or loss of redundancy), a failure signal
is generated on the reactivity (réactivité) function.

Seven types of signals can be generated. As for the anomalies in the reactor parameters,
we are not interested in the physics laws driving these signals in the real system. Rather than
that, we focus on analyzing the reactions of the UIs to such signals and the user interactions.
Thus, currently the generate signals module generates such signals on a reactor function in the
following way:

1. nonconformity signal: whenever a parameter aggregated in the reactor function has any
anomaly;

2. loss of redundancy signal: whenever a parameter aggregated in the reactor function has a
loss of redundancy anomaly;

3. variation of a measure signal: whenever a parameter aggregated in the reactor function
has a gradient excess anomaly;

4. equipment state change signal: whenever a parameter aggregated in the reactor function
has changed its condition since the last interaction, i.e., it had an anomaly and now it has
not, or it had no anomaly and now it has one;

5. invalid measurement signal: whenever a parameter aggregated in the reactor function has
an invalid measurement anomaly;

6. alerts signal: whenever a parameter aggregated in the reactor function has any anomaly;
and

7. alarm conditions signal: whenever a parameter aggregated in the reactor function has any
anomaly. An extra alarm is generated if the anomaly is one of the following: threshold
overflow and threshold underflow.

The generate signals module currently implements these seven kinds of signals over 37 reactor
functions aggregating 29 reactor parameters.

104 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

5.2.4 Dialog Controller Module

The selection module makes a bridge between the user interface modules and the functional
core modules (Figure 70). It receives the parameters and signals from the functional core, filters
the ones pertaining to the current UI, and sends them to the user. The user then may select a
menu option, to access another UI. In a cycle, the selection module receives the menu chosen by
the user, displays the corresponding UI to the user, with the parameters and signals belonging
to the UI.

The selection module currently receives 29 reactor parameters and 37 reactor functions from
the functional core, and can send to the user seven different UIs.

5.2.5 User Module

In order to model users, we focus on the actions a user can execute on the user interfaces. We
model a “rational” user, i.e., a user that behaves as expected: once a UI displays an anomaly in
one reactor parameter, the user interacts with the UI in order to have more details about this
anomaly.

In this case study, users can perform two activities: monitoring of reactor parameters and
selection of the plant status. In the formal model, the monitoring of reactor parameters is
represented by dataflows to/from the user module (Figure 70). To the user module it is sent
the reactor parameters with their current value and possible anomaly, as well as the signals on
the reactor functions. In case some discrepancy in such data exists (i.e., anomalies on reactor
parameters or failure signals on reactor functions), the user reacts to it by interacting with the
menu options of the UI. Thus, from the user module to the menu module it is sent the menu
option chosen by the user.

Another activity a user can perform is the selection of the plan status. This is represented in
the formal model by a data flow from the user module to the plant status module (Figure 70).

Both activities are coded in Lnt as follows (Figure 76): the user first selects the plant status
(lines 3-10); to monitor the reactor parameters and signals, it receives the dataflow containing
the reactor information (line 13) and checks if anomalies exist on the reactor parameter (lines
18-23). Whenever a parameter has an anomaly, the menu option that gives access to a UI
detailing such parameter is accessed (line 21).

Our modeling of users does not cover human errors [Fields et al. 1995c] neither it is our goal
to model human perception [Bolton 2008]. We concentrate on a common monitoring activity of
the users (i.e., the control-room operators): the reaction to discrepancies in the reactor [Chériaux
et al. 2012]. The following hypotheses are made in the modeling: (1) the user makes decisions
only on the basis of information provided by the system; (2) the user has a correct understanding
of the system functionalities; (3) the user constantly monitors the system and reacts as soon
as a reactor parameter or function presents a discrepancy. Such hypotheses provide enough
possibilities of user interactions with the UIs to have a reduced, yet realist, formal model. These
are abstractions that are done in the modeling of real users.

The user module currently implements the selection of six plant status, and the access to
seven user interfaces.

5.2. FORMAL MODEL OF THE CASE STUDY 105

Figure 76: The user module - an excerpt of Lnt code

5.2.6 Summary of the Formal Model

The Lnt formal model of the control room system currently contains nine main modules
describing: some activities of the functional core, seven user interfaces and two main activities
of the users. Table 5 summarizes the formal model. The eight first modules describe the case
study, and are distributed in the ARCH components, in addition to the user module. Other
modules implement auxiliary functions, and three .tnt/.fnt files contain C code used by the Lnt

model, mainly for optimization. In total, the formal model has 3430 lines of Lnt code.
The formal model can then be used to perform formal verification. To this aim, we use the

Cadp toolbox to generate an LTS corresponding to the Lnt formal model. Table 6 shows the
size of the LTS generated from the Lnt formal model. This LTS is used afterwards for formal
verification.

5.2.7 Guidelines to Formally Model Interactive Systems

We summarize now the main lessons learned from the formal modeling of this case study, in
order to provide insights to the modeling of interactive systems by formal methods:

1. Follow one architectural model (e.g., ARCH, PAC, etc.) to structure the model, and to
deal with divergent concerns at different places;

2. Define the modules that will form the architectural model components, as well as how
these modules exchange information;

106 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

Table 5: Summary of the formal model of the EDF system

ARCH component File Description # loc

1 user interface plant status selection among six plant status 63
2 user interface menu selection among 45 menu options 257
3 functional core reactor modeling of 29 reactor parame-

ters
365

4 functional core generate signals modeling of 37 reactor signals 336
5 functional core scenarios describes the five anomaly scenar-

ios of reactor parameters
328

6 functional core signal_details describes details concerning fail-
ure signals

17

7 functional core function describes the reactor functions 46
8 dialog controller selection display of parameters and signals

on seven UIs
217

9 (user) user selection of the plant status and
monitoring of reactor parameters

374

10 (auxiliary file) main entry point of execution of the
model

267

11 (auxiliary file) library type definitions 851
12 (auxiliary file) library.tnt internal optimizations 280
13 (auxiliary file) reactor.tnt internal optimizations 3
14 (auxiliary file) reactor.fnt internal optimizations 26

TOTAL 3430

Table 6: Size of the LTS of the EDF system model

states # transitions

26 167 456 185 772 171

3. In particular, to define the UI modules, identify the UI zones with which the user can
interact. The UI zones correspond to UI modules in the formal model;

4. Folding/unfolding of menus can be modeled by a set of rules which express when each
menu option is available;

5. To model the functional core, pay attention to the aspects that will be subject to verification
afterwards, i.e., a coverage large enough for the verification goals;

6. To model users, identify all actions that users can execute on the user interfaces.

5.2.8 Properties

We define a set of properties that can be verified over the LTS of the formal model. These
properties are written using the MCL language. Using modalities (cf. Subsection 4.5.5 on

5.2. FORMAL MODEL OF THE CASE STUDY 107

page 92), MCL permits interesting properties to be expressed1:

• safety properties: Informally, a safety property specifies that “something bad never
happens”. In MCL, this kind of property can be expressed using the pattern [R]false,
where R is the formula expressing the condition we want to never happen;

• liveness properties: Informally, a liveness property specifies that “something good eventually
happens”. In MCL, this kind of property can be expressed using the pattern 〈R〉true,
where R is the formula expressing the condition we want to eventually happen;

• fairness properties: These are similar to liveness properties, except that they express
reachability of actions by considering only fair execution sequences. “A sequence is fair iff
it does not infinitely often enable the reachability of a certain state without infinitely often
reaching it.” [Queille & Sifakis 1983]. In MCL, this kind of property can be expressed
using the pattern [R1]〈R2〉true, where R1 is potentially followed by another execution
sequence satisfying the formula R2.

Using these MCL patterns, we specify a set of nine properties (Table 7), covering both
classes we are considering in this thesis: usability and functional properties. The former aims
at verifying whether the system follows ergonomic properties to ensure a good usability, and
the latter aims at assessing that the system follows its expected behavior. In the following, we
describe one property of each category, what they aim to verify, and how they are formalized
in MCL. The formalization of the other properties is given in Appendix C. Considering the
framework or ergonomic properties defined in [Abowd et al. 1992] all the usability properties we
identified are classified as robustness properties, with the subcategory observability>reachability,
which refers to the possibility of navigating through the observable states of the system.

Table 7: Summary of properties of the EDF system

Kind # Description

usability

1 “From any UI, one can always go directly to the main UI (i.e., without
passing through any other UI).”

2 “A UI is only accessible along the hierarchy of UIs.”
3 “One can always come back directly to the parent UI (i.e., without passing

through any other UI before).”
4 “From any state one can always reach any UI.”
5 “There is no deadlock in the system.”

functional
6 “The UIs that display the signal details should be always accessible

independently of the evolution of the reactor parameters.”
7 “Starting from any state, the reactor generates all five anomalies on

each parameter.”
8 “Starting from any state, the reactor generates at least one anomaly on

each parameter.”
9 “Starting from any state, the reactor generates at least one anomaly on

each parameter belonging to a specific plant status.”

1http://cadp.inria.fr/man/evaluator4.html, section “Overview of the MCL Language”

108 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

• Property 1) “From any UI, one can always go directly to the main UI (i.e., without passing
through any other UI).”:

[true∗]

〈 (not UIs)∗ . ′GLOBAL_SY NTHESIS′ 〉 true

This formula may be read as:

From every reachable state

〈there exists a sequence of steps...

...not passing through any UI...

...and leading to the GLOBAL_SYNTHESIS UI 〉

This property ensures that, in all user interfaces, there is always the possibility to come
back to the main UI (called global synthesis, Figure 50) with one single user interaction,
i.e., without the need to access intermediate UIs beforehand.

• Property 7) “Starting from any state, the reactor generates all five anomalies on each
parameter.”:

macro FAILURES_COV ERAGE (P) =

[true∗]

〈 true∗ . ′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , DEP_HAUT.∗′ 〉 true

and

〈 true∗ . ′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , DEP_BAS.∗′ 〉 true

and

〈 true∗ . ′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , DEP_GRAD.∗′ 〉 true

and

〈 true∗ . ′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , INV _MESURE.∗′ 〉 true

and

〈 true∗ . ′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , PERTE_RED.∗′ 〉 true

end macro

FAILURES_COV ERAGE (′TPTH_MOY ′)

and

FAILURES_COV ERAGE (′TDPAXMOY ′)

...

(it continues for all reactor parameters)

This property is expressed by means of a macro named FAILURES_COV ERAGE. It
verifies that the five anomaly scenarios (i.e., threshold overflow – “dépassement haut”,
threshold underflow – “dépassement bas”, gradient excess – “dépassement gradient”, invalid

5.3. PROPOSITIONS TO CONNECT TO INDUSTRIAL SYSTEMS 109

measurement – “invalidité de mesure”, and loss of redundancy – “perte de redondance”)
are simulated over each reactor parameter (e.g., Pth moy parameter).

The properties proposed here cover ergonomic aspects of the system under verification, as
well as the some requirements of the modeled system. More properties could be formalized and
verified. The main goal is a proof of concept of the approach: to demonstrate that both kinds
of properties can be formalized and verified over the system formal model using our approach.

5.2.9 Formal Verification

Cadp provides the Ocis2 tool (Open/Caesar Interactive Simulator - Figure 65) for step-by-
step simulation with backtracking. It allows one to simulate the formal model, and to test
it interactively while an execution tree is created and displayed on the UI of the tool. This
simulation allows one to explore all the possible executions of the model. We use this tool to
explore and simulate our formal model step by step.

Another tool available in Cadp is the Evaluator 4.03 model checker (for handling MCL
formulas [Garavel et al. 2013]). It evaluates MCL formulas over the LTS of the formal model.
In the end, Evaluator 4.0 may provide a diagnosis of the evaluation, i.e., an excerpt of the
system behavior that illustrates either the validity (example) or the invalidity (counter-example)
of the formula. Applying the model checking part of our global approach (cf. Section 4.3 on
page 85), the nine properties are satisfied over the formal model.

The formal verification of the Lnt model allows the model to be used with other purposes.
In the next section we describe the use of the formal model to validate part of an industrial
system called ADACS-NTM.

5.3 Propositions to Connect to Industrial Systems

This section describes some possibilities to connect formal specifications to industrial systems,
and a connection of the formal model of the EDF system to an industrial system called
ADACS-NTM.

5.3.1 Problem Definition

An interactive system is expected to implement a specification. However, a chance exists that a
system does not implement the specifications as expected, thus, a way to verify whether the
implementation follows the specifications is needed.

In the context of the Connexion Project, our research laboratory (LIG), Atos Worldgrid
and EDF conduct in-depth investigation of (and explore differently) the case study described
in Chapter 3: EDF prototypes a control room system, aiming at providing a better overview
of plant functions and system status [Chériaux et al. 2012]. Such system is the reference to
guide Atos Worldgrid and LIG in their own contributions within the project. LIG proposes a
prototype of the same system, applying recent advancements of plasticity to it (cf. Section 3.4
on page 76). In addition, we develop the formal model of the EDF system which we have just
described (cf. Section 5.2 on page 96).

2http://cadp.inria.fr/man/ocis.html
3http://cadp.inria.fr/man/evaluator4.html

110 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

On the other hand, Atos Worldgrid implements on their industrial product called ADACS-
NTM (cf. Section 3.5 on page 80) some user interfaces of the EDF system, following the
enhancements proposed by LIG. In this context, a question that raises is whether ADACS-NTM

correctly implements the EDF specifications or not. The EDF specifications consist of informal
requirements given by EDF during project meetings, exchange of e-mails with questions/answers,
some documentation, print screens, and a video illustrating some functionalities of the EDF
system. This makes the basis from which ADACS-NTM implements the EDF system. However,
a chance exists that the ADACS-NTM part implementing the EDF system could be improved,
by making specifications more precise.

5.3.2 Using the Formal Model to Cross Check the Implementation

A formal specification can be used to validate an implementation. Validation can be defined as
“the process of providing evidence that the software and its associated products satisfy system
requirements allocated to software at the end of each life cycle activity, solve the right problem,
and satisfy intended use and user needs” [1012-2004 2005].

In the context of the Connexion Project, the LIG laboratory is provided with the same
EDF specifications as ADACS-NTM to create the formal specification of the case study. Thus,
we propose to use the formal specification to cross check the ADACS-NTM implementation
(Figure 77). The ultimate goal is to give clues about whether ADACS-NTM implements the EDF
specifications as expected. If the formal specification and ADACS-NTM are inter-operable, then
it is probable that both the formal model and ADACS-NTM interpreted the EDF specifications
in the same way, and that they are both correct. Since the formal specification is a model of the
real system, as for all model-based approaches, there is no guarantee that the model is correct,
therefore, the approach cannot fully determine whether ADACS-NTM implements the EDF
specifications as expected or not. It can, yet, give directions. The key of the approach rationale
is redundancy: when two groups of people develop in parallel different artifacts based on the
same source, if both interpret the specifications in the same way, there is a high probability
that they are both correct (not neglecting the possibility that both interpret the specifications
equally wrong, if the specifications are ambiguous). Finally, if the formal specification and
the implementation diverge, then at least one of both groups of people misunderstood the
specifications.

���

�����	

����������

���

����������

���������

����

�����	

�������������

�����	

�������������
Figure 77: Models of the case study

5.3. PROPOSITIONS TO CONNECT TO INDUSTRIAL SYSTEMS 111

We propose and compare three different ways to connect the formal specifications to the
ADACS-NTM system: analysis of traces, test case generation, and co-simulation.

5.3.3 Proposition 1: Analysis of Traces

Analysis of traces consists in interpreting log files and verifying whether the formal model can
simulate the same sequence of traces or not. With this purpose, a translation of the log files
into a format that can be treated by the formal model is required. Once the scenarios are
transformed into this format, one can verify if a given sequence is included in the set of sequences
of the formal model, meaning that the formal model simulates the scenario in the same way as
the industrial system. In this proposition, the translation of the log files into a format that can
be treated by the formal model is needed, so that the analysis can be automatized.

ADACS-NTM includes a log mechanism that records in execution trace files information
such as: the acquisition of reactor parameter values, the display of these values on the user
interfaces, and the user interactions with the UIs. These execution trace files could be used in
this proposition (Figure 78).

� �

���

�����	

����������

���

����������

���������

����������

	��
����

����������

����������

	��

�������
��������
������������

����
�������� ��������

Figure 78: Analysis of traces proposition

5.3.4 Proposition 2: Test Case Generation

In test case generation (applied to the Connexion Project in Figure 79), the formal model can be
used as a basis to derive test suites. These test cases can be executed on the industrial system,
which provides the real inputs. A test execution engine is required to execute the test cases
on the industrial system and to implement the test oracles that output the test verdicts. The

112 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

ultimate goal in this proposition is to generate test cases that are feasible, meaning that they
can be executed over the industrial system. Once a feasible test is executed over the industrial
system and do not pass, it can indicate a flaw either in the industrial system or in the formal
model. In this proposition, two things need to be developed: the test case generation from the
formal model and the test execution engine.

� �

����������

	�
��
��
�

���

�����	

����������

���

����������

���������

	�
����
�

��������
���������
�

���������	��
��
��

�����
��������
�
����
�
��������
�����
��������
���
�
����

	���

�������� ��������

Figure 79: Test case generation proposition

5.3.5 Proposition 3: Co-Simulation

In co-simulation, both the formal model and the industrial system are executed in parallel.
The outputs of one are connected to the inputs of the other and vice versa. This proposition
requires either a translation in both ways (i.e., from the industrial system to the formal model
and vice versa), or the formalization of a language common to both the industrial system and
the formal model. If both the industrial system and the formal model can execute in parallel in
co-simulation, it means that both are aligned in the way they implement the specifications. For
instance, in Figure 80 this proposition is applied to the context of Connexion Project.

5.3.6 Rationale of the Chosen Proposition

We compare now the three propositions, in order to choose one of them for further investigations.
Two criteria are analyzed: the degree of coupling between ADACS-NTM and the formal model
required for each proposition, and the availability of the industrial partner for each proposition.

The co-simulation proposition requires ADACS-NTM and the formal model to be highly
coupled: both are able to run in parallel only if they agree on the way the EDF specifications are
implemented. For the test case generation proposition, both ADACS-NTM and the formal model
are less coupled: they are executed independently, the formal model generates test cases that can
be executed over ADACS-NTM. However, some knowledge about the way the EDF specifications
are implemented in each model is still required, in order to implement the test oracles. The

5.4. ON THE CONNECTION TO AN INDUSTRIAL SYSTEM 113

� �

���

�����	

����������

���

����������

�������������������

����������

	�
�����

�����������������������
�������

����
��������� ���������

����������������	�	������

����
��������
����

����
��������
����

���������
������
����
�����
�������� ��������
����!

Figure 80: Co-simulation proposition

analysis of traces proposition requires the least degree of coupling between ADACS-NTM and
the formal model. Both run completely independently, the logs of ADACS-NTM being analyzed
over the formal model.

Regarding the availability of the industrial partner, co-simulation is the most effort-consuming:
a reasonable comprehension of both ADACS-NTM and the formal model is required, as well
as the development of a tool to translate ADACS-NTM outputs into inputs of formal model
and vice-versa. Test case generation is less effort-consuming. It requires an initial effort to
understand both ADACS-NTM and the formal model, to identify test cases, to generate them
from the formal model, and to implement a means to execute them over ADACS-NTM. Finally,
analysis of traces is the least effort-consuming approach, therefore, the fastest to accomplish.
ADACS-NTM already generates log files, on which only a few modifications are necessary and a
translation into a format that can be treated by our formal model.

Due to time constraints of the industrial partners, analysis of traces is the chosen propo-
sition, and it is detailed in the following subsections. The other two propositions, i.e., test case
generation and co-simulation, are not further investigated in this thesis.

5.4 On the Connection to an Industrial System

To pave the way to integrate the formal model and ADACS-NTM, an analysis is performed over
both artifacts. Such preliminary analysis is beneficial to the formal model realism: it improves
the formal model in several directions and approximates it to the ADACS-NTM implementation
of the EDF system.

114 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

5.4.1 Improvements in the Formal Model

The following modifications are implemented in the formal specification before the connection
to ADACS-NTM:

1. Alignment of the list of reactor parameters: 27 new parameters are added and six unused
parameters are removed, thus, increasing the number of parameters from 29 to 50;

2. Adjustment in the names of parameters: some parameters have different names in the
EDF specifications and in ADACS-NTM. We add references to both terminologies in the
formal model;

3. Definition of the minimum and maximum values of the reactor parameters according to
ADACS-NTM thresholds;

4. Addition of four new thresholds to each parameter: two superior thresholds and two
inferior thresholds, increasing the number of thresholds from 1 to 3 at each extremity
(Figure 81). When the value of the parameter cross these thresholds, alerts and/or alarm
conditions are triggered on the system;

���������	
���
����������

���������	
���
����������

�������

���������	
���
����������

���������	
���
����������

�������

Figure 81: New thresholds in the reactor parameters

5. Addition of two new anomaly scenarios, super threshold overflow (“dépassement très
haut”) and super threshold underflow (“dépassement très bas”), increasing the number of
anomaly scenarios from five to seven. Such anomalies are triggered in a reactor parameter
when its value exceeds its superior/inferior thresholds n.2 (Figure 81), in contrast to the
threshold overflow and threshold underflow anomalies, already present in the model, and
triggered when a reactor parameter value exceeds its superior/inferior thresholds n.1. The
maximum and minimum thresholds are not expected to be exceeded;

6. Alignment of the list of failure signals per UI, as well as the menu on the left of the UIs.
For instance, on the LIG prototype (Figure 54b), the Global Synthesis UI contains seven
failure signals: (1) reactivity – “réactivité”, (2) production, (3) electric – “électricité”,
(4) fan & air conditioning – “clima. et ventil.”, (5) core cooling – “refroidissement”, (6)
pneumatic – “air comprimé”, and (7) fire protection – “incendie”. In contrast, the same
UI in the ADACS-NTM platform (Figure 58b) contains eight failure signals: the failures
(1), (3), (5), (6), and in addition, confinement, R, A, and V.

5.4. ON THE CONNECTION TO AN INDUSTRIAL SYSTEM 115

Table 8 gives figures about the new version of the formal model. All modules are affected to
some extent (except reactor.tnt and reactor.fnt) Specially, 50 reactor parameters are now
modeled (line 3), and seven anomaly scenarios are simulated (line 5). The new formal model
has 4444 lines of code.

Table 8: Summary of the new version of the formal model, to connect to ADACS-NTM

ARCH component File Description # loc

1 user interface plant status 1 plant status is always selected 19
2 user interface menu selection among 7 menu options 234
3 functional core reactor modeling of 50 reactor parame-

ters
404

4 functional core generate signals modeling of 12 reactor signals 178
5 functional core scenarios describes the seven anomaly sce-

narios of reactor parameters
451

6 dialog controller selection display of parameters and signals
on seven UIs

90

7 (user) user selection of the plant status and
monitoring of reactor parameters

211

8 (auxiliary file) scheduler orchestration of the exchange of
data

93

9 (auxiliary file) main entry point of execution 111
10 (auxiliary file) library type definitions 2191
11 (auxiliary file) library.tnt internal optimizations 433
12 (auxiliary file) reactor.tnt internal optimizations 3
13 (auxiliary file) reactor.fnt internal optimizations 26

TOTAL 4444

Table 9 shows the size of the LTS generated from this Lnt formal model, using Cadp. This
LTS is smaller than the previous version of the formal model (i.e., 26 167 456 states and 185 772
171 transitions, Table 6) mainly because several aspects of the formal model were deactivated,
since they were not evaluated in this connection. Section j), on page 127, lists the aspects that
were deactivated in the formal model, for instance, three anomaly scenarios are simulated in the
previous version of the formal model and deactivated in this new one, namely: gradient excess
(“dépassement gradient”), loss of redundancy (“perte de redondance”), and invalid measurement
(“invalidité de mesure”).

Table 9: Size of the LTS of the new version of the formal model

states # transitions

17 832 752 31 225 752

116 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

5.4.2 Improvements in the ADACS-NTM Platform

Also before to connect the formal model and ADACS-NTM, Atos Worldgrid improved the
ADACS-NTM platform as follows:

1. generation of failure signals once a reactor parameter receives values that are beyond its
thresholds;

2. addition of two failure signals in the Reactivity (“Réactivité”) user interface (i.e., boron
concentration and boration/dilution, in addition to rods position and reactor control signals,
already in the ADACS-NTM UI);

3. enhancement of the log with traces of the control-room process, i.e., the acquired values
of parameters, the thresholds overflow and underflow, and the generation of alerts and
alarm conditions;

4. addition in the log: user interactions with the user interfaces;

5. addition in the log: all UI status changes for inputs, threshold overshooting, triggered
alerts;

6. generation of a unique log file, including all logged events, sorted by timestamps.

5.4.3 Connection between ADACS-NTM and the Formal Model

The alignment of the formal model with ADACS-NTM allows further comparison between them.
In the following subsections we detail the trace analysis done in ADACS-NTM.

a) Description of the Approach

The whole approach for comparing both implementations is described in Figure 82. The entry
points of the approach are both the Lnt formal model and ADACS-NTM. Both are connected
by means of a Parser, which is in dark green in Figure 82 to indicate that this tool is developed
in the context of this thesis. The other tools in light green are either provided by the Cadp

toolbox or by ADACS-NTM.
On the left of the figure, the Lnt formal model describing the EDF system is automatically

transformed into an LTS (Labeled Transition System) using Cadp.
The right part of Figure 82 consists in the stimulation of ADACS-NTM. ADACS-NTM

can either run autonomously, stimulated by several anomaly scenarios, or it can be fed by
other platforms. With this goal, a simulation mode allows ADACS-NTM to be connected to a
stimulator from which ADACS-NTM receives input data. These input files are manually created,
and they contain anomaly scenarios in parameters of the nuclear unit. ADACS-NTM receives
these data from the stimulator and reacts accordingly, following several physics laws. The results
of such calculations are surfaced to ADACS-NTM user interfaces, allowing users to be aware of
the current status of the nuclear unit and to take actions correspondingly, by interacting with
the ADACS-NTM UIs.

The results of ADACS-NTM calculations, the information displayed on the user interfaces,
and the user interactions with the UIs are logged into a unique log file. Therefore, such log

5.4. ON THE CONNECTION TO AN INDUSTRIAL SYSTEM 117

���������

��	
��
����

���
������

����������

���

������

�	�����������

���
���
����
�������������

����
����
������������
�������

���������

����������

� !
�����

�������
��

���
����

����
�
		�����

Figure 82: Analysis of traces in details

file consists in a complete trace of an anomaly scenario in ADACS-NTM: anomaly in a reactor
parameter, followed by the display on the UI, and the user interactions.

The horizontal part of the Figure 82, which links the Lnt formal model and ADACS-NTM,
consists of a translation of ADACS-NTM log files into a trace that be searched in the LTS of the
formal model. A Parser is developed in Java to automatize this translation. It takes as input
an ADACS-NTM log file, extracts the lines containing the scenario, and translates them into a
sequence of transition labels of the LTS.

The last step of the approach is the verification that the sequence os labels extracted from
ADACS-NTM log file is included in the LTS of the formal model (Figure 83). If the trace is
found, it means that the formal model simulates the scenario in the same way as ADACS-
NTM. Evaluator 4.0 model checker4 (available in the Cadp toolbox) is used to perform such
verification.

b) Simulated Scenarios

In this study, four kinds of scenarios are analyzed: threshold overflow, threshold underflow, super
threshold overflow, and super threshold underflow (cf. Table 3).

4http://cadp.inria.fr/man/evaluator4.html

118 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

Figure 83: Example of inclusion verification of traces

Figure 84 illustrates one of those scenarios: super threshold underflow (“dépassement très
bas”) on the RPN010MA reactor parameter. The parameter has several attributes such as: a
minimum value, two inferior thresholds, a mean value, two superior thresholds and a maximum
value. The super threshold underflow scenario has 11 instants: it initializes the parameter with
its mean value, decreasing it progressively according to the formulas described for each instant.
At the instant n.4, the parameter value exceeds its first inferior threshold. At this point, a
threshold underflow (“dépassement bas”) anomaly is triggered on the reactor parameter, and an
alert signal is generated. The parameter value continues to decrease, until it exceeds its second
inferior threshold at instant n.6, triggering a super threshold underflow (“dépassement très bas”)
and an alarm condition signal. The parameter value then progressively increases until it reaches
its mean value again.

Figure 84: The super threshold underflow anomaly scenario on a reactor parameter

5.4. ON THE CONNECTION TO AN INDUSTRIAL SYSTEM 119

c) ADACS-NTM Input File

In order to stimulate ADACS-NTM objects, input files containing several scenarios are manually
created. Figure 85 illustrates an example of such files.

Figure 85: Example of an ADACS-NTM input file

The input file contains the following commands:

• CM: introduces comments into the file;

• GEN_MSG: stimulates an ADACS-NTM object (e.g., 1RGL001MN) with an input value
(e.g., 160.0). An ADACS-NTM object corresponds to a reactor parameter in our modeling;

• C_DELAY: makes the stimulator wait a certain amount of time before executing the next
line of the input file; this command is useful for observing the display of the ADACS-NTM

object output on the user interfaces;

• OPER_ACK: indicates that the stimulator should wait for a RETURN key press in order
to continue the execution of the input file. This command is useful to allow the user to
interact with the user interface once an anomaly is surfaced from the ADACS-NTM objects
on the UI. Once the interactions take place (and by consequence are recorded into the log
file), the execution of the scenario by the stimulator can continue.

120 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

The input file illustrated in Figure 85 consists in a stimuli of the ADACS-NTM object
identified by 1RGL001MN. It progressively changes its value starting from 160.0, increasing
up to 201.00, and decreasing down to 120.0. The stimulator executes each line, sending to
ADACS-NTM the lines identified by GEN_MSG. Depending on the calculations of ADACS-NTM

objects, a given value may generate alerts, or alarm conditions, or may invalidate the object,
etc. For example, once the 1RGL001MN object gets the value 201.0, the object outputs an alarm
condition because such value exceeds the maximum threshold set to this object (i.e., 200.0).
Such alarm condition is displayed in the ADACS-NTM user interface in the visual component
representing the 1RGL001MN object, to inform the user that an anomaly occurred in this nuclear
unit parameter (in this case, it achieved a value bigger than its maximum threshold). The user,
in turn, interacts with the system, by navigating through the UIs in order to have more details
about the anomaly.

The ADACS-NTM object calculations resulted from the stimulation, the display of these
information on the user interfaces and the user interactions are logged into trace files.

d) ADACS-NTM Log File

Three kinds of information are recovered from the log files (Figure 86):

• Highlighted in red, and identified by the keyword “Adacs.Recorder.TOX”, these lines
represent the calculation results of the stimulated object. In the first line of the log, the
value of the 1RGL001MN object changed to 160.0. Line n.4 indicates that the ADACS-NTM

object entered in a state in which its value is over the maximum value (identified by the
keyword HIGH_BEGIN), due to the change in the value in the previous line. For this
reason, the ADACS-NTM object outputs an alarm condition (line n.5).

• The display of this alarm condition on the user interface is illustrated in the line n.6,
identified by the keyword “Adacs.Recorder - FPMS Action” in blue. This line indicates
that one alarm condition is displayed in a signal called reactivity (réactivité) on the user
interface.

• The user perceives the notification on the user interface, and interacts with the menu
options in order to search the source of the displayed anomaly. Such interactions are also
identified in the log file by the keyword “Adacs.Recorder - FPMS Action”, followed by
the keyword “<Bouton MENU>” in green (line n.11), indicating that the user chose the
reactivity menu option.

Each user interaction with the menu options displays a different user interface. The display
of such user interfaces is also recorded in the log. Specifically, we are interested in which signals
are displayed in each user interface. For instance, line n.7 indicates that the user chose the
safety (“sûreté”) menu option. The next 3 lines (i.e., 8-10) indicate that the corresponding
user interface has 3 signals (core cooling – “refroidissement”, reactivity – “réactivité”, and
confinement, and an alarm condition was displayed in the reactivity (réactivité) signal (i.e.,
“nThresholds=1” in line n.9).

ADACS-NTM log files in such format are translated into a trace that be searched in the LTS
of the formal model. A Parser was developed with this goal.

5.4. ON THE CONNECTION TO AN INDUSTRIAL SYSTEM 121

Figure 86: An ADACS-NTM log file (adapted)

e) LTS Sequence

First, the Parser generates a sequence of transition labels such as the one illustrated in Figure 87.
Each line corresponds to a labeled transition in an LTS, and should be enclosed by “”. Figure 87
identifies the three kinds of actions we simulate in the scenarios: lines 1 and 2, in red, represent
object calculations resulted from the stimulation, i.e., the evolution of reactor parameters over
time; lines 7 and 8, in blue, represent the display of such information on the user interfaces;
and line n. 12, in green, represents the user interactions with the menu options. For legibility
reasons, only the beginning of the transition labels are illustrated in this picture.

Secondly, the Parser generates a MCL formula containing the sequence of transition labels.
The MCL formula has the following format:

〈 true∗ . L1 . L2 Ln 〉 true∗ (5.1)

This formula represents a liveness property (cf. Section 5.2.8 on page 106), and expresses that,
starting from the initial state of the LTS, there is an arbitrary path (matched by the regular
expression “true∗” in the possibility modality 〈〉) leading to the sequence of transitions labeled
with L1 Ln, which are the transition labels initially generated (Figure 87) Intuitively, this
MCL formula verifies whether the sequence of steps representing the scenario can be found
in the LTS or not, which in a positive case indicates that the formal model implements the
scenario in the same way as ADACS-NTM.

Finally, the Parser writes this MCL formula as a property in a Svl script, to be checked
automatically. Figure 88 illustrates an example of a property. It has a name (line 1), an optional
comment (line 2), the file name containing the LTS in which the model checker should verify
the property (line 4), the MCL formula containing the sequence representing the ADACS-NTM

scenario (lines 5-32), and finally, the command expected TRUE, indicating to the model checker
that the property should be evaluated to TRUE to pass.

122 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

Figure 87: A sequence of transition labels

f) Parser

The Parser is implemented in Java and consists of four classes (Figure 89). The Parser.java

class reads the log file line by line and looks for the keywords that identify: changes in
ADACS-NTM objects, displays on the user interfaces, or user interactions. This class sends the
entire line to the corresponding class (either ReactorEvolution.java, or UIReaction.java,
or OPAction.java). Each one of such classes implements the rules of transformation of these
three kinds of actions simulated by the scenarios, and returns the translated line to the main
class. Finally, the main class writes such lines in a Svl script.

Some transformations are needed to translate ADACS-NTM log files into a trace that be
searched in the LTS of the formal model. For instance, some information is need to be grouped,
others need to be split, etc. Figure 90 illustrates how both files correspond to each other: there
are cases in which one line in the ADACS-NTM log corresponds to one line in the generated
script, cases in which n lines in the log correspond to one line in the generated script, cases in
which one line in the log corresponds to n new lines, and finally cases in which n lines in the
log correspond to m new lines. This means that both ADACS-NTM and the Lnt formal model
represent some information in different ways.

Table 10 gives a few figures about the code of the Parser.

5.4. ON THE CONNECTION TO AN INDUSTRIAL SYSTEM 123

Figure 88: A property containing a sequence of transition labels

Figure 89: The Parser class diagram

124 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

Figure 90: Correspondence between the ADACS-NTM log files and the translated traces

Table 10: Summary of the Parser

.java File # loc

1 Parser 217
2 ReactorEvolution 136
3 UIReaction 143
4 OPAction 51
5 ParserGUI 92

TOTAL 639

g) Inclusion Verification

The inclusion verification consists in verifying whether the sequence of labels extracted from
ADACS-NTM log files are included in the LTS of the formal model or not. Using the Evaluator5

tool (available in Cadp), we verify the properties expressing the extracted ADACS-NTM scenarios
over the LTS of our formal model. Figure 91 illustrates an example of verification. The property
passes if the formula is satisfied over the LTS, or it fails otherwise.

Figure 91: Property verification

h) Coverage of the Validation

Figure 92 illustrates the coverage of the validation of the ADACS-NTM part implementing the
EDF system. The Lnt model we use simulates anomalies over 50 reactor parameters (# lines
of the table). In ADACS-NTM, 20 of such parameters (in light gray in the table) have acquired
data as input, and can be stimulated with input values (the other 30 parameters are calculated
in function of the acquired parameters). In this validation, we cover all these 20 parameters at
least once. In terms of number of parameters, this validation covers 40% (20/50) of the reactor
parameters of the formal model.

5http://cadp.inria.fr/man/evaluator4.html

5.4. ON THE CONNECTION TO AN INDUSTRIAL SYSTEM 125

The Lnt model simulates seven anomalies over reactor parameters (i.e., threshold overflow –
“dépassement haut”, threshold underflow – “dépassement bas”, gradient excess – “dépassement
gradient”, loss of redundancy – “perte de redondance”, invalid measurement – “invalidité de
mesure”, super threshold overflow – “dépassement très haut”, and super threshold underflow –
“dépassement très bas”). ADACS-NTM simulates four of them: threshold overflow, threshold
underflow, super threshold overflow, and super threshold underflow. ADACS-NTM provides us
with 38 log files, each one containing an anomaly scenario in one parameter. These samples are
highlighted in Figure 92 as dark gray cells. For instance, in one scenario, a threshold underflow is
simulated in the RPN010MA parameter (line 9). Our formal model simulates the seven anomalies
over 50 parameters, making a total of 350 scenarios. In terms of simulated scenarios, this
validation covers 10% (38/350) of the simulated scenarios of the formal model. Restricting
the scope to the 20 parameters and four scenarios that can be simulated in ADACS-NTM,
this validation covers 38 scenarios over the 80 (20 parameters * 4 scenarios) possible ones in
ADACS-NTM, covering 47% of the scenarios that can be simulated in this part of ADACS-NTM.

i) Results of the Validation

We use the Parser to generate a property describing each one of the 38 anomaly scenarios we
are provided with. We apply the model checking part of our global approach (cf. Section 4.3 on
page 85) to verify the satisfiability of these properties. The Evaluator tool is used in order to
verify the satisfiability of the 38 scenarios over the LTS. Preliminary verifications shave how
that the traces are not included in the LTS. A deeper analysis shows that ADACS-NTM and
the formal model are divergent in the way anomalies in reactor parameters are synthesized
in the failure signal UI. This is due to a lack of alignment in the way the EDF specifications
were communicated to Atos Worldgrid and the LIG laboratory, making both implementations
diverge.

Once this first conclusion is observed, we modify the formal model to synthesize anomalies
in the failure signals in the same way as ADACS-NTM. In this new version of the formal model,
all the 38 scenarios are found in the LTS of the formal model, and the total time of inclusion
verification is four minutes in average.

We summarize below some figures of the verification:

• # ADACS-NTM trace files containing the anomaly scenarios: 38;

• # total of lines of the 38 trace files: 1710;

• # generated Svl file: 1;

• # lines of Svl file: 1700;

• generation time of the Svl file of properties: 3s;

• inclusion verification time: ± 4 min;

• # loc Parser in Java: 639.

The following information is present in ADACS-NTM and in the Lnt formal model. Thus, the
inclusion verification enables one to check that these aspects of the EDF system are implemented
in the same way in both ADACS-NTM and the formal model:

126 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

������� ������� ������	 ������
 ������� ������
 �������

� ������ ��� 	�
 ��� �� � �� ���� ���
 �

	 �
 	 �
 ��� �� � �� � ��� ���
 ��� �

� �� � �� �� � �� ��� ��� ��� 	�� �

 �	 �� � �� ���� ���
 � �� 	�� ��� �

��	� � �� ��� ���
 � �� 	�
 ��� �� �

��		 � ��� ��� ��� 	�
 � �� �� � �� �

� ���� ���
 ��� 	�
 ��� �� � �� ���� �

� ����	 � �� 	�
 ��� �� � �� ���� ���
 �

� �������� 	�� ��� �� � �� ��� ��� ��� �

�� ����	��� ��� �� � �� � ��� ���
 ��� 	�� �

�� �������� �� � �� ��� � ��
 � �� 	�
 ��� �

�	 ������� � �� ���� ��� � �� 	�
 ��� �� �

�� �������� ���� ���
 ��� 	�
 � �� �� � �� �

� ����	��� ���
 ��� 	�
 ��� �� � �� ���� �

����	� � �� 	�
 ��� �� � �� ���� ���
 �

���� 	 �
 ��� �� � �� � ��� ���
 ��� �

���	 � �� �� � �� � ��� ���
 ��� 	�
 �

���� �� � �� ���� ���
 � �� 	�
 ��� �

�� �
� � �� ���� ���
 ��� 	 �
 ��� �� �

	� �
	 � ��� ���
 ��� 	�� � �� �� � �� �

	� �� ���
 ��� 	�
 ��� �� � �� ��� �

		 ��� � �� 	�
 ��� �� � �� ���� ��� �

	� �	��	 	 �
 ��� �� � �� � ��� ���
 ��� �

	 �	�
�� � �� �� � �� � ��� ���
 ��� 	�� �

	� �	��� �� � �� ��� � ��
 � �� 	�
 ��� �

	� �	��� � �� ���� ��� � �� 	�
 ��� �� �

	� �		�	 ��� ��� ��� 	�� � �� �� � �� �

	� �		
� ��� ��� 	�� � �� �� � �� ��� �

	� �		�� ��� 	�� ��� �� � �� ��� ��� �

�� �		��� 	�� ��� �� � �� ��� ��� ��� �

����� ! � �� �� � �� � ��� ���
 ��� 	�
 �

�	
�� ! �� � �� ���� ���
 � �� 	�
 ��� �

�� �
�� ! � �� ���� ���
 � �� 	�
 ��� �� �

� �����"# ���� ���
 ��� 	�
 � �� �� � �� �

�� ���	�"# ���
 ��� 	�
 ��� �� � �� ���� �

�� ����	"# ��� 	�
 ��� �� � �� ���� ���
 �

�� �����"# 	�
 ��� �� � �� � ��� ���
 ��� �

�� ���$ � �� �� � �� � ��� ���
 ��� 	�
 �

�����#�"� �� � �� ���� ���
 � �� 	�
 ��� �

� ��������" � �� ���� ���
 � �� 	�
 ��� �� �

� ���� ���� ���
 ��� 	�
 � �� �� � �� �

	 ���� � ��
 ��� 	�
 ��� �� � �� ���� �

� ���	 � �� 	�
 ��� �� � �� ���� ���
 �

 ���� 	 �
 ��� �� � �� � ��� ���
 ��� �

� ���� � �� �� � �� � ��� ���
 ��� 	�
 �

� ���� �� � �� ���� ���
 � �� 	�
 ��� �

� ���� � �� ���� ���
 � �� 	�
 ��� �� �

� ���� ���� ���
 ��� 	�
 � �� �� � �� �

� �����"�� ���
 ��� 	�
 ��� �� � �� ���� �

�� �"%"� ��� 	�
 ��� �� � �� ���� ���
 �

���������

��& &'()*+(�,& -*)�� ! ��& &.)/,0*1'&*23*++ ��& &01-/�0,&4*/+5)*4*1' ��
& &+56*)&'()*+(�,&51,*)�� !

�
& &'()*+(�,&51,*)�� ! ��& &� ++& �&)*,51,/137 ���& &+56*)&'()*+(�,& -*)�� !

��������
���������

����
���������

Figure 92: Validation coverage of ADACS-NTM × the Lnt formal model

5.4. ON THE CONNECTION TO AN INDUSTRIAL SYSTEM 127

1. the name of the 20 reactor parameters that are stimulated;

2. the value a reactor parameter is assigned to at each instant of the four anomaly scenarios;

3. the occurrence of an anomaly once a given reactor achieves a value which is higher than
its first superior threshold;

4. the occurrence of an anomaly once a given reactor achieves a value which is lower than its
first inferior threshold;

5. the occurrence of an anomaly once a given reactor achieves a value which is higher than
its second superior threshold, and this anomaly accumulates with the anomaly # 3;

6. the occurrence of an anomaly once a given reactor achieves a value which is lower than its
second inferior threshold, and this anomaly accumulates with the anomaly # 4;

7. the surfacing of such anomalies on the user interface, in the corresponding failure signal
(among all signals present on the UI);

8. the list of signals of each user interface;

9. the user interactions, by accessing the menu options;

10. the transmission of the failure signal between the user interfaces, once the user navigates
through them;

11. the update of the user interfaces once a reactor parameter is not in an anomalous state
anymore.

j) Limitations of the Validation

The following improvement points could be added in the ADACS-NTM trace files. They are
present in the formal model but are not covered by the validation. For the ADACS-NTM portion
implementing the EDF system, this information was not present in the trace files:

1. three anomaly scenarios: gradient excess (“dépassement gradient”), loss of redundancy
(“perte de redondance”), and invalid measurement (“invalidité de mesure”);

2. 30 reactor parameters (among 50 parameters, 20 are covered by this validation);

3. the display of the reactor parameters on the user interfaces (only the display of the failure
signals are covered);

4. the name of the user interface that is displayed once the user accesses a menu option;

5. the calculation of the failure signals before they are displayed on the user interfaces;

6. log of the alarm conditions in the signals analyzed in this case study. In the context of
this case study, ADACS-NTM limits its traces to alerts.

128 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

5.5 Conclusions of the Connection

This case study analyzed part of the ADACS-NTM implementation of the EDF system described
in Chapter 3. This connection of the formal specification and ADACS-NTM is a feasibility
study. Few log files are analyzed (38 log files). In order to corroborate the results, more log
files would be required. The approach cannot fully answer whether the system implements
correctly the specifications or not. The formal specification may contain errors, therefore, may
not be a correct representation of the real system. The approach can, thought, give directions
to the answer. The redundancy aspect of the approach (i.e., both the LIG laboratory and Atos
Worldgrid used the EDF specifications) justify the analysis, and the results can give clues about
whether the system implements the specifications correctly or not.

The connection of the Lnt formal model to ADACS-NTM permitted the analysis of the
intersection “zone” between them (in blue in Figure 93), and it was a fruitful source of
improvements on both the formal specification and the ADACS-NTM implementation. After an
initial alignment, several correspondences were shown between ADACS-NTM and the formal
model. More importantly, one major mismatch was found in the way both ADACS-NTM and the
formal model synthesize failure signals once a reactor parameter has an anomaly (c.f Subsection i)
on page 125), due to issues in the way this requirement was communicated to Atos Worldgrid
and the LIG laboratory.

�������
��

	��
����

Figure 93: Intersection zone of ADACS-NTM and the Lnt formal model which is analyzed

A positive side-effect of the connection is that it allowed the formal specification to be cross
checked too. One of the challenges in model-based approaches is to ensure the reliability of
the model. Since this type of approaches highly relies on the models, they are expected to be
as representative as possible of the real system. Hand-written models have the advantage of
being subject to a human analysis and reasoning. Depending on the designer expertise, a good
understanding of the system may result on a good model. However, even good designers may
have a misunderstanding of the system, and consequently model it incorrectly, not to mention
that hand-written models are error-prone. This connection provides a means to mitigate such
difficulties: the cross check of the formal specification and the implementation brought realism
to the formal model. The application of such techniques aiming at connecting the formal model

5.6. SUMMARY 129

to a real system mitigates one reason identified in [Cofer 2012] as one of the causes to few case
studies of formal methods to industrial systems: fidelity (i.e., there is no guarantee that the
models really correspond to the system).

Finally, a Parser was implemented to translate ADACS-NTM logs to LTS sequences, of which
the main ideas can be re-used to further connect other formal models of industrial systems.
Several perspectives were identified to further improve this integration (c.f Subsection j) on
page 127), which can be subject to future work.

5.6 Summary

This chapter details our investigations on the verification of interactive systems independently
of plasticity. With this goal, the model checking approach is applied to an industrial case study
in the nuclear-plant domain (i.e., the EDF case study). This case study is modeled using the
Lnt formal specification language and following ARCH, allowing the system to be modeled as
a composition of modules, and covering the three aspects we are considering in this thesis: user
interface, functional core and users. Several insights emerge from this modeling, such as how
to model user interfaces and the functional core, and can be a source for guiding the formal
modeling of interactive systems in the future. Nine usability and functional properties are
identified and verified in this case study.

Going further, we present in this chapter our investigations of connecting the formal specifi-
cation to industrial systems. Three propositions are investigated, namely: analysis of traces,
test case generation and co-simulation. We describe and compare the three propositions, and
the rationale of a selected proposition to be applied in the Connection Project is given.

In the context of the project, besides the LIG laboratory, an industrial partner called Atos
Worldgrid also implemented the EDF system in one of its products, called ADACS-NTM. In
order to cross check the ADACS-NTM implementation of the EDF system, an integration of the
formal model with ADACS-NTM is also described in this chapter. Analysis of traces is used for
this integration, and it is further detailed in the chapter. The model checking part of our global
approach is used to validate part of ADACS-NTM. This connection brings several improvements
to both the formal model and to the industrial system. A divergence is highlighted between
both the formal model and ADACS-NTM, and fixed in the formal model after a diagnosis
analysis. Several improvements are brought from this connection to both the formal model and
ADACS-NTM.

Such application of our approach to two industrial case studies (i.e., the EDF case study and
the connection to the ADACS-NTM system) indicates that the approach scales well to real-life
application.

Verifying interactive systems independently of the adaptation capabilities of their UIs
permitted the setting of an initial environment of formal verification for this thesis, allowing us
to further investigate how to verify plastic user interfaces.

130 CHAPTER 5. VERIFICATION OF INDUSTRIAL INTERACTIVE SYSTEMS

Chapter 6

Verification of Plastic Interactive Systems

Contents

6.1 Goals . 131

6.2 Improvements in the Formal Model . 132

6.2.1 Parameters Module . 133

6.2.2 Signals Module . 134

6.2.3 Overview of the New Formal Model . 134

6.3 Needs Raised by Plasticity . 136

6.4 Propositions to Verify Plasticity . 137

6.4.1 Common Part . 137

6.4.2 Proposition 1: Verification of the UI Versions 137

6.4.3 Proposition 2: Verification of the Plasticity Engine 139

6.4.4 Proposition 3: UI Comparison . 141

6.4.5 Rationale of the Chosen Proposition . 142

6.5 On the Comparison of User Interfaces . 144

6.5.1 Interactive System LTS . 144

6.5.2 Equivalent User Interfaces . 146

6.5.3 Equivalent Modulo “X” User Interfaces 149

6.5.4 Non-Equivalent User Interfaces . 150

6.5.5 Inclusion of User Interfaces . 150

6.6 Application of the Approach . 151

6.6.1 Equivalent User Interfaces . 152

6.6.2 Equivalent Modulo the Breadcrumb Trail User Interfaces 153

6.6.3 Non-equivalent User Interfaces and Inclusion 155

6.6.4 Validation in the Case Study . 155

6.6.5 Discussion . 157

6.7 Summary . 159

6.1 Goals

Chapter 5 described our approach to verifying interactive systems independently of plasticity.
This chapter moves a step forward and describes the part of the approach that considers plastic
interactive systems. In the context of safety-critical systems, one needs to ensure that some
critical functionalities of the UIs are preserved after the UI adaptation. We present and compare
three possibilities to verify plasticity using formal methods. The chosen proposition is then

131

132 CHAPTER 6. VERIFICATION OF PLASTIC INTERACTIVE SYSTEMS

detailed and applied to the case study described in Chapter 3. To experiment these propositions
on the case study, its formal specification is subject to several improvements, which are also
described in this chapter.

Precisely, we cover two aspects of plastic user interfaces: interaction capabilities and
appearance. We provide a means to representing both aspects in one single model called
Interactive System LTS, which is used afterwards for formal verification.

6.2 Improvements in the Formal Model

One of the contributions of our research team in the Connexion Project is a new prototype
implementing the specifications of the case study (cf. Section 3.4 on page 76). We use the LIG
prototype as the basis for introducing plasticity in our verification proposition. An example
of the main UI of the LIG prototype is illustrated in Figure 94, in French, with the main UI
zones identified by numbers: (1) plant status; (2) failure signals; (3) reactor parameters; and (4)
menu.

Figure 94: The LIG prototype of the control room system running on a PC

In order to introduce plasticity, the formal specification needs several modifications. Special
attention is paid to the modeling of the UIs: to be able to reason over the UI adaptation, the
basis of UI modeling have to be modified. Two modules are included in our UI component of
the formal model (Figure 95): parameters and signals modules. The former models the UI zone
that displays the reactor parameters (zone n.3 in Figure 94) and the latter models the UI zone
that displays the failure signals (zone n.2 in Figure 94). With this increment, the four zones of
the UIs are now described in the formal model, in contrast to the previous version of the formal
model (Figure 70) which modeled only both UI zones the user can interact with (i.e., zones n.1
and n.4).

Besides, communications between modules are now fully separated according to ARCH
(Figure 95): the dialog controller communicates with both the UI and the functional core
modules, and the user module communicates only with the UI modules.

6.2. IMPROVEMENTS IN THE FORMAL MODEL 133

Figure 95: New formal model structure

The state space of this formal model is larger than its previous version (i.e., the version
depicted in Figure 70), and the suppression of optimization bridges that avoid the model to
fully follow ARCH (cf. Section 5.2.1 on page 96) is compensated by other alternatives, such as
the simplification of the functional core modules (i.e., decreasing from 29 down to 25 the number
or reactor parameters which are modeled) and the inclusion of a scheduler in the model. A
scheduler is a special module exclusively responsible for orchestrating the rendez-vous between
the modules in the formal model. The exchange of data in an Lnt formal model takes place by
rendez-vous through gates between two or more modules. For instance, the menu option chosen
by a user is sent to the menu module through a gate when a rendez-vous between both modules
takes place (Figure 95). The rendez-vous orchestration provided by the scheduler permitted the
model to evolve into this new version in which new modules are included, increasing the state
space of the formal model.

The UI modules of the formal model now include some treatment of the data. As for the
previous version of the model, the dialog control (i.e., the selection module) still receives the
reactor parameters and signals from the functional core, and filters the ones pertaining to the
current UI. But, instead of sending them directly to the user module, it sends them to the
parameter and to the signals modules, which treats the data before sending them to the user
module. Such treatments are described in the next subsections.

6.2.1 Parameters Module

The parameters module transforms raw data received from the dialog control into curves and
symbols, and send them to the user module. Figure 96 provides an excerpt of the Lnt function
that performs this transformation: according to the parameter anomaly, a given symbol is
chosen (lines 15-24). For instance, if the parameter has a threshold overflow (“dépassement

134 CHAPTER 6. VERIFICATION OF PLASTIC INTERACTIVE SYSTEMS

haut”) anomaly, the top yellow arrow (“fleche jaune haut”) symbol is chosen (cf. Table 3). Each
parameter is transformed into a format consisting of its name and corresponding symbol (lines
4-10), and this transformed data is sent to the user (line 11).

Figure 96: The parameters module - an excerpt of Lnt code

6.2.2 Signals Module

A similar transformation is done within the signals module. In this case study, seven signals are
associated to each reactor function (cf. Figure 52), the following four of which are covered in
our modeling: alerts, alarm conditions, nonconformity, and equipment state change. Initially,
the four signals present no failure (lines 3-6 in Figure 97). Depending on the raw value received
from the dialog controller module, a given symbol is assigned to each kind of failure (lines 7-18).
For instance, the yellow square (“carre jaune”) symbol corresponds to the alert failure (lines
7-9). It represents the fact that, in the real system, once a reactor function has an alert, a yellow
square is displayed on the UI under this reactor function (e.g., Figure 50). The transformed
signals are sent to the user (line 21).

6.2.3 Overview of the New Formal Model

Table 11 summarizes the new version of the formal model. All modules are affected to some
extent (except reactor.tnt and reactor.fnt). Specially, the parameters (line 3) and signals
modules (line 4) are added. The other modules of the formal model also passed through slight
modifications, but their essence is roughly the same as in Section 5.2 (page 96), i.e., the previous
version of the model. The new formal model has 2462 lines of code.

Table 12 shows the size of the LTS generated from this Lnt formal model, using Cadp.
This LTS is bigger than the previous version of the formal model (i.e., 26 167 456 states and 185

6.2. IMPROVEMENTS IN THE FORMAL MODEL 135

Figure 97: The signals module - an excerpt of Lnt code

Table 11: Summary of the new version of the formal model, to include plastic UIs

ARCH component File Description # loc

1 user interface plant status 1 plant status is always selected 32
2 user interface menu selection among 8 menu options 72
3 user interface parameters transformation de 25 reactor pa-

rameters
117

4 user interface signals transformation de 13 reactor sig-
nals

73

5 functional core reactor modeling of 25 reactor parame-
ters

305

6 functional core generate signals modeling of 13 reactor signals 222
7 functional core scenarios describes the five anomaly sce-

narios of reactor parameters
328

8 dialog controller selection filter of 25 parameters and 13

signals
74

9 (user) user selection of the plant status and
monitoring of reactor parameters

170

10 (auxiliary file) main entry point of execution 108
11 (auxiliary file) library type definitions 652
12 (auxiliary file) library.tnt internal optimizations 280
13 (auxiliary file) reactor.tnt internal optimizations 3
14 (auxiliary file) reactor.fnt internal optimizations 26

TOTAL 2462

136 CHAPTER 6. VERIFICATION OF PLASTIC INTERACTIVE SYSTEMS

772 171 transitions, Table 6) mainly because new modules were added in the formal model (i.e.,
the parameters and the signals module), which increases the state space of the formal model.

Table 12: Size of the LTS of the new version of the formal model, to include plastic UIs

states # transitions

33 053 947 189 539 691

This new version of the formal model isolates the UI aspects from the other concerns, paving
the way for our comparison approach using formal methods.

6.3 Needs Raised by Plasticity

In Section 3.4, page 76, we presented several versions of the EDF system, developed by our
research laboratory. The UIs of the case study change according to five contexts of use: running
on PC, running on a Smartphone, running on Tablet, running in Expert mode and running in
Training mode. When analyzing different versions of a UI, we are particularly interested in two
aspects: their interaction capabilities and appearance.

UI interaction capabilities concern the ways users can interact with the UI (and, conversely,
how the UI reacts to this interaction). For instance, in Figure 94, the user can interact with the
UI in the following ways: by selecting the plant status and by accessing different views using
the menu options. Conversely, when the user performs each of those actions, the UI responds
in some way (e.g., by displaying the reactor parameters according to the selected plant state).
When comparing two UIs, we want to know whether users can perform the same actions in
both of them, and whether the UIs reacts in the same way or not. In this point of view, we are
interested in what the user can do (e.g., “select menu option 1”) , and in what the UI does in
reaction (e.g., “display main UI”). It does not concern neither how such interaction capabilities
are provided (e.g., which widget is used to display the menu) nor how the UI displays the
outputs. This relates to the UI appearance.

UI appearance concerns the elements present on the uI (where they are presented, in which
color, etc.). For instance, we may want to know which symbol represents the absence of
unexpected events in the reactor.

Plasticity exposes users to different user interfaces that can diverge from each other at
several levels, which may cause loss of information and/or consistency. This raises the question
of similarity between UIs. One may be interested in knowing whether all UI aspects (e.g., the
UI interaction capabilities and appearance) are preserved once the UI is adapted, and if it is not
the case, which aspects are discarded/added. In addition, one may also be interested to know
whether they are similar in terms of appearance and interaction capabilities, or verify common
properties in both of them. Besides, in the context of safety-critical systems, we also need to
ensure that some critical functionalities of the UIs are preserved after the UI adaptation. For
instance, all versions must always display the reactor parameters whatever their form.

6.4. PROPOSITIONS TO VERIFY PLASTICITY 137

6.4 Propositions to Verify Plasticity

It would be paralyzing to search for a single optimal way to add plasticity in the model. Several
choices are possible, and it is not obvious which one is the most appropriate. We compare now
three different approaches [Oliveira et al. 2015b], in order to give some rationale of the chosen
approach, and investigate this one deeper. Two of the propositions consist in verifying properties
on the formal models, either by directly checking the UI versions or by checking the plasticity
engine1 used to generate the UI versions. The third proposition is based on the comparison of
UI versions.

6.4.1 Common Part

Figure 98 illustrates the common part of all propositions. The entry point of all propositions
is the interactive system to be verified, from which a formal model is written describing some
aspects of the user behavior, the system functional core and the user interfaces. The formal
specification allows the usage of several formal verification techniques. For instance, model
checking can be used to verify that all UI versions display reactor signals, case in which the
second input of the formal verification would be a set of properties. Alternatively, equivalence
checking can be used to compare two versions of a UI to check consistency, for instance, in the
display of signals (either both of them display a signal or none of them does), case in which the
second input of the formal verification would be the formal model of another UI.

������
���	
	���	�

������
�����

�������	�����
������������

����	
	���	�
�������	��
������

Figure 98: Common part to all propositions

This global structure is used in the three propositions for plasticity verification, presented in
the following.

6.4.2 Proposition 1: Verification of the UI Versions

Considering ARCH, the first proposition contains modules for the functional core, the dialog
controller and the UIs. In our example, the UI module contains the four zones of the UI, i.e., the
plant status, the menu, the failure signals, and the parameters. In this proposition, the whole
interactive system is represented by one single formal model, including all plastic user interfaces
(Figure 99). For instance, if the UIs are intended to adapt according to two different devices,
both versions of the user interface are described in the formal model, and the transformation
rules needed to adapt the user interfaces are also included. In our example of nuclear power

1cf. Section 1.3 on page 3 for the definition of plasticity engine

138 CHAPTER 6. VERIFICATION OF PLASTIC INTERACTIVE SYSTEMS

plant control system, consider two UI versions: one for the expert mode and one for training
mode. They are both described in the UI modules. The goal of this proposition is to directly
verify the different UI versions.

Figure 99: Modeling UI versions

In addition, the formal model describes the context of use, in terms of platform, user and
environment. The context of use is not explicitly described in the formal model. However,
platform, user and environment are formally described by one or more formal modules. In our
example, the environment is not taken into account. The platform can be a PC, a Smartphone
or a Tablet. For users, the module describes the expected user behavior when interacting with
the UIs (arrows for and to the UI) and the user profile. Changes in the context of use are
communicated to the UI, which adapts accordingly.

The user can also interact with a meta UI, which permits the UI mode (i.e., expert or
training) to be chosen and some UI elements to be distributed over different devices. For
instance, if two screens are available for displaying the UI, it is possible to display parameters
on one screen and signals on the other one. In the context of plasticity, such repartition of UIs
over devices is called UI redistribution [Vanderdonckt et al. 2008]. A communication between
the meta UI and UI modules permits the UI versions to be modified according to the user’s
selection in this meta UI, allowing the UI to adapt according to the mode, for instance.

The UI modules receive all the information concerning the user (i.e., behavior and profile), the
platform, the choices in terms of interaction through the meta UI and possibly the environment.
From this information, the UI modules can choose the appropriate representation of the UI.
This means that the UI modules contain the UI adaptation logic (i.e., the transformation rules).

In the formal model, the transformation rules represent all the adaptation effects in the
corresponding UI zones. For example, on the uI parameter (resp. signal) zone, there are two
cases: the display of only the problematic parameter (resp. signal) on a smartphone and the
display of all parameters (resp. signals) on large screens (Figure 100).

The UI modules send the generated UI version to the user. The LTS generated from
such formal model contains all cases of the adaptation rules, meaning that all UI versions are

6.4. PROPOSITIONS TO VERIFY PLASTICITY 139

Figure 100: Excerpt of Lnt code describing the UI modules

represented in the LTS.
Once the formal model is created, model checking can be used to verify properties over the

model (Figure 61). Due to the exhaustive reasoning provided by model checking, the verification
of properties cover all the UIs that are generated by the adaptation.

For instance, we can verify that all UI versions display reactor signals, which is expressed by
the following property: “From every reachable state, there exists a sequence of steps leading to
the display of signals”. Using MCL [Mateescu & Thivolle 2008], this property is formalized as
follows:

[true∗]〈true∗ . ′DISPLAY _.∗_SIGNAL.∗′〉true (6.1)

In this MCL formula, DISPLAY _.∗_SIGNAL.∗ is a regular expression that matches
in the LTS transitions labeled with either gate “DISPLAY_FAILURE_SIGNAL” or gate
“DISPLAY_ALL_SIGNAL” and arbitrary offers.

To summarize, in this first proposition the UI versions are modeled in the UI formal modules,
which contains the description of the UIs, their behavior, and the adaptation logic. The
adaptation logic is embedded into the description of the UIs. Model checking permits to perform
verification of properties over all the UI versions.

6.4.3 Proposition 2: Verification of the Plasticity Engine

In the second proposition, we consider that a plasticity engine is formally described in the model
(Figure 101). The goal is to explicitly verify the adaption logic of the engine.

In this proposition, the formal model is also created following ARCH. In this case, the
dialog controller also contains the description of the adaptation engine. The engine receives
information directly from the context modules and from the meta UI. From this information, it
can calculate the most appropriate UI version.

The plasticity engine implements all the transformation rules for adaptation (e.g., the excerpt
of Lnt code in Figure 102). The UI, the context of use, the meta UI, and the functional core

140 CHAPTER 6. VERIFICATION OF PLASTIC INTERACTIVE SYSTEMS

Figure 101: Modeling a plasticity engine

are specified to provide the information the plasticity engine needs to transform the UIs (i.e.,
which UI is currently displayed, the context of use, the UI mode, and which information should
be displayed). The idea is to verify that the plasticity engine adapts the UI correctly: the
engine must apply all transformations on the UIs, leaving to the UI modules only the tasks of
displaying the result UIs and managing user interactions.

Figure 102: Excerpt of Lnt code describing the adaptation rules

In order to verify the plasticity engine, attention should be paid to the transformation rules.
One kind of verification that can be done is to verify to which extent the transformations have
an effect on the behavior of the UI versions. This can be verified by checking if the same
interaction capabilities are present in all UI versions generated by the transformations. Such
verification attests the quality of the transformation rules by reasoning over the output of the
transformations: the generated UI versions.

For instance, the expert-mode UI (Figure 56b) displays all reactor signals in the Failure
Signal zone (i.e., failure and non-failure signals), while the smartphone UI displays in the same
zone only the failure signals (Figure 55a). In any case, once a failure signal occurs, the UI
is always expected to display it. We can verify that the UI transformation preserves such
requirement by the following property: “From every reachable state, once a failure signal occurs,
there exists a sequence of steps leading to the display of this signal”. In MCL, this is expressed

6.4. PROPOSITIONS TO VERIFY PLASTICITY 141

as:

[true∗ . ′FAILURE_SIGNAL_\(. ∗ \)′]

〈true∗ . ′DISPLAY _FAILURE_SIGNAL_\1′〉 true
(6.2)

where \(RE\) is a regular expression that matches whatever the unadorned RE matches (here,
RE is any character, represented by “.*”), and the expression \n (here, n is a digit) matches the
same string of characters that is matched by the n-th expression enclosed between “\(” and “\)”
earlier, counting from the left. Intuitively, the first regular expression matches a failure in a
given reactor signal (i.e., “FAILURE_SIGNAL_signalname”) and the reactor signal name are
matched in the second regular expression (i.e., “DISPLAY_FAILURE_SIGNAL_signalname”),
expressing the requirement that once a failure signal occurs, this signal is always displayed on
the UI.

Going further, we propose to verify the plasticity engine itself by verifying the coverage of
the transformation rules. The transformation rules are expected to cope with changes in the
context of use and correspondingly adapt the UI. In this case, we could verify whether the engine
takes into account all expected changes in the context of use or not. To avoid the explosion that
could result from the combination of contexts of use, we propose to limit the verification on the
contexts of use that are considered. In our example, consider two changes in the context of use:
the platform (e.g., PC or smartphone) and the user (i.e., expert or training). Concerning the
platform, we can verify if the plasticity engine has transformation rules to cover all changes
in the platform of the considered scope (i.e., PC and smartphone), which is expressed by the
property: “Starting from the initial state, there exists a sequence of steps leading to the display
of the smartphone version of the user interface”. The same property can be written to verify
the display of the PC version of the UI. In MCL, this is expressed by the following formula:

〈true∗ . ′DISPLAY _SMARTPHONE_UI . ∗ ′〉 true (6.3)

To summarize, the second proposition enables to explicitly specify and to verify the plasticity
engine. Once the engine is formally verified, its specification can be used, for example, to suggest
appropriate transformation rules to automatically generate the code of the engine.

6.4.4 Proposition 3: UI Comparison

In this last proposition, there is no explicit representation of plasticity in the formal model.
We simply make a comparison over two UIs, with no considerations about how they have been
obtained. The main motivation is to verify to which extent plastic UIs are similar. The UIs
for each context of use are represented by their own formal model. Before creating the formal
models, designers must have the rendering of the UI versions adapted to each context of use,
allowing the specification of a formal model for each one of them to be done. This proposition
requires as many formal models as the number of contexts of use to cope with, including all
the specificities of each context of use (platform, user, environment). In our example, the
combination of both platforms and both user expertises can give rise to four formal models.
Then, the formal models are compared to each other to identify their degree of similarity.

In this proposition, the formal models also follow ARCH. No module for the context of use
nor for the meta UI is included. All specificities brought from the context of use are included

142 CHAPTER 6. VERIFICATION OF PLASTIC INTERACTIVE SYSTEMS

in the corresponding UI formal model. The UI formal models reflect their context of use by
describing the UI generated for such context. For example, in our case study, the UI module
contains the four zones of the UI, i.e., the plant status, the menu, the failure signals, and the
parameters. Figure 103 illustrates how the parameter module of each UI version is formalized,
i.e., the display of only the problematic parameter on a smartphone and the display of all
parameters on large screens.

Figure 103: Excerpt of Lnt code of each UI version

These formal models are then compared, pairwise, using equivalence checking (Figure 62),
allowing one to measure to which extent the user interfaces are the same. In case they are not
equivalent, the UI divergences are highlighted, and the possibility of leaving these divergences
out of the analysis is provided, re-interacting the equivalence verification.

In our example, the Expert mode and the Smartphone UI versions are considered as equivalent:
in a first step, the equivalence checker considers that their appearance diverges because of
the missing labels, the remolding of the parameter widget and the accessibility of the menu;
then some abstractions can be made to reason about the interaction capabilities and not their
appearance. After these abstractions, both UI versions are shown equivalent. Meaning that, at
a certain level of abstraction, both UIs provide users with the same interaction capabilities.

To summarize, the comparison proposition enables the verification of UI versions without
worrying how they are obtained. It requires to completely describe each UI version. While
considering the multiplicity of contexts of use, it is quite difficult to imagine all possible UIs.
However, the comparison can be performed for some identified and well-defined contexts of
use. This is relevant for safety-critical systems: it permits to ensure, for instance, that critical
features are maintained in all UI versions.

6.4.5 Rationale of the Chosen Proposition

Table 13 summarizes the three propositions to verify interactive systems with plastic user
interfaces. In the first proposition, one single formal model represents all the UI versions, the
adaptation logic is embedded into the description of the UIs, and model checking permits
properties to be verified over all the UI versions. In the second proposition, one single formal
model includes an explicit representation of the plasticity engine, and the verification of the
engine is done by model checking. Finally, in the third proposition, there are n formal models, one
for each context of use. There is no representation of the plasticity engine, and the verification
is done using equivalence checking to compare the formal models.

Each proposition has its strengths and drawbacks. To compare them, we focus on the
following criteria: the number and complexity of the UI versions to be modeled, and the number
and complexity of adaptation rules.

In the first proposition, which represents all the UI versions and the adaptation logic inside
the UI modules, all the complexity is embedded into these modules. If the UI complexity is

6.4. PROPOSITIONS TO VERIFY PLASTICITY 143

Table 13: Summary of propositions to verify plastic user interfaces

Approach # Formal models Verif.technique

Verification of the UI versions one, covering all UI versions model checking
Verification of the plast. engine one, plast.engine formalized model checking
UI comparison n, one for each context equiv. checking

below a certain threshold and the number of adaptation rules for the UI is low, it can be a good
and simple proposition. Once the adaptation representation becomes too onerous in the formal
model, prejudicing its readability, it is recommended to separate it into another module (i.e.,
the plasticity engine module). A deeper investigation in order to define this threshold to guide
the choice of either proposition could be a further work of this thesis. In terms of verification
to be performed, this proposition permits the same properties to be verified on all UI versions.
In addition, it can also be used to check different properties over UI versions. For instance, in
the smartphone version, the menu options must always be accessible while in the large-screen
version, they must always be visible.

The novelty of the second proposition is the representation and verification of a plasticity
engine. One can imagine to automatically generate the code of an engine from a proven
specification. However, according to the number and the combination of rules, the description
of the engine can become too complex. The limit here is not related to the UI modules, but
to the formalization of numerous transformation rules and their combination. They tend to
grow in number to follow the system evolution, i.e., once a new context of use is covered by
the system, new transformation rules are needed. Contexts of use can even be discovered at
runtime [Ganneau et al. 2008], which makes the identification of transformation rules at design
time harder. This makes the formalization of such transformation rules difficult. Moreover, this
proposition relies on the existence of a plasticity engine, which is not always the case.

Both the first and the second propositions rely on two things: (1) the modeling of adaptation
rules and (2) the verification of properties by model checking. Although several advances have
been made in plasticity of user interfaces (e.g., [Sottet et al. 2006, Demeure et al. 2006, Sottet
et al. 2007, Coutaz et al. 2007, Vanderdonckt et al. 2008, Ganneau et al. 2008, Demeure
et al. 2008, Serna et al. 2010]), research on the plasticity engine and its adaptation rules are not
yet in a mature state to move to the next step, their modeling and verification, which makes
the usage of both propositions difficult. Concerning the verification of properties by model
checking, we used this approach for the verification of interactive systems independently of the
UI adaptation (cf. Chapter 5), and have shown in this section the feasibility to plastic UIs too
(modulo the difficulties to model the plasticity engine). To propose an alternative to the use of
model checking, we conducted deeper investigations on the use of equivalence checking in the
context of plastic UIs, which have not been often applied in the HCI context (cf. Tables 1 and 2
in Chapter 2).

Comparison of formal models bypasses the difficulties of modeling the adaptation logic. Even
though it requires to create one model for each UI version and to compare UI versions two
by two, which can be time-consuming if the number of UI versions is significant, the effort is
alleviated because there is no need to represent the plasticity engine in the formal model. It is
based on the existing versions of the UI: the formal models focus on representing the UI versions,
without knowing how they have been produced. Finally, with this proposition, designers do not

144 CHAPTER 6. VERIFICATION OF PLASTIC INTERACTIVE SYSTEMS

verify some properties, rather than that, they check the consistency between two UI versions
thanks to equivalence checking. This proposition is detailed in the following subsections. The
other two propositions are not further investigated in the context of this thesis.

6.5 On the Comparison of User Interfaces

To compare different versions of a UI, we apply the equivalence checking part of our global
approach (cf. Section 4.3 on page 85). We present in this sections the formal framework proposed
in [Oliveira et al. 2015a], with some refinements on the formal definitions.

Figure 104: Comparison of user interfaces

Figure 104 illustrates a refinement of the equivalence checking part of our global approach.
Here, the LTS representations of the formal model are added. The first step (1) consists in
creating a formal model of the UIs. The formal model should reflect as much as possible the real
system. The formal model is used to automatically generate (2) an ISLTS (Interactive System
LTS). We derived ISLTS from LTS (Labeled Transition System), as will be detailed in the sequel.

The verification of ISLTS equivalence (3) is performed thanks to equivalence checking (Fig-
ure 105). First, we verify whether both ISLTS are equivalent or not. If they are, considering
interaction capabilities and appearance, both UIs are equivalent. If both ISLTS are not equiv-
alent, we verify whether one includes the other. If one ISLTS includes another one, one UI
contains at least all interaction capabilities (and corresponding appearance) of the other one.
The third possibility is that both UI models are neither equivalent nor included one in the other.

This analysis is supported by three abstraction techniques, which are explained in the
following. The results of the comparison allow the formal models and/or the real UIs to be
refined.

6.5.1 Interactive System LTS

We enhance LTS (cf. Section 4.5.3 on page 91) to model user interfaces.

Definition 1 (ISLTS). An ISLTS (Interactive System LTS) is a 6-tuple 〈Q, C, L, A, T, q0〉 where:

6.5. ON THE COMPARISON OF USER INTERFACES 145

��������	
����������

�����
����

�����
����

�

�����
����

�����
����

�
�

�

��
�����	
���

��
��
�����

��

���

���

���������	
���
	���������
��������

��������	�����	�	��
�����
���	���	�	��

�

�

�

�����	
�������

��

��
�������������	����
 ��������!

��"����	
�#	����
��$�������
���
����	����

%������

Figure 105: Equivalence checking of user interfaces

• Q is a set of states in which interactive system can be;

• C is a set of UI components;

• L is a set of action names;

• A is a set of actions. They model the system dynamics: actions users can perform on
the UI and the UI response to these actions. Each action a ∈ A has the form l(c1, ..., cm)
where l ∈ L, m ≥ 0, and ∀i ∈ [1..m] , ci ∈ C. Intuitively, actions can carry a list of
UI components, representing the UI appearance after the action is performed. For a
given action a ∈ A, when m = 0 (i.e., the action does not carry any UI component), the
parentheses are omitted and the action has the form l, where l ∈ L;

• T ⊆ Q × A × Q is a transition relation that changes the interactive system state once an
action a ∈ A is performed. We also use the notation q

a
−→ q′ for (q, a, q′) ∈ T ;

• q0 ∈ Q is the initial state of the interactive system.

��

��

��

��

�������

�	
�
������������
�������������������
����������
��������������
�������������������
�����������������������������������

Figure 106: An ISLTS (Interactive System LTS)

Figure 106 illustrates an ISLTS with the sets Q, C, L, A, T and the element q0. An ISLTS

provides a means to representing both UI interaction capabilities and appearance in one single
model: they are represented in the set A of actions. Each action names an interaction capability,
and ISLTS enriches LTS actions with data (the set C of components) to represent the UI
appearance.

146 CHAPTER 6. VERIFICATION OF PLASTIC INTERACTIVE SYSTEMS

According to the domain, the set C is composed by subsets detailing the components of the
UI. Figure 107 illustrates an example of an action representing the display of reactor parameters
with their current value and status. Concerning the UI appearance, the set C represents how the
reactor parameters are displayed on the UI, which in this example is with their values and status.
Consider a subset P = {Pth_moy, GroupeR, ...} of reactor parameter names and a subset
S = {normal, fail} of reactor parameter status. In the example of Figure 107, c ∈ C has the form
p(v, s), where p ∈ P , v ∈ R and s ∈ S, e.g., C ∋ {Pth_moy(70, normal), GroupeR(276, fail)}.
The set C is domain-dependent and can have other formats, not changing the way it is
integrated in ISLTS actions, i.e., each action a ∈ A has the form l(c1, ..., cm) where l ∈ L,
m ≥ 0, and ∀i ∈ [1..m] , ci ∈ C. In the example of Figure 107, L ∋ ShowParams and
A ∋ ShowParams(Pth_moy(70, normal), GroupeR(276, fail)).

Figure 107: UI appearance in an ISLTS

6.5.2 Equivalent User Interfaces

Once the UIs are modeled as ISLTS, one can perform UI comparison thanks to equivalence
checking. We introduce now several definitions we derived from formal techniques to apply to
HCI. We combine the notion of equivalence with several abstract techniques.

Definition 2 (Equivalent user interfaces). Given two ISLTS M and H, if an equivalence
relation R exists between the states of M and H, then M and H are said R equivalent (written
M ∼R H).

There are several equivalence relations available in the literature, such as strong bisim-
ulation [Park 1981], branching bisimulation [van Glabbeek & Weijland 1996], safety equiva-
lence [Bouajjani et al. 1991], etc. Which relation to choose depends on the level of details of the
model and the verification goals. We use strong and branching bisimulation relations, due to
the strong implications provided by the former and to the flexibility provided by the latter.

Strong bisimulation [Park 1981] is the most restrictive relation. It relates two standard
LTSs in the following way: Two LTSs M and H are strongly bisimilar if there exists a relation
R ⊆ QM × QH (called strong bisimulation) such that:

1. The initial states of M and H are related by R;

2. If R(m, h) and m
a
−→ m′, then there exists a state h′ such that h

a
−→ h′ and R(m′, h′);

3. Conversely, if R(m, h) and h
a
−→ h′, then there exists a state m′ such that m

a
−→ m′ and

R(m′, h′).

This formal definition concerns the LTS states and the actions that trigger state transitions.
Such concern for LTS actions suits our UI interaction and appearance modeling in the ISLTS

6.5. ON THE COMPARISON OF USER INTERFACES 147

actions. Since in an ISLTS every action a ∈ A has the form l(c1, ..., cm) where l ∈ L, m ≥ 0,
and ∀i ∈ [1..m] , ci ∈ C, when comparing ISLTS actions both UI interaction capabilities and UI
appearance are taken into account.

Strong bisimulation is intuitively illustrated in Figure 108. Two systems (each one represented
by an ISLTS) are strongly equivalent whenever they can perform the same actions (possibly
enriched with UI components) to reach strongly bisimilar states, i.e., they agree on each step
they take.

Figure 108: Two strongly equivalent ISLTS

Diversely, there are cases in which certain actions (together with the UI appearance after
the action execution) may be skipped in the analysis. These actions receive a special label τ

in the LTS, and several equivalence relations exist that deal with τ actions in a special way.
τ ∈ A represents an action that is considered irrelevant in the context of the analysis, and can
be ignored, even though it is still present in the UI model. We call this abstraction technique
an omission:

Definition 3 (Omission). Given an ISLTS U = 〈Q, C, L, A, T, q0〉, and a set O ⊆ A,
Omit(O,U) = 〈Q, C, L, A\O, T ′, q0〉, where T ′ = {(q, a, q′) | (q, a, q′) ∈ T and a /∈ O} ∪
{(q, τ, q′) | (q, a, q′) ∈ T and a ∈ O}.

Tagging some actions a ∈ A with the τ label allows weaker equivalence relations to bypass
such actions when checking equivalence between models. Since in an ISLTS every action a ∈ A

has the form l(c1, ..., cm) where l ∈ L, m ≥ 0, and ∀i ∈ [1..m] , ci ∈ C, once an action a is
ignored, a UI interaction capability is intentionally disregarded, together with the UI appearance
that results from such action (possibly modeled in the body of the a action).

This abstraction is useful, for instance, when users are provided with a functionality activated
in different ways in two UIs. For example, two user interfaces U1 and U2 that have menus with
the same options, as illustrated by the sets A1 and A2 of actions below. The menu is always
visible in U1 and hidden in U2, as illustrated by the absence (resp. presence) of the “open_menu”
action in the set A1 (resp. A2) of actions:

A1 = {choose_menu_option1, choose_menu_option2}

A2 = {open_menu, choose_menu_option1,

choose_menu_option2}

O = {open_menu}

Once one displays the menu in U2, the menu behaves exactly like in U1. By including
“open_menu” in the set O of omitted actions, omission permits the action of menu activation to

148 CHAPTER 6. VERIFICATION OF PLASTIC INTERACTIVE SYSTEMS

be ignored when comparing the user interfaces, even though it is still present in the U2 model.
When omitted actions (τ) are present in the model, weaker equivalence relations are more

appropriate. Branching bisimulation [van Glabbeek & Weijland 1996] is one of the most
commonly used. It considers sequences of τ -actions. We write m =⇒ m′ for a path from m to m′

having an arbitrary number (≥ 0) of τ -actions. Branching bisimulation relates two standard
LTSs in the following way: Two LTSs M and H are branching bisimilar if there exists a relation
R ⊆ QM × QH (called branching bisimulation) between the states of M and H such that:

1. The initial states of M and H are related by R;

2. If R(m, h) and m
a
−→ m′, then either a = τ and R(m′, h), or there exists a path h =⇒ h′

a
−→ h′′

such that R(m, h′) and R(m′, h′′);

3. Conversely, if R(m, h) and h
a
−→ h′, then either a = τ and R(m, h′), or there exists a path

m =⇒ m′
a
−→ m′′ such that R(m′, h) and R(m′′, h′).

Similarly to strong bisimulation, branching bisimulation also concerns LTS states and actions.
Thus, it considers the UI interaction capabilities and appearance as the previous equivalence
relation: given the form of an action in an ISLTS (i.e., l(c0, ..., cm) where l ∈ L, m ≥ 0 and
∀i ∈ [1..m] ci ∈ C), actions are taken into account with the components present on the UI after
the execution of the action.

The essence of branching bisimulation is illustrated in Figure 109. Intuitively, both ISLTS

depicted in this figure are branching equivalent because for each state, the same actions (preceded
by zero or more τ actions) can be triggered.

(a) Without τ -steps (b) With τ -steps

Figure 109: Two branching equivalent ISLTS

Regardless the chosen equivalence relation, our approach permits to reason over UI models
at different levels of details. As an illustration, consider a UI fragment of our case study
(Figure 110). This UI fragment displays the number of alert signals in the Production reactor
function. The UI on the left represents the absence of alerts by a 0 beside Production. By
contrast, on the UI on the right, nothing is displayed in the same zone. In a more abstract version
of these UIs, this information is represented by default_empty_symbol. We call this kind of
abstraction a generalization, and it concerns the UI appearance and interaction capabilities.

Definition 4 (Generalization). Given an ISLTS U = 〈Q, C, L, A, T, q0〉; three sets C ′ of UI
components, L′ of action names, and A′ of actions such that every action a′ ∈ A′ has the form

6.5. ON THE COMPARISON OF USER INTERFACES 149

���������
������	�
��
��������

������������� �������������

�����	�
��������������������������� �����	�
���������������������������

������	�
����� �����	�
�����

Figure 110: Generalization abstraction technique

l′(c′

1, ..., c′

m) where l′ ∈ L′, m ≥ 0 and ∀i ∈ [1..m] , c′

i ∈ C ′; and a total function G ⊆ A → A′,
such that τ ∈ A′ and G(τ) = τ , the generalization of U with respect to G, written Gen(G, U),
is the ISLTS 〈Q, C ′, L′, A′, T ′, q0〉 such that T ′ = {(q, a′, q′) | (q, a, q′) ∈ T}.

Generalization allows elements describing the UI appearance to be represented in a more
abstract way in the formal model. Although this abstraction technique concerns mainly the UI
appearance, it can also be used to represent UI interaction capabilities in a more abstract way,
since the generalization is performed at the level of the ISLTS actions A. Given the form of an
action in an ISLTS (i.e., l(c0, ..., cm) where l ∈ L, m ≥ 0 and ∀i ∈ [1..m] ci ∈ C), generalization
covers the UI interaction capabilities together with the components present on the UI after a
given interaction.

An example of generalization is illustrated below:

A = {ShowSignals(zero)}

A′ = {ShowSignals(default_empty_symbol)}

G = {ShowSignals(zero) 7→ ShowSignals(default_empty_symbol)}

In the original UI model, the absence of alert signals in the reactor function is represented by
the number zero. While in a more abstract UI model, the absence of alert signals in the reactor
function is generalized to default_empty_symbol.

The use of regular expressions enables sophisticated transformations on the UI appearance
representation. Consider A ∋ {ShowParams(Pth_moy(70, normal), GroupeR(276, fail))}
the example of the set A of actions described in Definition 1. This action represents the
display (on the UI) of reactor parameters with their current value and anomaly condition.
Instead of displaying all reactor parameters, this action could be generalized in a more abstract
visualization, where only failed parameters are displayed. Regular expressions permit the
transformation from A = {ShowParams(Pth_moy(70, normal), GroupeR(276, fail))} into
A′ ∋ {ShowParams(Failure in GroupeR)}.

6.5.3 Equivalent Modulo “X” User Interfaces

There are cases in which certain divergences between two user interfaces are considered acceptable.
For instance, when a navigation aid is present in one UI and absent in another one. Knowing
that the UIs present this difference, one may still want to analyze the remaining aspects of the
UIs. Equivalence modulo “X” permits this reasoning. We introduce another abstract technique
that permits UI elements to be eliminated in the model before performing the analysis:

150 CHAPTER 6. VERIFICATION OF PLASTIC INTERACTIVE SYSTEMS

Definition 5 (Elimination). Given an ISLTS U = 〈Q, C, L, A, T, q0〉, and a set X ⊆ A,

Eliminate(X,U) = 〈Q, C, L, A\X, T ′, q0〉, where T ′ = {(q, a, q′) | (q, a, q′) ∈ T and a /∈ X}.

Each action x ∈ X also has the form l(c1, ..., cm) where l ∈ L, m ≥ 0, and ∀i ∈ [1..m] , ci ∈ C,
so both UI interaction capabilities and appearance are taken into account. Intuitively, the set
X ⊂ A is a set of actions (enriched or not by the UI appearance) eliminated in U before the
comparison analysis. In this case, some UI aspects are left out of the analysis. Contrary to
omission, in which the elements are still present in the model and are just ignored.

In the example below, extracted from the case study, a breadcrumb trail is present in U1

and not in U2. To verify if both UIs are equivalent disregarding this divergence, we eliminate
the representation of this functionality in the U1 model:

A1 = {select_breadcrumb_trail, choose_plant_state,

show_params};

A2 = {choose_plant_state, show_params}

X = {select_breadcrumb_trail}

A1 \ X = {choose_plant_state, show_params}

In this case, both user interfaces are equivalent modulo the elements of X:

Definition 6 (Equivalent modulo “X” user interfaces). Given two ISLTS, M and H, and
a set X ⊂ (AM ∪ AH), we say that M and H are equivalent modulo “X” for a certain relation
R if Eliminate(X,M) and Eliminate(X,H) are equivalent for R.

Each action x ∈ X has the form l(c1, ..., cm) where l ∈ L, m ≥ 0, and ∀i ∈ [1..m] , ci ∈ C,
allowing the action x to carry a list of components present on the UI after the execution of the
action. In this way, some UI interaction capabilities together with the resulted appearance are
left out of the analysis.

To show that two UI models are equivalent modulo “X”, we also consider strong and
branching bisimulation relations. The elimination abstraction technique is necessarily used and
the generalization/omission abstractions can be used or not.

6.5.4 Non-Equivalent User Interfaces

There are cases in which two UIs present a large number of divergences, requiring too much
abstraction techniques to demonstrate their equivalence. In this case, the UIs are said non-
equivalents. At the present time, decide whether or not too much abstraction techniques have
been used requires a human intuition. Objective metrics to define thresholds under which the
abstraction techniques can be used (without compromising the usefulness of the results) may be
a future work of this thesis.

6.5.5 Inclusion of User Interfaces

Two UIs can still relate to each other in another way: one can include the other. For instance,
in a control room, users have at their disposal UIs displayed on PCs to monitor the reactor.

6.6. APPLICATION OF THE APPROACH 151

Once a UI highlights an anomaly in a reactor parameter, mobile users (provided with a tablet
containing only part of the PC-version UI) are charged to perform a maintenance in the proper
place and can observe the system reaction on the tablet.

Definition 7 (Inclusion of user interfaces). Given two ISLTS M and H, if a pre-order
relation R exists between the states of M and H, then M and H are included one in the other
with respect to R.

Intuitively, it means that a given user interface U1 contains at least all interaction capabilities
(and the appearance) of another user interface U2.

The pre-orders corresponding to the equivalence relations used to show equivalence between
two LTS are used to show their inclusion (i.e., strong, branching, etc.). For instance, a pre-order
of strong bisimulation is defined as follows [Park 1981]: An LTS M is included in another LTS
H if there exists a relation R ⊆ QM × QH between the states of M and H such that:

1. The initial states of M and H are related by R;

2. If R(m, h) and m
a
−→ m′, then there exists a state h′ such that h

a
−→ h′ and R(m′, h′).

Similarly to equivalence relations, pre-order relations also concern LTS states and actions.
Thus, the UI interaction capabilities and appearance are considered in the analysis: given the
form of an action in an ISLTS (i.e., l(c0, ..., cm) where l ∈ L, m ≥ 0 and ∀i ∈ [1..m] ci ∈ C),
actions are taken into account with the components present on the UI after the execution of the
action.

Figure 111 illustrates an inclusion between two ISLTS. H ≤ M intuitively means that M

can do everything that H can do, i.e., M includes H.

������

��

���

������
��

���

��

��

��

��

��

��

��

��

�	�

�	�

�	�

�	

Figure 111: Example of an inclusion relation

The generalization, omission and elimination abstractions can be used to show that one UI
model includes another one.

6.6 Application of the Approach

This section illustrates an application of the approach to the case study. We compare the UI
versions with each other in several ways (Figure 112), and we can show two equivalent UIs,

152 CHAPTER 6. VERIFICATION OF PLASTIC INTERACTIVE SYSTEMS

two equivalent UIs modulo one functionality and two non-equivalent UIs that are, nonetheless,
included one in the other.

Figure 112: The five UI versions are compared by means of the ISLTS comparison

6.6.1 Equivalent User Interfaces

In order to demonstrate equivalence between two UIs, consider a UI adaptation according to
the platform, to which re-molding is applied: PC (Figure 94) and Smartphone (Figure 55a).

Regarding the interaction capabilities of the user interfaces, users have two ways to interact
with the UIs: by selecting the plant state and by accessing other user interfaces using the menu.
Users can select the plant status in the same way on both UIs. This is reflected in the ISLTS of
both UI formal models by identical states, actions and transitions. The menu, though, is made
available in distinct ways: on the PC version the menu is always visible and on the Smartphone
it is accessible by a button on the UI top-left corner. Due to these differences on the UIs,
the corresponding ISLTS are different. This is illustrated in Figure 113, in which the ISLTS

fragments represent part of the hierarchical menu. Each transition of these ISLTS fragments
represents the action of choosing the corresponding menu and sub-menu options. In this case,
“open menu” is an example of τ action: it is a user action that does not have an impact on the
available menu options: they are always the same. We use omission abstraction to ignore the
“open menu” action in the analysis, as if the menu was always visible on the Smartphone UI.

Concerning the UI appearance, both signals and parameters are displayed in the same zones.
For this analysis we deliberately neglect the re-molding in the parameter widgets. We focus on
the way both UIs display failures: on the Smartphone only the reactor parameters and signals
with some failure are displayed, while on the PC all items are always displayed, even non-failure
ones. Figure 114 illustrates such differences in an ISLTS fragment. Both frames on top of the

6.6. APPLICATION OF THE APPROACH 153

��������	
��

������
���	
����

���	�

�������

�������������
����	�

���

���
���

��� ���

������
���	
����

���	�
�������

�������������

���

���
���

���
���

�����������

����	�

�

Figure 113: ISLTS fragments of PC and Smartphone UIs

figure represent at a given moment the display of reactor parameters on the UI. While on the PC
ISLTS this transition is labeled with an action containing the whole list of reactor parameters,
the Smartphone ISLTS contains only the problematic parameter (i.e., “Groupe R”). In this case,
we use the generalization abstraction. Actions containing detailed information are generalized
in less detailed actions (i.e., the bottom frames in Figure 114, with the action renamed into
“Failure in x”).

Figure 114: Generalization in an ISLTS - case 1

Using the generalization and omission abstractions, together with branching bisimulation
relation, the PC UI model and the Smartphone UI model are equivalent.

6.6.2 Equivalent Modulo the Breadcrumb Trail User Interfaces

We demonstrate now two equivalent UIs modulo a particular functionality. Consider a UI
adaptation according to the user expertise, to which re-molding is applied: training mode
(Figure 56a) and expert mode (Figure 56b).

Regarding the appearance, there are several differences between both UIs (detailed in
Section 3.4.2, page 78). We use generalization to represent differences n.2, 3 and 4 in Figure 56a.

154 CHAPTER 6. VERIFICATION OF PLASTIC INTERACTIVE SYSTEMS

Consider, for instance, the difference n.3: non-failure signal symbols have a disabled appearance
in the training mode. Figure 115 illustrates the representation in an ISLTS: in training mode (i.e.,
the top-left frame), once a given signal is in non-failure status (e.g., Reactivity – “Reactivité”),
the corresponding symbols are displayed with a disabled appearance (i.e., “disabled_sig”);
in expert mode (i.e., the top-right frame), no symbols are displayed beside the signal (i.e.,
“empty”). Using the generalization abstraction, in both ISLTS these actions are generalized into
“default_symbol” label).

Figure 115: Generalization in an ISLTS - case 2

Concerning the UIs interaction capabilities, the training-mode UI contains one additional
navigation aid: a breadcrumb trail (i.e., the difference n. 1 in Figure 56a). We set the equivalence
checking to be done disregarding this feature. We use elimination abstraction (Figure 116) to
search (in the ISLTS) actions corresponding to the breadcrumb trail (i.e., the pattern bct_).
Once a match occurs, all the successor states (and transitions) are eliminated in cascade from
the ISLTS.

��������	
���������	
�

������
���	
����

���	�
���������	

���

���
���

�
��������
���	�

�
��������
���	�

���

�
��������
��

�

�

������
���	
����

���	�

���

���

�
��������
���	�

���

�
��������
��

�

Figure 116: Elimination in an ISLTS

Using generalization abstraction (for the items n.2, 3, and 4 of Figure 56a) and elimination
abstraction (for the item n.1), together with strong bisimulation relation, the training and
expert UI models are equivalent modulo the breadcrumb trail.

6.6. APPLICATION OF THE APPROACH 155

6.6.3 Non-equivalent User Interfaces and Inclusion

We demonstrate now two non-equivalent UIs. Consider a UI adaptation according to the target
platform, to which redistribution is applied: PC (Figure 94) and Tablet version (Figure 55b).

Regarding the UI interaction capabilities, the functionalities related to user interactions are
available only on the PC version (i.e., the menu and the plant status selection). With respect to
their appearance, the UIs also differ from each other: the tablet version does not contain the
plant status, the reactor signals and the menu zones. The divergences of both UIs are too large
to consider the use of elimination abstraction. Indeed, the tablet-version UI is equivalent to the
PC version modulo [“plant-status-related actions”, “signals-related action” and “menu-related
actions”]. If we abstract all these actions away, many aspects are overlooked. In this case,
applying no abstraction techniques, both UI models are non-equivalent, because the user can
perform several actions on the PC version which are not available on the tablet version.

However, we can show that the PC version contains at least all functionalities (regarding
the interaction capabilities and appearance) of the tablet version (Figure 117). The PC-version
UI model included the tablet-version UI model (i.e., Tablet_model ≤ PC_model).

Figure 117: The PC version includes the Tablet version

6.6.4 Validation in the Case Study

An Lnt formal model is manually written for the five contexts of use (i.e., PC, Smartphone,
Tablet, Training and Expert Mode). The case study shows that the approach scales well. It
was initially designed for one context of use (i.e., PC), later extended to five contexts of use.
Each formal model contains three UIs. Each UI model describes about 20 curves and symbols
(UI appearance) and 14 user interactions (UI interaction capabilities), generating significantly
large ISLTS for the analysis in a reasonable time (maximum 3h). The formal models include
also part of the functional core, allowing the simulation of several reactor parameters anomalies.
The Cadp toolbox is used to support the formal verification process. Table 14 summarizes the
number of lines of the Lnt specifications, the ISLTS size, and the ISLTS generation time. For
larger case studies, Cadp provides means (e.g., compositional verification, on-the-fly verification,
etc.) to handle state-space explosion, a concern all model checkers have to handle. Model
checkers address it by various manners, but human intuition is always needed in the process.

156 CHAPTER 6. VERIFICATION OF PLASTIC INTERACTIVE SYSTEMS

Table 14: Summary of the formal models in the different contexts of use

Context of use # loc # ISLTS states # transitions Time

PC 2462 33,053,947 189,539,691 1,5H
Smartphone 2558 41,944,680 208,554,613 3H
Tablet 1686 4438 5547 2s
Training mode 2579 160,681,601 946,293,368 1,5H
Expert mode 2410 16,678,151 76,202,201 10min

In order to illustrate how the sets C of UI components, L of action names, and A of
actions are coded in Lnt, consider the example described in Figure 107 (page 146). The
set C is domain-dependent, i.e., is composed by subsets detailing the components of the UI
according to the domain. In this example, an element c ∈ C has the form p(r, s), where
p ∈ P , P = {Pth_moy, GroupeR} is a subset of reactor parameter names, r ∈ N, s ∈ S, and
S = {normal, fail} is a subset of reactor parameter status. In addition, in this example the
set L is defined as L = {ShowParams}. Finally, each action a ∈ A has the form l(c1, ..., cm)
where l ∈ L, m ≥ 0, and ∀i ∈ [1..m] , ci ∈ C. Figure 118 illustrates how these sets are coded
in Lnt: by means of types. The set P is defined as a type called TParamName containing the
reactor parameter names. Similarly, the set S is defined as a type called TStatus containing
the reactor parameter status. The set C is defined as a type called TParam containing a list of
parameters with their name, value, and status, and finally the set A is defined as a type called
TShowParams containing an action name and a list of UI components of the set C.

Figure 118: ISLTS in LNT code

The abstract techniques are implemented using Svl. While Lnt was chosen mainly for its
capacity to facilitate modeling, the choice of Svl considerably strengths the approach. Svl

offers means to describing operations over LTS, which can hardly be done by hand in large
LTS. The generalization abstraction is implemented using the rename Svl operator, omission
is implemented using the hide operator and elimination using the cut operator, all together

6.6. APPLICATION OF THE APPROACH 157

Table 15: Summary of the comparisons

Models # O # G # E Result Comp. time

PC x Smartphone 1 22 0 Equivalent 7min

Training x Expert 0 6 1 Equiv\breadcrumb 19min

PC x Tablet 0 0 0 Tablet included in PC 4s

with regular expressions.

Figure 119: Example of a Svl script

The Svl scripts isolate the original formal models from the abstractions. These scripts trans-
form the ISLTS by applying the abstractions, before performing the equivalence verification. Svl

scripts implement the three cases described in Section 6.6, page 151. Figure 119 illustrates an
example of generalization in Svl, representing the example illustrated in Figure 114. Given the
LTS_PC.bcg file (line 4), this script renames all transitions labeled with “SHOW_PARAMS_[anyUI]

([paramName], FAIL)” into “SHOW_PARAMS (FAILURE in [paramName])” (lines 2-3), gen-
erating a new LTS with the renamed transitions (line 1). All SVL scripts are provided in
Appendix D.

Once the ISLTS are transformed, they are compared with each other. Table 15 illustrates the
summary of the comparisons, where O indicates the number of omissions done, G the number of
generalizations and E the number of eliminations. The comparison of the ISLTS is done using
either the BCG_CMP2 or Bisimulator3 [Mateescu & Oudot 2008] tools, provided by Cadp.
These tools check several equivalence relations between two LTS and generate a counter example
if they are not equivalent.

6.6.5 Discussion

The abstraction techniques introduced in this chapter support UI model comparison. The
principle is to first create abstract models of the UIs, used afterwards to perform equivalence
checking. Figure 120 compares the abstraction techniques applied to a UI fragment that
considers only appearance. Concerning the level of abstraction, the generalization technique is
the one that abstracts the least, by mapping components into generic representations. Omission
abstracts more, by obfuscating aspects in the model, and elimination is the most significant
abstraction, that eliminates UI aspects of the model.

Figure 121 illustrates the different levels of equivalence between two UI models. The strongest
equivalence relation two UI models can have is when, with none of these abstractions, they are

2http://cadp.inria.fr/man/bcg_cmp.html
3http://cadp.inria.fr/man/bisimulator.html

158 CHAPTER 6. VERIFICATION OF PLASTIC INTERACTIVE SYSTEMS

���������
������	�
��
��������

��
�
����������������� ������	������������

�������
���
��

��
��
��

��
�
���
��

������	�
�������

Figure 120: Summary of the abstraction techniques

equivalent. This is achieved only when two UIs are almost identical, which is possible, but rare.
In practice, since plastic UIs have to cope with several changes in the context of use, numerous
divergences are present within the UI versions. The challenge is to verify equivalence between
the UI models in spite of these divergences. Abstraction techniques provide a means to do that,
and weaker equivalence relations between the models can be shown. The more abstractions are
applied to the models, the weaker the equivalence between the models becomes. Transversally,
the inclusion between two UIs can be verified at any level of abstraction.

Once the appearance of two UIs diverges, generalization is the first technique to be considered.
By generalizing the representation of UI components in the models, this technique permits a
weaker equivalence between models to be shown.

Omission and elimination are more likely to be used when the UI interaction capabilities
diverge. First, by omitting in the UI models interaction capabilities that are punctual, such
as the opening of a menu, or the opening of a combobox, and that do not have a considerable
impact in the functionalities of the UIs. Diversely, elimination is recommended for complex
interaction capabilities. In particular, UI functionalities that depend on the functional core,
that load information on the UI, or that enable other UI functionalities. Once such interaction
capabilities are present in one UI and absent in the other, elimination provides a means to
verifying the equivalence between both UI models disregarding (modulo) that.

However, abstraction techniques should be carefully used. The abstraction should never
exceed a threshold (manually identified) over which the analysis is no longer interesting. One
should keep in mind that things that are abstracted away are left out of analysis, and interesting
situations may be overlooked when the system models become a black box (Figure 122).

6.7. SUMMARY 159

Figure 121: Different levels of equivalence between UI models

Figure 122: The abstraction problem

6.7 Summary

This chapter introduces plasticity into our global approach to verifying interactive systems. The
formal model of the case study described in Chapter 3 is subject to several improvements to
include plasticity. Specially, two new modules are included in the formal model, to describe two

160 CHAPTER 6. VERIFICATION OF PLASTIC INTERACTIVE SYSTEMS

different UI zones: parameters and signals.
We describe and compare three propositions to verify plasticity: the verification of properties

by means of model checking either over the different UI versions or over the plasticity engine,
and a technique to compare formal models by means of equivalence checking. We give the
rationale of the chosen proposition, which is then detailed. It consists in comparing different
versions of user interfaces.

Two UI aspects are considered in the comparison: the interaction capabilities and the
appearance. The former concerns the ways users can interact with the UI and, conversely, how
the UI reacts to this interaction. The latter concerns the elements present on the UI (where they
are presented, in which color, etc.). We provide a means to representing both UI interaction
capabilities and appearance in one single model derived from LTS, called ISLTS (Interactive
System LTS).

Our approach indicates to which extent two UIs have the same interaction capabilities and
appearance. Four levels of equivalence are proposed: equivalent UIs, equivalent modulo “X” UIs
(which can ignore some UI divergences), non-equivalent UIs, and one UI included in another one
(meaning that one UI contains at least all interaction capabilities and appearance of another
one). When the UIs are not equivalent, the UI divergences are listed, which is a significant
contribution of this work. Such divergences can be bypassed, to reason over the UIs disregarding
them.

The formal framework supporting the technique presented in this chapter is a major contri-
bution of this thesis. It moves towards the application of formal methods to the verification of
interactive system, by covering plasticity.

Chapter 7

Validation of the Use of Formal Verification for

Interactive Systems

Contents

7.1 Goals . 161

7.2 The SRI Display System . 162

7.3 Formal Model . 164

7.4 Verification Approach . 167

7.5 Properties . 168

7.6 Results and Discussion . 169

7.7 Summary . 172

7.1 Goals

In our approach, the Lnt formal specifications are manually written. Writing formal specifi-
cations is a useful exercise by itself. It helps one to familiarize with the formal specification
languages and tools. However, create models by hand adds a certain overhead to the process.
This is lightened by the fact that the formal specification languages we use are designed to
facilitate formal modeling. This comes mainly from the fact that Lnt is an imperative language,
which facilitates learning for programmers accustomed to classic programming languages. Such
manual modeling requires knowledge not only in the system to be modeled, but also in the lan-
guages, tools, and formal methods to be applied. Thus, acquired experience in formal modeling
is a non-negligible skill, and may impact on future applications of the proposed verification
approach.

In this chapter, we aim at validating two hypotheses: whether the guidelines we proposed
in Section 5.2.7 (page 105) facilitates the formal modeling of interactive systems, and whether
the experience acquired in previous applications of formal methods facilitates further work.
To investigate these hypotheses, we apply our verification approach to another case study
in the nuclear-plant domain, developed in the Connexion Project by two industrial partners:
Rolls-Royce Civil Nuclear1 and Esterel Technologies2. This case study consist of a specific
display system called SRI (Système de Réfrigération Intermédiaire) [Connexion 2014], used in
nuclear-plant control rooms to display acquired and synthesized data. The system analyzed
in this case study does not have plastic user interfaces. The functional core is not covered by
the modeling, thus, neither it is the dialog controller. We analyze aspects of the system user

1http://www.rolls-royce.com/customers/nuclear.aspx
2http://www.esterel-technologies.com/

161

162 CHAPTER 7. VALIDATION OF THE USE OF FORMAL VERIFICATION

interfaces and the user behavior. In the sequel, we describe this case study, the modeling of the
system by our approach, the verification that can be performed thanks to the model checking
part of our global approach, and the flaw that is pointed out on the case study thanks to our
approach.

7.2 The SRI Display System

A displayer is a reduce-sized equipment (i.e., around 20 x 15 cm) which embeds a programmable
software. A displayer allows users to interact with a display system, it is constrained to provide
certain functions of the display system, and it is not connected to any external system. A
display system of a computerized control room typically exhibits acquired data, treated data
(i.e., acquired data after numerous treatments), and data accumulated over time.

A displayer has four modes (Figure 123). When the displayer is turned off, it is considered
to be in the stopped mode. Once it is turned on, it transits to the initializing mode, from
which it can transit to the functional mode if the initialization ends well, or to the frozen mode
if some problem occurs. From the functional mode, it can also transit to the frozen mode if
some problem occurs. Finally, from any mode it can be turned off, transiting, thus, back to
the stopped mode (except if it is already in the stopped mode). The user can interact with the
displayer only when it is in the functional mode.

������

����	
����

�
	
��
�
���	�����

�����
	���

�����
	����

�����
	����

�����
	����

�
	
��
��	
���
���������

��������
��	��	��

����������	��	��

Figure 123: Displayer modes

This case study concerns part of a display system called SRI (Système de Réfrigération
Intermédiaire), the main UI of which is illustrated in Figure 124. Such display system structures
its user interface into two zones (Figure 125): a header and a main zone.

In the header, the following information is displayed and functionalities are made available:

1. Life sign informs whether the displayer is functional or not;

2. Previous UI permits the UI previously displayed to be re-accessed;

3. Main UI provides a shortcut to the Main UI of the system;

7.2. THE SRI DISPLAY SYSTEM 163

Figure 124: Main UI of the SRI system

4. SRI mimics UI provides a shortcut to the SRI mimics UI;

5. Print prints the UI currently displayed;

6. Date displays the current date;

7. Time displays the current time;

8. Unit ID displays the ID of the nuclear-plant unit;

9. UI name displays the name of the UI currently displayed; and

10. Status indicates the status of the displayer. Such indicator is assigned to a flashing sign to
indicate a problem in the displayer, or it is assigned to a fixed sign otherwise. For each
case, the status indicator has a different color.

������

����	
���
����

��������	�� ����	�� ���	������	�� ����

���	�� ��	����

����	���� �������

Figure 125: Organization of the UI zones and data

In the main zone, six UIs can be displayed:

1. Main UI (Figure 124) contains five buttons allowing one to access the other UIs;

164 CHAPTER 7. VALIDATION OF THE USE OF FORMAL VERIFICATION

2. SRI mimics displays the water circuit of the SRI system, and the departures and arrivals
of condenser circuits of the SEN elementary system;

3. SRI regulation curves displays several curves representing the historical values of several
SRI components;

4. SRI status displays the general status of the SRI system;

5. Status of SRI actuators displays the current status of several actuators of the SRI system;
and

6. Settings permits the configuration of several parameters, which are needed to the displayer
auto stimulation.

A displayer can also be used in simulation mode, in which the acquisition of data is simulated
in the displayer by auto stimulation. In case of the SRI system, such auto stimulation is
configurable by the Settings user interface (Figure 126).

Figure 126: The Settings UI of the SRI system

7.3 Formal Model

The guidance we extracted from the modeling of the EDF case study was relevant to reduce
the modeling time of this case study. The following guideline was proposed in Section 5.2.7
(page 105): (1) follow one architectural model (e.g., ARCH, PAC, etc.) to structure the model;
(2) define the modules that will form the architectural model components, and how these
modules communicate; (3) to define the UI modules, identify the UI zones with which the user
can interact; (4) folding/unfolding of menus can be modeled by a set of rules which express
when each menu option is available; (5) to model the functional core, pay attention to the

7.3. FORMAL MODEL 165

aspects that will be subject to verification afterwards; and finally (6) to model users, identify all
actions that users can execute on the user interfaces.

To model this case study, the guidelines n. 2, 3, and 6 are reapplied: the formal model is
structured before it is implemented (Figure 127); a module is created for each UI zone (i.e.,
header and main zone modules); and the user actions are the basis to model the user module.
The criteria n. 1, 4, and 5 are not applicable due to the size of this case study: it neither covers
the functional core, nor has a menu.

The structure of the formal model is composed of four modules:

1. displayer modes models the four modes in which the displayer can be, and the rules to
transit from one mode to another;

2. header includes the functionalities related to user interactions present in the header of the
UI, i.e., Previous UI, Main UI, SRI mimics UI and Print;

3. main zone models the navigation between the six UIs of the system; and

4. user models some of the possible user interactions with the system.

Figure 127: Formal model structure of the SRI system

These modules communicate with each other in the following way: initially, the displayer
is turned off, and the only possible action is to turn it on, which is done by a communication
between the user and the displayer modes modules (1). The displayer can also have its mode
changed by other sources besides the user (2). For instance, when the user turns the displayer
on, it changes to the initializing mode, and after a while, it changes by itself to the functional
mode, with no intervention from the user. The displayer mode module sends its current mode
to the header and the main zone modules (3), since the user can interact with those zones
depending on the displayer mode. The user interacts with these zones by choosing functionalities
of the header (4), or by choosing the UI she/he wants to access in the main zone (5). The
header sends to the user the printed UI (6), in case the user selects the print functionality of
the header. The main zone sends to the user the UI she/he chose (7). Finally, at each selection

166 CHAPTER 7. VALIDATION OF THE USE OF FORMAL VERIFICATION

of the user, the main zone informs the header the last UI chosen (8), (required to the Previous
UI functionality of the header), and the header sends to the main zone the UI the user selected
(9), in case she/he interacts with the Previous UI, Main UI, or SRI mimics UI functionalities of
the header. This formal model is specified using the Lnt language. Table 16 gives figures about
the formal model.

Table 16: Summary of the formal model of the SRI system

File Description # loc

1 displayer modes rules to change among four modes 30
2 header selection among four functionalities 44
3 main zone navigation between six UIs 59
4 user interactions with the header, the main

zone, and the displayer mode
58

5 main entry point of execution of the model 59
6 library common functions 54

TOTAL 304

Table 17 shows the size of the LTS generated from the Lnt formal model, using Cadp. This
LTS is used for the verification of properties.

Table 17: Size of the LTS of the SRI formal model

states # transitions

1469 2868

Figure 128 illustrates the functions users can perform by interacting with the system. With
a “check” symbol we identify those that are covered by the formal model of the system, and
with a “not OK” symbol those that are not.

The following functionalities of the display system are covered by the modeling:

1. to turn on the displayer;

2. to turn off the displayer;

3. to display the Settings UI;

4. to display the Main UI. This UI is fully modeled, since it gives access to the other UIs;

5. to display the SRI regulation curves UI;

6. to display the SRI mimics UI;

7. to display the Status of SRI actuators UI;

8. to display the SRI status UI; and

9. to print the UI currently displayed.

And the following functionalities/aspects of the display system are not covered by the modeling:

7.4. VERIFICATION APPROACH 167

���������
	
���������

���������
	
����������

�
�����
������
��������

���
�����

��
����
��

����
��
�	�
�
�������

������

����
����
��
������
���

�
�����
���
�����

�
�����
�� ���
�
������

�
�����
�� ��������
���
���!������

�
�����
������������ ��
�������������

�
�����
�� ������������

"�
�����

�	�
�
�������

#�������

�
���	��

�
���	��

�
���	��

Figure 128: Functionalities of the displayer. In green, the ones covered by the formal model. In
red, otherwise

1. to set the displayer to auto stimulation operation mode;

2. to manage the user profiles. Two profiles are available in the system: operator and
administrator, but we bypass such information in the model;

3. to configure other settings of the displayer, such as date and time (Figure 126);

4. the details of five UIs of the SRI system, i.e., SRI mimics, SRI regulation curves, SRI
status, Status of SRI actuators, and Settings;

5. the information that is displayed in the header of the UIs (e.g., date and time);

6. some complementary functionalities of the displayer, such as auto test and auto stimulation
of variables; and

7. all the visual aspects of the user interfaces are not modeled either (e.g., the curves, mimics,
and graphical objects).

7.4 Verification Approach

In Chapter 4 we describe our global approach to verifying interactive systems (Figure 63). In the
SRI case study, we apply the model checking part of the approach, which consists in verifying a
set of properties over a formal model of the system. In Chapter 2 we argue that one way to

168 CHAPTER 7. VALIDATION OF THE USE OF FORMAL VERIFICATION

verify systems with respect to their specification is by extracting properties from the requirement
document of the system, and to use model checking to verify whether the system is specified
according to the specifications or not. We follow this strategy to identify the required properties
in this case study. Figure 129 illustrates a derivation of our model checking-based approach, in
which the source of the identified properties is the requirement document.

Figure 129: Verification approach of the SRI system

All steps of our model checking approach are found here: the formal modeling of the system
using the Lnt language, the transformation into an LTS representation, the specification of
properties using the MCL language, and the verification of such properties over the model using
the Cadp toolbox. The specificity here is the requirement document: besides being the basis
to create the real system, it is also from this document that the properties to be verified are
extracted.

7.5 Properties

The SRI system documentation contains around 285 requirements to specify, among others, the
appearance, interaction capabilities, and navigation of the user interfaces. We formalized some
requirements related to UI interaction capabilities and navigation. From the documentation, 48
requirements are extracted and expressed as MCL properties. Usability and functional properties
are identified. These requirements are concealed for confidentiality reasons. We illustrate an
example of requirement that is satisfied by the system model and one requirement that is not.
Consider the following requirement:

Property 1): “[A23_1_FCT_MISE_HORS_TENSION_LIEN] Turning off the displayer
should make unavailable all other functions of the displayer.”

We express this requirement in MCL as a safety3 property in the following way:

3(cf. the definition of safety properties in Section 5.2.8, page 106)

7.6. RESULTS AND DISCUSSION 169

[true∗ .
′′OP_ACT_MODE_DISPLAY ER !TURN_IT_OFF ′′

(′.∗ACT_.∗′)∗ .
′′OP_ACT_MODE_DISPLAY ER !TURN_IT_ON ′′

] false

This formula expresses that we want to avoid the following sequence:
starting from any state,
the displayer is turned off,
then actions can be performed on the displayer ...
... before the displayer is turned on again.

Another example of requirement follows:

Property 2): “[A23_1_VUE_ENCHAINEMENT] The UI must allow at least the navigation
of UIs of Figure 130:”

Figure 130: Graph of UI navigation of the SRI system

In Figure 131, the MCL property that expresses this graph of UI navigation describes the
UIs that can be accessed from which UI of the system, either by the five buttons available in
the Main UI or by the buttons available in the header of the system (Figure 124).

7.6 Results and Discussion

The property 1 is verified over the system model, which indicates that the system follows this
requirement as expected. The property 2, however, is not satisfied over the system model. The
UI navigation graph illustrated in Figure 130 requires a direct access between the Settings UI
and the SRI Status UI and vice versa. We express such direct access is the MCL property. By
analyzing the counter-example produced by the formal verification (Figure 132), we observe
that this direct access is not possible in the model of the system. Abstracting the internal
actions of the formal model needed to the exchange of information between the modules, the

170 CHAPTER 7. VALIDATION OF THE USE OF FORMAL VERIFICATION

Figure 131: A property of the SRI system in MCL

counter-example gives the following sequence of actions that leads to a state where the property
is false: from the initial state (1), the displayer is turned on (2), it transits to the initializing
mode (3), and then to the functional mode (4), the Main UI is displayed (7), from which the
button giving access to Settings UI is clicked (8), and this UI is displayed (10). At this state,
there is no action allowing the SRI Status UI to be accessed, thus, the property is not satisfied.

Figure 132: Counter-example of the non-satisfied property (in French)

Looking at the real system, we can also observe the flaw pointed by the formal verification of
the system model. A screenshot of Settings UI in Figure 133 shows that indeed it is not possible
to directly access the SRI Status UI. The UI contains several buttons, but none of them provide
direct access to the aforementioned UI.

A further analysis with the designers of the system indicates that the Settings UI is not
supposed to provide direct access to SRI Status UI, and that the joint arrows of the Figure 130
of the requirement document are ambiguous: they suggest several UI navigations by direct
accesses that are not implemented in the real system.

In this case study, 48 requirements (among the 285 requirements of the SRI documentation)

7.6. RESULTS AND DISCUSSION 171

Figure 133: The Settings UI does not provide direct access to the SRI Status UI

of the system are formalized and verified. All pass, except the one about UI navigation.
This case study has shown that formal methods can be used to verify whether or not a

system is implemented according to the requirement documents, helping to find system flaws
originated from ambiguous and imprecise requirements. The benefit is twofold: it helps to find
system flaws, and to improve the precision of the requirement document.

The goals of this case study were: to verify whether the techniques proposed in this thesis and
the experience acquired in previous applications of formal methods facilitate further applications
of formal methods to industrial systems. Following the guidance we extracted from the modeling
of the EDF case study (cf. Section 5.2.7 on page 105), the modeling of the SRI system was
considerably less time-consuming and effort-consuming than the main case study of this thesis
described in Chapter 3. Together, the modeling of the system in Lnt and the formalization of
properties in MCL took one week of work. Some properties are similar to each other, so the
usage of MCL safety, liveness, and fairness patterns of properties4 helped the development to
be faster.

This case study corroborates the usefulness of our approach in the verification of systems
with different scales: it can also be applied to smaller systems such as the SRI system and it
still provides interesting analyses. It also shows that, even when the formal model does not

4(cf. Section 5.2.8 on page 106)

172 CHAPTER 7. VALIDATION OF THE USE OF FORMAL VERIFICATION

cover the whole system, interesting results can still be obtained using formal methods.
Furthermore, the support of the approach in the verification of systems with respect to the

requirements is an important contribution in the context of critical systems. This kind of systems
are constrained to numerous and complex requirements, which are sometimes ambiguous and
imprecise. The rigorousness provided by formal methods to verify these requirements improves
system quality, and the requirements themselves.

7.7 Summary

To investigate the initial hypotheses of this chapter (i.e., whether the guidelines proposed in
Section 5.2.7, page 105, and acquired experience in formal methods facilitate further work),
we apply our verification approach to another case study in the nuclear-plant domain: an
elementary display system called SRI (Système de Réfrigération Intermédiaire). Only part of
our global verification approach is used: the property-verification part. Specifically, this part of
the approach is used to verify whether the system is implemented according to its requirement
document.

In this case study, 48 (among 285) requirements are formalized as properties. The property
verification over the system model is performed using the Cadp toolbox, and the properties are
all satisfied except one. This permitted a flaw to be identified in the system documentation: the
navigation between the UIs of the real system is not implemented as specified in the requirement
document.

This case study lead us to conclude that both initial hypotheses are valid. Our guidelines
facilitated the formal modeling of this case study, and the time and effort required to the formal
modeling of this case study was considerably inferior to the main case study of this thesis. The
acquired experience not only in the tools that are used, but also in the formal modeling of
interactive systems in general was of relevant help.

Chapter 8

Conclusion and Perspectives

Contents

8.1 Summary of Contributions . 173

8.2 Perspectives . 175

8.2.1 Short-term Perspectives . 176

8.2.2 Mid-term Perspectives . 176

8.2.3 Long-term Perspectives . 177

The challenge of this thesis was to verify safety-critical interactive systems with plastic user
interfaces (UIs). Our main contributions are reminded in the next subsection.

8.1 Summary of Contributions

In order to answer the initial research question, which was “how to improve quality of safety-
critical interactive systems with plastic user interfaces, in a way which permits a rigorous
verification of the system and is scalable for industrial applications?”, we centered our work
around five main axes: (i) a global approach to verifying interactive systems; (ii) the application
of the approach to the nuclear-plant domain; (iii) the validation of the ADACS-NTM part
implementing the EDF system; (iv) the formalization of a technique to verify plastic user
interfaces; and (v) the demonstration that our approach, together with a set of guidelines and
the experience gained in formal methods, reduce the time and effort spent in new case studies.

Our first contribution is a global verification approach that integrates two formal techniques
to assess the quality of interactive systems: model checking, for the verification of desired
properties, and equivalence checking, for the verification of consistency between different versions
of a system. This global approach is generic: it allows non-plastic interactive systems to be
verified by the model-checking part, and it moves towards the verification of systems, by covering
also the verification of plastic interactive systems using equivalence checking. Our approach
allows aspects of the system such as the user interfaces, the functional core, and the users’
behavior to be analyzed. Besides, our approach allows usability and functional properties of the
interactive systems to be verified. In the context of safety-critical systems, this is particularly
relevant, in order to demonstrate that the system guarantees ergonomic properties and safety
requirements. The global approach is supported by powerful and mature tools and languages
(the Cadp toolbox, the Lnt, the MCL language, and the Svl languages).

Our second contribution is the demonstration of the applicability of our approach to safety-
critical systems, specifically, to the nuclear power plant domain. For this, we precisely described
the first part of the global approach: the use of model checking for the verification of desired
properties. A system prototyped by EDF in the context of the Connexion Project has been
studied. This system aims at providing a global overview of a reactor in a nuclear power

173

174 CHAPTER 8. CONCLUSION AND PERSPECTIVES

plant. We modeled this system, and a set of usability and functional properties have been
verified. Several insights on how to formally model interactive systems have been gained from
the modeling of this case study (cf. Section 5.2.7 on page 105), and can be reused in the future.
This work tackles the specificities of nuclear plants identified in Section 1.5, page 7: (1) it allows
exhaustive reasoning of the a system model; (2) constraints in the user interfaces can be verified;
(3) the variety of user profiles can be taken into account (by our proposition to verify plasticity);
and finally (4) safety requirements of such systems can be verified.

Our third contribution is an application of our approach to validate part of ADACS-NTM,
a system integrating all functions of a nuclear control room. Specifically, we analyzed part
of ADACS-NTM corresponding to the EDF system. We used our approach to analyze several
ADACS-NTM traces, so as to give clues about whether the system implements the specifications
correctly or not. This analysis permitted several improvements on the formal model (c.f.
Subsection 5.4.1 on page 114) and on the industrial system (cf. Subsection 5.4.2 on page 116).
Besides, a parser allowing ADACS-NTM to be connected to the formal model has been developed,
which can inspire future connections of formal specifications to other industrial systems. This
study has shown that a coupling between the formal model and an industrial system can be very
fruitful. First, such connection can be achieved by several means. In Section 5.3.2 (page 110)
we proposed three means, namely analysis of traces, test case generation and co-simulation.
This illustrates that the use of formal models goes beyond the verification of properties. This
is relevant in the industrial context, in which few cases of use of formal methods have been
reported [Miller 2009]. Secondly, in order to connect to a real system, the formal model should
describe the concerned parts of the system in the same way they were implemented in the
system. Such requirement forces a better understanding of the modeled system, which can only
have positive effects in both the model and the implementation.

Our fourth contribution consists of a fine-grained description of the second part of our
global approach: the verification of consistency between different versions of a system aiming
at verifying plastic interactive systems. We use equivalence checking to compare the models
of multiple versions of a plastic user interface (UI) with each other, in the light of different
behavioral equivalence and pre-order relations. Two UI aspects are covered by the analysis:
the interaction capabilities and the appearance. This coverage suits well the problematic of
plastic user interfaces, in which the UI behavior and appearance adapt according to changes
in the context of use, while preserving usability [Thevenin & Coutaz 1999]. We proposed a
formal framework in which four levels of equivalence between UIs are provided: equivalent UIs,
equivalent modulo “X” UIs (in which some UI functionalities are ignored), non-equivalent UIs,
and included UIs. The formalization of a variety of equivalence levels allows a wide-ranging
analysis: from UIs that are very similar to UIs that are very divergent. Besides, once two UIs
diverge too much, our approach still permits to show that one includes the other. Our approach
is applicable to any plastic UI, and it is even more legitimate in safety-critical systems, since
problems in the UIs of such systems have strong implications.

Our fifth contribution is the demonstration that our approach, together with a set of guide-
lines and the experience gained in formal methods, reduces the time and effort spent in new case
studies. This has been confirmed by the application of our approach to another case study in
the Connexion Project, named SRI system (“Système de Réfrigération Intermédiaire”) [Connex-
ion 2014] (cf. Chapter 7). The insights identified in the modeling of the EDF system guided the
modeling of the SRI system, which reduced its modeling time. In this case study, our approach
has been used to verify whether the SRI system was specified according to the requirement

8.2. PERSPECTIVES 175

documents, and a flaw has been identified in the documentation. Besides, in this case study we
demonstrated the usefulness of our approach in the verification of systems with different scales:
it can also be applied to smaller system such as the SRI system and still provides interesting
results.

Table 18 places our approach with respect to five characteristics we believe a verification
approach of interactive systems should have: (i) our modeling covers aspects of the users, the
user interfaces, and the functional core of the system; (ii) we model and verify plastic UIs; (iii)
the verification covers usability and functional properties; (iv) the approach is applicable to the
nuclear plant domain; and (v) the approach may scale well. The table also places our approach
with respect to the different approaches presented in Chapter 2.

Further case studies are needed, though, to confirm the scalability of the approach. The
three case studies described in this thesis (i.e., the modeling and verification of the EDF system,
the analysis of the ADACS-NTM industrial system, and the modeling and verification of part of
the SRI system) are relatively representative, but they were not fully verified. They demonstrate,
though, the feasibility of the approach. Besides, together with the powerful tool-support of the
approach, these case studies demonstrate its potential scalability.

A limitation of the approach is that, so far, all usability properties that have been demon-
strated are reachability properties (according to the framework of ergonomic properties proposed
in [Abowd et al. 1992]). Static properties related to the appearance of the user interfaces, for
instance, are not covered by the model-checking part of the approach (even though they are
covered by the equivalence-checking part).

Table 18: Summary and comparison with the state of the art

Authors et al.

A
b

o
w

d

P
a

t
e

r
n

o

M
a

r
k

o
p

o
u

lo
s

D
u

k
e

a
n

d
H

a
r
r
is

o
n

C
a

m
p

o
s

D
’A

u
s
b

o
u

r
g

B
u

m
b

u
li

s

P
a

la
n

q
u

e

D
ix

B
o

w
e

n
a

n
d

R
e

e
v

e
s

A
ït

-A
m

e
u

r

L
o

e
r

a
n

d
H

a
r
r
is

o
n

T
h

im
b

le
b

y

M
il

le
r

K
n

ig
h

t

J
u

n
g

B
a

u
e

r
s
fe

ld

C
h

in
n

a
p

o
n

g
s
e

D
e

g
a

n
i

R
u

s
h

b
y

C
o

m
b

é
fi

s

O
li

v
e

ir
a

1
Modeling

coverage

users

UIs

core

2 Plastic UIs

3
Kind of

properties

usability

functional

4 Nuclear-plant domain

5 Scalability

Yes No evidence No

8.2 Perspectives

Our long-term goal is to propose a complete and integrated environment for the verification
of plastic industrial interactive systems. Our contributions so far rely upon a global approach
allowing properties to be verified over the system model (which can be applied to industrial
interactive systems) and several versions of the system to be compared to each other (which can
be applied to plastic interactive system). A complete and integrated verification environment

176 CHAPTER 8. CONCLUSION AND PERSPECTIVES

would provide designers with both possibilities integrated, to better assess the quality of the
verified system. For this, the following work is needed in the short, mid, and long term.

8.2.1 Short-term Perspectives

In the short term, a number of improvements identified during the work of this thesis are
needed, to take into account aspects partially tackled or not tackled by the proposed approach.
So far, our approach allows usability and functional properties of the system to be verified,
and a few properties were identified and used as a proof of concept for our approach. Other
properties could be identified and formalized, for instance, to cover the user interface appearance.
The challenge here would be to verify the UI appearance by means of properties expressed in
temporal logics, since this formalism is mainly used to express temporal evolutions of the system.
Perhaps with the representation of the UI appearance in the ISLTS actions (cf. Section 6.5.1 on
page 144), the verification of the UI appearance by means of temporal formulas could also be
possible. Furthermore, as similar properties often have the same form, patterns of properties
specific to interactive systems could be provided, to facilitate the formalization by non-experts.

In its current state, our approach provides three abstraction techniques to support the
comparison of plastic interactive systems, namely generalization, omission and elimination.
Other abstraction techniques could be identified and formalized. A larger range of abstraction
techniques would allow new levels of equivalence to be demonstrated between two versions of a
user interface. For instance, the equivalence between two UIs could be graduated in percentage.
The challenge here would be to propose a catalog of abstraction techniques allowing that, and
to investigate further possibilities in the formal languages and tools to implement them.

Further investigation of advanced techniques provided by Cadp to support scalability is
needed, such as compositional verification [Garavel et al. 2015].

8.2.2 Mid-term Perspectives

In the mid term, a semi-automatic generation of the formal model would facilitate the modeling.
Such generation could comprise the extraction of information from other models. The main
question here is from where the formal model could be extracted. To generate a formal model
from another system artifact, such artifact should be non-ambiguous, precise, and complete
enough to describe the system user interfaces, the functional core, and the user behavior. A
semi-automatic generation could be envisioned, for instance, from CTT (Concur Task Trees) task
models [Paternò et al. 1997]. A skeleton of the formal model could be created, and afterwards
manually completed by the designers.

Further investigations could be conducted of the modeling of users’ behaviors. So far, we
cover users actions, and we simplify the modeling by considering that users will always react
as expected, and immediately, to discrepancies highlighted by the system. The model could
also cover user errors, or a non-immediate reaction from users, for instance. A more complete
modeling of the user behavior would enlarge the coverage of the integrated environment.

For the verification of plastic interactive systems, this thesis proposes three possibilities:
(i) model checking the different UI versions, (ii) model checking the plasticity engine, and
(iii) comparing the UI versions using equivalence checking. Propositions (i) and (ii) were
partially explored in this thesis and need deeper investigations. Model checking the plasticity
engine is particularly challenging. The formalization of numerous transformation rules and

8.2. PERSPECTIVES 177

their combination tend to become complex. Nonetheless, a bi-directional approach could be
envisioned: a formal model created from an existing plasticity engine, or a plasticity engine of
which the code is generated from a proven formal model. Improving propositions (i) and (ii) to
verify plasticity would provide designers with three different ways to verify plastic interactive
systems. The full formalization of the three approaches would improve the verification of
plasticity of our framework, which so far is mainly based on comparison using equivalence
checking.

In order to ease the application of our approach to industrial systems, alternatives to the
use of a formal model to verify industrial systems could be further investigated. In this thesis,
we described three propositions, namely (a) analysis of traces, (b) test case generation, and
(c) co-simulation. Similarly to plasticity verification, propositions (b) and (c) were partially
explored in this thesis and need deeper investigations. A formalization of the three approaches
would improve the verification of industrial systems in our framework, which so far is mainly
based on model checking of properties and analysis of traces. For instance, for co-simulation,
this formalization consists in a language that could serve as bridge between the formal model
and industrial systems. At the end of these investigations, designers would be provided with
three techniques, and could choose the one that suits better their needs.

Testing and formal methods are complementary ways to assess and increase the quality of
interactive systems. Supporting testing techniques, such as the generation of test cases from
formal models, would enrich our approach, helping the approach to continuously find applications
in industrial contexts.

8.2.3 Long-term Perspectives

In the long term, the contributions presented in this thesis can be seen as the starting point
for a full verification environment for interactive systems. Coupling such a framework with a
toolbox (such as Cadp) implementing formal verification techniques would benefit from the
maturity of the verification tools. Such a framework would provide designers with a catalog
of techniques to verify interactive systems (safety-critical or not, plastic or not). For a better
integration in industrial contexts, the three propositions (a), (b), and (c) would be proposed.
For verifying plastic interactive systems, the propositions (i), (ii) and (iii) would be proposed.

From a research point of view, heuristics are needed to decide which technique is more
appropriate to verify a given interactive system. For instance, once a single version of the
system is available, model checking of properties would be recommended. For plastic interactive
systems, once multiple versions of the system are available, the environment could suggest
designers either compare the versions by equivalence checking, or model check each version
separately, or compose both techniques.

From a technological point of view, the implementation of such a framework would be a
layer above the verification toolbox, and would invoke to tools provided by the toolbox. Such
implementation would facilitate the usage of our approach, proving users with a verification
environment that focus on interactive systems. Such an environment would integrate features
implementing short-term and mid-term perspectives, such as the patterns of properties and the
semi-automatic generation of the formal models. These gradual enhancements in our approach
would improve its scalability.

178 CHAPTER 8. CONCLUSION AND PERSPECTIVES

Appendix A

Reactor Parameters

This appendix names some of the reactor parameters we model in the main case study of this
thesis: the EDF system described in Chapter 3, page 69.

Table 19: Some reactor parameters of the EDF case study

Acronym Name

1 Pth moy Puissance thermique moyenne
2 DPAX moy Déformé de flux
3 Groupe R Position des grappes
4 P primaire Pression primaire
5 T moy Température moyenne
6 Cb Concentration en bore
7 N GV1 Niveau de remplissage des GV
8 N GV2 Niveau de remplissage des GV
9 N GV3 Niveau de remplissage des GV
10 N GV4 Niveau de remplissage des GV
11 P CNI Puissance chaînes neutroniques intermédiaires
12 N ASG Niveau ASG
13 T ASG Température ASG
14 N RCV Borication dilution
15 P condenseur Pression condenseur
16 P elec Puissance électrique
17 R1 Position de groupe R1
18 R2 Position de groupe R2
19 G21 G21
20 G22 G22
21 G1 G1
22 RPN010MA Mesures de la puissance neutronique
23 RPN020MA Mesures de la puissance neutronique
24 RPN030MA Mesures de la puissance neutronique
25 RPN040MA Mesures de la puissance neutronique
26 ParamX ParamX
27 ParamY ParamY
28 ParamZ ParamZ
29 ParamW ParamW

179

180 APPENDIX A. REACTOR PARAMETERS

Appendix B

An Excerpt of a LNT Specification

This appendix contains some Lnt modules from the specification of the EDF case study
(Chapter 3, page 69). It is structured into four sections: the first section gives a short introduction
of the Lnt specification language; the following ones describe three module we implemented
using Lnt.

A Short Introduction of the LNT Specification Language

Lnt is a formal language for describing formal specifications of a system. It is built around the
definition of modules. Each module can embody one process and several functions. A process
denotes a behavior of the system. It can be parameterized by a list of formal gates, a list of
formal variables, and a list of formal exceptions. Communication between processes of different
modules is enabled by means of a rendezvous mechanism through the gates.

A function is a routine used for code factorization. It can have zero, one, or more arguments
and can return a single result [Champelovier et al. 2011]. In Lnt, functions can be recursive.
Beside, Lnt also supports polymorphism. Hence, it is possible to define several functions that
have the same name and the same signature but with different argument types. At runtime,
polymorphism permits to choose the right function to call according to the argument types.

In this thesis, we use LNT for describing the specification of the EDF case study. Figure 70
on page 97 illustrates the module structure of this specification. In the following, we chose
to describe three main modules: the Reactor module (reacteur.lnt), the Scenario module
(scenarios.lnt), and the Menu module (vue.lnt).

The Reactor Module

The Reactor module implements the behavior of some reactor parameters. Listing B.1 describes
this module. It simulates five anomaly scenarios over 29 reactor parameters in an infinite loop.
For this, we defined the process reacteur_p and several functions. In the process, 29 variables
(one for each reactor parameter) are initially declared (lines 5–9), and initialized with their
corresponding value using the initialisation_params1 function (lines 19–25).

Each scenario affects one reactor parameter, starting by the parameter Pth_moy (line 27). A
loop (lines 31–179) permits to iterate over all the scenarios and parameters. At each instant
of the current scenario, a function called generer_probleme (e.g., lines 34, 39) affects one
parameter with a new value, and possibly with an anomaly, depending on the scenario. The
values of all the 29 parameters are then made available by through the voir_params_reacteur

gate of the process (lines 180–184). This provides the output of this process.
The function generer_probleme (lines 191–232) varies the five scenarios in a cycle, the

instants of the current scenario, and the affected reactor parameter. For instance, the scenario
1The implementation of this function is not described here.

181

182 APPENDIX B. AN EXCERPT OF A LNT SPECIFICATION

1, (threshold overflow – “dépassement haut”) has seven instants (defined in the function duree,
line 311); during seven loop iterations, this anomaly scenario will change the value of the current
reactor parameter, and once the scenario had finished, another scenario will be chosen, as well
as another reactor parameter (lines 220–224). We defined one generer_probleme function for
each type of reactor parameters (nat, int, and real). Those are polymorphic, i.e., the resolution
of the reactor type permits to choose which function should be called at runtime .

1 module r e a c t e u r (s c e n a r i o s) i s
2

3 p r o c e s s reacteur_p [voir_params_reacteur : TParam] i s
4

5 var −−29 Params
6 Pth_moy_v , DPAXmoy_v, Cb_v, GroupeR_v , NRCV_v, Pcondenseur_v , Pelec_v ,
7 NGV1_v, NGV2_v, NGV3_v, NGV4_v, TASG_v, NASG_v, R1_v, R2_v, G1_v, G21_v ,
8 G22_v , RPN010MA_v, RPN020MA_v, RPN030MA_v, RPN040MA_v, ParamX_v , ParamY_v ,
9 ParamZ_v , ParamW_v, PCNI_v, Pprimaire_v , Tmoy_v: TParam ,

10

11 newValue_int : int ,
12 newValue_nat : nat ,
13 newValue_real : r ea l ,
14 defaut_v : TDefaut ,
15 variable_a_probleme : TNomParam,
16 s c e n a r i o : nat ,
17 i n s t a n t : nat in
18

19 −− i n i t i a l i s a t i o n s : chaque v a r i a b l e P à sa va l eur moyenne
20 i n i t i a l i s a t i o n _ p a r a m s (?Pth_moy_v , ?DPAXmoy_v, ?Cb_v, ?GroupeR_v , ?NRCV_v,
21 ?Pcondenseur_v , ? Pelec_v , ?NGV1_v, ?NGV2_v, ?NGV3_v,
22 ?NGV4_v, ?TASG_v, ?NASG_v, ?R1_v, ?R2_v, ?G1_v,
23 ?G21_v , ?G22_v , ?RPN010MA_v, ?RPN020MA_v, ?RPN030MA_v,
24 ?RPN040MA_v, ?ParamX_v , ?ParamY_v , ?ParamZ_v , ?ParamW_v,
25 ?PCNI_v, ? Pprimaire_v , ?Tmoy_v) ;
26

27 variable_a_probleme := Pth_moy ;
28 s c e n a r i o := 1 ;
29 i n s t a n t := 1 ;
30

31 loop r in
32 case variable_a_probleme in
33 Pth_moy −>
34 eva l newValue_nat:= generer_probleme (min_Pth_moy , max_Pth_moy,
35 moy_Pth_moy, ! ? variable_a_probleme , ! ? in s tant , ! ? s c ena r io ,
36 ? defaut_v) ;
37 Pth_moy_v := TPth_moy (newValue_nat , defaut_v)
38 | DPAXmoy −>
39 eva l newValue_int := generer_probleme (min_DPAXmoy, max_DPAXmoy,
40 moy_DPAXmoy, ! ? variable_a_probleme , ! ? in s tant , ! ? s c ena r io ,
41 ? defaut_v) ;
42 DPAXmoy_v := TDPAXmoy (newValue_int , defaut_v)
43 | GroupeR −>
44 eva l newValue_nat:= generer_probleme (min_GroupeR , max_GroupeR ,
45 moy_GroupeR , ! ? variable_a_probleme , ! ? ins tant , ! ? s cena r io ,
46 ? defaut_v) ;
47 GroupeR_v := TGroupeR (newValue_nat , defaut_v)
48 | Pprimaire −>
49 eva l newValue_real := generer_probleme (min_Pprimaire , max_Pprimaire ,
50 moy_Pprimaire , ! ? variable_a_probleme , ! ? ins tant ,

183

51 ! ? s cenar io , ? defaut_v) ;
52 Pprimaire_v := TPprimaire (newValue_real , defaut_v)
53 | Tmoy −>
54 eva l newValue_real := generer_probleme (min_Tmoy, max_Tmoy,
55 moy_Tmoy, ! ? variable_a_probleme , ! ? in s tant , ! ? s c enar io ,
56 ? defaut_v) ;
57 Tmoy_v := TTmoy (newValue_real , defaut_v)
58 | Cb −>
59 eva l newValue_nat:= generer_probleme (min_Cb , max_Cb,
60 moy_Cb, ! ? variable_a_probleme , ! ? ins tant , ! ? s cenar i o ,
61 ? defaut_v) ;
62 Cb_v := TCb (newValue_nat , defaut_v)
63 | NGV1 −>
64 eva l newValue_int := generer_probleme (min_NGV1, max_NGV1,
65 moy_NGV1, ! ? variable_a_probleme , ! ? ins tant , ! ? s cenar io ,
66 ? defaut_v) ;
67 NGV1_v := TNGV1 (newValue_int , defaut_v)
68 | NGV2 −>
69 eva l newValue_int := generer_probleme (min_NGV2, max_NGV2,
70 moy_NGV2, ! ? variable_a_probleme , ! ? ins tant , ! ? s cenar io ,
71 ? defaut_v) ;
72 NGV2_v := TNGV2 (newValue_int , defaut_v)
73 | NGV3 −>
74 eva l newValue_int := generer_probleme (min_NGV3, max_NGV3,
75 moy_NGV3, ! ? variable_a_probleme , ! ? ins tant , ! ? s cenar io ,
76 ? defaut_v) ;
77 NGV3_v := TNGV3 (newValue_int , defaut_v)
78 | NGV4 −>
79 eva l newValue_int := generer_probleme (min_NGV4, max_NGV4,
80 moy_NGV4, ! ? variable_a_probleme , ! ? ins tant , ! ? s cenar io ,
81 ? defaut_v) ;
82 NGV4_v := TNGV4 (newValue_int , defaut_v)
83 | PCNI −>
84 eva l newValue_real := generer_probleme (min_PCNI , max_PCNI,
85 moy_PCNI, ! ? variable_a_probleme , ! ? ins tant , ! ? s cenar i o ,
86 ? defaut_v) ;
87 PCNI_v := TPCNI (newValue_real , defaut_v)
88 | NASG −>
89 eva l newValue_nat:= generer_probleme (min_NASG, max_NASG,
90 moy_NASG, ! ? variable_a_probleme , ! ? ins tant , ! ? s cenar io ,
91 ? defaut_v) ;
92 NASG_v := TNASG (newValue_nat , defaut_v)
93 | TASG −>
94 eva l newValue_nat:= generer_probleme (min_TASG, max_TASG,
95 moy_TASG, ! ? variable_a_probleme , ! ? in s tant , ! ? s c enar i o ,
96 ? defaut_v) ;
97 TASG_v := TTASG (newValue_nat , defaut_v)
98 | NRCV −>
99 eva l newValue_nat:= generer_probleme (min_NRCV, max_NRCV,

100 moy_NRCV, ! ? variable_a_probleme , ! ? ins tant , ! ? s cenar i o ,
101 ? defaut_v) ;
102 NRCV_v := TNRCV (newValue_nat , defaut_v)
103 | Pcondenseur −>
104 eva l newValue_nat:= generer_probleme (min_Pcondenseur ,
105 max_Pcondenseur , moy_Pcondenseur , ! ? variable_a_probleme ,
106 ! ? in s tant , ! ? s cenar io , ? defaut_v) ;
107 Pcondenseur_v := TPcondenseur (newValue_nat , defaut_v)
108 | Pe lec −>

184 APPENDIX B. AN EXCERPT OF A LNT SPECIFICATION

109 eva l newValue_nat:= generer_probleme (min_Pelec , max_Pelec ,
110 moy_Pelec , ! ? variable_a_probleme , ! ? in s tant , ! ? s c enar i o ,
111 ? defaut_v) ;
112 Pelec_v := TPelec (newValue_nat , defaut_v)
113 | R1 −>
114 eva l newValue_nat:= generer_probleme (min_R1 , max_R1,
115 moy_R1, ! ? variable_a_probleme , ! ? ins tant , ! ? s c enar i o ,
116 ? defaut_v) ;
117 R1_v := TR1 (newValue_nat , defaut_v)
118 | R2 −>
119 eva l newValue_nat:= generer_probleme (min_R2 , max_R2,
120 moy_R2, ! ? variable_a_probleme , ! ? ins tant , ! ? s c enar i o ,
121 ? defaut_v) ;
122 R2_v := TR2 (newValue_nat , defaut_v)
123 | G21 −>
124 eva l newValue_nat:= generer_probleme (min_G21 , max_G21,
125 moy_G21, ! ? variable_a_probleme , ! ? ins tant , ! ? s cenar io ,
126 ? defaut_v) ;
127 G21_v := TG21 (newValue_nat , defaut_v)
128 | G22 −>
129 eva l newValue_nat:= generer_probleme (min_G22 , max_G22,
130 moy_G22, ! ? variable_a_probleme , ! ? ins tant , ! ? s cenar io ,
131 ? defaut_v) ;
132 G22_v := TG22 (newValue_nat , defaut_v)
133 | G1 −>
134 eva l newValue_nat:= generer_probleme (min_G1 , max_G1,
135 moy_G1, ! ? variable_a_probleme , ! ? ins tant , ! ? s cenar io ,
136 ? defaut_v) ;
137 G1_v := TG1 (newValue_nat , defaut_v)
138 | RPN010MA −>
139 eva l newValue_nat:= generer_probleme (min_RPN010MA, max_RPN010MA,
140 moy_RPN010MA, ! ? variable_a_probleme , ! ? ins tant , ! ? s cen ar io ,
141 ? defaut_v) ;
142 RPN010MA_v := TRPN010MA (newValue_nat , defaut_v)
143 | RPN020MA −>
144 eva l newValue_nat:= generer_probleme (min_RPN020MA, max_RPN020MA,
145 moy_RPN020MA, ! ? variable_a_probleme , ! ? ins tant , ! ? s cen ar io ,
146 ? defaut_v) ;
147 RPN020MA_v := TRPN020MA (newValue_nat , defaut_v)
148 | RPN030MA −>
149 eva l newValue_nat:= generer_probleme (min_RPN030MA, max_RPN030MA,
150 moy_RPN030MA, ! ? variable_a_probleme , ! ? ins tant , ! ? s cen ar io ,
151 ? defaut_v) ;
152 RPN030MA_v := TRPN030MA (newValue_nat , defaut_v)
153 | RPN040MA −>
154 eva l newValue_nat:= generer_probleme (min_RPN040MA, max_RPN040MA,
155 moy_RPN040MA, ! ? variable_a_probleme , ! ? ins tant , ! ? s cen ar io ,
156 ? defaut_v) ;
157 RPN040MA_v := TRPN040MA (newValue_nat , defaut_v)
158 | ParamX −>
159 eva l newValue_nat:= generer_probleme (min_ParamX , max_ParamX,
160 moy_ParamX, ! ? variable_a_probleme , ! ? ins tant , ! ? s cenar i o ,
161 ? defaut_v) ;
162 ParamX_v := TParamX (newValue_nat , defaut_v)
163 | ParamY −>
164 eva l newValue_nat:= generer_probleme (min_ParamY , max_ParamY,
165 moy_ParamY, ! ? variable_a_probleme , ! ? ins tant , ! ? s cenar i o ,
166 ? defaut_v) ;

185

167 ParamY_v := TParamY (newValue_nat , defaut_v)
168 | ParamZ −>
169 eva l newValue_nat:= generer_probleme (min_ParamZ , max_ParamZ ,
170 moy_ParamZ , ! ? variable_a_probleme , ! ? in s tant , ! ? s c enar io ,
171 ? defaut_v) ;
172 ParamZ_v := TParamZ (newValue_nat , defaut_v)
173 | ParamW −>
174 eva l newValue_nat:= generer_probleme (min_ParamW, max_ParamW,
175 moy_ParamW, ! ? variable_a_probleme , ! ? in s tant , ! ? s c enar io ,
176 ? defaut_v) ;
177 ParamW_v := TParamW (newValue_nat , defaut_v)
178 | n i l −> stop
179 end case ;
180 voir_params_reacteur (Pth_moy_v , DPAXmoy_v, GroupeR_v , Pprimaire_v , Tmoy_v,
181 Cb_v, NGV1_v, NGV2_v, NGV3_v, NGV4_v, PCNI_v, NASG_v,
182 TASG_v, NRCV_v, Pcondenseur_v , Pelec_v , R1_v, R2_v,
183 G21_v , G22_v , G1_v, RPN010MA_v, RPN020MA_v, RPN030MA_v,
184 RPN040MA_v, ParamX_v , ParamY_v , ParamZ_v , ParamW_v)
185

186 end loop
187 end var
188 end p r o c e s s
189

190 −−−

191 f u n c t i o n generer_probleme (in min_p : nat ,
192 in max_p : nat ,
193 in moy_p : nat ,
194 in out variable_a_probleme : TNomParam,
195 in out i n s t a n t : nat ,
196 in out s c e n a r i o : nat ,
197 out de faut : TDefaut) : nat i s
198

199 var newvalue_nat : nat , a_defaut : bool , scen_aux : nat in
200

201 a_defaut := true ;
202 scen_aux := s c e n a r i o ; −−backup de l a va l eur a c t u e l l e du s c é n a r i o
203

204 i f (min_p == 0) and (s c e n a r i o == 2) then
205 s c e n a r i o := 1
206 end i f ;
207

208 case s c e n a r i o in
209 1 −> newValue_nat := s c e n a r i o 1 (ins tant , max_p, moy_p, a_defaut , ? de faut)
210 | 2 −> newValue_nat := s c e n a r i o 2 (ins tant , min_p , moy_p, a_defaut , ? de faut)
211 | 3 −> newValue_nat := s c e n a r i o 3 (ins tant , min_p , max_p, moy_p, a_defaut , ? de faut)
212 | 4 −> newValue_nat := s c e n a r i o 4 (ins tant , max_p, moy_p, a_defaut , ? de faut)
213 | 5 −> newValue_nat := s c e n a r i o 5 (ins tant , max_p, moy_p, a_defaut , ? de faut)
214 | any −>
215 newValue_nat := 0 ;
216 de faut := n i l
217 end case ;
218

219 s c e n a r i o := scen_aux ;
220 i f i n s t a n t == duree (s c e n a r i o) then
221 −− on a dépassé l a durée du s c é n a r i o
222 s c e n a r i o := s u c c e s s e u r (s c e n a r i o) ;
223 i n s t a n t := 1 ;
224 variable_a_probleme := next_variable_a_probleme (variable_a_probleme)

186 APPENDIX B. AN EXCERPT OF A LNT SPECIFICATION

225 e l s e
226 i n s t a n t := i n s t a n t + 1
227 end i f ;
228

229 r e turn newValue_nat
230

231 end var
232 end f u n c t i o n
233

234 −−−

235 f u n c t i o n generer_probleme (in min_p : int ,
236 in max_p : int ,
237 in moy_p : int ,
238 in out variable_a_probleme : TNomParam,
239 in out i n s t a n t : nat ,
240 in out s c e n a r i o : nat ,
241 out de faut : TDefaut) : i n t i s
242

243 var newvalue_int : int , a_defaut : bool in
244

245 a_defaut := true ;
246 case s c e n a r i o in
247 1 −> newValue_int := s c e n a r i o 1 (ins tant , max_p, moy_p, a_defaut , ? de faut)
248 | 2 −> newValue_int := s c e n a r i o 2 (ins tant , min_p , moy_p, a_defaut , ? de faut)
249 | 3 −> newValue_int := s c e n a r i o 3 (ins tant , min_p , max_p, moy_p, a_defaut , ? de faut)
250 | 4 −> newValue_int := s c e n a r i o 4 (ins tant , max_p, moy_p, a_defaut , ? de faut)
251 | 5 −> newValue_int := s c e n a r i o 5 (ins tant , max_p, moy_p, a_defaut , ? de faut)
252 | any −>
253 newValue_int := 0 ;
254 de faut := n i l
255 end case ;
256

257 i f i n s t a n t == duree (s c e n a r i o) then
258 −− on a dépassé l a durée du s c é n a r i o
259 s c e n a r i o := s u c c e s s e u r (s c e n a r i o) ;
260 i n s t a n t := 1 ;
261 variable_a_probleme := next_variable_a_probleme (variable_a_probleme)
262 e l s e
263 i n s t a n t := i n s t a n t + 1
264 end i f ;
265

266 r e turn newValue_int
267

268 end var
269 end f u n c t i o n
270

271 −−−

272 f u n c t i o n generer_probleme (in min_p : r ea l ,
273 in max_p : r ea l ,
274 in moy_p : r ea l ,
275 in out variable_a_probleme : TNomParam,
276 in out i n s t a n t : nat ,
277 in out s c e n a r i o : nat ,
278 out de faut : TDefaut) : r e a l i s
279

280 var newvalue_real : r ea l , a_defaut : bool in
281

282 a_defaut := true ;

187

283 case s c e n a r i o in
284 1 −>newValue_real := s c e n a r i o 1 (ins tant , max_p, moy_p, a_defaut , ? de faut)
285 | 2 −>newValue_real := s c e n a r i o 2 (ins tant , min_p , moy_p, a_defaut , ? de faut)
286 | 3 −>newValue_real := s c e n a r i o 3 (ins tant , min_p , max_p, moy_p, a_defaut , ? de faut)
287 | 4 −>newValue_real := s c e n a r i o 4 (ins tant , max_p, moy_p, a_defaut , ? de faut)
288 | 5 −>newValue_real := s c e n a r i o 5 (ins tant , max_p, moy_p, a_defaut , ? de faut)
289 | any −>
290 newValue_real := 0 . 0 ;
291 de faut := n i l
292 end case ;
293

294 i f i n s t a n t == duree (s c e n a r i o) then
295 −− on a dépassé l a durée du s c é n a r i o
296 s c e n a r i o := s u c c e s s e u r (s c e n a r i o) ;
297 i n s t a n t := 1 ;
298 variable_a_probleme := next_variable_a_probleme (variable_a_probleme)
299 e l s e
300 i n s t a n t := i n s t a n t + 1
301 end i f ;
302

303 r e turn newValue_real
304

305 end var
306 end f u n c t i o n
307

308 −−−

309 f u n c t i o n duree (s c e n a r i o : nat) : nat i s
310 case s c e n a r i o in
311 1 −> return 7
312 | 2 −> return 7
313 | 3 −> return 8
314 | 4 −> return 7
315 | 5 −> return 8
316 | any −> return 0
317 end case
318 end f u n c t i o n
319

320 −−−

321 f u n c t i o n s u c c e s s e u r (S : nat) : nat i s
322 i f S == 5 then
323 r e turn 1
324 e l s e
325 r e turn S+1
326 end i f
327 end f u n c t i o n
328

329 −−−

330 f u n c t i o n next_variable_a_probleme (V:TNomParam) :TNomParam i s
331 case V in
332 Pth_moy −> return DPAXmoy
333 | DPAXmoy −> return GroupeR
334 | GroupeR −> return Pprimaire
335 | Pprimaire −> return Tmoy
336 | Tmoy −> return Cb
337 | Cb −> return NGV1
338 | NGV1 −> return NGV2
339 | NGV2 −> return NGV3
340 | NGV3 −> return NGV4

188 APPENDIX B. AN EXCERPT OF A LNT SPECIFICATION

341 | NGV4 −> return PCNI
342 | PCNI −> return NASG
343 | NASG −> return TASG
344 | TASG −> return NRCV
345 | NRCV −> return Pcondenseur
346 | Pcondenseur −> return Pelec
347 | Pe lec −> return R1
348 | R1 −> return R2
349 | R2 −> return G21
350 | G21 −> return G22
351 | G22 −> return G1
352 | G1 −> return RPN010MA
353 | RPN010MA −> return RPN020MA
354 | RPN020MA −> return RPN030MA
355 | RPN030MA −> return RPN040MA
356 | RPN040MA −> return ParamX
357 | ParamX −> return ParamY
358 | ParamY −> return ParamZ
359 | ParamZ −> return ParamW
360 | ParamW −> return Pth_moy
361 | any −> return Pth_moy
362 end case
363 end f u n c t i o n
364

365 end module

Listing B.1: Reactor.lnt (“reacteur.lnt”)

The Scenarios Module

The Scenarios module describes the five anomaly scenarios simulated in the EDF case study:
threshold overflow, threshold underflow, gradient excess, invalid measurement, and loss of
redundancy. This module is illustrated in listing B.2. It does not contain any process. Instead,
it defines several functions for each scenario. Precisely, fifteen functions are defined: three
functions for each of the five anomaly scenarios, covering the three reactor parameter types (nat,
int, and real).

Each scenario is composed of a given number of instants. For instance, the scenario 1 has
seven instants (lines 8–19). At each instant, the function generates a value according to formulas
defined in the scenario, and depends on some attributes of the reactor parameter affected by the
scenario, such as its maximum threshold (e.g., line 9). Anomalies on the reactor parameter can
be generated at a given instant of the scenario, for instance, once the generated value exceeds
the parameter maximum threshold (lines 11–16).

1 module s c e n a r i o s (b i b l i o t h e q u e) i s
2

3 −− s c e n a r i o 1 = dépassement haut , type = i n t
4 f u n c t i o n s c e n a r i o 1 (in i n s t a n t : nat , in max_p : int , in moy_p : int , in a_defaut : bool ,
5 out de faut : TDefaut) : i n t i s
6 de faut := n i l ;
7 case i n s t a n t in
8 1 −> return moy_p
9 | 2 −> return div_tmp ((max_p+moy_p) , 2)

10 | 3 −> return max_p

189

11 | 4 −> i f a_defaut then
12 de faut := depassementHaut ;
13 r e turn max_p + 1
14 e l s e
15 r e turn max_p
16 end i f
17 | 5 −> return max_p
18 | 6 −> return div_tmp ((max_p+moy_p) , 2)
19 | 7 −> return moy_p
20 | any −> return 0
21 end case
22 end f u n c t i o n
23

24 −− s c e n a r i o 1 = dépassement haut , type = nat
25 f u n c t i o n s c e n a r i o 1 (in i n s t a n t : nat , in max_p : nat , in moy_p : nat , in a_defaut : bool ,
26 out de faut : TDefaut) : nat i s
27 de faut := n i l ;
28 case i n s t a n t in
29 1 −> return moy_p
30 | 2 −> return ((max_p+moy_p) div 2)
31 | 3 −> return max_p
32 | 4 −> i f a_defaut then
33 de faut := depassementHaut ;
34 r e turn max_p + 1
35 e l s e
36 r e turn max_p
37 end i f
38 | 5 −> return max_p
39 | 6 −> return ((max_p+moy_p) div 2)
40 | 7 −> return moy_p
41 | any −> return 0
42 end case
43 end f u n c t i o n
44

45 −− s c e n a r i o 1 = dépassement haut , type = r e a l
46 f u n c t i o n s c e n a r i o 1 (in i n s t a n t : nat , in max_p : r ea l , in moy_p : r ea l , in a_defaut : bool ,
47 out de faut : TDefaut) : r e a l i s
48 de faut := n i l ;
49 case i n s t a n t in
50 1 −> return moy_p
51 | 2 −> return ((max_p+moy_p) / 2 . 0)
52 | 3 −> return max_p
53 | 4 −> i f a_defaut then
54 de faut := depassementHaut ;
55 r e turn max_p + 1.0
56 e l s e
57 r e turn max_p
58 end i f
59 | 5 −> return max_p
60 | 6 −> return ((max_p+moy_p) / 2 . 0)
61 | 7 −> return moy_p
62 | any −> return 0 .0
63 end case
64 end f u n c t i o n
65

66 −−−

67 −− s c e n a r i o 2 = dépassement bas , type = i n t
68 f u n c t i o n s c e n a r i o 2 (in i n s t a n t : nat , in min_p : int , in moy_p : int , in a_defaut : bool ,

190 APPENDIX B. AN EXCERPT OF A LNT SPECIFICATION

69 out de faut : TDefaut) : i n t i s
70 de faut := n i l ;
71 case i n s t a n t in
72 1 −> return moy_p
73 | 2 −> return div_tmp ((min_p+moy_p) , 2)
74 | 3 −> return min_p
75 | 4 −> i f a_defaut then
76 de faut := depassementBas ;
77 r e turn min_p − 1
78 e l s e
79 r e turn min_p
80 end i f
81 | 5 −> return min_p
82 | 6 −> return div_tmp ((min_p+moy_p) , 2)
83 | 7 −> return moy_p
84 | any −> return 0
85 end case
86 end f u n c t i o n
87

88 −− s c e n a r i o 2 = dépassement bas , type = nat
89 f u n c t i o n s c e n a r i o 2 (in i n s t a n t : nat , in min_p : nat , in moy_p : nat , in a_defaut : bool ,
90 out de faut : TDefaut) : nat i s
91 de faut := n i l ;
92 case i n s t a n t in
93 1 −> return moy_p
94 | 2 −> return ((min_p+moy_p) div 2)
95 | 3 −> return min_p
96 | 4 −> i f a_defaut then
97 de faut := depassementBas ;
98 r e turn min_p − 1
99 e l s e

100 r e turn min_p
101 end i f
102 | 5 −> return min_p
103 | 6 −> return ((min_p+moy_p) div 2)
104 | 7 −> return moy_p
105 | any −> return 0
106 end case
107 end f u n c t i o n
108

109 −− s c e n a r i o 2 = dépassement bas , type = r e a l
110 f u n c t i o n s c e n a r i o 2 (in i n s t a n t : nat , in min_p : r ea l , in moy_p : r ea l , in a_defaut : bool ,
111 out de faut : TDefaut) : r e a l i s
112 de faut := n i l ;
113 case i n s t a n t in
114 1 −> return moy_p
115 | 2 −> return ((min_p+moy_p) / 2 . 0)
116 | 3 −> return min_p
117 | 4 −> i f a_defaut then
118 de faut := depassementBas ;
119 r e turn min_p − 1 .0
120 e l s e
121 r e turn min_p
122 end i f
123 | 5 −> return min_p
124 | 6 −> return ((min_p+moy_p) / 2 . 0)
125 | 7 −> return moy_p
126 | any −> return 0 .0

191

127 end case
128 end f u n c t i o n
129

130 −−−

131 −− s c e n a r i o 3 = dépassement gradient , type = i n t
132 f u n c t i o n s c e n a r i o 3 (in i n s t a n t : nat , in min_p : int , in max_p : int , in moy_p : int ,
133 in a_defaut : bool , out de faut : TDefaut) : i n t i s
134 de faut := n i l ;
135 case i n s t a n t in
136 1 −> return moy_p
137 | 2 −> return moy_p − div_tmp ((moy_p−min_p) , 6)
138 | 3 −> return moy_p − div_tmp ((moy_p−min_p) , 4)
139 | 4 −> return moy_p − div_tmp ((moy_p−min_p) , 2)
140 | 5 −> return min_p
141 | 6 −> i f a_defaut then
142 de faut := depassementGradient ;
143 r e turn max_p
144 e l s e
145 r e turn min_p
146 end i f
147 | 7 −> return moy_p + div_tmp ((max_p−moy_p) , 2)
148 | 8 −> return moy_p
149 | any −> return 0
150 end case
151 end f u n c t i o n
152

153 −− s c e n a r i o 3 = dépassement gradient , type = nat
154 f u n c t i o n s c e n a r i o 3 (in i n s t a n t : nat , in min_p : nat , in max_p : nat , in moy_p : nat ,
155 in a_defaut : bool , out de faut : TDefaut) : nat i s
156 de faut := n i l ;
157 case i n s t a n t in
158 1 −> return moy_p
159 | 2 −> return moy_p − ((moy_p−min_p) div 6)
160 | 3 −> return moy_p − ((moy_p−min_p) div 4)
161 | 4 −> return moy_p − ((moy_p−min_p) div 2)
162 | 5 −> return min_p
163 | 6 −> i f a_defaut then
164 de faut := depassementGradient ;
165 r e turn max_p
166 e l s e
167 r e turn min_p
168 end i f
169 | 7 −> return moy_p + ((max_p−moy_p) div 2)
170 | 8 −> return moy_p
171 | any −> return 0
172 end case
173 end f u n c t i o n
174

175 −− s c e n a r i o 3 = dépassement gradient , type = r e a l
176 f u n c t i o n s c e n a r i o 3 (in i n s t a n t : nat , in min_p : r ea l , in max_p : r ea l , in moy_p : r ea l ,
177 in a_defaut : bool , out de faut : TDefaut) : r e a l i s
178 de faut := n i l ;
179 case i n s t a n t in
180 1 −> return moy_p
181 | 2 −> return moy_p − ((moy_p−min_p) / 6 . 0)
182 | 3 −> return moy_p − ((moy_p−min_p) / 4 . 0)
183 | 4 −> return moy_p − ((moy_p−min_p) / 2 . 0)
184 | 5 −> return min_p

192 APPENDIX B. AN EXCERPT OF A LNT SPECIFICATION

185 | 6 −> i f a_defaut then
186 de faut := depassementGradient ;
187 r e turn max_p
188 e l s e
189 r e turn min_p
190 end i f
191 | 7 −> return moy_p + ((max_p−moy_p) / 2 . 0)
192 | 8 −> return moy_p
193 | any −> return 0 .0
194 end case
195 end f u n c t i o n
196

197 −−−

198 −− s c e n a r i o 4 = per te de redondance , type = i n t
199 f u n c t i o n s c e n a r i o 4 (in i n s t a n t : nat , in max_p : int , in moy_p : int , in a_defaut : bool ,
200 out de faut : TDefaut) : i n t i s
201 de faut := n i l ;
202 case i n s t a n t in
203 1 −> return moy_p
204 | 2 −> return moy_p + div_tmp ((max_p−moy_p) , 6)
205 | 3 −> return moy_p + div_tmp ((max_p−moy_p) , 4)
206 | 4 −> return moy_p + div_tmp ((max_p−moy_p) , 2)
207 | 5 −> return max_p
208 | 6 −> i f a_defaut then
209 de faut := perteRedondance ;
210 r e turn moy_p
211 e l s e
212 r e turn max_p
213 end i f
214 | 7 −> return moy_p
215 | any −> return 0
216 end case
217 end f u n c t i o n
218

219 −− s c e n a r i o 4 = per te de redondance , type = nat
220 f u n c t i o n s c e n a r i o 4 (in i n s t a n t : nat , in max_p : nat , in moy_p : nat , in a_defaut : bool ,
221 out de faut : TDefaut) : nat i s
222 de faut := n i l ;
223 case i n s t a n t in
224 1 −> return moy_p
225 | 2 −> return moy_p + ((max_p−moy_p) div 6)
226 | 3 −> return moy_p + ((max_p−moy_p) div 4)
227 | 4 −> return moy_p + ((max_p−moy_p) div 2)
228 | 5 −> return max_p
229 | 6 −> i f a_defaut then
230 de faut := perteRedondance ;
231 r e turn moy_p
232 e l s e
233 r e turn max_p
234 end i f
235 | 7 −> return moy_p
236 | any −> return 0
237 end case
238 end f u n c t i o n
239

240 −− s c e n a r i o 4 = per te de redondance , type = r e a l
241 f u n c t i o n s c e n a r i o 4 (in i n s t a n t : nat , in max_p : r ea l , in moy_p : r ea l , in a_defaut : bool ,
242 out de faut : TDefaut) : r e a l i s

193

243 de faut := n i l ;
244 case i n s t a n t in
245 1 −> return moy_p
246 | 2 −> return moy_p + ((max_p−moy_p) / 6 . 0)
247 | 3 −> return moy_p + ((max_p−moy_p) / 4 . 0)
248 | 4 −> return moy_p + ((max_p−moy_p) / 2 . 0)
249 | 5 −> return max_p
250 | 6 −> i f a_defaut then
251 de faut := perteRedondance ;
252 r e turn moy_p
253 e l s e
254 r e turn max_p
255 end i f
256 | 7 −> return moy_p
257 | any −> return 0 .0
258 end case
259 end f u n c t i o n
260

261 −−−

262 −− s c e n a r i o 5 = i n v a l i d i t é de mesure , type = i n t
263 f u n c t i o n s c e n a r i o 5 (in i n s t a n t : nat , in max_p : int , in moy_p : int , in a_defaut : bool ,
264 out de faut : TDefaut) : i n t i s
265 de faut := n i l ;
266 case i n s t a n t in
267 1 −> return moy_p
268 | 2 −> return moy_p + div_tmp ((max_p−moy_p) , 4)
269 | 3 −> return moy_p + div_tmp ((max_p−moy_p) , 2)
270 | 4 −> return moy_p + div_tmp ((max_p−moy_p) , 4)
271 | 5 −> return moy_p
272 | 6 −> return moy_p − div_tmp ((max_p−moy_p) , 4)
273 | 7 −> i f a_defaut then
274 de faut := i n v a l i d i t e M e s u r e ;
275 r e turn 0
276 e l s e
277 r e turn moy_p − div_tmp ((max_p−moy_p) , 4)
278 end i f
279 | 8 −> return moy_p
280 | any −> return 0
281 end case
282 end f u n c t i o n
283

284 −− s c e n a r i o 5 = i n v a l i d i t é de mesure , type = nat
285 f u n c t i o n s c e n a r i o 5 (in i n s t a n t : nat , in max_p : nat , in moy_p : nat , in a_defaut : bool ,
286 out de faut : TDefaut) : nat i s
287 de faut := n i l ;
288 case i n s t a n t in
289 1 −> return moy_p
290 | 2 −> return moy_p + ((max_p−moy_p) div 4)
291 | 3 −> return moy_p + ((max_p−moy_p) div 2)
292 | 4 −> return moy_p + ((max_p−moy_p) div 4)
293 | 5 −> return moy_p
294 | 6 −> return moy_p − ((max_p−moy_p) div 4)
295 | 7 −> i f a_defaut then
296 de faut := i n v a l i d i t e M e s u r e ;
297 r e turn 0
298 e l s e
299 r e turn moy_p − ((max_p−moy_p) div 4)
300 end i f

194 APPENDIX B. AN EXCERPT OF A LNT SPECIFICATION

301 | 8 −> return moy_p
302 | any −> return 0
303 end case
304 end f u n c t i o n
305

306 −− s c e n a r i o 5 = i n v a l i d i t é de mesure , type = r e a l
307 f u n c t i o n s c e n a r i o 5 (in i n s t a n t : nat , in max_p : r ea l , in moy_p : r ea l , in a_defaut : bool ,
308 out de faut : TDefaut) : r e a l i s
309 de faut := n i l ;
310 case i n s t a n t in
311 1 −> return moy_p
312 | 2 −> return moy_p + ((max_p−moy_p) / 4 . 0)
313 | 3 −> return moy_p + ((max_p−moy_p) / 2 . 0)
314 | 4 −> return moy_p + ((max_p−moy_p) / 4 . 0)
315 | 5 −> return moy_p
316 | 6 −> return moy_p − ((max_p−moy_p) / 4 . 0)
317 | 7 −> i f a_defaut then
318 de faut := i n v a l i d i t e M e s u r e ;
319 r e turn 0 .0
320 e l s e
321 r e turn moy_p − ((max_p−moy_p) / 4 . 0)
322 end i f
323 | 8 −> return moy_p
324 | any −> return 0 .0
325 end case
326 end f u n c t i o n
327

328 end module

Listing B.2: Scenarios.lnt (“scenarios.lnt”)

The Menu Module

The Menu module describes the hierarchical menu (cf. Section 5.2.2-b) on page 98) of the
user interfaces defined in the EDF case study. This module is illustrated in Listing B.3. It is
composed of a unique process (line 3) and a unique function (line 243). The vue_p process is
parameterized with several gates (lines 3–47), allowing the User module (not described here) to
communicate with this module (cf. Figure 70 on page 97). Each gate denotes a menu option.
Communication between both the User and the Menu modules permits to simulate the selection
by the user of a menu option on the user interface.

The visible function (lines 243–255) implements the behavior of the menu, regarding the
menu options available to the user according to his or her last choice. This function takes two
parameters: the menu option to test, and the last option menu chosen. It returns a boolean
value that indicates whether the menu option should be made available to the user, according
to the last option menu that was chosen. This function is recursive and permits to pull parent
menus up. Hence, it supports single-level menus as well as hierarchical ones.

1 module vue (b i b l i o t h e q u e) i s
2

3 p r o c e s s vue_p [vue_synthese_globale ,
4 vue_surete ,
5 vue_surete_react iv i t e ,
6 vue_surete_react iv i te_concentbore ,

195

7 vue_surete_react iv i te_posgrappes ,
8 vue_sure te_react iv i t e_bord i lu t i on ,
9 v u e _ s u r e t e _ r e a c t i v i t e _ p i l r e a c t e u r ,

10 vue_surete_re f ro id i s sement ,
11 vue_surete_refro id issement_inv ,
12 vue_surete_re f ro id i s sement_c i rc ,
13 vue_surete_refroidissement_app ,
14 vue_surete_re f ro id i s s ement_s f ro id ,
15 vue_surete_confinement ,
16 vue_production ,
17 vue_production_R ,
18 vue_production_R_RRI ,
19 vue_production_R_RRA ,
20 vue_production_R_RCP ,
21 vue_production_R_RPN ,
22 vue_production_R_RGL ,
23 vue_production_R_RCV ,
24 vue_production_R_REA ,
25 vue_production_R_RPE ,
26 vue_production_A ,
27 vue_production_V ,
28 vue_production_G ,
29 vue_production_C ,
30 vue_support ,
31 vue_suppor t_e l ec t r i c i t e ,
32 vue_support_electricite_LGA ,
33 vue_support_electricite_LGB ,
34 vue_support_electricite_LGD ,
35 vue_support_electricite_LGC ,
36 vue_support_electricite_LHA ,
37 vue_support_electricite_LHB ,
38 vue_support_electricite_LBA ,
39 vue_support_aircomprime ,
40 vue_support_ic ,
41 vue_support_incendie ,
42 vue_support_cl imvent i lat ion ,
43 vue_signaux ,
44 vue_signaux_alertesa larmes ,
45 vue_signaux_nonconformites ,
46 vue_signaux_discordances ,
47 vue_signaux_inhibes : None ,
48 voir_vue : TVue] i s
49

50 var vue_v , derniere_vue : TVue in
51

52 vue_v := synthese_globa le ;
53

54 loop v in
55 s e l e c t
56 derniere_vue := vue_v ;
57 vue_v := synthese_globa le ;
58 vue_synthese_globale where v i s i b l e (vue_v , derniere_vue)
59 []
60 derniere_vue := vue_v ;
61 vue_v := s u r e t e ;
62 vue_surete where v i s i b l e (vue_v , derniere_vue)
63 []
64 derniere_vue := vue_v ;

196 APPENDIX B. AN EXCERPT OF A LNT SPECIFICATION

65 vue_v := s u r e t e _ r e a c t i v i t e ;
66 vue_sure t e_reac t iv i t e where v i s i b l e (vue_v , derniere_vue)
67 []
68 derniere_vue := vue_v ;
69 vue_v := s u r e t e _ r e a c t i v i t e _ c o n c e n t r a t i o n b o r e ;
70 vue_surete_react iv i te_concentbore where v i s i b l e (vue_v , derniere_vue)
71 []
72 derniere_vue := vue_v ;
73 vue_v := s u r e t e _ r e a c t i v i t e _ p o s i t i o n g r a p p e s ;
74 vue_surete_react iv i te_posgrappes where v i s i b l e (vue_v , derniere_vue)
75 []
76 derniere_vue := vue_v ;
77 vue_v := s u r e t e _ r e a c t i v i t e _ b o r i c a t i o n d i l u t i o n ;
78 v u e_ s ure t e_ r eac t iv i t e_ bord i lu t i on where v i s i b l e (vue_v , derniere_vue)
79 []
80 derniere_vue := vue_v ;
81 vue_v := s u r e t e _ r e a c t i v i t e _ p i l o t a g e r e a c t e u r ;
82 v u e _ s u r e t e _ r e a c t i v i t e _ p i l r e a c t e u r where v i s i b l e (vue_v , derniere_vue)
83 []
84 derniere_vue := vue_v ;
85 vue_v := s u r e t e _ r e f r o i d i s s e m e n t ;
86 vue_surete_re f ro id i s sement where v i s i b l e (vue_v , derniere_vue)
87 []
88 derniere_vue := vue_v ;
89 vue_v := s u r e t e _ r e f r o i d i s s e m e n t _ i n v e n t a i r e ;
90 vue_surete_re f ro id i s sement_inv where v i s i b l e (vue_v , derniere_vue)
91 []
92 derniere_vue := vue_v ;
93 vue_v := s u r e t e _ r e f r o i d i s s e m e n t _ c i r c u l a t i o n ;
94 vue_surete_re f ro id i s s ement_c i r c where v i s i b l e (vue_v , derniere_vue)
95 []
96 derniere_vue := vue_v ;
97 vue_v := sure te_re f ro id i s s ement_appo int ;
98 vue_surete_refro idissement_app where v i s i b l e (vue_v , derniere_vue)
99 []

100 derniere_vue := vue_v ;
101 vue_v := s u r e t e _ r e f r o i d i s s e m e n t _ s o u r c e s f r o i d e s ;
102 vue_sure te_re f ro id i s s ement_s f ro id where v i s i b l e (vue_v , derniere_vue)
103 []
104 derniere_vue := vue_v ;
105 vue_v := surete_conf inement ;
106 vue_surete_confinement where v i s i b l e (vue_v , derniere_vue)
107 []
108 derniere_vue := vue_v ;
109 vue_v := product ion ;
110 vue_production where v i s i b l e (vue_v , derniere_vue)
111 []
112 derniere_vue := vue_v ;
113 vue_v := production_R ;
114 vue_production_R where v i s i b l e (vue_v , derniere_vue)
115 []
116 derniere_vue := vue_v ;
117 vue_v := production_R_RRI ;
118 vue_production_R_RRI where v i s i b l e (vue_v , derniere_vue)
119 []
120 derniere_vue := vue_v ;
121 vue_v := production_R_RRA ;
122 vue_production_R_RRA where v i s i b l e (vue_v , derniere_vue)

197

123 []
124 derniere_vue := vue_v ;
125 vue_v := production_R_RCP ;
126 vue_production_R_RCP where v i s i b l e (vue_v , derniere_vue)
127 []
128 derniere_vue := vue_v ;
129 vue_v := production_R_RPN ;
130 vue_production_R_RPN where v i s i b l e (vue_v , derniere_vue)
131 []
132 derniere_vue := vue_v ;
133 vue_v := production_R_RGL ;
134 vue_production_R_RGL where v i s i b l e (vue_v , derniere_vue)
135 []
136 derniere_vue := vue_v ;
137 vue_v := production_R_RCV ;
138 vue_production_R_RCV where v i s i b l e (vue_v , derniere_vue)
139 []
140 derniere_vue := vue_v ;
141 vue_v := production_R_REA ;
142 vue_production_R_REA where v i s i b l e (vue_v , derniere_vue)
143 []
144 derniere_vue := vue_v ;
145 vue_v := production_R_RPE ;
146 vue_production_R_RPE where v i s i b l e (vue_v , derniere_vue)
147 []
148 derniere_vue := vue_v ;
149 vue_v := production_A ;
150 vue_production_A where v i s i b l e (vue_v , derniere_vue)
151 []
152 derniere_vue := vue_v ;
153 vue_v := production_V ;
154 vue_production_V where v i s i b l e (vue_v , derniere_vue)
155 []
156 derniere_vue := vue_v ;
157 vue_v := production_G ;
158 vue_production_G where v i s i b l e (vue_v , derniere_vue)
159 []
160 derniere_vue := vue_v ;
161 vue_v := production_C ;
162 vue_production_C where v i s i b l e (vue_v , derniere_vue)
163 []
164 derniere_vue := vue_v ;
165 vue_v := support ;
166 vue_support where v i s i b l e (vue_v , derniere_vue)
167 []
168 derniere_vue := vue_v ;
169 vue_v := s u p p o r t _ e l e c t r i c i t e ;
170 v u e _ s u p p o r t _ e l e c t r i c i t e where v i s i b l e (vue_v , derniere_vue)
171 []
172 derniere_vue := vue_v ;
173 vue_v := support_electr ic ite_LGA ;
174 vue_support_electricite_LGA where v i s i b l e (vue_v , derniere_vue)
175 []
176 derniere_vue := vue_v ;
177 vue_v := support_electr ic i te_LGB ;
178 vue_support_electricite_LGB where v i s i b l e (vue_v , derniere_vue)
179 []
180 derniere_vue := vue_v ;

198 APPENDIX B. AN EXCERPT OF A LNT SPECIFICATION

181 vue_v := support_electr ic ite_LGD ;
182 vue_support_electricite_LGD where v i s i b l e (vue_v , derniere_vue)
183 []
184 derniere_vue := vue_v ;
185 vue_v := support_electr ic i te_LGC ;
186 vue_support_electricite_LGC where v i s i b l e (vue_v , derniere_vue)
187 []
188 derniere_vue := vue_v ;
189 vue_v := support_electr ic i te_LHA ;
190 vue_support_electricite_LHA where v i s i b l e (vue_v , derniere_vue)
191 []
192 derniere_vue := vue_v ;
193 vue_v := support_electr ic i te_LHB ;
194 vue_support_electricite_LHB where v i s i b l e (vue_v , derniere_vue)
195 []
196 derniere_vue := vue_v ;
197 vue_v := support_electr ic i te_LBA ;
198 vue_support_electricite_LBA where v i s i b l e (vue_v , derniere_vue)
199 []
200 derniere_vue := vue_v ;
201 vue_v := support_aircomprime ;
202 vue_support_aircomprime where v i s i b l e (vue_v , derniere_vue)
203 []
204 derniere_vue := vue_v ;
205 vue_v := support_ic ;
206 vue_support_ic where v i s i b l e (vue_v , derniere_vue)
207 []
208 derniere_vue := vue_v ;
209 vue_v := support_incendie ;
210 vue_support_incendie where v i s i b l e (vue_v , derniere_vue)
211 []
212 derniere_vue := vue_v ;
213 vue_v := s up p o r t _ c l i m v e n t i l a t i o n ;
214 vue_support_cl imvent i lat ion where v i s i b l e (vue_v , derniere_vue)
215 []
216 derniere_vue := vue_v ;
217 vue_v := signaux ;
218 vue_signaux where v i s i b l e (vue_v , derniere_vue)
219 []
220 derniere_vue := vue_v ;
221 vue_v := s ignaux_a le r t e sa la rmes ;
222 vue_signaux_alertesa larmes where v i s i b l e (vue_v , derniere_vue)
223 []
224 derniere_vue := vue_v ;
225 vue_v := signaux_nonconformites ;
226 vue_signaux_nonconformites where v i s i b l e (vue_v , derniere_vue)
227 []
228 derniere_vue := vue_v ;
229 vue_v := s ignaux_discordances ;
230 vue_signaux_discordances where v i s i b l e (vue_v , derniere_vue)
231 []
232 derniere_vue := vue_v ;
233 vue_v := s ignaux_inhibes ;
234 vue_signaux_inhibes where v i s i b l e (vue_v , derniere_vue)
235 []
236 voir_vue (vue_v)
237 end s e l e c t
238 end loop

199

239 end var
240 end p r o c e s s
241

242

243 f u n c t i o n v i s i b l e (option_menu , de rn i e r e_opt ion_cho i s i e : TVue) : bool i s
244 i f (option_menu == n i l) then
245 r e turn f a l s e
246 −−−− a f f i c h e l e s f i l s de l opt ion −−−−

247 e l s i f (parent (option_menu) == dern i e r e_opt ion_cho i s i e) then
248 r e turn true
249 −−−− a f f i c h e t ou t e s l e s g é n é r a t i o n s de parents −−−−−
250 e l s i f (de rn i e r e_opt ion_cho i s i e != n i l) then
251 r e turn v i s i b l e (option_menu , parent (de rn i e r e_opt ion_cho i s i e))
252 e l s e
253 r e turn f a l s e
254 end i f
255 end f u n c t i o n
256

257 end module

Listing B.3: Menu.lnt (“vue.lnt”)

200 APPENDIX B. AN EXCERPT OF A LNT SPECIFICATION

Appendix C

MCL Properties

This appendix describes the nine properties identified in the EDF case study in Section 5.2.8
(page 106), what they aim to verify, and how they are formalized in the MCL language. A
summary of the properties can be found in Table 7.

1. “From any UI, one can always go directly to the main UI (i.e., without passing through
any other UI).”:

[true∗]

〈 (not UIs)∗ . ′GLOBAL_SY NTHESIS′ 〉 true

This property ensures that, in all user interfaces, there is always the possibility to come
back to the main UI (called global synthesis, Figure 50) with one single user interaction,
i.e., without the need to access intermediate UIs before.

2. “A UI is only accessible along the hierarchy of UIs.”:

macro HIERARCHICAL_ACCESS (V 1, V 2) =

[true∗ . (UIs and (not V 1)) . (not UIs∗) . V 2] false

end macro

HIERARCHICAL_ACCESS (′SAFETY ′, ′SAFETY _REACTIV ITY ′)

and

HIERARCHICAL_ACCESS (′SAFETY ′, ′SAFETY _COOLING′)

and

...

(it continues for all pairs of UIs)

where “UIs” is another macro containing a formula with disjunctive clauses of all UIs
of the system. This property is written as a macro, and at each execution, to V1 and
V2 are assigned pairs of UIs, where V1 is a UI through which V2 can be accessed. This
formula describes the rules to accessing a UI by the menu, described in Subsection 5.2.2
- b) (page 98). It is a safety property, thus, it expresses that it is never the case that a
given user interface V2 is accessed thought a sequence of UIs where a UI V1 is not in.

3. “One can always come back directly to the parent UI (i.e., without passing through any

201

202 APPENDIX C. MCL PROPERTIES

other UI before).”:

macro BACKWARDS_NAV IGATION (V 1, V 2) =

[true∗ . V 1] 〈 (not UIs)∗ . V 2 〉 true

end macro

BACKWARDS_NAV IGATION (′SAFETY _REACTIV ITY ′, ′SAFETY ′)

and

BACKWARDS_NAV IGATION (′SAFETY _COOLING′, ′SAFETY ′)

...

(it continues for all pairs of UIs)

Knowing that, in the hierarchy of UIs (cf. Subsection 5.2.2 - b) on page 98), the SAFETY

UI (V 2 UI) is the parent UI of the SAFETY _REACTIV ITY UI (V 1 UI), this property
states that once V 1 had been accessed, it is always possible to come back to V 2 without
passing through any other UI before (i.e., (not UIs)∗).

4. “From any state one can always reach any UI.”:

macro ACCESSIBLE_UIS (V) =

[true∗] 〈 true∗ . V 〉 true

end macro

ACCESSIBLE_UIS (′GLOBAL_SY NTHESIS′)

and

ACCESSIBLE_UIS (′SAFETY ′)

...

(it continues for all UIs)

This property states that from any state, all UIs will be eventually accessed.

5. “There is no deadlock in the system.”:

[true∗] 〈 true 〉 true

This formula states that every state has at least one successor. It means that, in every
state of the system, an evolution in time is always possible.

6. “The UIs that display the signal details should be always accessible independently of the

203

evolution of the reactor parameters.”:

macro ACCESSIBILITY _SIGNAL_UIS (S) =

[true∗] 〈 (not ′V OIR_PARAMS .∗′)∗ . S 〉 true

end macro

ACCESSIBILITY _SIGNALS_UIS (′V UE_SIGNAUX_ALERTES′)

and

ACCESSIBILITY _SIGNALS_UIS (′V UE_SIGNAUX_IHNIBES′)

...

(it continues for all signal UIs)

This property verifies that the access to the UIs that display the details of the signals
are independent from the evolution of the reactor parameters. Due to the fact that, even
though signals are generated when parameters have anomalies (cf. Subsection 5.2.3 - b)
on page 103), some signals are independent from that. Thus, the signal UIs should be
accessible independently of the evolution of the reactor parameters.

7. “Starting from any state, the reactor generates all five anomalies on each parameter.”:

macro FAILURES_COV ERAGE (P) =

[true∗]

〈 true∗ . ′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , DEP_HAUT.∗′ 〉 true

and

〈 true∗ . ′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , DEP_BAS.∗′ 〉 true

and

〈 true∗ . ′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , DEP_GRAD.∗′ 〉 true

and

〈 true∗ . ′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , INV _MESURE.∗′ 〉 true

and

〈 true∗ . ′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , PERTE_RED.∗′ 〉 true

end macro

FAILURES_COV ERAGE (′TPTH_MOY ′)

and

FAILURES_COV ERAGE (′TDPAXMOY ′)

...

(it continues for all reactor parameters)

This property is expressed as a macro (i.e., FAILURES_COV ERAGE), and at each
execution, it verifies that the five anomaly scenarios (i.e., threshold overflow – “dépasse-
ment haut”, threshold underflow – “dépassement bas”, gradient excess – “dépassement

204 APPENDIX C. MCL PROPERTIES

gradient”, invalid measurement – “invalidité de mesure”, and loss of redundancy – “perte
de redondance”) are simulated over each reactor parameter (e.g., “Pth moy” parameter).

8. “Starting from any state, the reactor generates at least one anomaly on each parameter.”:

macro ONE_FAILURE (P) =

[true∗]

〈 true∗ .

(
′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , DEP_HAUT.∗′

or
′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , DEP_BAS.∗′

or
′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , DEP_GRAD.∗′

or
′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , INV _MESURE.∗′

or
′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , PERTE_RED.∗′

)

〉 true

end macro

ONE_FAILURE (′TPTH_MOY ′)

and

ONE_FAILURE (′TDPAXMOY ′)

...

(it continues for all reactor parameters)

Depending on the verification goals, one can verify whether the reactor generates on each
parameter either all five anomalies (Property n. 7) or at least one anomaly (Property
n. 8).

9. “Starting from any state, the reactor generates at least one anomaly on each parameter

205

belonging to a specific plant status.”:

macro PLANT_STATUS_FAILURE (PS, P) =

[true∗ . ′FIXER_ET !′ # PS . (not ′FIXER_ET .∗′)∗]

〈 (not ′FIXER_ET .∗′)∗.

(
′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , DEP_HAUT.∗′

or
′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , DEP_BAS.∗′

or
′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , DEP_GRAD.∗′

or
′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , INV _MESURE.∗′

or
′V OIR_PARAMS.∗ !′ # P # ′(.\ {1, 7\} , PERTE_RED.∗′

)

〉 true

end macro

PLANT_STATUS_FAILURE (′RP ′, ′TPTH_MOY ′)

and

PLANT_STATUS_FAILURE (′RP ′, ′TDPAXMOY ′)

...

(it continues for all pairs of plant status and reactor parameters)

As explained in Section 3.3.1 (page 72), at the top of the user interfaces six plant status
can be chosen, and the reactor parameters that are displayed on the UIs change according
to the plant status. This property also verifies the coverage of the functional core model,
by checking whether at least one anomaly is simulated over each parameter monitored in
each plant status.

206 APPENDIX C. MCL PROPERTIES

Appendix D

SVL Scripts

This appendix presents the SVL scripts created to implement the three abstraction techniques
introduced in this thesis, named generalization, omission and elimination, in order to support
the comparisons between the user interfaces of the EDF system described in Chapter 6. The
UIs of this case study are adapted according to changes in their context of use, and five UI
versions are proposed (cf. Section 3.4.2 on page 78): running on a PC, on a Smartphone, on
a Tablet, in Training mode, and in Expert mode. The five versions of the UIs are compared
to each other, as described in Section 6.6, page 151, and the use of the three aforementioned
abstract techniques supports the process.

PC Version × Smartphone Version

The Svl script below illustrates the transformations done in the ISLTS representations of the PC
version of the UI (in line 15, the main_v46_b.bcg file stores the LTS), and of the Smartphone
version of the UI (in line 31, the main_v55_b.bcg file). The rename Svl operator implements
the generalization abstraction technique (lines 3 and 19). The transformed ISLTS are then
compared with each other in the light of the branching bisimulation relation (lines 1 and 17).
If both LTS are branching equivalent, the script returns true, otherwise, a counter-example
is generated and stored in the diag.bcg file (line 1). Here, the PC version and Smartphone
version are branching equivalent.

1 " d iag . bcg " = branching comparison gene ra t i on o f
2

3 t o t a l rename "AFFICH_PARS !AFFICH_PARS_. ∗_RP (. ∗ (\ (. ∗ \) , FLECHEJAUNEHAUT) . ∗) " −>
"AFFICH_PARS (FLECHEJAUNEHAUT in \1) " ,

4 "AFFICH_PARS !AFFICH_PARS_. ∗_RP (. ∗ (\ (. ∗ \) , FLECHEJAUNEBAS) . ∗) " −>
"AFFICH_PARS (FLECHEJAUNEBAS in \1) " ,

5 "AFFICH_PARS !AFFICH_PARS_. ∗_RP (. ∗ (\ (. ∗ \) , CADREMAGENTA) . ∗) " −>
"AFFICH_PARS (CADREMAGENTA in \1) " ,

6 "AFFICH_PARS !AFFICH_PARS_. ∗_RP (. ∗ (\ (. ∗ \) , CADREROUGE) . ∗) " −>
"AFFICH_PARS (CADREROUGE in \1) " ,

7 "AFFICH_PARS !AFFICH_PARS_. ∗_RP (. ∗ (\ (. ∗ \) , BARREORANGE) . ∗) " −>
"AFFICH_PARS (BARREORANGE in \1) " ,

8 "AFFICH_PARS. ∗ " −>
"AFFICH_PARS (VIDE) " ,

9

10 "AFFICH_SIGN !AFFICH_SIGN_. ∗_RP (. ∗ (\ (. ∗ \) , CARREJAUNE. ∗) " −>
"AFFICH_SIGN (CARREJAUNE in \1) " ,

11 "AFFICH_SIGN !AFFICH_SIGN_. ∗_RP (. ∗ (\ (. ∗ \) , . ∗ , CARREORANGE. ∗) " −>
"AFFICH_SIGN (CARREORANGE in \1) " ,

12 "AFFICH_SIGN !AFFICH_SIGN_. ∗_RP (. ∗ (\ (. ∗ \) , . ∗ , NCROUGE. ∗) " −>
"AFFICH_SIGN (NCROUGE in \1) " ,

13 "AFFICH_SIGN !AFFICH_SIGN_. ∗_RP (. ∗ (\ (. ∗ \) , . ∗ , CARREROUGE. ∗) " −>
"AFFICH_SIGN (CARREROUGE in \1) " ,

207

208 APPENDIX D. SVL SCRIPTS

14 "AFFICH_SIGN. ∗ " −>
"AFFICH_SIGN (VIDE) "

15 in " main_v46_b . bcg "
16

17 ==
18

19 t o t a l rename "AFFICH_PARS !AFFICH_PARS_. ∗_RP (. ∗ (\ (. ∗ \) , FLECHEJAUNEHAUT) . ∗) " −>
"AFFICH_PARS (FLECHEJAUNEHAUT in \1) " ,

20 "AFFICH_PARS !AFFICH_PARS_. ∗_RP (. ∗ (\ (. ∗ \) , FLECHEJAUNEBAS) . ∗) " −>
"AFFICH_PARS (FLECHEJAUNEBAS in \1) " ,

21 "AFFICH_PARS !AFFICH_PARS_. ∗_RP (. ∗ (\ (. ∗ \) , CADREMAGENTA) . ∗) " −>
"AFFICH_PARS (CADREMAGENTA in \1) " ,

22 "AFFICH_PARS !AFFICH_PARS_. ∗_RP (. ∗ (\ (. ∗ \) , CADREROUGE) . ∗) " −>
"AFFICH_PARS (CADREROUGE in \1) " ,

23 "AFFICH_PARS !AFFICH_PARS_. ∗_RP (. ∗ (\ (. ∗ \) , BARREORANGE) . ∗) " −>
"AFFICH_PARS (BARREORANGE in \1) " ,

24 "AFFICH_PARS. ∗ " −>
"AFFICH_PARS (VIDE) " ,

25

26 "AFFICH_SIGN !AFFICH_UN_SIGNAL (. ∗ (\ (. ∗ \) , CARREJAUNE. ∗) " −>
"AFFICH_SIGN (CARREJAUNE in \1) " ,

27 "AFFICH_SIGN !AFFICH_UN_SIGNAL (. ∗ (\ (. ∗ \) , . ∗ , CARREORANGE. ∗) " −>
"AFFICH_SIGN (CARREORANGE in \1) " ,

28 "AFFICH_SIGN !AFFICH_UN_SIGNAL (. ∗ (\ (. ∗ \) , . ∗ , NCROUGE. ∗) " −>
"AFFICH_SIGN (NCROUGE in \1) " ,

29 "AFFICH_SIGN !AFFICH_UN_SIGNAL (. ∗ (\ (. ∗ \) , . ∗ , CARREROUGE. ∗) " −>
"AFFICH_SIGN (CARREROUGE in \1) " ,

30 "AFFICH_SIGN. ∗ " −>
"AFFICH_SIGN (VIDE) "

31 in " main_v55_b . bcg "

Expert Version × Training Version

The Svl script below illustrates the nested transformations done in the ISLTS of the Expert
mode version of the UI (in line 28, the main_v67_b.bcg file stores the LTS), and in the ISLTS

of the Training mode version of the UI (in line 52, the main_v66_b.bcg file). The rename Svl

operator implementing the generalization abstraction technique is also present in this script
(e.g., lines 14 and 37). The cut Svl operator implements the elimination abstract technique
(line 51), eliminating the references to the breadcrumb trail from the Training mode ISLTS (cf.
Figure 116). The transformed ISLTS are then compared with each other in the light of the
strong bisimulation relation (lines 1 and 31), showing that the Training model and the Expert
model are strong equivalent modulo the breadcrumb trail.

1 " diag12 . bcg " = strong comparison gene ra t i on o f
2

3

4 (∗ ################### RENOMMAGES DE LA VERSION EXPERT ################### ∗)
5 s i n g l e rename
6 "TSIGNAL_COURBE (REACTIVITE, \ (. ∗ \) TSIGNAL_COURBE (CONFINEMENT, \ (. ∗ \)) ,

TSIGNAL_COURBE (PROD, \ (. ∗ \)) , TSIGNAL_COURBE (ELECTRICITE, \ (. ∗ \)
TSIGNAL_COURBE (CLIM_VENTIL, \ (. ∗ \))) " −>

7 "CATSIGNAUX (TSIGNAL_COURBE (REACTIVITE, \1 TSIGNAL_COURBE (CONFINEMENT,
\2)) , CATSIGNAUX (TSIGNAL_COURBE (PROD, \3)) , CATSIGNAUX (TSIGNAL_COURBE (
ELECTRICITE, \4 TSIGNAL_COURBE (CLIM_VENTIL, \5))) "

209

8 in gene ra t i on o f
9

10 s i n g l e rename "AFFICHER_SIGNAUX !AFFICHER_SIGNAUX_\ (. ∗ \)_RP (" −>
"AFFICHER_SIGNAUX !AFFICHER_SIGNAUX_\1_RP (ZONETITRE, " ,

11 "AFFICHER_PARAMS !AFFICHER_PARAMS_\ (. ∗ \)_RP (" −>
"AFFICHER_PARAMS !AFFICHER_PARAMS_\1_RP (ZONETITRE, "

12 in gene ra t i on o f
13

14 mu l t i p l e rename "SIGNAL_VIDE" −> "SYMBOLE_SANS_DEFAUT"
15 in " main_b_v67p . bcg "
16

17

18 ==
19

20

21 (∗ ################# RENOMMAGES DE LA VERSION FORMATION ################## ∗)
22 mu l t i p l e rename "CATSIGNAUX_[A−Z0−9_] ∗ (" −> "CATSIGNAUX ("
23 in gene ra t i on o f
24

25 s i n g l e rename "ZONE_SIGNAUX_DE_DEFAUT" −> "ZONETITRE" ,
26 "ZONE_PARAMETRES" −> "ZONETITRE"
27 in gene ra t i on o f
28

29 mu l t i p l e rename "SIGNAL_GRIS" −> "SYMBOLE_SANS_DEFAUT"
30 in gene ra t i on o f
31

32 p a r t i a l cut "ENVOYER_FILARIANE" , "FIL_ . ∗ "
33 in " main_b_v66p . bcg "

PC Version × Tablet Version

The Svl script below illustrates the inclusion verification between the ISLTS of the PC version
of the UI (line 3), and the ISLTS of the Tablet version of the UI (line 7). Here, no abstraction
technique is needed to transform the ISLTS, and both are compared with each other in the light
of the strong pre-order relation (lines 1 and 5), showing that the PC version includes the Tablet
version.

1 " d iag . bcg " = strong comparison
2

3 "main_vs69p_b_PC . bcg "
4

5 >=
6

7 " main_vs68p_b_Tablet . bcg "

210 APPENDIX D. SVL SCRIPTS

Bibliography

[1012-2004 2005] IEEE Std 1012-2004. IEEE Std 1012 - 2004 IEEE Standard for Software
Verification and Validation, 2005.

[Abowd et al. 1992] Gregory D. Abowd, Joëlle Coutaz et Laurence Nigay. Structuring the
Space of Interactive System Properties. In Proceedings of the IFIP TC2/WG2.7 Working
Conference on Engineering for Human-Computer Interaction, pages 113–129, Amsterdam,
The Netherlands, The Netherlands, 1992. North-Holland Publishing Co.

[Abowd et al. 1995] Gregory D Abowd, Hung-Ming Wang et Andrew F Monk. A Formal
Technique for Automated Dialogue Development. In Proceedings of the 1st conference
on Designing interactive systems: processes, practices, methods, & techniques, pages
219–226. ACM, 1995.

[Abowd 1991] Gregory D Abowd. Formal Aspects of Human-computer Interaction. PhD thesis,
University of Oxford, 1991.

[Abrial 1996] J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York, NY, USA, 1996.

[Abrial 2006] Jean-Raymond Abrial. Formal Methods in Industry: Achievements, Problems,
Future. In Proceedings of the 28th International Conference on Software Engineering,
ICSE ’06, pages 761–768, New York, NY, USA, 2006. ACM.

[Acharya et al. 2010] Chitra Acharya, Harold W. Thimbleby et Patrick Oladimeji. Human
Computer Interaction and Medical Devices. In Proceedings of the 2010 British Computer
Society Conference on Human-Computer Interaction, BCS-HCI 2010, Dundee, United
Kingdom, 6-10 September 2010, pages 168–176, 2010.

[AFCEN 2012] AFCEN. Règles de Conception et de Construction des Matériels Electriques des
Centrales Nucléaires, 2012.

[Aït-Ameur & Baron 2004] Yamine Aït-Ameur et Mickaël Baron. Bridging the Gap Between
Formal and Experimental Validation Approaches in HCI Systems Design: Use of the
Event B Proof based Technique. In International Symposium on Leveraging Applications
of Formal Methods, ISoLA 2004, October 30 - November 2, 2004, Paphos, Cyprus.
Preliminary proceedings, pages 74–80, 2004.

[Aït-Ameur & Baron 2006] Yamine Aït-Ameur et Mickaël Baron. Formal and Experimental
Validation Approaches in HCI Systems Design based on a Shared Event B Model. Inter-
national Journal on Software Tools for Technology Transfer, vol. 8, no. 6, pages 547–563,
2006.

[Aït-Ameur & Kamel 2004] Yamine Aït-Ameur et Nadjet Kamel. A Generic Formal Specifica-
tion of Fusion of Modalities in a Multimodal HCI. In Building the Information Society,
pages 415–420. Springer, 2004.

211

212 BIBLIOGRAPHY

[Aït-Ameur et al. 1998a] Yamine Aït-Ameur, Patrick Girard et Francis Jambon. A Uniform
Approach for Specification and Design of Interactive Systems: the B Method. In Design,
Specification and Verification of Interactive Systems’98, Supplementary Proceedings
of the Fifth International Eurographics Workshop, June 3-5, 1998, Abingdon, United
Kingdom, pages 51–67, 1998.

[Aït-Ameur et al. 1998b] Yamine Aït-Ameur, Patrick Girard et Francis Jambon. A Uniform
Approach for the Specification and Design of Interactive Systems: The B Method. In
Eurographics Workshop on Design, Specification, and Verification of Interactive Systems
(DSVIS’98), Vol. Proceedings (Eds, Markopoulos, P. and Johnson, P.), Abingdon, UK,
pages 333–352, 1998.

[Aït-Ameur et al. 1999] Yamine Aït-Ameur, Patrick Girard et Francis Jambon. Using the
B Formal Approach for Incremental Specification Design of Interactive Systems. In
Engineering for Human-Computer Interaction, pages 91–109. Springer, 1999.

[Aït-Ameur et al. 2003a] Yamine Aït-Ameur, Mickaël Baron et Patrick Girard. Formal Valida-
tion of HCI User Tasks. In Software Engineering Research and Practice, pages 732–738,
2003.

[Aït-Ameur et al. 2003b] Yamine Aït-Ameur, Mickaël Baron et Nadjet Kamel. Utilisation de
Techniques Formelles dans la Modélisation d’Interfaces Homme-machine. Une Expérience
Comparative entre B et Promela/SPIN. In 6th International Symposium on Programming
and Systems ISPS, pages 57–66, 2003.

[Aït-Ameur et al. 2004] Yamine Aït-Ameur, Benoit Breholée, Patrick Girard, Laurent Guittet et
Francis Jambon. Formal Verification and Validation of Interactive Systems Specifications.
In Human Error, Safety and Systems Development, pages 61–76. Springer, 2004.

[Aït-Ameur et al. 2005] Yamine Aït-Ameur, Mickaël Baron et Nadjet Kamel. Encoding a Process
Algebra Using the Event B Method. Application to the Validation of User Interfaces. In
Proceedings of 2nd IEEE international symposium on leveraging applications of formal
methods (ISOLA), 2005.

[Aït-Ameur et al. 2006] Yamine Aït-Ameur, Idir Aït-Sadoune, Jean-Marc Mota et Mickaël
Baron. Validation et Vérification Formelles de Systèmes Interactifs Multi-modaux
Fondées sur la Preuve. In Proceedings of the 18th International Conferenceof the
Association Francophone d’Interaction Homme-Machine, pages 123–130. ACM, 2006.

[Aït-Ameur et al. 2009] Yamine Aït-Ameur, Mickaël Baron, Nadjet Kamel et Jean-Marc Mota.
Encoding a Process Algebra Using the Event B Method. STTT, vol. 11, no. 3, pages
239–253, 2009.

[Aït-Ameur et al. 2010] Yamine Aït-Ameur, Idir Aït-Sadoune, Mickaël Baron et Jean-Marc
Mota. Vérification et Validation Formelles de Systèmes Interactifs Fondées sur la Preuve:
Application aux Systèmes Multi-Modaux. Journal d’Interaction Personne-Systéme (JIPS),
vol. 1, no. 1, pages 1–30, 2010.

[Aït-Ameur et al. 2014] Yamine Aït-Ameur, J Paul Gibson et Dominique Méry. On Implicit
and Explicit Semantics: Integration Issues in Proof-based Development of Systems. In

BIBLIOGRAPHY 213

Leveraging Applications of Formal Methods, Verification and Validation. Specialized
Techniques and Applications, pages 604–618. Springer, 2014.

[Aït-Ameur 2000] Yamine Aït-Ameur. Cooperation of Formal Methods in an Engineering based
Software Development Process. In Integrated Formal Methods, Second International
Conference, IFM 2000, Dagstuhl Castle, Germany, November 1-3, 2000, Proceedings,
pages 136–155, 2000.

[Aït-Sadoune & Aït-Ameur 2008] Idir Aït-Sadoune et Yamine Aït-Ameur. Animating Event
B Models by Formal Data Models. In Leveraging Applications of Formal Methods,
Verification and Validation, Third International Symposium, ISoLA 2008, Porto Sani,
Greece, October 13-15, 2008. Proceedings, pages 37–55, 2008.

[Alsmadi 2013] Izzat Mahmoud Alsmadi. Using Mutation to Enhance GUI Testing Coverage.
Software, IEEE, vol. 30, no. 1, pages 67–73, 2013.

[Ameur et al. 2010] Yamine Ait Ameur, Frédéric Boniol et Virginie Wiels. Toward a Wider Use
of Formal Methods for Aerospace Systems Design and Verification. International Journal
on Software Tools for Technology Transfer, vol. 12, no. 1, pages 1–7, 2010.

[Baecker & Buxton 2014] Ronald M Baecker et William AS Buxton. Readings in Human-
computer Interaction. Elsevier Science, 2014.

[Bass et al. 1991] Len Bass, Reed Little, Robert Pellegrino, Scott Reed, Robert Seacord, Sylvia
Sheppard et Martha R Szezur. The ARCH model: Seeheim Revisited. In User Interface
Developpers’ Workshop, 1991.

[Bastide & Palanque 1990] Rémi Bastide et Philippe A Palanque. Petri Net Objects for the
Design, Validation and Prototyping of User-driven Interfaces. In Interact, volume 90,
pages 625–631, 1990.

[Bastide & Palanque 1995] Rémi Bastide et Philippe Palanque. A Petri Net based Environment
for the Design of Event-driven Interfaces. In Application and Theory of Petri Nets 1995,
pages 66–83. Springer, 1995.

[Bastide et al. 2003] Rémi Bastide, David Navarre et Philippe Palanque. A Tool-supported
Design Framework for Safety Critical Interactive Systems. Interacting with computers,
vol. 15, no. 3, pages 309–328, 2003.

[Bastide et al. 2004] Rémi Bastide, David Navarre, Philippe A. Palanque, Amélie Schyn et
Pierre Dragicevic. A Model-based Approach for Real-time Embedded Multimodal Systems
in Military Aircrafts. In Proceedings of the 6th International Conference on Multimodal
Interfaces, ICMI 2004, State College, PA, USA, October 13-15, 2004, pages 243–250,
2004.

[Bastien & Scapin 1993] J.M. Christian Bastien et Dominique L. Scapin. Ergonomic Criteria
for the Evaluation of Human-computer Interfaces. Rapport technique RT-0156, INRIA,
Juin 1993.

214 BIBLIOGRAPHY

[Bauersfeld & Vos 2012] Sebastian Bauersfeld et Tanja E. J. Vos. GUITest: A Java Library for
Fully Automated GUI Robustness Testing. In IEEE/ACM International Conference on
Automated Software Engineering, ASE’12, Essen, Germany, September 3-7, 2012, pages
330–333, 2012.

[Bauersfeld & Vos 2014] Sebastian Bauersfeld et Tanja E. J. Vos. User Interface Level Testing
with TESTAR; What about More Sophisticated Action Specification and Selection? In
Post-proceedings of the Seventh Seminar on Advanced Techniques and Tools for Software
Evolution, SATToSE 2014, L’Aquila, Italy, 9-11 July 2014., pages 60–78, 2014.

[Bauersfeld et al. 2011a] Sebastian Bauersfeld, Stefan Wappler et Joachim Wegener. A Meta-
heuristic Approach to Test Sequence Generation for Applications with a GUI. In Search
Based Software Engineering - Third International Symposium, SSBSE 2011, Szeged,
Hungary, September 10-12, 2011. Proceedings, pages 173–187, 2011.

[Bauersfeld et al. 2011b] Sebastian Bauersfeld, Stefan Wappler et Joachim Wegener. An Ap-
proach to Automatic Input Sequence Generation for GUI Testing Using Ant Colony
Optimization. In 13th Annual Genetic and Evolutionary Computation Conference,
GECCO 2011, Companion Material Proceedings, Dublin, Ireland, July 12-16, 2011,
pages 251–252, 2011.

[Bauersfeld et al. 2014a] Sebastian Bauersfeld, Antonio de Rojas et Tanja E. J. Vos. Evaluating
ROGUE User Testing in Industry: An Experience Report. In IEEE 8th International
Conference on Research Challenges in Information Science, RCIS 2014, Marrakech,
Morocco, May 28-30, 2014, pages 1–10, 2014.

[Bauersfeld et al. 2014b] Sebastian Bauersfeld, Tanja E. J. Vos, Nelly Condori-Fernández,
Alessandra Bagnato et Etienne Brosse. Evaluating the TESTAR Tool in an Indus-
trial Case Study. In 2014 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’14, Torino, Italy, September 18-19, 2014, pages
4:1–4:9, 2014.

[Bauersfeld 2013] Sebastian Bauersfeld. GUIdiff - A Regression Testing Tool for Graphical User
Interfaces. In 2013 IEEE Sixth International Conference on Software Testing, Verification
and Validation, Luxembourg, Luxembourg, March 18-22, 2013, pages 499–500, 2013.

[Bertino 1985] E Bertino. Design Issues in Interactive User Interfaces. Interfaces in Computing,
vol. 3, no. 1, pages 37 – 53, 1985.

[Bevan 2001] Nigel Bevan. International Standards for HCI and Usability. International journal
of human-computer studies, vol. 55, no. 4, pages 533–552, 2001.

[Bhasin et al. 2013] Harsh Bhasin, Harish Kumar et Vikas Singh. Orthogonal Testing Using Ge-
netic Algorithms. International Journal of Computer Science and Information Technology,
vol. 4, no. 2, pages 374–377, 2013.

[Bin & Anbao 2012] Zhu Bin et Wang Anbao. Functional and User Interface Model for Gener-
ating Test Cases. In Computer and Information Science (ICIS), 2012 IEEE/ACIS 11th
International Conference on, pages 605–610. IEEE, 2012.

BIBLIOGRAPHY 215

[Bolton 2008] Matthew L. Bolton. Modeling Human Perception Could Stevens’ Power Law Be
an Emergent Feature? In SMC, pages 1073–1078. IEEE, 2008.

[Booch et al. 2005] Grady Booch, James Rumbaugh et Ivar Jacobson. Unified Modeling Lan-
guage User Guide, The (2Nd Edition) (Addison-Wesley Object Technology Series).
Addison-Wesley Professional, 2005.

[Booth 1989] Paul A Booth. An Introduction to Human-computer Interaction. Psychology
Press, 1989.

[Borjesson & Feldt 2012] Emil Borjesson et Robert Feldt. Automated System Testing Using
Visual GUI Testing Tools: A Comparative Study in Industry. In ICST, pages 350–359.
IEEE, 2012.

[Bouajjani et al. 1991] Ahmed Bouajjani, Jean-Claude Fernandez, Susanne Graf, Carlos Ro-
driguez et Joseph Sifakis. Safety for Branching Time Semantics. In Automata, Languages
and Programming, pages 76–92. Springer, 1991.

[Bowen & Reeves 2005] Judy Bowen et Steve Reeves. Including Design Guidelines in the Formal
Specification of Interfaces in Z. In ZB 2005: Formal Specification and Development in Z
and B, 4th International Conference of B and Z Users, Guildford, UK, April 13-15, 2005,
Proceedings, pages 454–471, 2005.

[Bowen & Reeves 2006] Judy Bowen et Steve Reeves. Formal Refinement of Informal GUI
Design Artefacts. In 17th Australian Software Engineering Conference (ASWEC 2006),
18-21 April 2006, Sydney, Australia, pages 221–230, 2006.

[Bowen & Reeves 2007a] Judy Bowen et Steve Reeves. Formal Models for Informal GUI Designs.
Electr. Notes Theor. Comput. Sci., vol. 183, pages 57–72, 2007.

[Bowen & Reeves 2007b] Judy Bowen et Steve Reeves. Using Formal Models to Design User
Interfaces: A Case Study. In Proceedings of the 21st British HCI Group Annual
Conference on HCI 2007: HCI...but not as we know it - Volume 1, BCS HCI 2007,
University of Lancaster, United Kingdom, 3-7 September 2007, pages 159–166, 2007.

[Bowen & Reeves 2008a] Judy Bowen et Steve Reeves. Formal Models for User Interface Design
Artefacts. ISSE, vol. 4, no. 2, pages 125–141, 2008.

[Bowen & Reeves 2008b] Judy Bowen et Steve Reeves. Refinement for User Interface Designs.
Electr. Notes Theor. Comput. Sci., vol. 208, pages 5–22, 2008.

[Bowen & Reeves 2011] Judy Bowen et Steve Reeves. UI-driven Test-first Development of
Interactive Systems. In Proceedings of the 3rd ACM SIGCHI Symposium on Engineering
Interactive Computing System, EICS 2011, Pisa, Italy, June 13-16, 2011, pages 165–174,
2011.

[Bowen & Reeves 2012] Judy Bowen et Steve Reeves. Modelling User Manuals of Modal Medical
Devices and Learning from the Experience. In ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, EICS’12, Copenhagen, Denmark - June 25 - 28, 2012,
pages 121–130, 2012.

216 BIBLIOGRAPHY

[Bowen & Reeves 2013a] Judy Bowen et Steve Reeves. Modelling Safety Properties of Interactive
Medical Systems. In ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, EICS’13, London, United Kingdom - June 24 - 27, 2013, pages 91–100, 2013.

[Bowen & Reeves 2013b] Judy Bowen et Steve Reeves. UI-design Driven Model-based Testing.
ISSE, vol. 9, no. 3, pages 201–215, 2013.

[Bowen 2015] Judy Bowen. Creating Models of Interactive Systems with the Support of
Lightweight Reverse-Engineering Tools. In Proceedings of the 7th ACM SIGCHI Sympo-
sium on Engineering Interactive Computing Systems, EICS 2015, Duisburg, Germany,
June 23-26, 2015, pages 110–119, 2015.

[Boyer & Moore 1983] Robert S Boyer et J Strother Moore. Proof-Checking, Theorem Proving,
and Program Verification. Rapport technique, DTIC Document, 1983.

[Brat et al. 2013] Guillaume Brat, Célia Martinie et Philippe Palanque. V&V of Lexical,
Syntactic and Semantic Properties for Interactive Systems through Model Checking of
Formal Description of Dialog. In Proceedings of the 15th International Conference on
Human-Computer Interaction: Human-centred Design Approaches, Methods, Tools,
and Environments - Volume Part I, HCI’13, pages 290–299, Berlin, Heidelberg, 2013.
Springer-Verlag.

[Bumbulis et al. 1995a] Peter Bumbulis, P. S. C. Alencar, D. D. Cowan et C. J. P. Lucena.
Combining Formal Techniques and Prototyping in User Interface Construction and
Verification. In In 2nd Eurographics Workshop on Design, Specification, Verification of
Interactive Systems (DSV-IS’95). Springer-Verlag Lecture Notes in Computer Science,
pages 7–9. Springer-Verlag, 1995.

[Bumbulis et al. 1995b] Peter Bumbulis, Paulo S. C. Alencar, Donald D. Cowan et Carlos José
Pereira de Lucena. A Framework for Machine-Assisted User Interface Verification. In
Proceedings of the 4th International Conference on Algebraic Methodology and Software
Technology, AMAST ’95, pages 461–474, London, UK, UK, 1995. Springer-Verlag.

[Bumbulis et al. 1996] Peter Bumbulis, Paulo S. C. Alencar, Donald D. Cowan et Carlos
José Pereira de Lucena. Validating Properties of Component-based Graphical User
Interfaces. In Design, Specification and Verification of Interactive Systems’96, Proceed-
ings of the Third International Eurographics Workshop, June 5-7, 1996, Namur, Belgium,
pages 347–365, 1996.

[Butler & Finelli 1993] Ricky W Butler et George B Finelli. The Infeasibility of Quantifying the
Reliability of Life-critical Real-time Software. Software Engineering, IEEE Transactions
on, vol. 19, no. 1, pages 3–12, 1993.

[Calvary et al. 2003] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg, Laurent
Bouillon et Jean Vanderdonckt. A Unifying Reference Framework for Multi-Target User
Interfaces. Interacting with Computers, vol. 15, no. 3, pages 289–308, 2003.

[Calvary et al. 2011] Gaëlle Calvary, Audrey Serna, Joëlle Coutaz, Dominique Scapin, Florence
Pontico et Marco Winckler. Envisioning Advanced User Interfaces for E-government
Applications: A Case Study. In Practical Studies in E-Government, pages 205–228.
Springer, 2011.

BIBLIOGRAPHY 217

[Campos & Harrison 1997] José C Campos et Michael D Harrison. Formally Verifying Interac-
tive Systems: A Review. Springer, 1997.

[Campos & Harrison 1998] José C Campos et Michael D Harrison. The Role of Verification in
Interactive Systems Design. Springer, 1998.

[Campos & Harrison 2001] José C Campos et Michael D Harrison. Model Checking Interactor
Specifications. Automated Software Engineering, vol. 8, no. 3-4, pages 275–310, 2001.

[Campos & Harrison 2007] José Creissac Campos et Michael D. Harrison. Considering Context
and Users in Interactive Systems Analysis. In Engineering Interactive Systems - EIS
2007 Joint Working Conferences, EHCI 2007, DSV-IS 2007, HCSE 2007, Salamanca,
Spain, March 22-24, 2007. Selected Papers, pages 193–209, 2007.

[Campos & Harrison 2008] J Creissac Campos et Michael D Harrison. Systematic Analysis of
Control Panel Interfaces Using Formal Tools. In Interactive Systems. Design, Specification,
and Verification, pages 72–85. Springer, 2008.

[Campos & Harrison 2009] José C. Campos et Michael D. Harrison. Interaction Engineering
Using the IVY Tool. In Proceedings of the 1st ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, EICS ’09, pages 35–44, New York, NY, USA, 2009.
ACM.

[Campos & Harrison 2011] José Creissac Campos et Michael D. Harrison. Modelling and
Analysing the Interactive Behaviour of an Infusion Pump. ECEASST, vol. 45, 2011.

[Campos et al. 2014] José Creissac Campos, Gavin J. Doherty et Michael D. Harrison. Analysing
Interactive Devices based on Information Resource Constraints. Int. J. Hum.-Comput.
Stud., vol. 72, no. 3, pages 284–297, 2014.

[Campos 1999] José Creissac Campos. Automated Deduction and Usability Reasoning. Phd
thesis, Department of Computer Science, University of York, Heslington, York, 1999.

[Carl 1962] A Carl. Petri. Kommunikation mit Automaten. Bonn: Institut für Instrumentelle
Mathematik, Schriften des IIM Nr, vol. 2, 1962. English Translation, 1966: Communica-
tion with Automata, Technical Report RADC-TR-65-377, Rome Air Dev. Center, New
York.

[Carroll 2013] John M Carroll. Human computer interaction-brief intro. The Interaction Design
Foundation, 2013.

[Cauchi et al. 2012a] Abigail Cauchi, Andy Gimblett, Harold Thimbleby, Paul Curzon et Paolo
Masci. Safer "5-key" Number Entry User Interfaces Using Differential Formal Analysis.
In Proceedings of the 26th Annual BCS Interaction Specialist Group Conference on
People and Computers, BCS-HCI ’12, pages 29–38, Swinton, UK, UK, 2012. British
Computer Society.

[Cauchi et al. 2012b] Abigail Cauchi, Andy Gimblett, Harold W. Thimbleby, Paul Curzon et
Paolo Masci. Safer "5-key" Number Entry User Interfaces Using Differential Formal
Analysis. In BCS-HCI ’12 Proceedings of the 26th Annual BCS Interaction Specialist
Group Conference on People and Computers, BCS-HCI 2012, 12-14 September 2012,
Birmingham, UK, pages 29–38, 2012.

218 BIBLIOGRAPHY

[Cauchi et al. 2014] Abigail Cauchi, Patrick Oladimeji, Gerrit Niezen et Harold W. Thimbleby.
Triangulating Empirical and Analytic Techniques for Improving Number Entry User
Interfaces. In ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
EICS’14, Rome, Italy, June 17-20, 2014, pages 243–252, 2014.

[Champelovier et al. 2011] David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte,
Christine McKinty, Vincent Powazny, Frédéric Lang, Wendelin Serwe et Gideon Smeding.
Reference Manual of the LOTOS NT to LOTOS Translator (Version 5.4). INRIA/VASY,
149 pages, Septembre 2011.

[Champelovier et al. 2014] David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte,
Christine McKinty, Vincent Powazny, Frédéric Lang, Wendelin Serwe et Gideon Smeding.
Reference Manual of the LNT to LOTOS Translator (Version 6.1). INRIA/VASY and
INRIA/CONVECS, 131 pages, Août 2014.

[Chériaux et al. 2012] François Chériaux, Dominique Galara et Marion Viel. Interfaces for
Nuclear Power Plant Overview. In 8th International Topical Meeting on Nuclear Plant
Instrumentation, Control, and Human-Machine Interface Technologies 2012 (NPIC &
HMIT 2012): Enabling the Future of Nuclear Energy, NPIC & HMIT 2012, pages
1002–1012. Curran Associates, Inc., 2012.

[Chinnapongse et al. 2009] Vivien Chinnapongse, Insup Lee, Shaohui Wang et Paul L Jones.
Model-based Testing of GUI-driven Applications. In Sunggu Lee et Priya Narasimhan,
editeurs, The Seventh IFIP Workshop on Software Technologies for Future Embedded
and Ubiquitous Systems (SEUS 2009), LNCS 5860, volume 5860 of Lecture Notes in
Computer Science, pages 203–214, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[Clarke et al. 1983] E. M. Clarke, E. A. Emerson et A. P. Sistla. Automatic Verification of Finite
State Concurrent System Using Temporal Logic Specifications: A Practical Approach.
In Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’83, pages 117–126, New York, NY, USA, 1983. ACM.

[Cofer et al. 2008] Darren Cofer, Michael Whalen et Steven Miller. Software Model Checking for
Avionics Systems. In Digital Avionics Systems Conference, 2008. DASC 2008. IEEE/AIAA
27th, pages 5–D. IEEE, 2008.

[Cofer et al. 2012] Darren Cofer, Andrew Gacek, Steven Miller, Michael W. Whalen, Brian
LaValley et Lui Sha. Compositional Verification of Architectural Models. In Proceedings
of the 4th International Conference on NASA Formal Methods, NFM’12, pages 126–140,
Berlin, Heidelberg, 2012. Springer-Verlag.

[Cofer 2010] Darren Cofer. Model Checking: Cleared for Take off. In Model Checking Software,
pages 76–87. Springer, 2010.

[Cofer 2012] Darren Cofer. Formal Methods in the Aerospace Industry: Follow the Money.
In Proceedings of the 14th International Conference on Formal Engineering Methods:
Formal Methods and Software Engineering, ICFEM’12, pages 2–3, Berlin, Heidelberg,
2012. Springer-Verlag.

BIBLIOGRAPHY 219

[Combéfis & Pecheur 2009] Sébastien Combéfis et Charles Pecheur. A Bisimulation-based Ap-
proach to the Analysis of Human-computer Interaction. In Proceedings of the 1st ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’09, pages
101–110, New York, NY, USA, 2009. ACM.

[Combéfis et al. 2011a] Sébastien Combéfis, Dimitra Giannakopoulou, Charles Pecheur et
Michael Feary. A Formal Framework for Design and Analysis of Human-machine
Interaction. In Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics, Anchorage, Alaska, USA, October 9-12, 2011, pages 1801–1808, 2011.

[Combéfis et al. 2011b] Sébastien Combéfis, Dimitra Giannakopoulou, Charles Pecheur et
Michael Feary. Learning System Abstractions for Human Operators. In Proceedings of
the International Workshop on Machine Learning Technologies in Software Engineering,
MALETS ’11, pages 3–10, New York, NY, USA, 2011. ACM.

[Combéfis 2013] Sébastien Combéfis. A Formal Framework for the Analysis of Human-machine
Interactions, volume 459. Doctoral thesis, Université catholique de Louvain, 2013.

[Commission et al. 1997] Nuclear Regulatory Commissionet al. Operator Licensing Examination
Standards for Power Reactors. Interim Revision 8. Rapport technique, Nuclear Regulatory
Commission, Washington, DC (United States). Div. of Reactor Controls and Human
Factors. Funding organisation: Nuclear Regulatory Commission, Washington, DC (United
States), 1997.

[Connexion 2012] Cluster Connexion. Expression des Besoins par Points de Vue Métier, Défi-
nition des Études de Cas de l’Innovation [Livrable n.3.1.1 du Projet Connexion], 2012.

[Connexion 2013] Cluster Connexion. Maquettes pour des IHM de supervision (cas d’étude)
[Livrable n.3.1.3a du Projet Connexion], 2013.

[Connexion 2014] Cluster Connexion. Cahier des Charges Démonstrateur IHM [Livrable du
Projet Connexion], 2014.

[Cortier et al. 2007] Alexandre Cortier, Bruno d’Ausbourg et Yamine Aït-Ameur. Formal
Validation of Java/Swing User Interfaces with the Event B Method. In Human-Computer
Interaction. Interaction Design and Usability, pages 1062–1071. Springer, 2007.

[Coutaz & Calvary 2012] Joëlle Coutaz et Gaëlle Calvary. HCI and Software Engineering
for User Interface Plasticity. Human-Computer Interaction Handbook: Fundamentals,
Evolving Technologies, and Emerging Applications, Third Edition, pages 1195–1220,
2012.

[Coutaz et al. 2000] J Coutaz, C Lachenal, G Calvary et D Thevenin. Software Architecture
Adaptivity for Multisurface Interaction and Plasticity. In Proc. of IFIP Workshop on
Software Architecture Requirements for CSCW–CSCW’2000 Workshop, 2000.

[Coutaz et al. 2007] Joëlle Coutaz, Lionel Balme, Gaëlle Calvary, Alexandre Demeure et Jean-
Sebastien Sottet. An MDE-SOA Approach to Support Plastic User Interafces in Ambient
Spaces. In Proc. HCI International 2007, pages 152–171, 2007. Beijing, July 2007.

220 BIBLIOGRAPHY

[Coutaz 1987] Joëlle Coutaz. PAC, an Object Oriented Model for Dialog Design. In Proceedings
Interact, volume 87, pages 431–436, 1987.

[Crow et al. 2000] Judith Crow, Denis Javaux et John Rushby. Models of Mechanised Methods
that Integrate Human Factors into Automation Design. In International Conference on
Human-Computer Interaction in Aeronautics: HCI-Aero 2000. Citeseer, 2000.

[d’Ausbourg et al. 1996] Bruno d’Ausbourg, Guy Durrieu et Pierre Roché. Deriving a Formal
Model of an Interactive System from its UIL Description in order to Verify and Test
its Behaviour. In Design, Specification and Verification of Interactive Systems’96,
Proceedings of the Third International Eurographics Workshop, June 5-7, 1996, Namur,
Belgium, pages 105–122, 1996.

[d’Ausbourg et al. 1998] Bruno d’Ausbourg, Christel Seguin, Guy Durrieu et Pierre Roché.
Helping the Automated Validation Process of User Interfaces Systems. In Proceedings
of the 20th international conference on Software engineering, ICSE ’98, pages 219–228,
Washington, DC, USA, 1998. IEEE Computer Society.

[d’Ausbourg 1998] Bruno d’Ausbourg. Using Model Checking for the Automatic Validation of
User Interface Systems. In Design, Specification and Verification of Interactive Systems’98,
Proceedings of the Fifth International Eurographics Workshop, June 3-5, 1998, Abingdon,
United Kingdom, pages 242–260, 1998.

[d’Ausbourg 2002] Bruno d’Ausbourg. Synthétiser I’Intention d’un Pilote pour Définir de
Nouveaux Équipements de Bord. In Proceedings of the 14th French-speaking Conference
on Human-computer Interaction (ConféRence Francophone Sur L’Interaction
Homme-Machine), IHM ’02, pages 145–152, New York, NY, USA, 2002. ACM.

[De Moura et al. 2004] Leonardo De Moura, Sam Owre, Harald Rueß, John Rushby, Natarajan
Shankar, Maria Sorea et Ashish Tiwari. SAL 2. In Computer Aided Verification, pages
496–500. Springer Berlin Heidelberg, 2004.

[Degani & Heymann 2000] Asaf Degani et Michael Heymann. Pilot-autopilot Interaction: A
Formal Perspective. Abbott et al.[1], pages 157–168, 2000.

[Degani & Heymann 2002] Asaf Degani et Michael Heymann. Formal Verification of Human-
automation Interaction. Human Factors: The Journal of the Human Factors and
Ergonomics Society, vol. 44, no. 1, pages 28–43, 2002.

[Degani & Heymann 2007] Asaf Degani et Michael Heymann. Toward Automatic Generation
of User Interfaces: Abstraction of Internal States and Transitions. In Analysis, Design,
and Evaluation of Human-Machine Systems, volume 10, pages 483–489, 2007.

[Degani et al. 1996] Asaf Degani, Michael Shafto et Alex Kirlik. Modes in Automated Cockpits:
Problems, Data Analysis and a Modelling Framework. In ISRAEL ANNUAL CON-
FERENCE ON AEROSPACE SCIENCES, pages 258–266. OMANUTH PRESS LTD,
1996.

[Degani et al. 2000] Asaf Degani, Michael Heymann, George Meyer et Michael Shafto. Some
Formal Aspects of Human-automation Interaction. NASA Technical Memorandum,
vol. 209600, 2000.

BIBLIOGRAPHY 221

[Degani et al. 2013] Asaf Degani, Michael Heymann et Michael Shafto. Modeling and Formal
Analysis of Human–machine Interaction. The Oxford Handbook of Cognitive Engineering,
page 433, 2013.

[Demeure et al. 2006] Alexandre Demeure, Gaëlle Calvary, Joëlle Coutaz et Jean Vanderdonckt.
Towards Run Time Plasticity Control based on a Semantic Network. In Fifth International
Workshop on Task Models and Diagrams for UI design (TAMODIA’06), pages 324–338,
2006. Hasselt, Belgium, October 23-24, 2006.

[Demeure et al. 2008] Alexandre Demeure, Gaëlle Calvary et Karin Coninx. COMET(s), A
Software Architecture Style and an Interactors Toolkit for Plastic User Interfaces. In
Design, Specification, and Verification, pages 225–237, 2008. 15th International Workshop,
DSV-IS 2008, T.C.N. Graham & P. Palanque (Eds), Lecture Notes in Computer Science
5136, Springer Berlin / Heidelberg, Kingston, Canada, July 16-18.

[Dix et al. 1987] Alan J. Dix, Michael D. Harrison, Colin Runciman et Harold W. Thimbleby.
Interaction Models and the Principled Design of Interactive Systems. In ESEC ’87, 1st
European Software Engineering Conference, Strasbourg, France, September 9-11, 1987,
Proceedings, pages 118–126, 1987.

[Dix 1988] Alan J. Dix. Abstract, Generic Models of Interactive Systems. In People and
Computers IV, Proceedings of Fourth Conference of the British Computer Society
Human-Computer Interaction Specialist Group, University of Manchester, 5-9 September
1988, pages 63–77, 1988.

[Dix 1991] Alan John Dix. Formal Methods for Interactive Systems, volume 16. Academic Press
London, 1991.

[Dix 1995] Alan J Dix. Formal Methods: An Introduction to and Overview of the Use of Formal
Methods within HCI. Chapter, vol. 2, pages 9–43, 1995.

[Doherty et al. 1998] Gavin Doherty, José C. Campos et Michael D. Harrison. Representational
Reasoning and Verification. Formal Aspects of Computing, vol. 12, pages 260–277, 1998.

[Duke & Harrison 1993] David J. Duke et Michael D. Harrison. Abstract Interaction Objects.
In Computer Graphics Forum, volume 12, pages 25–36. Wiley Online Library, 1993.

[Duke & Harrison 1995] DJ Duke et MD Harrison. Event Model of Human-system Interaction.
Software Engineering Journal, vol. 10, no. 1, pages 3–12, 1995.

[Duke et al. 1995] D. J. Duke, P. J. Barnard, J. May et D. A. Duce. Systematic Development
of the Human Interface. In Proceedings of the Second Asia Pacific Software Engineering
Conference, APSEC ’95, pages 313–, Washington, DC, USA, 1995. IEEE Computer
Society.

[Duke et al. 1999] David Duke, Bob Fields et Michael D Harrison. A Case Study in the
Specification and Analysis of Design Alternatives for a User Interface. Formal Aspects
of Computing, vol. 11, no. 2, pages 107–131, 1999.

222 BIBLIOGRAPHY

[Elder & Knight 1995] Matthew C Elder et J Knight. Specifying User Interfaces for Safety-
critical Medical Systems. In Proc. of the 2nd Annual International Symposium on Medical
Robotics and Computer Assisted Surgery, pages 148–155, 1995.

[Faconti & Paternó 1990] Giorgio P. Faconti et Fabio Paternó. An Approach to the Formal
Specification of the Components of an Interaction, 1990.

[Fernandez et al. 1996] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu,
Laurent Mounier et Mihaela Sighireanu. CADP (CÆSAR/ALDEBARAN Development
Package): A Protocol Validation and Verification Toolbox. In Rajeev Alur et Thomas A.
Henzinger, editeurs, Proceedings of the 8th Conference on Computer-Aided Verification
(New Brunswick, New Jersey, USA), volume 1102 of Lecture Notes in Computer Science,
pages 437–440. Springer, Août 1996.

[Fields et al. 1995a] Bob Fields, Michael Harrison et Peter Wright. Modelling Interactive Systems
and Providing Task Relevant Information. In Interactive Systems: Design, Specification,
and Verification, pages 253–266. Springer, 1995.

[Fields et al. 1995b] Bob Fields, Peter Wright et Michael Harrison. Applying Formal Methods
for Human Error Tolerant Design. In Software Engineering and Human-Computer
Interaction, pages 185–195. Springer, 1995.

[Fields et al. 1995c] RE Fields, Peter C Wright et Michael D Harrison. A Task Centered Ap-
proach to Analysing Human Error Tolerance Requirements. In Requirements Engineering,
1995., Proceedings of the Second IEEE International Symposium on, pages 18–26. IEEE,
1995.

[Foley & Wallace 1974] J. D. Foley et V. L. Wallace. The Art of Natural Graphic Man-machine
Conversation. SIGGRAPH Comput. Graph., vol. 8, no. 3, pages 87–87, Septembre 1974.

[Ganneau et al. 2008] Vincent Ganneau, Gaëlle Calvary et Rachel Demumieux. Learning Key
Contexts of Use in the Wild for Driving Plastic User Interfaces Engineering. In Engineer-
ing Interactive Systems 2008 (2nd Conference on Human-Centred Software Engineering
(HCSE 2008) and 7th International workshop on TAsk MOdels and DIAgrams (TA-
MODIA 2008)), 2008. September 2008, Pisa (Italy).

[Garavel & Graf 2013] H Garavel et S Graf. Formal Methods for Safe and Secure Computer
Systems. Federal Office for Information Security, 2013.

[Garavel & Lang 2001] Hubert Garavel et Frédéric Lang. SVL: a Scripting Language for Compo-
sitional Verification. In Myungchul Kim, Byoungmoon Chin, Sungwon Kang et Danhyung
Lee, editeurs, Proceedings of the 21st IFIP WG 6.1 International Conference on Formal
Techniques for Networked and Distributed Systems FORTE’2001 (Cheju Island, Korea),
pages 377–392. IFIP, Kluwer Academic Publishers, Août 2001. Full version available as
INRIA Research Report RR-4223.

[Garavel et al. 2002] Hubert Garavel, Frédéric Lang et Radu Mateescu. An Overview of CADP
2001. European Association for Software Science and Technology (EASST) Newsletter,
vol. 4, pages 13–24, Août 2002. Also available as INRIA Technical Report RT-0254
(December 2001).

BIBLIOGRAPHY 223

[Garavel et al. 2007] Hubert Garavel, Frédéric Lang, Radu Mateescu et Wendelin Serwe. CADP
2006: A Toolbox for the Construction and Analysis of Distributed Processes. In Werner
Damm et Holger Hermanns, editeurs, Proceedings of the 19th International Conference
on Computer Aided Verification CAV’2007 (Berlin, Germany), volume 4590 of Lecture
Notes in Computer Science, pages 158–163. Springer, Juillet 2007.

[Garavel et al. 2013] Hubert Garavel, Frédéric Lang, Radu Mateescu et Wendelin Serwe. CADP
2011: A Toolbox for the Construction and Analysis of Distributed Processes. International
Journal on Software Tools for Technology Transfer, vol. 15, no. 2, pages 89–107, 2013.

[Garavel et al. 2015] Hubert Garavel, Frédéric Lang et Radu Mateescu. Compositional verifica-
tion of asynchronous concurrent systems using CADP. Acta Informatica, pages 1–56,
2015.

[Garavel 2015] Hubert Garavel. Revisiting sequential composition in process calculi. Journal of
Logical and Algebraic Methods in Programming, page «to appear», 2015.

[Gimblett & Thimbleby 2010] Andy Gimblett et Harold W. Thimbleby. User Interface Model
Discovery: Towards a Generic Approach. In Proceedings of the 2nd ACM SIGCHI
Symposium on Engineering Interactive Computing System, EICS 2010, Berlin, Germany,
June 19-23, 2010, pages 145–154, 2010.

[Gimblett & Thimbleby 2013] Andy Gimblett et Harold Thimbleby. Applying Theorem Discov-
ery to Automatically Find and Check Usability Heuristics. In Proceedings of the 5th
ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’13,
pages 101–106, New York, NY, USA, 2013. ACM.

[Godefroid et al. 1998] Patrice Godefroid, John Kelly, Steven Miller et Frank Weil. Transferring
Formal Methods Technology to Industry. In wift, page 128. IEEE, 1998.

[Göransson et al. 2003] Bengt Göransson, Jan Gulliksen et Inger Boivie. The Usability Design
Process–Integrating User-centered Systems Design in the Software Development Process.
Software Process: Improvement and Practice, vol. 8, no. 2, pages 111–131, 2003.

[Hall 1999] Anthony Hall. Using Formal Methods to Develop an ATC Information System. In
Industrial-Strength Formal Methods in Practice, pages 207–229. Springer, 1999.

[Hallinger et al. 2000] Philip Hallinger, David P Crandall et David Ng Foo Seong. Systems
Thinking/Systems Changing & A Computer Simulation for Learning How to Make School
Ssmarter. Advances in Research and Theories of School Management and Educational
Policy, vol. 1, no. 4, pages 15–24, 2000.

[Hamilton et al. 1995] David Hamilton, Richard Covington, John Kelly, Carron Kirkwood,
Muffy Thomas, Alan R. Flora-Holmquist, Mark G. Staskauskas, Steven P. Miller,
Mandayam K. Srivas, George Cleland et Donald MacKenzie. Experiences in Applying
Formal Methods to the Analysis of Software and System Requirements. In Workshop on
Industrial-Strength Formal Specification Techniques, WIFT 1995, Boca Raton, Florida,
USA, April 5-8, 1995, pages 30–43, 1995.

224 BIBLIOGRAPHY

[Hardin et al. 2009] David S. Hardin, T. Douglas Hiratzka, D. Randolph Johnson, Lucas Wagner
et Michael W. Whalen. Development of Security Software: A High Assurance Methodology.
In Formal Methods and Software Engineering, 11th International Conference on Formal
Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009.
Proceedings, pages 266–285, 2009.

[Harrison & Duke 1995] Michael D Harrison et David J Duke. A Review of Formalisms for
Describing Interactive Behaviour. In Software Engineering and Human-Computer Inter-
action, pages 49–75. Springer, 1995.

[Harrison et al. 1996] MD Harrison, R Fields et PC Wright. The User Context and Formal
Specification in Interactive System Design. In Proceedings of the 1996 BCS-FACS
conference on Formal Aspects of the Human Computer Interface, pages 5–5. British
Computer Society, 1996.

[Harrison et al. 2013] Michael D. Harrison, Paolo Masci, José Creissac Campos et Paul Curzon.
Automated Theorem Proving for the Systematic Analysis of an Infusion Pump. ECEASST,
vol. 69, 2013.

[Harrison et al. 2015] Michael D. Harrison, José Creissac Campos et Paolo Masci. Reusing
Models and Properties in the Analysis of Similar Interactive Devices. ISSE, vol. 11, no. 2,
pages 95–111, 2015.

[Heymann & Degani 2002] Michael Heymann et Asaf Degani. On the Construction of Human-
automation Interfaces by Formal Abstraction. In Abstraction, Reformulation, and
Approximation, pages 99–115. Springer, 2002.

[Heymann & Degani 2007] Michael Heymann et Asaf Degani. Formal Analysis and Automatic
Generation of User Interfaces: Approach, Methodology, and an Algorithm. Human
Factors: The Journal of the Human Factors and Ergonomics Society, vol. 49, no. 2, pages
311–330, 2007.

[Hix & Hartson 1993] Deborah Hix et H. Rex Hartson. Developing User Interfaces: Ensuring
Usability Through Product &Amp; Process. John Wiley & Sons, Inc., New York, NY,
USA, 1993.

[Hjort et al. 2009] Ulrik H Hjort, Jacob Illum, Kim G Larsen, Michael A Petersen et Arne
Skou. Model-based GUI Testing Using UPPAAL at NOVO Nordisk. In FM 2009: Formal
Methods, pages 814–818. Springer, 2009.

[Huang & Lu 2012] Y Huang et L Lu. Apply Ant Colony to Event-flow Model for Graphical
User Interface Test Case Generation. IET software, vol. 6, no. 1, pages 50–60, 2012.

[IEC 2011] IEC. IEC 61513:2011 – Nuclear Power Plants — Instrumentation and Control for
Systems Important to Safety — General Requirements for System (Edition 2.0), 2011.

[Imaz & Benyon 2007] Manuel Imaz et David Benyon. Designing with Blends: Conceptual
Foundations of Human-computer Interaction and Software Engineering Methods. Mit
Press, 2007.

BIBLIOGRAPHY 225

[ISO/IEC 1989] ISO/IEC. LOTOS — A Formal Description Technique Based on the Tempo-
ral Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization — Information Processing Systems — Open Systems
Interconnection, Geneva, Septembre 1989.

[ISO/IEC 2001] ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization — Information Technology,
Geneva, Septembre 2001.

[Jacky et al. 2007] Jonathan Jacky, Margus Veanes, Colin Campbell et Wolfram Schulte. Model-
based Software Testing and Analysis with C#. Cambridge University Press, 1 édition,
2007.

[Jambon et al. 2001] Francis Jambon, Patrick Girard et Yamine Aït-Ameur. Interactive System
Safety and Usability Enforced with the Development Process. In Engineering for Human-
Computer Interaction, 8th IFIP International Conference, EHCI 2001, Toronto, Canada,
May 11-13, 2001, Revised Papers, pages 39–56, 2001.

[Jung et al. 2012] Hyunjun Jung, Sukhoon Lee et Doo-Kwon Baik. An Image Comparing-based
GUI Software Testing Automation System. In SERP, pages 318–322, 2012.

[Knight & Brilliant 1997] John C Knight et Susan S Brilliant. Preliminary Evaluation of a
Formal Approach to User Interface Specification. In ZUM’97: The Z Formal Specification
Notation, pages 329–346. Springer, 1997.

[Knight & Kienzle 1992] John C. Knight et Darrell M. Kienzle. Preliminary Experience Using
Z to Specify a Safety-critical System. In Z User Workshop, London, UK, 14-15 December
1992, Proceedings, pages 109–118, 1992.

[Knight et al. 1999] John C. Knight, P. Thomas Fletcher et Brian R. Hicks. Tool Support for
Production Use of Formal Techniques. In FM’99 - Formal Methods, World Congress on
Formal Methods in the Development of Computing Systems, Toulouse, France, September
20-24, 1999, Proceedings, Volume II, page 1854, 1999.

[Knight 1998] John C Knight. Challenges in the Utilization of Formal Methods. In Formal
Techniques in Real-Time and Fault-Tolerant Systems, pages 1–17. Springer, 1998.

[Leveson 1995] Nancy G Leveson. Safeware: System Safety and Computers. ACM, 1995.

[Lex & Powej 1997] Burton L Lex et Bechtel Powej. Nuclear Power Plant Control and Instru-
mentation, 1997.

[Li et al. 2015] Karen Yunqiu Li, Patrick Oladimeji et Harold W. Thimbleby. Exploring the
Effect of Pre-operational Priming Intervention on Number Entry Errors. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI
2015, Seoul, Republic of Korea, April 18-23, 2015, pages 1335–1344, 2015.

[Loer & Harrison 2000] Karsten Loer et Michael D. Harrison. Formal Interactive Systems
Analysis and Usability Inspection Methods: Two Incompatible Worlds? In DSV-IS, pages
169–190, 2000.

226 BIBLIOGRAPHY

[Loer & Harrison 2002] Karsten Loer et Michael Harrison. Towards Usable and Relevant Model
Checking Techniques for the Analysis of Dependable Interactive Systems. In Automated
Software Engineering, 2002. Proceedings. ASE 2002. 17th IEEE International Conference
on, pages 223–226. IEEE, 2002.

[Loer & Harrison 2006] Karsten Loer et Michael D Harrison. An Integrated Framework for the
Analysis of Dependable Interactive Systems (IFADIS): Its Tool Support and Evaluation.
Automated Software Engineering, vol. 13, no. 4, pages 469–496, 2006.

[Long 1989] John Long. Cognitive Ergonomics and Human-computer Interaction, volume 1.
Cambridge University Press, 1989.

[Lu & Huang 2012] Lu Lu et Ying Huang. Automated GUI Test Case Generation. In Computer
Science & Service System (CSSS), 2012 International Conference on, pages 582–585.
IEEE, 2012.

[Lutz 2000] Robyn R Lutz. Software Engineering for Safety: a Roadmap. In Proceedings of the
Conference on The Future of Software Engineering, pages 213–226. ACM, 2000.

[Madani & Parissis 2009] Laya Madani et Ioannis Parissis. Automatically Testing Interactive Ap-
plications Using Extended Task Trees. The Journal of Logic and Algebraic Programming,
vol. 78, no. 6, pages 454–471, 2009.

[Mariani et al. 2011] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli et Mauro Santoro.
AutoBlackTest: A Tool for Automatic Black-box Testing. In Proceedings of the 33rd
International Conference on Software Engineering, pages 1013–1015. ACM, 2011.

[Markopoulos et al. 1996] Panos Markopoulos, Jon Rowson et Peter Johnson. Dialogue Mod-
elling in the Framework of an Interactor Model. In Pre-conference Proceedings. Design
Specification and Verification of Interactive Systems. Namur, Belgium, volume 44, 1996.

[Markopoulos et al. 1998] Panos Markopoulos, Peter Johnson et Jon Rowson. Formal Architec-
tural Abstractions for Interactive Software. Int. J. Hum.-Comput. Stud., vol. 49, no. 5,
pages 675–715, Novembre 1998.

[Markopoulos 1995] Panos Markopoulos. On the Expression of Interaction Properties within
an Interactor Model. Springer, 1995.

[Markopoulos 1997] Panagiotis Markopoulos. A Compositional Model for the Formal Specifica-
tion of User Interface Software. PhD thesis, Citeseer, 1997.

[Martinie et al. 2014] Célia Martinie, David Navarre et Philippe Palanque. A multi-formalism
approach for model-based dynamic distribution of user interfaces of critical interactive
systems. International Journal of Human-Computer Studies, vol. 72, no. 1, pages 77–99,
2014.

[Masci et al. 2011] Paolo Masci, Rimvydas Ruksenas, Patrick Oladimeji, Abigail Cauchi, Andy
Gimblett, Yunqiu Li, Paul Curzon et Harold Thimbleby. On Formalising Interactive
Number Entry on Infusion Pumps. Electronic Communications of the EASST, vol. 45,
2011.

BIBLIOGRAPHY 227

[Masci et al. 2013a] Paolo Masci, Anaheed Ayoub, Paul Curzon, Michael D. Harrison, Insup
Lee et Harold Thimbleby. Verification of Interactive Software for Medical Devices: PCA
Infusion Pumps and FDA Regulation As an Example. In Proceedings of the 5th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’13, pages
81–90, New York, NY, USA, 2013. ACM.

[Masci et al. 2013b] Paolo Masci, Anaheed Ayoub, Paul Curzon, Insup Lee, Oleg Sokolsky et
Harold Thimbleby. Model-based Development of the Generic PCA Infusion Pump User
Interface Prototype in PVS. In Proceedings of the 32Nd International Conference on
Computer Safety, Reliability, and Security - Volume 8153, SAFECOMP 2013, pages
228–240, New York, NY, USA, 2013. Springer-Verlag New York, Inc.

[Masci et al. 2014a] Paolo Masci, Yi Zhang, Paul Jones, Paul Curzon et Harold Thimbleby.
Formal Verification of Medical Device User Interfaces Using PVS. In Proceedings of the
17th International Conference on Fundamental Approaches to Software Engineering -
Volume 8411, pages 200–214, New York, NY, USA, 2014. Springer-Verlag New York, Inc.

[Masci et al. 2014b] Paolo Masci, Yi Zhang, Paul L. Jones, Patrick Oladimeji, Enrico D’Urso,
Cinzia Bernardeschi, Paul Curzon et Harold Thimbleby. Combining PVSio with Stateflow.
In NASA Formal Methods - 6th International Symposium, NFM 2014, Houston, TX,
USA, April 29 - May 1, 2014. Proceedings, pages 209–214, 2014.

[Masci et al. 2015] Paolo Masci, Rimvydas Ruksenas, Patrick Oladimeji, Abigail Cauchi, Andy
Gimblett, Karen Yunqiu Li, Paul Curzon et Harold W. Thimbleby. The Benefits of
Formalising Design Guidelines: A Case Study on the Predictability of Drug Infusion
Pumps. ISSE, vol. 11, no. 2, pages 73–93, 2015.

[Mateescu & Oudot 2008] Radu Mateescu et Emilie Oudot. Bisimulator 2.0: An On-the-Fly
Equivalence Checker based on Boolean Equation Systems. In Proceedings of the 6th
ACM-IEEE International Conference on Formal Methods and Models for Codesign
MEMOCODE’2008 (Anaheim, CA, USA), pages 73–74. IEEE Computer Society Press,
Juin 2008.

[Mateescu & Thivolle 2008] Radu Mateescu et Damien Thivolle. A Model Checking Language
for Concurrent Value-Passing Systems. In Jorge Cuellar et Tom Maibaum, editeurs,
FM 2008, volume 5014 of Lecture Notes in Computer Science, pages 148–164, Turku,
Finlande, 2008. Springer Verlag.

[Memon et al. 2003] Atif Memon, Ishan Banerjee et Adithya Nagarajan. GUI Ripping: Reverse
Engineering of Graphical User Interfaces for Testing. In null, page 260. IEEE, 2003.

[Miller et al. 2006] Steven P. Miller, Alan C. Tribble, Michael W. Whalen et Mats Per Erik
Heimdahl. Proving the Shalls. STTT, vol. 8, no. 4-5, pages 303–319, 2006.

[Miller et al. 2010] Steven P Miller, Michael W Whalen et Darren D Cofer. Software Model
Checking Takes off. Communications of the ACM, vol. 53, no. 2, pages 58–64, 2010.

[Miller 2009] Steven P Miller. Bridging the Gap Between Model-based Development and Model
Checking. In Tools and Algorithms for the Construction and Analysis of Systems, pages
443–453. Springer, 2009.

228 BIBLIOGRAPHY

[Milner 1980] Robin Milner. A calculus of communicating systems, volume 92 of Lecture Notes
in Computer Science. Springer, 1980.

[Mital & Pennathur 2004] Anil Mital et Arunkumar Pennathur. Advanced Technologies and
Humans in Manufacturing Workplaces: an Interdependent Relationship. International
Journal of Industrial Ergonomics, vol. 33, no. 4, pages 295 – 313, 2004.

[Miñón et al. 2014] Raúl Miñón, Lourdes Moreno, Paloma Martínez et Julio Abascal. An Ap-
proach to the Integration of Accessibility Requirements into a User Interface Development
Method. Science of Computer Programming, vol. 6, pages 58 – 73, 2014. Special issue on
Software Support for User Interface Description Languages (UIDL 2011).

[Moher et al. 1996] Thomas Moher, Victor Dirda et Remi Bastide. A Bridging Framework for
the Modeling of Devices, Users, and Interfaces. Rapport technique, In [10, 1996.

[Mori et al. 2002] Giulio Mori, Fabio Paternò et Carmen Santoro. CTTE: Support for Developing
and Analyzing Task Models for Interactive System Design. Software Engineering, IEEE
Transactions on, vol. 28, no. 8, pages 797–813, 2002.

[Murugesan et al. 2013] Anitha Murugesan, Michael W. Whalen, Sanjai Rayadurgam et Mats
Per Erik Heimdahl. Compositional Verification of a Medical Device System. In Proceed-
ings of the 2013 ACM SIGAda annual conference on High integrity language technology,
HILT 2013, Pittsburgh, Pennsylvania, USA, November 10-14, 2013, pages 51–64, 2013.

[Navarre et al. 2001] David Navarre, Philippe A. Palanque, Fabio Paternò, Carmen Santoro et
Rémi Bastide. A Tool Suite for Integrating Task and System Models through Scenarios.
In Proceedings of the 8th International Workshop on Interactive Systems: Design,
Specification, and Verification-Revised Papers, DSV-IS ’01, pages 88–113, London, UK,
UK, 2001. Springer-Verlag.

[Navarre et al. 2005] David Navarre, Philippe Palanque, Rémi Bastide, Amélie Schyn, Marco
Winckler, Luciana P. Nedel et Carla M. D. S. Freitas. A Formal Description of Multimodal
Interaction Techniques for Immersive Virtual Reality Applications. In Proceedings
of the 2005 IFIP TC13 International Conference on Human-Computer Interaction,
INTERACT’05, pages 170–183, Berlin, Heidelberg, 2005. Springer-Verlag.

[Navarre et al. 2008] David Navarre, Philippe Palanque et Sandra Basnyat. A formal approach
for user interaction reconfiguration of safety critical interactive systems. In Computer
Safety, Reliability, and Security, pages 373–386. Springer, 2008.

[Navarre et al. 2009] David Navarre, Philippe A. Palanque, Jean-François Ladry et Eric Barboni.
ICOs: A Model-based User Interface Description Technique Dedicated to Interactive
Systems Addressing Usability, Reliability and Scalability. ACM Trans. Comput.-Hum.
Interact., vol. 16, no. 4, 2009.

[Newcombe et al. 2015] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker et Michael Deardeuff. How Amazon Web Services Uses Formal Methods. Commun.
ACM, vol. 58, no. 4, pages 66–73, Mars 2015.

BIBLIOGRAPHY 229

[Nguyen et al. 2010] Duc Hoai Nguyen, Paul Strooper et Jorn Guy Suess. Model-based Testing
of Multiple GUI Variants Using the GUI Test Generator. In Proceedings of the 5th
Workshop on Automation of Software Test, pages 24–30. ACM, 2010.

[Nguyen et al. 2014] Bao N Nguyen, Bryan Robbins, Ishan Banerjee et Atif Memon. GUITAR:
An Innovative Tool for Automated Testing of GUI-driven Software. Automated Software
Engineering, vol. 21, no. 1, pages 65–105, 2014.

[Nielsen & Landauer 1993] Jakob Nielsen et Thomas K Landauer. A Mathematical Model of
the Finding of Usability Problems. In Proceedings of the INTERACT’93 and CHI’93
conference on Human factors in computing systems, pages 206–213. ACM, 1993.

[Niwa et al. 2001] Yuji Niwa, Makoto Takahashi et Masaharu Kitamura. The Design of Human–
Machine Interface for Accident Support in Nuclear Power Plants. Cognition, Technology
& Work, vol. 3, no. 3, pages 161–176, 2001.

[Oladimeji et al. 2011] Patrick Oladimeji, Harold W. Thimbleby et Anna Louise Cox. Number
Entry Interfaces and Their Effects on Error Detection. In Human-Computer Interaction
- INTERACT 2011 - 13th IFIP TC 13 International Conference, Lisbon, Portugal,
September 5-9, 2011, Proceedings, Part IV, pages 178–185, 2011.

[Oladimeji et al. 2013] Patrick Oladimeji, Harold W. Thimbleby et Anna Louise Cox. A Perfor-
mance Review of Number Entry Interfaces. In Human-Computer Interaction - INTERACT
2013 - 14th IFIP TC 13 International Conference, Cape Town, South Africa, September
2-6, 2013, Proceedings, Part I, pages 365–382, 2013.

[Oliveira et al. 2014] Raquel Oliveira, Sophie Dupuy-Chessa et Gaëlle Calvary. Formal Verifi-
cation of UI Using the Power of a Recent Tool Suite. In Proceedings of the 2014 ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’14, pages
235–240, New York, NY, USA, 2014. ACM.

[Oliveira et al. 2015a] Raquel Oliveira, Sophie Dupuy-Chessa et Gaëlle Calvary. Equivalence
Checking for Comparing User Interfaces. In Proceedings of the 7th ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, EICS ’15, pages 266–275,
New York, NY, USA, 2015. ACM.

[Oliveira et al. 2015b] Raquel Oliveira, Sophie Dupuy-Chessa et Gaëlle Calvary. Plasticity of
User Interfaces: Formal Verification of Consistency. In Proceedings of the 7th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’15, pages
260–265, New York, NY, USA, 2015. ACM.

[Oliveira et al. 2015c] Raquel Oliveira, Sophie Dupuy-Chessa et Gaëlle Calvary. Verification of
Plastic Interactive Systems. De Gruyter publication Journal of Interactive Media (i-com),
vol. 14(3), pages 192–204, 2015.

[Olsen Jr 2007] Dan R Olsen Jr. Evaluating User Interface Systems Research. In Proceedings
of the 20th annual ACM symposium on User interface software and technology, pages
251–258. ACM, 2007.

230 BIBLIOGRAPHY

[Palanque & Bastide 1995] Philippe A Palanque et Remi Bastide. Petri Net based Design of
User-driven Interfaces Using the Interactive Cooperative Objects Formalism. In Interactive
systems: Design, specification, and verification, pages 383–400. Springer, 1995.

[Palanque et al. 1996] Philippe A. Palanque, Rémi Bastide et V. Sengès. Validating Interactive
System Design through the Verification of Formal Task and System Models. In Proceedings
of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-Computer
Interaction, pages 189–212, London, UK, UK, 1996. Chapman & Hall, Ltd.

[Palanque et al. 1997] Philippe A. Palanque, Rémi Bastide et Fabio Paternò. Formal Speci-
fication As a Tool for Objective Assessment of Safety-critical Interactive Systems. In
Proceedings of the IFIP TC13 Interantional Conference on Human-Computer Interaction,
INTERACT ’97, pages 323–330, London, UK, UK, 1997. Chapman & Hall, Ltd.

[Palanque et al. 1999] Philippe A. Palanque, Christelle Farenc et Rémi Bastide. Embedding Er-
gonomic Rules As Generic Requirements in a Formal Development Process of Interactive
Software. In Human-Computer Interaction INTERACT ’99: IFIP TC13 International
Conference on Human-Computer Interaction, Edinburgh, UK, 30th August-3rd Septem-
ber 1999, pages 408–416, 1999.

[Park 1981] David Park. Concurrency and Automata on Infinite Sequences. In Proceedings of
the 5th GI-Conference on Theoretical Computer Science, pages 167–183, London, UK,
UK, 1981. Springer-Verlag.

[Paternò & Faconti 1992] Fabio Paternò et G Faconti. On the Use of LOTOS to Describe
Graphical Interaction. People and computers, pages 155–155, 1992.

[Paternó & Mezzanotte 1994] Fabio Paternó et Menica Mezzanotte. Analysing MATIS by
Interactors and ACTL. The AMODEUS Project—ESPRIT BRA 7040, Report SM/WP
36, 1994.

[Paternò & Mezzanotte 1996] Fabio Paternò et M. Mezzanotte. Formal Verification of Undesired
Behaviours in the CERD Case Study. In Proceedings of the IFIP TC2/WG2.7 Working
Conference on Engineering for Human-Computer Interaction, pages 213–226, London,
UK, UK, 1996. Chapman & Hall, Ltd.

[Paternò & Santoro 2001] Fabio Paternò et Carmen Santoro. Integrating Model Checking and
HCI Tools to Help Designers Verify User Interface Properties. In Proceedings of the
7th International Conference on Design, Specification, and Verification of Interactive
Systems, DSV-IS’00, pages 135–150, Berlin, Heidelberg, 2001. Springer-Verlag.

[Paternò & Santoro 2003] Fabio Paternò et Carmen Santoro. Support for Reasoning about
Interactive Systems through Human-computer Interaction Designers’ Representations.
Comput. J., vol. 46, no. 4, pages 340–357, 2003.

[Paternò et al. 1997] Fabio Paternò, Cristiano Mancini et Silvia Meniconi. ConcurTaskTrees:
A Diagrammatic Notation for Specifying Task Models. In Proceedings of the IFIP
TC13 Interantional Conference on Human-Computer Interaction, INTERACT ’97, pages
362–369, London, UK, UK, 1997. Chapman & Hall, Ltd.

BIBLIOGRAPHY 231

[Paterno 1993] Fabio Paterno. A Formal Specification of Appearance and Behaviour of Visual
Environments. Software Engineering Journal, vol. 8, no. 3, pages 154–164, 1993.

[Paternó 1994] F. Paternó. A Theory of User-interaction Objects. Journal of Visual Languages
& Computing, vol. 5, no. 3, pages 227 – 249, 1994.

[Paternó 1997] F. Paternó. Formal Reasoning about Dialogue Properties with Automatic Support.
Interacting with Computers, vol. 9, no. 2, pages 173–196, 1997.

[Peterson 1981] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1981.

[Preece et al. 1994] Jenny Preece, Yvonne Rogers, Helen Sharp, David Benyon, Simon Holland
et Tom Carey. Human-computer Interaction. Addison-Wesley Longman Ltd., 1994.

[Queille & Sifakis 1982] Jean-Pierre Queille et Joseph Sifakis. Specification and Verification of
Concurrent Systems in CESAR. In Proceedings of the 5th Colloquium on International
Symposium on Programming, pages 337–351, London, UK, UK, 1982. Springer-Verlag.

[Queille & Sifakis 1983] Jean-Pierre Queille et Joseph Sifakis. Fairness and Related Properties
in Transition Systems – A Temporal Logic to Deal with Fairness. Acta Informatica,
vol. 19, no. 3, pages 195–220, 1983.

[Rushby & von Henke 1993] John M. Rushby et Friedrich W. von Henke. Formal Verification
of Algorithms for Critical Systems. IEEE Trans. Software Eng., vol. 19, no. 1, pages
13–23, 1993.

[Rushby et al. 1999] John Rushby, Judith Crow et Everett Palmer. An Automated Method
to Detect Potential Mode Confusions. In Digital Avionics Systems Conference, 1999.
Proceedings. 18th, volume 1, pages 4–B. IEEE, 1999.

[Rushby 2001] John M. Rushby. Analyzing Cockpit Interfaces Using Formal Methods. Electr.
Notes Theor. Comput. Sci., vol. 43, pages 1–14, 2001.

[Rushby 2002] John Rushby. Using Model Checking to Help Discover Mode Confusions and
Other Automation Surprises. Rel. Eng. & Sys. Safety, vol. 75, no. 2, pages 167–177, 2002.

[Serna et al. 2010] Audrey Serna, Gaëlle Calvary et Dominique Scapin. How Assessing Plasticity
Design Choices Can Improve UI Quality: A Case Study. In Proceeding of the second
ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS 2010),
pages 29–34, Berlin, Germany, 2010. ACM Press. June 19-23, 2010.

[Shiffman et al. 2004] Smadar Shiffman, Asaf Degani et Michael Heymann. Ui Verify – A
Web-based Tool for Verification and Automatic Generation of User Interfaces. interfaces,
vol. 3, page 4, 2004.

[Sighireanu et al. 2004] Mihaela Sighireanu, Claude Chaudet, Hubert Garavel, Marc Herbert,
Radu Mateescu et Bruno Vivien. LOTOS NT User Manual. INRIA, june, 2004.

232 BIBLIOGRAPHY

[Silva et al. 2007] J. C. Silva, José Creissac Campos et João Saraiva. Combining Formal Methods
and Functional Strategies Regarding the Reverse Engineering of Interactive Applications.
In Proceedings of the 13th International Conference on Interactive Systems: Design,
Specification, and Verification, DSVIS’06, pages 137–150, Berlin, Heidelberg, 2007.
Springer-Verlag.

[Sottet et al. 2006] Jean-Sebastien Sottet, Gaëlle Calvary et Jean-Marie Favre. Mapping Model:
A First Step to Ensure Usability for Sustaining User Interface Plasticity. no, 2006.

[Sottet et al. 2007] Jean-Sebastien Sottet, Gaëlle Calvary, Joëlle Coutaz, Jean-Marie Favre,
Jean Vanderdonckt, Adrian Stanciulescu et Sophie Lepreux. A Language Perspective
on the Development of Plastic Multimodal User Interfaces. Journal of Multimodal User
Interfaces, vol. 1, no. 2, 2007.

[Sousa et al. 2014] Manuel Sousa, J Campos, Miriam Alves, M Harrisonet al. Formal Verification
of Safety-critical User Interfaces: A Space System Case Study. In Formal Verification
and Modeling in Human Machine Systems: Papers from the AAAI Spring Symposium,
AAAI Press, AAAI Press (Stanford, 26 March 2014), pages 62–67, 2014.

[Spivey 1989] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

[Spring 2002] Michael B. Spring. Interactive Systems. http://www.encyclopedia.com/doc/

1G2-3401200080.html, 2002. Computer Sciences. [Accessed: 2015-06-15].

[Strunk et al. 2005] Elisabeth A. Strunk, Xiang Yin et John C. Knight. ECHO: A Practical
Approach to Formal Verification. In Proceedings of the 10th International Workshop on
Formal Methods for Industrial Critical Systems, FMICS ’05, pages 44–53, New York,
NY, USA, 2005. ACM.

[Thevenin & Coutaz 1999] David Thevenin et Joëlle Coutaz. Plasticity of User Interfaces:
Framework and Research Agenda. In Proceedings of INTERACT, volume 99, pages
110–117, 1999.

[Thimbleby & Gimblett 2011] Harold W. Thimbleby et Andy Gimblett. Dependable Keyed Data
Entry for Interactive Systems. ECEASST, vol. 45, 2011.

[Thimbleby & Gow 2008] Harold Thimbleby et Jeremy Gow. Applying Graph Theory to Interac-
tion Design. In Jan Gulliksen, Morton Borup Harning, Philippe Palanque, Gerrit C. Veer
et Janet Wesson, editeurs, Engineering Interactive Systems, pages 501–519. Springer-
Verlag, Berlin, Heidelberg, 2008.

[Thimbleby 2007a] Harold Thimbleby. Interaction Walkthrough: Evaluation of Safety Critical
Interactive Systems. In Interactive Systems. Design, Specification, and Verification, pages
52–66. Springer, 2007.

[Thimbleby 2007b] Harold Thimbleby. User-centered Methods Are Insufficient for Safety Critical
Systems. In Proceedings of the 3rd Human-computer Interaction and Usability Engineer-
ing of the Austrian Computer Society Conference on HCI and Usability for Medicine
and Health Care, USAB’07, pages 1–20, Berlin, Heidelberg, 2007. Springer-Verlag.

BIBLIOGRAPHY 233

[Thimbleby 2010] Harold Thimbleby. Think! Interactive Systems Need Safety Locks. CIT.
Journal of Computing and Information Technology, vol. 18, no. 4, pages 349–360, 2010.

[Tsai et al. 2000] WT Tsai, X Bai, B Huang, G Devaraj et R Paul. Automatic Test Case
Generation for GUI Navigation. In Quality Week, volume 2000, 2000.

[Tu et al. 2014] Huawei Tu, Patrick Oladimeji, Karen Yunqiu Li, Harold W. Thimbleby et Chris
Vincent. The Effects of Number-related Factors on Entry Performance. In BCS-HCI 2014
Proceedings of the 28th International BCS Human Computer Interaction Conference,
Southport, UK, 9-12 September 2014, 2014.

[Turchin & skĭı 2006] P. Turchin et Rossĭı skĭı. History and Mathematics. History & mathe-
matics. URSS, 2006.

[Turner 1993] Clark S Turner. An Investigation of the Therac-25 Accidents. COMPUTER,
vol. 18, no. 9I62/93, pages 0700–001830300, 1993.

[van Glabbeek & Weijland 1996] Rob J. van Glabbeek et W. Peter Weijland. Branching Time
and Abstraction in Bisimulation Semantics. Journal of the ACM, vol. 43, no. 3, pages
555–600, 1996.

[Vanderdonckt et al. 2008] Jean Vanderdonckt, Gaëlle Calvary, Joëlle Coutaz et Adrian Stan-
ciulescu. Multimodality for Plastic User Interfaces: Models, Methods, and Principles,
chapitres d’ouvrages 4, pages 61–84. Springer, 2008. D. Tzovaras (ed.), Lecture Notes in
Electrical Engineering, Springer-Verlag, Berlin, 2007.

[Vanderdonckt 1994] Jean Vanderdonckt. Guide Ergonomique des Interfaces Homme-machine.
Numeéro 13 de Collection "Travaux de l’Institut d’Informatique". Presses Universitaires,
Namur, 1994.

[Wang & Abowd 1994] Hung-Ming Wang et Gregory Abowd. A Tabular Interface for Automated
Verification of Event-based Dialogs. Rapport technique, DTIC Document, 1994.

[Whalen et al. 2008] Michael Whalen, Darren Cofer, Steven Miller, Bruce H Krogh et Walter
Storm. Integration of Formal Analysis into a Model-based Software Development Process.
In Formal Methods for Industrial Critical Systems, pages 68–84. Springer, 2008.

[White & Almezen 2000] Lee White et Husain Almezen. Generating Test Cases for GUI Re-
sponsibilities Using Complete Interaction Sequences. In Software Reliability Engineering,
2000. ISSRE 2000. Proceedings. 11th International Symposium on, pages 110–121. IEEE,
2000.

[Worldgrid 2011a] Atos Worldgrid. Modernizing Data Processing for EDF Energy at Dungeness
– Improving Performance and Standardizing Technology for EDF Energy, 2011.

[Worldgrid 2011b] Atos Worldgrid. ADACS-NTM: Monitoring and Control of Nuclear Power
Plants, 2011.

[Yamine et al. 2005] Aït-Ameur Yamine, Aït-Sadoune Idir et Baron Mickaël. Modélisation et
Validation formelles d’IHM : LOT 1 (LISI/ENSMA). Rapport technique, LISI/ENSMA,
2005 2005.

234 BIBLIOGRAPHY

[Yin & Knight 2010] Xiang Yin et John C. Knight. Formal Verification of Large Software
Systems. In Second NASA Formal Methods Symposium - NFM 2010, Washington D.C.,
USA, April 13-15, 2010. Proceedings, pages 192–201, 2010.

[Yin et al. 2008] Xiang Yin, John C. Knight, Elisabeth A. Nguyen et Westley Weimer. Formal
Verification by Reverse Synthesis. In Computer Safety, Reliability, and Security, 27th
International Conference, SAFECOMP 2008, Newcastle upon Tyne, UK, September
22-25, 2008, Proceedings, pages 305–319, 2008.

[Yin et al. 2009a] Xiang Yin, John Knight et Westley Weimer. Exploiting Refactoring in Formal
Verification. In Dependable Systems & Networks, 2009. DSN’09. IEEE/IFIP International
Conference on, pages 53–62. IEEE, 2009.

[Yin et al. 2009b] Xiang Yin, John C. Knight et Westley Weimer. Exploiting Refactoring in
Formal Verification. In Proceedings of the 2009 IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2009, Estoril, Lisbon, Portugal, June 29 - July
2, 2009, pages 53–62, 2009.

[Yoshikawa 2005] Hidekazu Yoshikawa. Human-machine Interaction in Nuclear Power Plants.
Nuclear Engineering and Technology, vol. 37, no. 2, page 151, 2005.

Abstract

Plasticity provides users with different versions of a UI. Although it enhances UI capabilities,
plasticity adds complexity to the development of user interfaces: the consistency between
multiple versions of a given UI should be ensured. This complexity is further increased when it
comes to UIs of safety-critical systems. Safety-critical systems are systems in which a failure has
severe consequences. Given the large number of possible versions of a UI, it is time-consuming
and error prone to check these requirements by hand. Some automation must be provided to
verify plasticity. Formal verification provides a rigorous way to perform verification, which is
suitable for safety-critical systems. Our main contribution is an approach to verifying safety-
critical interactive systems provided with plastic UIs using formal methods. Using a powerful
tool support, our approach permits: (1) the verification of sets of properties over a model of
the system. Using model checking, our approach permits the verification of properties over the
system formal specification. Usability properties verify whether the system follows ergonomic
properties to ensure a good usability. Validity properties verify whether the system follows
the requirements that specify its expected behavior; (2) the comparison of different versions of
UIs. Using equivalence checking, our approach verifies to which extent UIs present the same
interaction capabilities and appearance. We can show whether two UI models are equivalent or
not. When they are not equivalent, the UI divergences are listed, thus providing the possibility
of leaving them out of the analysis. We also present three industrial case studies in the nuclear
power plant domain to which the approach was applied.

Résumé

La plasticité fournit aux utilisateurs différentes versions d’une interface utilisateur. Bien qu’elle
enrichisse les interfaces utilisateur, la plasticité complexifie leur développement: la cohérence
entre plusieurs versions d’une interface donnée devrait être assurée. Cette complexité est
accentuée quand il s’agit de systèmes critiques. Les systèmes critiques sont des systèmes dans
lesquels une défaillance a des conséquences graves. Étant donné le grand nombre de versions
possibles d’une interface utilisateur, il est coûteux de vérifier ces exigences à la main. Des
automatisations doivent être alors fournies afin de vérifier la plasticité. La vérification formelle
fournit un moyen d’effectuer une vérification rigoureuse, qui est adaptée pour les systèmes
critiques. Notre principale contribution est une approche de vérification des systèmes interactifs
critiques et plastiques à l’aide de méthodes formelles. Avec l’utilisation d’un outil performant,
notre approche permet: (1) la vérification d’ensembles de propriétés sur un modèle du système.
Reposant sur la technique de “model checking”, notre approche permet la vérification de
propriétés sur la spécification formelle du système. Les propriétés d’utilisabilité permettent
de vérifier si le système suit de bonnes propriétés ergonomiques. Les propriétés de validité
permettent de vérifier si le système suit les exigences qui spécifient son comportement attendu;
(2) la comparaison des différentes versions du système. Reposant sur la technique “d’équivalence
checking”, notre approche vérifie dans quelle mesure deux interfaces utilisateur offrent les mêmes
capacités d’interaction et la même apparence. Nous pouvons ainsi montrer si deux modèles
d’une interface utilisateur sont équivalents ou non. Dans le cas où ils ne sont pas équivalents,
les divergences de l’interface utilisateur sont listées, offrant ainsi la possibilité de les sortir
de l’analyse. Nous présentons également trois études de cas industriels dans le domaine des
centrales nucléaires dans lesquelles l’approche a été appliquée.

