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Abstract
A business process is defined as a set of tasks executed in a cer-
tain order to achieve a specific goal. Business Process Model and
Notation (BPMN) has become the standard modelling language
for describing and developing business processes. One of the main
challenges in the business process management area is to provide
techniques and tools for analysing and optimising processes, which
are necessary for example to avoid bugs or unexpected process
executions. However, modelling and debugging processes is a dif-
ficult task. This paper presents GIVUP, a tool that takes as input
descriptions of a process and of a functional property written in
natural language. GIVUP transforms the textual process into BPMN
and the textual property into the corresponding Linear Temporal
Logic (LTL) formula. It then verifies whether the BPMN process
satisfies the property or not, in which case it returns a diagnostic.
These steps are achieved by using several internal transformations
and model checking techniques. This approach is helpful for any
kind of users, either novices or experts, and can be used during
several stages of the lifecycle of a process, such as the design phase
or any refinement phase. GIVUP is freely accessible online, and a
demo video can be found at: https://youtu.be/MdM4NaPQXMk.

CCS Concepts
•Computingmethodologies→ Information extraction; •The-
ory of computation → Grammars and context-free languages;
Verification by model checking; • Software and its engineer-
ing → Visual languages.
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1 Introduction
Business Process Management (BPM) is the activity of modelling,
improving, and optimising processes of a company, so that these pro-
cesses can be better understood while achieving correctly what is
expected from them. Business Process Model and Notation (BPMN)
is a workflow-based graphical notation for specifying business pro-
cesses. One existing challenge is to provide techniques for support-
ing the formal development of processes in order to avoid erroneous
descriptions and ensure correct process executions. Classic veri-
fication techniques require a certain level of expertise. The main
goal of the tool presented in this paper is therefore to be accessible
to any kind of users, either novices or experts, as one can describe
both processes and their functional requirements in natural lan-
guage. The tool is called GIVUP, which stands for GeneratIon and
Verification of Underspecified Processes.

GIVUP takes as input a textual description of a process in natural
language and automatically generates a corresponding BPMN pro-
cess. To do so, it first uses GPT-4o [12] to extract task dependencies
and additional information from the description, and then performs
internal operations to manipulate these dependencies in order to
generate a single BPMN process. GIVUP can also take as input a
textual description of a functional property that must be preserved
by the process being designed. In that case, beyond generating the
BPMN process, GIVUP checks whether the process satisfies the
given property. This is achieved by transforming both the BPMN
process into a language understandable by model checkers, and the
textual property into Linear Temporal Logic (LTL) [26], and finally
by calling model checking techniques to verify if the process model
satisfies the property. In order to refine the process description,
the user can analyse as many properties as desired. If a property is
violated, several options are proposed for visualising the diagnostic
(classic counterexample, set of all counterexamples, or coloured
BPMN process). GIVUP was applied to a large set of examples for
evaluation purposes.

The rest of the paper is organised as follows. Section 2 introduces
BPMN and the basics ofmodel checking. Section 3 gives an overview
of the steps applied by GIVUP to perform the generation and the
verification of BPMN processes. Section 4 describes howGIVUPwas
evaluated. Section 5 surveys related work and Section 6 concludes.

2 Models
2.1 BPMN
BPMN 2.0 (BPMN, as a shorthand, in the rest of this paper) was
published as an ISO/IEC standard in 2013 [17] and is nowadays
extensively used for modelling and developing business processes.
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This paper focuses on activity diagrams including the BPMN con-
structs related to control-flow modelling and behavioural aspects.

Specifically, the node types event, task, and gateway, and the edge
type sequence flow are considered. Start and end events are used,
respectively, to initialise and terminate processes. A task represents
an atomic activity that has exactly one incoming and one outgoing
flow. A sequence flow connects two nodes executed one after the
other in a specific execution order. In this work, the two main
kinds of gateways used in activity diagrams are considered, namely,
exclusive and parallel gateways. Gateways with one incoming flow
and multiple outgoing flows are called splits, while gateways with
one outgoing flow and multiple incoming flows are calledmerges. A
parallel gateway creates concurrent executions for all its outgoing
flows or synchronises concurrent executions of all its incoming
flows. An exclusive gateway chooses one out of a set of mutually
exclusive alternative incoming or outgoing flows. Such gateways
can also be used to represent repetitive behaviours (i.e., loops).
For verification purposes, BPMN processes are often mapped to
their equivalent Labelled Transition Systems (LTSs), which describe
precisely the semantics of these processes.

2.2 Model Checking
Model checking consists in verifying that a model (an LTS in this
work) satisfies a given temporal logic property, which specifies
some expected requirements of the system. Temporal logic prop-
erties are usually divided into two distinct families: safety and
liveness properties [1]. Safety properties state that something bad
must never happen while liveness properties state that something
good eventually happens. Several temporal logics exist and can be
used for modelling such properties. In this work, we consider LTL
because it is rather simple to use and expressive enough to represent
properties on execution paths. The LTL syntax consists of proposi-
tions, Boolean operators and temporal operators (particularly next
X and until U). Among the many existing model checkers, GIVUP
makes use of the CADP toolbox [16] to perform the verification of
the process.

3 Overview
GIVUP aims at automatically generating a BPMN process and a
temporal logic property from a textual description, and verifying
the validity of the property on the generated process. If the property
is not satisfied, GIVUP returns a diagnostic that can be displayed
in different formats: a trace of the LTS violating the property, an
LTS containing all the traces violating the property, or a coloured
version of the BPMN process where the parts violating the property
are coloured in red, whilst the parts satisfying it are coloured in
green. Figure 1 presents the different steps required to generate the
process and the property, and verify whether this property holds
or not.

3.1 Generation of BPMN and Temporal Logic
Property from Textual Descriptions

The first part of this approach consists in generating the process that
should be model checked and the property to verify from textual
descriptions. The goal of such an approach is to allow any kind of
user (i.e., familiar to BPMN/temporal logic or not) to build its own
model and to be able to verify that this model fulfils its expected

requirements (i.e., that it behaves as it is supposed to). Generating
a syntactically correct BPMN process or the right temporal logic
property from a textual description is a complex task. This step
was made possible thanks to the use of Large Language Models
(LLMs), and more precisely GPT-4o (GPT, as a shorthand, in the
rest of this paper), for its capacities to analyse an informal text,
extract the essential information contained in it, and return an
output compliant with a required format.

Generating BPMN. Based on the experiments carried out on var-
ious well-known LLMs, it was concluded that LLMs are not yet
able to produce correct BPMN processes directly. Thus, this step
requires several intermediate steps. The first intermediate step con-
sists in extracting the tasks of the process-to-be, along with their
ordering constraints (i.e., the way they are related to each other).
To be able to do so, GPT was fine-tuned on roughly 400 examples in
order to produce expressions compliant with an internal grammar
similar to the regular expressions’ one available in [25]. Once such
expressions are generated by GPT, they are mapped to their equiv-
alent Abstract Syntax Trees (ASTs). This hierarchical structure was
chosen because it provides by construction priority between nodes
(the higher the node, the higher its priority) and consequently be-
tween the operators of the grammar. The information split in the
original ASTs is then gathered using internal algorithms to produce
a single AST, called merged AST, which contains all the informa-
tion of the original ASTs. Finally, the merged AST is converted
into its equivalent BPMN process according to some AST to BPMN
transformation patterns.

Generating Temporal Logic Property. Similarly to the generation
of BPMN processes, based on the experiments carried out in the
context of this work, it was concluded that LLMs for now have a
very basic knowledge of temporal logics. Thus, generating an LTL
property matching exactly the expectations that the user writes in
natural language is a challenging task. For this reason, GIVUP is
for now recognising nine precise patterns, corresponding to the
nine LTL formulas on which GPT was trained. These patterns, such
as “Tasks 𝑇1, 𝑇2, ..., 𝑇𝑛 must precede tasks 𝑇𝑛+1, ..., 𝑇𝑧”, were used
to fine-tune GPT in order to make it able to generate the correct
property in these precise cases. This fine-tuning task was performed
on approximately 260 descriptions of properties, with roughly the
same number of descriptions for each available pattern.

3.2 Verification of the Property
Once the BPMN process is generated, it has to be model checked
with regards to the generated LTL property in order to assess its
validity. However, model checkers do not natively support the
BPMN format as input. Thus, the process first has to be transformed
into a format compliant with classical model checkers. VBPMN [21]
is a tool allowing one to translate a BPMN process into LNT [9],
a modern formal specification language that combines traits from
process calculi, functional languages, and imperative languages.
An LNT specification can then be model checked using the CADP
model checker.

As CADP does not natively support the LTL language, the LTL
property must be converted into a format that it can understand.
This format is a Büchi automaton, whose generation is ensured by
the SPOT toolbox [8]. Finally, CADP is called on the LNT specifica-
tion and the Büchi automaton to verify the property.
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Figure 1: Overview of the Toolchain

3.3 Diagnostics
The verification of the property by CADP leads to a verdict, which
is either True if the property holds on the given specification, or
False if the specification violates the property. In the latter case,
CADP returns a diagnostic in the form of a counterexample. This
counterexample is a trace of the LTS that violates the given property.

Counter-example LTS.A single counterexample is often not show-
ing precisely the source of the violation of a property. For this
reason, GIVUP provides an additional debugging option, the coun-
terexample LTS (CLTS [2]). A CLTS is basically an LTS containing
all the traces violating the property, instead of the single one re-
turned by the model checker. With this representation, the user
is more likely to find the source of the error, or to understand the
global impact that this error has on the model.

Coloured BPMN. The CLTS is very helpful to localise the source
of the error, but can sometimes be difficult to interpret or under-
stand due to its lack of similarity with the original BPMN process.
For this reason, the last debugging option proposed by GIVUP is
a coloured BPMN process highlighting in red (resp. green) the in-
correct (resp. correct) parts of the model. The technique used to
obtain this coloured process is detailed in [24]. This process is as
syntactically close as possible to the original process, and aims
at helping users not familiar with LTSs to understand the reason
behind the violation of the property.

3.4 Implementation
GIVUP consists of approximately 20k lines of Java code embedded
in the backend of a web server for distribution purposes. The web
server UI is built with HTML, JavaScript and Bootstrap 5, while
the backend relies on NodeJS. The training dataset, the validation
dataset and the source code of GIVUP are available online.1

4 Evaluation
To evaluate the approach, several experiments were conducted.
These experiments are divided into three parts: quality of the gen-
erated BPMN process, quality of the generated LTL property, and
performance of GIVUP.

Quality of the Generated BPMN Process. The generation of BPMN
processes was tested and validated on 200 descriptions coming
from various sources. 25% come from the literature (PET dataset
[5], proceedings, ...), while the remaining 75% were handcrafted
by 9 users (5 experts and 4 novices) who experimented GIVUP.
To the best of our knowledge, there are only two tools aiming at
generating BPMN processes from natural language descriptions

1https://github.com/QuentinNivon/Text_to_BPMN

available online: ProMoAI [20] and NaLa2BPMN [7]. GIVUP was
compared to them, and also to Gemini [10] and GPT-4-turbo [12]
prompted directly. Table 1 shows the results obtained by the 5
tools. Column 1 presents the used tool, while Column 2, 3 and 4
respectively contain the percentage of valid processes (i.e., correct
with regards to the description and corresponding to the processes
expected by the experts), ambiguous processes (i.e., correct with
regards to the description but not corresponding to the processes
expected by the experts), and incorrect processes (i.e., incorrect
with regards to the description). Finally, Column 5 gives the time
taken by each tool to generate the BPMN process on average.

Table 1: Results of the BPMN Generation Experiments

Tool/Model ✓ ? ✗ Avg. Exec. Time (s)
GIVUP 83% 9.8% 7.2% 4.43

NaLa2BPMN 32.8% 8.9% 58.3% 68.7
ProMoAI 50% 8.7% 41.2% 24.7
Gemini 32.2% 8.1% 59.7% 8.32

GPT-4-turbo 66.6% 21.1% 12.2% 19.2

GIVUP obtained the highest accuracy with 83% of exactly match-
ing processes, along with the shortest execution time on average
(4.43s). It also obtained the lowest invalid processes percentage
with only 7.2%. It is interesting to note that GPT-4-turbo performed
quite well, with a low invalid processes percentage of 12.2%.

Quality of the Generated LTL Property. In this approach, the gen-
erated LTL property must correspond exactly to the textual descrip-
tion written by the user. Otherwise, the verification step becomes
useless, as the behaviour assessed by the model checker is not the
expected one. To obtain the desired property, GIVUP currently
restricts the user by forcing her/him to choose between nine well-
defined patterns. On these nine patterns, the properties generated
from one hundred examples were all correct.

Performance of GIVUP. These experiments aimed at assessing
the scalability of GIVUP. They were conducted on both real-world
examples coming from the literature, and handcrafted examples.
Table 2 summarises the results. Column 1 provides the origin of the
process, Columns 2 and 3 give details about the LTS corresponding
to the specification (i.e., number of states and transitions of the LTS
corresponding to the BPMN process), and Columns 4, 5, 6, 7 and
8 present the time taken by each major step of the approach (i.e.,
generation of the BPMN process, generation of the LTL property,
model checking of the property, construction of the CLTS, and
colouration of the BPMN process).
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Table 2: Results of the Performance Experiments Conducted on GIVUP
BPMN Process States Trans. BPMN Gen. Time Prop. Gen. Time Model Check. Time CLTS Cons. Time BPMN Colo. Time
Evisa App. [27] 30 31 1.67s 1.43s 4.35s 3.12s 613ms
Patient Diag. [3] 38 40 2.71s 1.14s 4.57s 3.29s 661ms

Employee Rec. [13] 39 40 1.89s 1.33s 4.57s 3.22s 830ms
Employee Hiring [6] 78 105 2.17s 2.86s 4.34s 3.22s 758ms

Perish. Goods Trans. [28] 108 150 2.22s 1.1s 4.78s 3.31s 978ms
Acc. Open. Proc. [24] 304 657 2.31s 1.23s 4.56s 4.23s 1.42s

Hard. Ret. Ship. Proc. [14] 373 819 2.56s 1.1s 4.53s 3.13s 764ms
Online Shipping [22] 375 765 2.78s 1.07s 5.12s 3.27s 1.7s

Handcrafted 1 279k 1.63m 3.25s 1.07s 8s 14.6s 17.2s
Handcrafted 2 1.67m 11m 1.79s 1.27s 23.9s 5.42m 24m
Handcrafted 3 10m 75m 1.67s 1.18s 3.05m >1h >1h
Handcrafted 4 60m 503m 2.08s 867ms 27.7m >1h >1h
Handcrafted 5 362m 3.32b 2.31s 1.85s >1h >1h >1h

These experiments show that the total execution time including
the non-mandatory steps (CLTS construction and BPMN coloura-
tion) never exceeds 15s for real-world examples2. The mandatory
steps are themselves executed in at most 10s for real-world exam-
ples. For the model checking step, the first limitations appear for
processes containing approximately 10 million states, as CADP
takes a few minutes to compute the result. This limit corresponds
to the well-known state explosion issue that CADP (and all model
checkers) suffers from. For the CLTS generation, the limit is reached
earlier. Indeed, the construction of the CLTS requires the compu-
tation of all the counterexamples of the property, which implies
repeating the model checking step multiple times, thus summing
its execution time. Finally, to be able to colour the BPMN process,
an intermediate step called unrolling is required. Unrolling consists
in duplicating each node of the BPMN process having more than
one incoming flow until no such node exists in the process. Conse-
quently, this step increases exponentially the number of nodes of
the process, making the colouring process longer than the CLTS
generation. However, it is worth noting that, in practice, the LTS
model of a BPMN process rarely exceeds a few thousand states, and
therefore almost never suffer from any of the problems described
above, thus ensuring a short execution time.
5 Related Work
The Sketch Miner [18] tool combines notes taken in constrained
natural language with process mining techniques to automatically
produce BPMN diagrams. This approach relies on a textual DSL,
which defines how the user can describe its process textually. In [11],
a series of question/answer exchanges with a chatbot enhanced
with natural language processing capabilities are performed. The
goal of these iterations is to create or improve process models.
However, the authors restricted their focus on the extraction of
tasks. These approaches either impose specific constraints on the
input textual format or end up with fragments of processes that
have to be connected manually, while our approach automatically
provides an entire BPMN process without imposing any restriction
on the input textual requirements.

[23] presents a software-based tool to support generating busi-
ness process models in BPMN by using Natural Language Process-
ing (NLP) methods. This approach starts with oral explanations, and

2The reader testing GIVUP may experience longer execution times due to the distance
from the server hosting it.

thus integrates the Whisper automatic speech recognition system.
This approach only works for German language. [20] introduces a
novel framework that leverages the capabilities of LLMs to generate
and refine process models starting from textual descriptions. This
system uses the Partially Ordered Workflow Language (POWL) as
intermediate representation. These two tool-based approaches are
quite preliminary with limited evaluation and ongoing improve-
ments. [7] and [19] present an approach to automate process model
generation from textual descriptions using LLMs. These solutions
apply successively different steps: the LLM analyzes, clarifies, and
completes the textual description, and extracts process entities and
relationships. The evaluation section showed that our approach
outperforms these works in terms of performance and accuracy.

There have been several attempts to transform text to temporal
logics. We introduce two recent libraries trying to do so for LTL.
[15] presents a Python package called NL2LTL, which combines
Natural Language Understanding (NLU) and LLMs to translate nat-
ural language instructions to LTL formulas. This approach works
as ours for specific patterns of properties. [5] describes a frame-
work for translating unstructured natural language to LTL. The
methodology is to decompose the natural language input into sub-
translations, which are mappings of formula fragments to relevant
parts of the natural language input. The user can thus interactively
correct some erroneous sub-translations. We preferred to rely on
patterns to guarantee high accuracy of the generated formulas, and
avoid any required expertise in temporal logics.

Several tools have attempted to provide verification techniques
for BPMN. VBPMN [21] allows one to check the validity of func-
tional properties on a given business process. To do so, it relies on
model checking. BPROVE [4] enables the verification of properties
such as soundness and safeness both at the process and collab-
oration levels. Additionally, more specific properties are defined
in order to ensure the conformance of the model to specific be-
havioural patterns. Both VBPMN and BPROVE require a BPMN
process and a temporal property as input, whereas in this work we
start from textual descriptions for these two inputs. We also provide
more expressive diagnostics, useful for debugging purposes.

6 Concluding Remarks
In this paper, we presented GIVUP, a tool taking as input descrip-
tions of a business process and of expected requirements written in
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natural language. A LLM is first used to extract structured informa-
tion from this text, which allows us to obtain both a BPMN process
and an LTL property. Several transformations are then applied to
be able to reuse existing model checkers for verifying whether the
BPMN process satisfies the given property. If this is not the case, a
diagnostic is returned by the model checker and can be visualised
using different formats. One option shows the semantic model with
colouration techniques to emphasise the traces that do not respect
the property. Another option colours the BPMN process for show-
ing which (syntactic) parts of the process violate the property. This
work offers several perspectives, such as improving the quality of
the generated processes, or continuing training the LLM model to
cover a larger set of LTL patterns.
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