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Abstract—Business Process Modeling Notation (BPMN) is
nowadays widely used by companies to represent their busi-
ness processes. Such processes are usually designed and
written by non-expert users for whom the main matter is
to conceive a process corresponding to the needs of the
companies. As the quality of the process is not the main design
criterion, it can generally be optimised in several ways. For
instance, reducing the financial cost of the process, its resource
usage, or its execution time are classical optimisation axes.
In this work, the considered BPMN processes are enriched
with time and resources, and are executed multiple times.
The proposed optimisation approach consists in reducing the
execution time of these processes. To do so, the method
presented in this paper consists in restructuring the processes
by changing the position of their tasks. The goal of this
restructuring is to limit the overuse of the resources and
consequently reduce the execution time of the processes. To
avoid generating unsuitable processes, the designer is involved
in the restructuring phase, as (s)he validates each restructuring
step. The proposed technique is fully automated by a tool
that was implemented and applied on several examples for
validation purposes.

1. INTRODUCTION

Nowadays, companies are making use of workflow modelling
notations to represent their business processes. These pro-
cesses are usually subject to changes due to the evolution of
the companies needs throughout the years. Thus, optimising
them is a key step in their lifecycle as it may lead to significant
reductions of their operational cost, better usage of their
resources, or important diminution of their execution time. In
any case, optimising the business processes of a company is
always beneficial for it.
Business process optimisation can be done in several ways. For
instance, simulation techniques can be used to compute metrics
of interest regarding the quality of the process. However,
refining the process according to these metrics is almost
always performed manually, which requires a user with an
important knowledge of the needs of the company. Another
possibility is to adjust the resources consumed by the process
to make its execution smoother. This optimisation, known as
resource optimisation [1][2], usually requires flexibility in the
budget of the companies. Indeed, adjusting the resources may
require to buy new equipment, or hire new employees. The
approach proposed in this paper is automated, and does not
require any change in the budget of the company.
In this approach, the main goal is to optimise the execution
time of business processes described using the Business Pro-

cess Modelling Notation (BPMN). A solution to optimise the
execution time of a business process automatically and without
impacting the company’s budget consists in restructuring it
by changing the position of its tasks. This structural modi-
fication is known as process refactoring [3][4]. Usually, this
structural modification induces a better balance of the resource
usage. Consequently, the competition to acquire the resources
decreases, leading to a smoother execution of the process, and
thus a shorter execution time.

The processes handled in this approach are enhanced with
quantitative information that is necessary to precisely analyse
and optimise them. Therefore, in this work, the processes also
include time as a duration associated to tasks and an explicit
description of the resources required to execute each task. It
is also worth noting that a process is not executed once but
multiple times resulting in multiple instances. For each execu-
tion/instance, each task needs to acquire the required (globally
shared) resources to be able to execute. The restructuring,
which consists in moving tasks from one place to another, is
here performed step by step. At each step, a task of the process
is elected and identified as task to move. The user designing
the process can then decide whether this task should be moved
or not. If (s)he decides to move the task, all the possible
positions of this task in the process are computed. Among
these generated processes, the one obtaining the greatest score
is kept, and shown to the user. The user then decides whether
the new version of the process makes sense to him. If it is
the case, a new task is elected and proposed to the user,
and so on. Otherwise, the new version of the process is
discarded, returning to the version of the process generated in
the previous step, and a new task is proposed to the user. As
the user keeps control on the modifications that are performed,
(s)he is more likely to have a better understanding of the final
shape of the process. The whole approach is fully automated
by a tool that was implemented and applied on hundreds of
examples. The experimental results show an important gain
and a short computation time on real-world examples.

Section 2 introduces the languages and models used in this
paper. Section 3 presents the different steps of the refactoring
approach. Section 4 describes the tool support and some ex-
perimental results assessing the performance of the approach.
Section 5 compares the solution to related work and Section 6
concludes this paper.



2. MODELS

2.1 BPMN with Time and Resources
This work focuses on BPMN activity diagrams including the
constructs related to control-flow modelling and behavioural
aspects. Beyond those constructs, execution time and resources
are also associated with tasks.
More precisely, the node types event, task, and gateway,
and the edge type sequence flow are considered. Start and
end events are used, respectively, to initialise and terminate
processes. A task represents an atomic activity that has
exactly one incoming and one outgoing flow. A sequence
flow connects two nodes executed one after the other in a
specific order. A task may have a duration or delay, expressed
by default in units of time (UT). It can also be defined
using probabilistic functions, in case of non-fixed durations.
Resources are explicitly defined at the task level. A task can
thus include, as part of its specification, the required resources.
In such a case, it means that the task needs those resources
to be able to execute. Once the resources are acquired, the
task executes for the specified duration. In this approach, the
acquisition of resources relies on a “first-come-first-served”
strategy. This strategy is a parameter of the approach and can
thus be replaced by another strategy according to the user’s
needs, without any impact on the results. If a task needs more
replicas of a resource than available, it remains in a waiting
state until the release of a sufficient number of replicas of the
required resource.
Gateways are used to control the divergence and convergence
of the execution flow. In this work the two main kinds of
gateways used in activity diagrams are considered, namely,
exclusive (represented with the symbol) and parallel gate-

ways (represented with the symbol). A parallel gateway
indicates the possibility of executing all of its paths at the same
time, while an exclusive gateway represents a choice, thus only
one of its paths is executed. As only one path of an exclusive
gateway is executed, each of its paths has a probability of
execution represented as a real value ranging from 0 to 1. The
sum of the probability of each flow can not exceed 1. These
probabilities are usually extracted from the execution traces
of the process with the help of process mining techniques [5].
They can also be specified by the designer of the process. If
they have not been extracted nor specified, they are considered
as equal for each path of the gateway. In the rest of this paper,
BPMN processes are represented as B = (SO ,SF ) where SO

is a set of nodes (tasks, events, gateways, ...) and SF a set of
flows connecting these nodes (sequence flows).

Example. Figure 1 shows a BPMN process describing a
bank account opening. As the reader can see, tasks have a
duration and make use of resources. For instance, task Create
Profile has a duration of 10UT and requires one replica of
resources database and bank advisor to execute. Exclusive
split gateways exhibit the probability of execution of their
paths. For example, gateway Crepresenting one of 1 has one
path executing with probability 0.1 and the other one executing
with probability 0.9.

Figure 1: Example of Account Opening Process

2.2 Dependencies Between Tasks

In BPMN, tasks are naturally ordered by the sequence flows
that are connecting them. Thus, two tasks connected by a
sequence flow are dependent, as one must be executed before
the other. As the solution presented in this paper performs a
restructuring of the process, there is no guarantee regarding
the final position of a task in the resulting process, compared
to its position in the original one. Nonetheless, some tasks may
have to remain in a specific order to preserve the meaning of
the process (e.g., some product should be packaged before its
delivery). Such strong dependencies can be given by the user
or computed by analysing the data-flow graph corresponding
to the BPMN process [6][7].
In the rest of this paper, a dependency or partial order between
two tasks T1 and T2 is written as a pair (T1, T2). Two tasks are
said to be dependent if they belong to a pair of dependencies,
and non-dependent otherwise. T1 is said to be a predecessor
of T2, and T2 a successor of T1.

Example. The account opening process presented in Figure 1
has several dependencies that should be preserved by the
refactoring process: (i) (Retrieve Customer Profile, Analyse
Customer Profile), (ii) (Request Additional Information, Notify
Rejection), (iii) (Process Application, Review Application), (iv)
(Generate Account Number, Activate Account), (v) (Create
Profile, Update Info Records), (vi) (Create Profile, Prepare Ac-
count Opening) and (vii) (Retrieve Customer Profile, Prepare
Account Opening). It is worth noting that other dependencies



exist in the process, such as (Send Online Starter Kit, Activate
Account) but are not considered as mandatory to be preserved.
Consequently, they may no longer exist in the resulting pro-
cess.

2.3 Abstract Graphs

An abstract graph is an internal representation of a BPMN pro-
cess that is used in this work as an intermediate format. It was
originally introduced in [8] where the authors propose first to
generate an abstract graph from a set of dependencies between
tasks and then to generate the BPMN process corresponding to
this abstract graph. This representation is defined recursively
as a main graph, possibly containing conditional structures
such as choices or loops as sub-graphs. It is worth noting that
this representation has the same expressiveness than the subset
of BPMN that is supported in this work.

Definition 1. (Abstract Graph) An abstract graph is a (hi-
erarchical) directed acyclic graph (SN , SE) where SN is an
ordered set of nodes (n0, n1, ..., nn) and SE a set of directed
edges (e1 = n0 → n1, e2 = n1 → n2, ..., en = nn−1 → nn)
connecting these nodes. A node n ∈ SN is defined as a
pair (ST , SG) where ST is a set of tasks and/or conditional
structures and SG is a set of abstract (sub-)graphs. A node
has exactly one successor and one predecessor, except the first
node which has no predecessor, and the last node that has no
successor.

This definition is almost identical to the one given in [8],
except that the one proposed here considers conditional struc-
tures. In this work, conditional structures belonging to abstract
nodes contain themselves abstract graphs describing their
behaviour. For instance, a choice is represented as a set of
abstract graphs, each corresponding to one of its paths.

Definition 2. (Choice Structure) Let G = (SN , SE) be
an abstract graph. A choice structure, denoted

C
, be-

longing to a node n ∈ SN is written as a set of
abstract graphs {G1, G2, ..., Gn} representing the differ-
ent paths of the choice, enriched with their probability
of execution pi ∈ [0; 1]. Choice structures are written

C
= {(G1 , p1 ), (G2 , p2 ), ..., (Gn , pn)}.

Similarly, a loop is defined as two abstract graphs. The first
one represents the part of the loop that is always executed,
while the second one represents the part of the loop that is
conditionally executed, i.e., the part of the loop which goes
back to its starting node.

Definition 3. (Loop Structure) Let G = (SN , SE) be an
abstract graph. A loop structure, denoted

L
, belonging

to a node n ∈ SN is represented by two abstract graphs
{GFL,GLF}. GFL represents the path going from the entry
node of the loop to its exit node, while GLF represents the path
going from its exit node to its entry node. Both are enriched

with their probability of execution pLF ∈ [0 ; 1 ] and pFL = 1.
It is written

L
= {(GFL, pFL), (GLF , pLF )}.

Example. Figure 2 shows the abstracts graphs corresponding
to the account opening process presented in Figure 1. For the
sake of space, in the rest of this paper, the empty sets of
tasks/graphs belonging to the abstract nodes are omitted. As
the reader can see, the main abstract graph shown in Figure
2a is rather simple as it does not contain the tasks belonging
to the conditional structures of the process (i.e.,

C1

,
C2

and
L1

). These tasks appear in the abstract sub-graphs of
their respective conditional structures. This is for instance the
case for task Notify Rejection that belongs to

C2

, which

is shown in Figure 2b. The abstract sub-graphs of
L1

and

C1

, which are not shown in this figure, can be represented
similarly.

(a) Main Abstract Graph

(b) Abstract Sub-Graphs Belonging to
C2

Figure 2: Abstract Graphs Corresponding to the Account
Opening Process in Figure 1

2.4 Metrics

Several metrics can be computed on a BPMN process extended
with quantitative aspects, such as execution times, synchro-
nisation/waiting times, resource usage or total costs. In this
work, the time taken by a process to execute is the most
important one since it is the main optimisation goal of the
approach. The execution time of a process corresponds to the
difference between the timestamp at which an end event is
reached and the timestamp at which the start event is triggered.
This time varies depending on the structure of the process, the
use of gateways or loops, but is always finite if the process
is syntactically well-formed (i.e., if each execution scenario
eventually ends up with an end event). This approach considers
a notion of execution time called average execution time,
which is only relevant in a multi-instance context. It represents



the time taken by one instance of the process to complete its
execution, on average.

Definition 4. (Average Execution Time) Let B be a BPMN
process executed n times and ETB1 , ETB2 , ..., ETBn the
execution times of each instance of B. The average execution

time of B is defined as AETB = 1
n

n∑
i=1

ETBi .

This execution time can be computed using simulation tech-
niques [1]. These simulation techniques and the resulting
execution times highly depend on the pool of shared resources
that the process can use. Indeed, insufficient resources increase
the competition between tasks, thus delaying their execution
and increasing the execution time of the affected instances.
The resulting execution times also depend on the workload,
which is a couple (N,R) where N represents the number of
instances of the process being executed and R the rate at which
each process execution is started. In other words, each R units
of time, a new instance of the process starts, until N instances
have been triggered. This rate is also known as inter-arrival
time (IAT).
It is worth noting that synchronisation times play an important
role in this work. The synchronisation time induced by merge
parallel gateways corresponds to the time elapsed between
the end of execution of the path of the gateway having the
shortest execution time and the end of execution of the path of
the gateway having the longest execution time (thus resulting
in the activation of that merge). These merge gateways are
often seen as bottlenecks because they induce additional delays
in a multi-instance context. On the other hand, adding more
parallelism to a process may also speed up its execution.
The solution proposed in this paper takes particularly care
of this issue by adding parallelism when it does not induce
such bottlenecks and by avoiding parallelism when it results
in additional delays.

Example. Let us consider two processes both executing tasks
A and B. Task A has a duration of 10UT, task B has a
duration of 20UT, and both require one replica of resource r1
to execute. The first process executes A and B in sequence,
while the second one executes them in parallel. Both processes
are executed 100 times, with an inter-arrival time of 5UT, and
have access to two shared replicas of r1. After simulating the
two processes in these conditions, the first process obtains
an AET of 580UT while the second one obtains an AET of
747UT. Thus, the addition of parallelism has increased the
AET.

2.5 Optimality

The main goal of this work is to reduce the average execution
time of the original process by applying refactoring techniques
to it. In the best case, the average execution time of the
refactored process is the shortest possible. In such a case, the
refactored process is said to be optimal.

Definition 5. (Optimal Process) Let B be a BPMN pro-
cess and R

=⇒ be the operation generating all the possi-
ble refactored processes from a given BPMN process. If
∃(Br1 , Br2 , ..., Brn) such that B

R
=⇒ (Br1 , Br2 , ..., Brn), a

process Bri ∈ (Br1 , Br2 , ..., Brn) is said to be optimal if and
only if AETBri

= min(AETBr1
,AETBr2

, ...,AETBrn
).

3. REFACTORING

The approach proposed in this paper aims at automatically
restructuring a BPMN process in order to optimise its average
execution time. It takes as input a BPMN process with duration
and used resources for each task, a pool of shared resources
and an IAT. It is worth recalling that, in this work, a process
is executed multiple times, each instance starting at a given
rate called IAT. The refactoring technique does not change the
tasks themselves, but the way they are organised within the
process. Consequently, the semantics of the process changes
over time. Nonetheless, the tasks belonging to the traces of
the original process remain exactly the same throughout the
refactoring steps. The only change resides in the position of
these tasks in the traces. In this work, it was decided to involve
the user in order to give her/him the opportunity to choose the
modifications that seem relevant for her/him while discarding
the ones that are not. By doing so, the user is aware of the
changes performed on the process at each step, and is more
likely to have a better understanding of the final process. In the
end, the approach returns a new BPMN process whose average
execution time is shorter (or equal to in the worst case) than the
one of the original process. This section is divided as follows:
Section 3.1 gives an overview of the approach, Section 3.2
details the task election process, Section 3.3 presents the
refactoring patterns, Section 3.4 illustrates the completeness
of the patterns, Section 3.5 discusses the semantics preserved
by the patterns, and Section 3.6 concludes with the heuristic
proposed to select the best process.

3.1 Overview

In this approach, it was decided to involve the user by making
her/him validate or decline the changes performed on the
process. This choice was motivated by several reasons, all
guided by the idea that entirely restructuring a BPMN process
and giving it back to the user may not be useful for her/him.
First, the resulting BPMN process may not suit exactly the
needs of the user. For instance, the user may have forgotten
some dependencies between tasks, or may consider that some
new positions of tasks are not relevant. Second, the resulting
BPMN process may be syntactically far from the original one,
which may prevent the user from fully understanding it. To
avoid such issues, the user is involved at each important step
of the approach in order to make her/him accept or decline
each decision.

Figure 3 gives an overview of the approach. First, the original
BPMN process is converted into its corresponding abstract
graph. Then, one of the tasks of the process is elected and
submitted to the user for validation. If the user wants this task



Figure 3: Overview of the Approach

to remain in its original position, (s)he can decline the offer,
and another task will be elected and submitted to her/him, until
(s)he validates. Once the user accepts to move the elected task,
several patterns are applied to the abstract graph in order to
obtain all the possible positions of that task in the process.
Among the generated abstract graphs, those not respecting the
dependencies of the original process are discarded. Then, each
remaining abstract graph is simulated using the IAT, the pool
of shared resources, and the number of instances, in order to
obtain metrics of interest about it. According to these metrics,
a score is attributed to each abstract graph to represent its
quality. The abstract graph obtaining the highest score is then
mapped to its equivalent BPMN process and shown to the
user. If this new process, in which a task has been moved,
seems relevant for the user, (s)he validates it and a new task
is elected in this new version of the process. Otherwise, if the
process does not seem relevant for the user, (s)he can refuse it
and a new iteration will start with the process of the previous
iteration as basis (or the initial one if no iteration was done).
At any time, the user can decide to stop the iteration. If (s)he
does so, the current version of the process is compared to the
original one. If it has a shorter AET, it is returned to the user.
Otherwise, the user keeps the original version of the process.
If the user does not decide to stop, the iterations automatically
end when all the tasks of the process have been proposed to
be moved.

3.2 Task Election

Once the initial process has been transformed into its cor-
responding abstract graph, the approach proposes a task to
move. This can be done in many ways: randomly, task with
greatest duration first, task with greatest duration last, task
with greatest resource usage first, task with greatest resource
usage last, a mix of several criteria, etc. From an empirical
study made on dozens of processes, the selection method that
gave the best results consists in selecting the tasks in ascending
order of duration. The task with the shortest duration is elected
first, then the second shortest, and so on, until the task with
the longest duration. Intuitively, the reason behind the good
quality of this heuristic is that each task of the process is

moved once and only once. Thus, finding its best position is
crucial. However, the position of the first task moved may be
subject to changes due to the repositioning of the other tasks.
Consequently, the later a task is moved, the less its position
is subject to changes. As tasks with long duration have a high
impact on the execution time of the process, their position has
to remain as stable as possible. Once the task to move has
been selected, it is proposed to the user. If the user accepts
to move this task, the refactoring patterns are applied to the
abstract graph and the task.

3.3 Refactoring Patterns
In this approach, the process is restructured by changing the
position of its tasks, one after the other. To do so, several
patterns are applied on the abstract graph from which the
elected task has been removed. Each pattern generates one
or several abstract graphs, in which the position of the elected
task is different. It is worth noting that, by applying all these
patterns, all the possible positions of the elected task in the
process are obtained. Let us now present the four patterns. For
the sake of space, only the first pattern is formally defined. The
reader interested in the formal definitions of the other patterns
can find them at [9].

3.3.1 Pattern 1: Task in Sequence of Abstract Node or Task.
The first pattern consists in putting the task to move in
sequence of any abstract node or task/conditional structure of
the abstract graph. To do so, the task to move is put in a new
abstract node containing only this task. Then, the first possibil-
ity consists in putting this abstract node in sequence between
other abstract nodes of the graph. The second possibility is to
put one of the tasks of an abstract node into a new abstract
node, and to connect it to the abstract node containing the task
to move. This generates an abstract graph which is then put
in the set of sub-graphs of the considered abstract node. This
operation is repeated recursively on all the sub-graphs of each
node of the abstract graph. This pattern is formalised using
the definition of abstract graphs.

Definition 6. (Pattern 1) Let G = (SN ,SE ) be an ab-
stract graph, T /∈ SN be the task to move, and



Figure 4: Example of Abstract Graph Generated by Pattern 1

Figure 5: BPMN Process Corresponding to the Abstract Graph
in Figure 4

nnew = ({T}, ∅) be a new abstract node containing only
T. The set of abstract graphs generated by applying Pat-
tern 1 to G and T, written genP1 (G ,T ), is defined as
genP1 (G ,T ) = (i) ∪ (ii) ∪ (iii) ∪ (iv) ∪ (v) ∪ (vi) where

(i) =
⋃

i∈[1 ...|SE |]
(SN ∪ {nnew},SE \ {ni → ni+1} ∪

{ni → nnew ,nnew → ni+1}) represents the addition of
the new node containing T in sequence with any other
node of G,

(ii) = {(SN ∪ {nnew}, SE ∪ {nnew → n0})} represents the
addition of the new node containing T before the first
node of G,

(iii) = {(SN ∪ {nnew}, SE ∪ {nn → nnew})} represents the
addition of the new node containing T after the last node
of G,

(iv) =
⋃

n∈SN

⋃
t∈STn

(SN \ {n} ∪ {(STn \ {t},SGn ∪

{({nt ,nnew}, {nt → nnew})})},SE ) – where
nt = ({t}, ∅) – represents the addition of task T
after any task of any node of G,

(v) =
⋃

n∈SN

⋃
t∈STn

(SN \ {n} ∪ {(STn
\ {t},SGn

∪

{({nt ,nnew}, {nnew → nt})})},SE ) – where
nt = ({t}, ∅) – represents the addition of task T
before any task of any node of G, and

(vi) =
⋃

n∈SN

⋃
g∈SGn

⋃
g′∈genP1 (g,T)

(SN \ {n} ∪

{(STn
,SGn

\ {g} ∪ {g ′})},SE ) is the result of the
recursive call of this function on each abstract sub-
graph of each node of G.

Example. Let us illustrate Pattern 1 on the abstract graph
shown in Figure 2b and the task Send Online Starter Kit.
This task is not dependent and can thus be put in sequence of
any abstract node or task/conditional structure of the abstract
graph. In particular, it can be put in sequence between nodes
n0 and n1, as shown in Figure 4. To give a better understand-
ing of the result of this pattern, Figure 5 shows the mapping
between the generated abstract graph and its equivalent BPMN
process. As the reader can see, task Send Online Starter Kit
is now in sequence between tasks Generate Account Number
and Send Offline Starter Kit.

3.3.2 Pattern 2: Task in Parallel of Ordered Combination of
Nodes.

The second pattern consists in putting the task to move in
parallel of any ordered combination of nodes of the abstract
graph.

Definition 7. (Non-Empty Ordered Power Set) Let
G = (SN , SE) be an abstract graph. The non-empty
ordered power set of SN , written P∗

O(SN ), is the set
of combinations of nodes of SN respecting their order
of appearance in G, i.e., {s0, s1, ..., sn} ∈ 2SN s.t.
s0 → s1 ∈ SE , s1 → s2 ∈ SE , ..., sn−1 → sn ∈ SE .

For each ordered combination computed, a new abstract node
is generated, containing the task to move and the ordered
combination. The ordered combination is then removed from
the original abstract graph and replaced by the new node
to generate a new abstract graph. This operation is repeated
recursively on all the sub-graphs of each node of the abstract
graph. Similarly to pattern 1, the set of abstract graphs
generated by this pattern is called genP2(G,T ).

Example. Let us illustrate Pattern 2 on the abstract graph
shown in Figure 2b and the task Send Online Starter Kit.
This task is not dependent and can thus be put in parallel
of any ordered combination of nodes of the abstract graph.
In particular, it can be put in parallel of nodes n1 and n2, as
shown in Figure 6. To give a better understanding of the result
of this pattern, Figure 7 shows the mapping of the abstract
graph to its equivalent BPMN process. As the reader can see,
task Send Online Starter Kit is now in parallel of tasks Send
Offline Starter Kit and Activate Account, which are themselves
in sequence.

3.3.3 Pattern 3: Task in Sequence of any Combination of
Tasks and Subgraphs.

The third pattern consists in putting the task to move in
sequence of any combination of tasks and sub-graphs of the
abstract graph. First, the combinations of tasks and sub-graphs
are computed for each abstract node of the graph. Then, the
tasks belonging to the combination are put in the set of tasks
of a new abstract node, and the sub-graphs belonging to the
combination are put in the set of sub-graphs of the new node.
Next, the task to move is put in the set of tasks of a new
abstract node, that is connected to the abstract node containing
the elements of the combination. This operation generates
a new abstract graph, that is put in the set of sub-graphs
of the currently processed node. This operation is repeated
recursively on all sub-graphs of each abstract node of the
graph. Similarly to patterns 1 & 2, the set of abstract graphs
generated by this pattern is called genP3(G,T ).

3.3.4 Pattern 4: Insertion of Task Inside Choice.

The fourth and last pattern is slightly different from the
previous ones. In order to compute all the possible positions
of a task inside an abstract graph, the choice structures of the
process must be carefully taken into account. A choice is, by
definition, a structure composed of several paths among which
only one will be executed. To preserve the semantics of the



Figure 6: Example of Abstract Graph Generated by Pattern 2

Figure 7: BPMN Process Corresponding to the Abstract Graph
in Figure 6

process, the occurrences of any of its tasks must be preserved.
However, inserting a task inside the path of a choice modifies
the occurrences of the task, as the execution of the inserted
task becomes conditional. The only way to properly insert a
task inside a choice is to insert it in all the paths of the choice.
By doing so, the execution of the task remains unconditional.
Then, all the possible positions of the task in each path of
the choice must be computed. To do so, patterns 1, 2 & 3
are applied to each path of the choice. This operation returns
abstract graphs corresponding to all the possible positions
of the task in each path of the choice. To obtain all the
possible positions of the task at the level of the choice, the
cartesian product between the sets of generated abstract graphs
is computed.

Definition 8. (Pattern 4) Let G be an abstract graph,

C
= {(G1, p1), ..., (Gn, pn)} be a choice struc-

ture belonging to G, and T be the task to insert. The
set of choice structures generated by this pattern is
n∏

i=1

(genP1 (Gi ,T ) ∪ genP2 (Gi ,T ) ∪ genP3 (Gi ,T )).

Finally, each generated choice structure replaces the original
choice structure of the abstract graph. Similarly to patterns 1,
2 & 3, the set of abstract graphs generated by this pattern
is called genP4(G,T ). It is worth noting that computing a
cartesian product of sets often generates a large number of
combinations. As the generated abstract graphs are simulated,
this pattern is often discarded or partially discarded when
the number of processes generated by the previous patterns
exceeds a given threshold, which is a parameter of this
approach.

3.4 Completeness

The four presented patterns are exhaustive, in the sense that
they generate abstract graphs representing all the possible
positions of the elected task without modifying the order of
the remaining tasks. In other words, the generation of possible
positions is complete.

Proposition 1. (Completeness) Let G be an abstract graph,
T be the task to move in G, and T

=⇒ be the operation applied
to an abstract graph to generate a new abstract graph in
which T has been moved to another position. The generation
of positions is said to be complete, i.e., ∄G′ | G T

=⇒ G′ ∧ G′ /∈
genP1(G,T ) ∪ genP2(G,T ) ∪ genP3(G,T ) ∪ genP4(G,T ).

The reader interested in the proof of completeness can find
it at [9]. Finally, it is worth noting that these four patterns
preserve the dependencies specified by the user. Indeed, once
generated, all the abstract graphs are verified and those that
do not respect the dependencies are discarded.

3.5 Preservation of Semantics

In BPMN, the semantics of a process corresponds to the set
of all execution traces of this process.

Definition 9. (Execution Trace) Let B = (SO, SF ) be a
BPMN process and SA ⊂ SO be the set of tasks of B. A trace
τ is defined as a sequence of tasks (t0, t1, ..., tn) ∈ SA

representing one possible execution of B, i.e., a list of tasks
executed to reach an end event of B from the initial event of
B. The set of all traces of B is written TB . A BPMN process
may have an infinite set of traces, but each trace is finite (i.e.,
loops do not repeat infinitely).

The refactoring patterns that were presented consist in moving
a task from one place of the process to another. Thus, they
modify the semantics of the original process. For instance,
two tasks originally executed in sequence may be executed
in parallel in the refactored process. Nonetheless, the patterns
change the position of a single task in the process at once.
This ensures a trace equivalence [10] (modulo the moved task)
between each refactoring step. Globally, this means that each
trace of the refactored process is a permutation of a trace of
the original process, and vice versa.

Proposition 2. (Traces Permutation Property) Let
B = (SO, SF ) be a BPMN process, TB be its set of
traces, B′ be a process generated by applying the refactoring
patterns to B, and ∀τ ∈ TB , Sτ be the set of permutations
of τ . The following properties are preserved by the patterns:

1) ∀τ ∈ TB , ∃τ ′ ∈ TB′ | τ ′ ∈ Sτ , meaning that for each
trace of B, there exists a permutation of this trace in B’.

2) ∀τ ′ ∈ TB′ , ∃τ ∈ TB | τ ∈ Sτ ′ , meaning that for each
trace of B’, there exists a permutation of this trace in B.



Proof. (Sketch) By considering the syntax supported in this
work, there are only four different ways to move a task of a
process while unsatisfying the previous proposition. To do so,
it must either enter a choice, exit a choice, enter a loop, or
exit a loop. Let us now detail these four cases.

1) If a task enters a choice of B, its execution will become
conditional, thus some original traces of B will have
no permutation in B′. As the patterns are applied on
abstract graphs and tasks, they never consider conditional
structures. The only exception is pattern 4 that puts a task
inside a choice. However, it introduces the task in each
path of the choice. Thus, the execution of the task remains
unconditional.

2) If a task exits a choice of B, its execution, which was
originally conditional, will become unconditional. Thus,
some traces of B′ will have no permutation in the original
process B. However, patterns are applied to the abstract
graph being the most internal structure of the task to
move. By construction, they can not be applied on outer
structures, and thus can not put a task out of a choice in
which it originally belonged to.

3) If a task enters a loop of B, it can be executed more
than once, when it was not originally possible. Thus,
some traces of B′ will have no permutation in the
original process B. Similarly to item 1), patterns are only
applied on abstract graphs and tasks, and do not manage
conditional structures. Thus, a task can never enter a loop.

4) If a task exits a loop of B, it can only be executed once,
when it was originally possible to execute it several times.
Thus, some original traces of B will have no permutation
in B′. Similarly to item 2), as patterns are not applied on
outer structures, they can not put a task out of a loop.

3.6 Generating the Best Refactoring Steps

Once the abstract graphs are generated by the patterns, the one
leading to the best optimisation must be proposed to the user.
To compute it, the first and naive method consists in keeping
all the generated processes at each step, and repeating the
generation for each task of the process. This method generates
the whole tree of possibilities, each leaf corresponding to a
candidate process. However, such an exhaustive exploration,
despite returning the optimal process, is not appliable in a real-
time context. Concretely, for a process containing 15 tasks and
in which each task can be moved to 20 positions, the tree of
possibilities contains 1520 = 3 × 1023 leafs. As simulating a
single process takes at least milliseconds, simulating such an
important number of processes is not possible. Consequently,
heuristics are required to reduce the number of processes
explored at each step.

3.6.1 Heuristics.

To limit the size of the explosion, the processes that are
far from the optimal one are discarded at each step. This
can be done in several ways: a bounded depth-first search
returning the process with shortest AET after some steps, a

score attributed to each abstract graph to measure its quality,
a structural analysis evaluating the balance of parallelism and
sequentialisation, a mix between several ones, etc. Based on an
empirical study made on dozens of examples, the option giving
the best trade-off between quality of the result and execution
time is the one for which a score is attributed to each abstract
graph. This score is computed based on the metrics returned by
the simulation of each generated abstract graph. In the end, the
abstract graph obtaining the highest score is elected. By doing
so, the number of abstract graphs generated and simulated at
each step never exceeds the number of possible positions of
the task being moved.
The computation of the score is based on variations of two
different metrics: the AET and the resource usage of the
process. It also keeps track of the history of the current path,
that is, the processes that have been elected in anterior steps, to
adjust the score. These two raw metrics serve as basis for the
computation of the five main metrics composing the score. The
first three make use of the AET, while the last two make use of
the resource usage. The three metrics based on the AET are the
AET mean difference, the AET standard deviation difference,
and the AET local difference.

Definition 10. (AET Mean Difference) Given a history H
composed of n anterior processes (p1, ..., pn) and a current
process pn+1 , the AET mean difference is computed as

δµAET
= δµAETo

− δµAETn
, where δµAETn

= 1
n+1

n+1∑
i=1

AETpi

and δµAETo
= 1

n

n∑
i=1

AETpi .

Definition 11. (AET Standard Deviation Difference)
Given a history H composed of n anterior processes
(p1, ..., pn) and a current process pn+1 , the AET standard
deviation difference is computed as δσAET

= δσAETo
− δσAETn

,

where δσAETn
=

√
n+1∑
i=1

(AETpi
−δµAETn

)2

n+1 and

δσAETo
=

√
n∑

i=1
(AETpi

−δµAETo
)2

n .

Definition 12. (AET Local Difference) Given an anterior pro-
cess pn and a current process pn+1 , the AET local difference
is computed as δAET = AETpn −AETpn+1 .

The remaining metrics take into consideration the resource us-
age of the selected processes at each step. For the computation
of these metrics, the pool of resources Rp used by the process
p is considered, and a function usg(r , p) returning the average
usage of resource r ∈ Rp over the execution of p is introduced.
The two metrics based on the resource usage are the resource
usage mean difference and the resource usage local difference.

Definition 13. (Resource Usage Mean Difference)
Given a history H composed of n anterior processes



Figure 8: Refactored Account Opening Process

(p1, ..., pn) and a current process pn+1 , the resource usage
mean difference is computed as δµres

= δµresn
− δµreso

,

where δµresn
= 1

n+1

n+1∑
i=1

( 1
|Rp |

∑
r∈Rp

(usg(r , pi))) and

δµreso
= 1

n

n∑
i=1

( 1
|Rp |

∑
r∈Rp

(usg(r , pi))).

Definition 14. (Resource Usage Local Difference) Given
an anterior process pn and a current process pn+1 ,
the resource usage local difference is computed as
δres = 1

|Rp |
∑

r∈Rp

(usg(r , pn+1 )− usg(r , pn)).

These five metrics are then normalised to obtain a value
between 0 and 1 for each of them. Finally, the score of the
current process is computed as the weighted sum of these five
metrics.

Definition 15. (Score of a Process) Let p be a process,
δµAET

, δσAET
, δAET , δµres

and δres be the previously
defined metrics computed on process p, and ωAET , ωres

and ωloc be the weights respectively attributed to the
metrics based on AET, resource usage, and previous
process information. The score of p is computed as
s(p) = ωAET × (δµAET

+ δσAET
+ ωloc × δAET ) + ωres

× (δµres
+ ωloc × δres).

This score is a weighted sum between all the previously
defined metrics, where the decrease of AET and the increase
of resource usage gives a high score. Indeed, the objective is
to use the resources as much as possible while avoiding an
over-usage. The weights attributed to the metrics can be given
by the user as an input of the approach. If none are given, the
default ones, based on an empirical study made on dozens of
examples, are ωAET = 0 .6 , ωloc = 0 .5 , ωres = 1 .0 . Finally,
the process obtaining the highest score is shown to the user.

Example. Figure 8 shows the refactored account opening
process obtained by applying all the refactoring steps proposed
by the heuristic to the initial account opening process in
Figure 1. For the sake of space, resource usage and duration
of the tasks have been removed. As the reader can see, several
positions have changed: task Review Application entered the
parallel gateway next to it, or more interestingly, task Prepare
Account Opening entered both paths of the final choice, to
reach a parallel gateway in the second path. In this case, it may
seem counter-intuitive for the user to put task Prepare Account
Opening right before Notify Rejection, but this position of
the task allows a significant optimisation in the other branch
of the choice. Also, the (strong) dependencies of the process
introduced in the example of Section 2.2 have been preserved.
This refactoring allowed the user to obtain a process having
an AET of 40.9UT instead of the original one having an AET
of 51.9UT.

4. TOOL AND EXPERIMENTS

This section gives information about the tool support of this
approach, and describes the experiments conducted to evaluate
and validate it.

4.1 Tool Support

The approach has been fully implemented by a tool written
in Java and consisting of approximately 15,000 lines of code.
It has been fully tested and evaluated on several real-world
examples and hundreds of handcrafted examples. It is freely
available online at [9]. For a more user-friendly usage, it was
embedded in the backend of a web server. Figure 9 shows two
screenshots of the frontend of the web server that the user can
use.
In Figure 9a, the user has uploaded her/his BPMN process,
the global information (IAT, shared resources, number of
instances) and the dependencies of the process. The BPMN
process is then displayed using the “bpmn.io” API, and the



(a) Tool Proposing the Task to Move to the User

(b) Tool Showing the Generated Process to the User

Figure 9: Screenshots of the Tool Support of the Approach

tool proposes the first task to move, i.e., “Generate Account
Number”. It also asks the user whether (s)he agrees to move
this task or not. If the user accepts, the tool then computes
the best position of this task, and displays it on the screen, as
shown in Figure 9b. Otherwise, it proposes another task until
the user accepts to move a task. Here, as the user accepts, the
resulting process is shown, and the gain of this new process
compared to the previous one is displayed. The user is finally
asked to accept or decline this new process, which triggers in
both cases a new iteration.

4.2 Experiments
The experiments described in this section aim at assessing the
performance of the tool, as well as the quality of the process
returned by the score-based heuristic in terms of AET. To
do so, the results obtained by the heuristic are compared to
the ones obtained by the full exploration on several BPMN
processes executed 100 times with multiple resources, both
in terms of AET and computation time of the tool. This
analysis has been conducted on an HP EliteBook x360 1030
G8 Notebook PC running with an Intel Core i5-1145G7 @
2.60GHz VPRO and 16GB of RAM. The results of this anal-
ysis are given in Table 1. Column 1 presents the considered
BPMN process with its name and its origin. Columns 2,
3, 4, 5 give information about the process, respectively, its
number of tasks, choices, and dependencies, and its initial
AET. Columns 6, 7, 8, 9 provide metrics about the process
obtained by using the heuristic. They contain respectively the
AET of the generated process, the gain in percentage compared
to the original AET, the time taken by the tool to perform the
whole computation, and the time taken by the tool to compute
one step, on average. Column 10 shows the AET of the process
obtained by using the full exploration, and column 11 its gain

compared to the original process. As the full exploration time
per step exceeds minutes or even dozens of minutes for certain
processes, the execution time of the full exploration is not
presented in the table. The star symbol (*) in column 6 (AET)
highlights cases where the fourth pattern was (at least partially)
discarded due to the important number of generated processes.
It is worth noting that, as these results aim at assessing the
performance of the tool and the quality of the heuristic, they
were performed under the assumption that the user accepts all
the proposed steps.

As the reader can see, the heuristic performs very well on
real-world examples, as it returns processes with an AET
close to the optimal one (and even the optimal one for
example 6). The worst result obtained by the heuristic on real-
world examples is for example 5, for which the gain of the
heuristic is 33.5% worse than the gain of the full exploration.
On average, the heuristic performs only 13.9% less well than
the full exploration, while being much faster. The approach
also performs in reasonable time on real-world examples, with
a time per step reaching 5 seconds at most. On the first
handcrafted example, containing 26 tasks, the approach still
obtains a non-negligible gain of 37.5% in a reasonable time
per step (15s). Finally, the approach shows some limitations on
the last two handcrafted examples, which are two variants of a
51 tasks process with a different number of dependencies, and
for which the execution time per step is no longer acceptable
in a real-time context (more than 1m). It is worth noting that,
as expected, the number of dependencies and the size of the
process play an important role in the computational time of
the approach.



5. RELATED WORK

Beyond process refactoring, other optimisation techniques ex-
ist for BPMN processes. Task scheduling consists in priorising
the execution of an instance’s task among all the available
instances, according to an orchestration policy. Similarly to
our proposal, this method allows optimisation without any
additional cost, as only the order in which the instances are
executed is modified. However, it does not prevent nor allow
to correct ill-formed processes, as the structure of the process
remains the same throughout the optimisation phase. Other
works, such as [1][2], consist in computing the optimal pool of
resources for a given process. This usually requires flexibility
in the budget of the companies, as one may have to hire a new
employee or buy a new machine. Comparatively, our method
does not require any budget adjustment or increase.
The rest of this section focuses on existing works on process
refactoring. Reference [16] presents six common mistakes
made by developers when modelling with BPMN. For each
problem, the authors present best practices for avoiding these
issues. As an example, the authors propose to use explicit gate-
ways instead of using multiple incoming/outgoing sequence
flows. Reference [17] presents a technique for detecting
refactoring opportunities in process model repositories. The
technique works by first computing activity similarity and then
computing three similarity scores for fragment pairs of process
models. Using these similarity scores, four different kinds
of refactoring opportunities can be systematically identified.
As a result, the approach proposes to rename activities or
to introduce subprocesses. IBUPROFEN, a business process
refactoring approach based on graphs, is presented in [18][19].
IBUPROFEN defines a set of 10 refactoring algorithms
grouped into three categories: maximisation of relevant ele-
ments, fine-grained granularity reduction, and completeness.
All these works mostly focus on syntactic issues and propose
syntactic improvements of the process by, for instance, remov-
ing unreachable nodes or by merging consecutive gateways of
the same type. They do not aim at providing any kind of
optimisation regarding the process being designed as we do.
In [20], the authors present an approach for optimising the
redesign of process models. It is based on capturing process

improvement strategies as constraints in a structural-temporal
model. Each improvement strategy is represented by a binary
variable. An objective function that represents a net benefit
function of cost and quality is then maximised to find the best
combination of process improvements that can be made to
maximise the objective. The BPMN subset used in [20] is very
similar to the one we use in this paper. However, the approach
is rather different since they compute optimal redesigns with
respect to some constraints, whereas we propose process
refactoring with respect to resource usage and execution times.
Reference [8] proposes a semi-automated approach for helping
non-experts in BPMN to model business processes using
this notation. Alternatively, [21] presents an approach which
combines notes taking in constrained natural language with
process mining to automatically produce BPMN diagrams in
real-time as interview participants describe them with stories.
In this work, we tackle this issue from a different angle
since we assume that an existing description of the process
exists and that we want to automatically optimise it by
updating its structure. In [3], the authors propose a refactoring
procedure whose final goal is to reduce the total execution
time of the process given as input. This solution relies on
refactoring operations that reorganise the tasks in the process
by taking into account the resources used by those tasks.
However, this approach only considers single executions of
the BPMN process and a single replica of each resource, while
the approach proposed here applies refactoring techniques on
processes executed multiple times, and making use of several
replicas of each resource.
In [4], the authors present an approach aiming at optimising
a BPMN process with refactoring techniques. The processes
involved support a similar syntax and are also enriched with
time and resources. However, the approach differs in many
points. The first step of their approach consists in building
the most parallel version of the process respecting its depen-
dencies. Then, the authors make use of an internal calculation
to compute the pool of resources needed by the process to
execute without latencies. This pool is later compared to the
available pool of resources. If the available pool is large
enough, the most parallel process is returned to the user.
Otherwise, some tasks are removed from parallel gateways

TABLE 1: Experimental results

BPMN Characteristics Heuristic Full Exploration
Process Tasks

C
Dep. AET AET Gain Time µTime AET Gain

1. Evisa App. [11] 8 1 3 36.1 20 44.6% 6.21s 0.88s 17.1 52.6%
2. Employee Recrui. [8] 10 1 9 30.9 21.4 30.7% 32s 0.32s 20.4 34.0%
3. Patient Diagnosis [12] 8 2 3 67.2 61.6 8.33% 5s 0.56s 60.4 10.1%
4. Employee Hiring [13] 11 2 7 24.7 19 23.1% 26s 2.36s 17.8 27.9%
5. Account Opening [14] 15 2 7 51.9 40.9 21.2% 1.25m 5s 34.2 34.1%

6. Perish. Goods Trans. [15] 16 2 10 15 13.2 12.0% 14s 1.75s 13.2 12.0%
7. Online Shipping [1] 24 3 27 85.9 70.3 18.2% 1.97m 4.9s 69.3 19.3%

8. Handcrafted 1 26 1 43 232 145* 37.5% 6.37m 15s 122 47.4%
9. Handcrafted 2a 51 1 43 323 244* 24.5% 58m 1.14m 183 43.3%

10. Handcrafted 2b 51 1 23 323 182* 43.7% 2h07 2.54m 99 69.3%



and put in sequence to limit synchronisation issues. The
main difference between our approach and theirs is that we
involve the user in the loop and thus perform the task moves
one after the other. This difference requires to rethink the
refactoring method by providing ways of finding the best
position of a single task in the process (the patterns coupled
to the heuristics here). Among other things, our approach also
supports probabilistic IAT and tasks duration, and make use
of simulation to obtain more accurate results.

6. CONCLUDING REMARKS

This paper has presented techniques aiming at optimising the
execution time of a business process by applying iteratively
refactoring operations on it. The approach considers BPMN
processes enriched with time and resource usage which are
executed multiple times. To optimise the execution time, the
approach proposes to the user a task to move and a new
position for it. Depending on the decision of the user, the task
is moved or not. After modifying the position of each task,
the iteration stops and the user obtains an optimised version of
the original process. The whole approach is fully automated
by using a tool that was implemented and applied to a set
of real-world and handcrafted processes in order to evaluate
the quality of its results and its performance. The experiments
showed satisfactory results both in terms of optimisation and
computation time.
This work offers several interesting perspectives. The first one
is to allow the user to select the desired optimisation axis
among several possible ones, such as execution time, resource
usage or monetary cost. The second one is to enrich the model
with data, in order to allow more precise definitions of the
processes. The last one is to get rid of simulation in order to
reduce the waiting time of the user and fasten the computation.
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