
Automated Generation of BPMN Processes
from Textual Requirements

Quentin Nivon Gwen Salaün
quentin.nivon@inria.fr*, gwen.salaun@inria.fr

Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, F-38000 Grenoble France

Abstract. Modelling and designing business processes has become a crucial
activity for companies in the last 20 years. As a consequence, multiple
workflow modelling notations were proposed. Business Process Modelling
Notation (BPMN) is one of them and is now considered as the de facto
standard for process modelling. The BPMN notation offers a rich syntax
that requires a certain level of expertise before being able to write correct
and well-structured processes corresponding to some expected requirements.
The BPMN modelling phase can thus be tedious and error-prone if carried
out by non-experts. The main goal of the approach presented in this paper
is to help users modelling BPMN processes. To do so, the approach takes as
input the requirements of the user in a textual format informally describing
the tasks and their ordering constraints, and generates as output a BPMN
process satisfying them. The solution has been implemented as a tool that
was applied on a large number of examples for evaluation purposes.

1 Introduction

Developing and controlling business processes has become a major activity for
companies, since this is crucial in order to improve productivity and reduce costs.
A first and mandatory step in that direction is the modelling and the design of
business processes. Several workflow-based notations have emerged for processes,
one of them being the Business Process Modelling Notation (BPMN) [9]. BPMN has
become the standard notation for modelling business processes, and many graphical
tools have been developed for supporting BPMN modelling.

The BPMN syntax is quite rich and offers a large number of constructs. There is
therefore a need to learn the BPMN notation in order to be able to write syntactically
and semantically correct processes. Modelling business processes with BPMN thus
remains a tedious and error-prone task for non-experts. Moreover, the existing
modelling tools allow a lot of freedom in the design of the processes, and do not
systematically provide integrated solutions for asserting their correctness.

The approach proposed in this paper aims at helping users during the BPMN mod-
elling phase. To do so, it takes as input a textual description of the process. From these
textual requirements, the approach automatically generates the corresponding BPMN
process. This solution is useful for non-experts since it provides a way to specify BPMN
processes without mastering the intricacies of the notation. It is also helpful for experts

https://orcid.org/0009-0003-5736-3347
https://orcid.org/0000-0003-3654-8791

2 Quentin Nivon and Gwen Salaün

because it simplifies the modelling step by generating BPMN processes automatically,
thus avoiding the burden of graphically writing the entire workflow step by step.

More precisely, the textual description is converted into its corresponding BPMN
process in three main steps. In the first step, the capabilities of GPT-3.51 are used to
extract the tasks and their ordering constraints from the description written by the user.
To provide interpretable results, GPT-3.5 was fine-tuned in order to make it capable
of converting the textual ordering constraints into an internal format similar to regular
expressions [11]. Each expression returned by GPT-3.5 is then transformed into its
corresponding abstract syntax tree [13]. In a second step, several operations are applied
on the generated abstract syntax trees in order to gather the task ordering constraints
that they contain into a single abstract syntax tree. Finally, the resulting abstract
syntax tree is translated into a BPMN process and returned to the user. The whole
approach is fully automated by a tool that was applied on multiple descriptions written
by several users (novices or experts) to measure the quality of the generated results.

Section 2 introduces several notions on which the approach relies. Section 3 provides
a description of the different steps necessary to transform text to BPMN. Section 4
describes the tool support and some experimental results used to validate the approach.
Section 5 compares the solution to related work, and Section 6 concludes this paper.

2 Preliminaries

2.1 BPMN

BPMN 2.0 (BPMN, as a shorthand, in the rest of this paper) was published as
an ISO/IEC standard in 2013 and is nowadays extensively used for modelling and
developing business processes. This paper focuses on activity diagrams including
the BPMN constructs related to control-flow modelling and behavioural aspects.

Specifically, the node types event, task, and gateway, and the edge type sequence
flow are considered. Start and end events are used, respectively, to initialize and
terminate processes. A task represents an atomic activity that has exactly one
incoming and one outgoing flow. A sequence flow connects two nodes executed
one after the other in a specific execution order. Gateways are used to control the
divergence and convergence of the execution flow. In this work, the two main kinds
of gateways used in activity diagrams are considered, namely, exclusive and parallel
gateways. Gateways with one incoming branch and multiple outgoing branches
are called splits, e.g., split parallel gateway. Gateways with one outgoing branch
and multiple incoming branches are called merges, e.g., merge parallel gateway. A
parallel gateway creates concurrent flows for all its outgoing branches or synchronizes
concurrent flows for all its incoming branches. An exclusive gateway chooses one
out of a set of mutually exclusive alternative incoming or outgoing branches. Such
gateways can also be used to represent repetitive behaviours (i.e., loops).

1 https://www.openai.com/

Automated Generation of BPMN Processes from Textual Requirements 3

2.2 Textual Requirements

In this work, the user must provide as input a textual representation of a business
process that is going to be generated. This description is informal, in the sense that
no prerequisite is required to be able to write a valid description. In this description,
the user describes in natural language the tasks that the process should contain,
along with their ordering constraints. For instance, if two tasks must be executed
one after the other in the final process, this should be stated in the description. To
improve the results, the user is advised to name the tasks that should appear in
the process. However, this is not mandatory for the approach to work.

Running example. The following description, in which the tasks that should
appear in the resulting process have been named, describes the opening of a bank
account: “First, the banker either CreateProfile (CP) for the user, or, if it is not
needed, he RetrieveCustomerProfile (RCP) which triggers the system to perform the
AnalyseCustomerProfile (ACP) task. Then, the user executes the task ReceiveSup-
portDocuments (RSD) so that the system can start UpdateInfoRecords (UID) and
perform a BackgroundVerification (BV). If the verification finds missing or incorrect
information, the system RequestAdditionalInfo (RAI) to the user, who has to
ReceiveSupportDocuments (RSD) again. Otherwise, the process ends with CreateAc-
count (CA).” As the reader can see, the specification is rather informal, except that
names are given to the tasks that should appear in the process. Also, the specification
can be written in various styles, with or without context around the important
information. It is worth noting that the acronyms written between parenthesis are
not mandatory, and are just presented here to shorten the size of the future examples.

2.3 Task Ordering Constraints

To generate a BPMN process from a textual description, one of the intermediate steps
consists in extracting tasks ordering constraints or dependencies from the text. Several
works, such as [6], make use of sequential constraints written as couples to represent
ordering constraints between tasks. However, such constraints are limited in the sense
that they only allow one to represent sequence and parallelism. In this work, not
only sequential and parallel constraints are supported, but also exclusive choices, and
looping behaviours. Although allowing a greater expressiveness, these new constraints
require a more powerful language than couples of tasks. The language chosen in this
approach to capture the supported subset of the BPMN syntax can be seen as a variant
of the language of regular expressions. This language defines several usual operators,
such as the ‘|’ operator which symbolises an exclusive choice, the ‘&’ operator which
symbolises the parallelism (i.e., two elements that can be executed simultaneously),
or the ‘<’ operator which symbolises the sequential dependency (i.e., an element
must be executed before another one). This language also has a loop operator ‘∗’ that
encloses element that can be repeated. Moreover, as in BPMN, loops are split into two
parts. The first part, that is necessarily executed, is represented inside a loop using
the ‘+’ operator. It corresponds to the part of a BPMN loop that is located between
the exclusive merge gateway and the exclusive split gateway. The second part, that is
optionally executed, is represented inside a loop using the ‘?’ operator. It corresponds

4 Quentin Nivon and Gwen Salaün

to the part of a BPMN loop that is located between the exclusive split gateway and
the exclusive merge gateway. It is worth noting that these two loop operators are used
internally but can not appear in the generated expressions. Finally, the operator ‘,’ is
used to list elements that are constrained to each other. Expressions written in this
language must obey the rules of the following Backus-Naur Form (BNF) grammar:

⟨E⟩ ::= t | (⟨E⟩) | ⟨E1⟩ ⟨op⟩ ⟨E2⟩ | (⟨E1⟩)∗
⟨op⟩ ::= ‘|’ | ‘&’ | ‘< ’ | ‘,’

where t is a terminal symbol representing the name of a task. This language has
priority between operators (‘|’ > ‘&’ > ‘<’ > ‘,’ > ‘∗’) and is right-associative.
It is worth noting that this language suffices to capture the subset of the BPMN
syntax supported in this work.

Example. Let us consider the textual description proposed in the
example of Section 2.2. By analysing it, one can generate three ex-
pressions capturing all the tasks ordering constraints that it contains:
(i) (RCP < ACP) | CP, (ii) (RCP, ACP, CP) < (RSD < (UIR, BV))
and (iii) (UIR, BV)<((RAI <RSD) | CA). As an illustration, expression (i) means
that either RCP should be executed before ACP, or CP is executed alone.

2.4 Abstract Syntax Tree

Due to the properties of the language presented above (priority of operators,
right associativity, ...), abstract syntax trees (ASTs) were chosen to represent and
manipulate the expressions written in this language. Indeed, abstract syntax trees are
suitable to represent hierarchical priorities between operators while allowing powerful
recursive computations. An abstract syntax tree is a regular tree representing the
abstract syntactic structure of a text written in a formal language.

Definition 1. (Tree) A tree is a set of nodes SN and edges SE where SE ⊆SN ×SN .
An edge between two nodes is represented as n → n′ ∈ SE. A tree has ex-
actly one root node that has no incoming transition, i.e., ∃!n ∈ SN such that
∀np ∈SN , ∄ep =np →n ∈ SE. The other nodes have exactly one predecessor, i.e.,
∀ni ∈SN \{n}, ∃!ni−1, ni−1 ≠ni, such that ni−1 →ni ∈SE. Finally, each node can
have 0, 1, or several successor nodes.

Example. Figure 1 presents the ASTs generated from the expressions correspond-
ing to the running example. As the reader can see, the priority between the operators
of the expressions is represented by the hierarchy of nodes in the corresponding
AST. For instance, in Figure 1(a), nodes RCP and ACP are below a ‘<’ node
meaning that they are both in sequence. Moreover, their position (i.e., RCP on the
left and ACP on the right) is important as it indicates the direction of the sequential
dependency (i.e., if RCP is executed before ACP or the opposite). Finally, the ‘<’
node is below the ‘|’ node, meaning that there is a mutual exclusion between both
RCP and ACP and the node CP.

Automated Generation of BPMN Processes from Textual Requirements 5

(a) AST Corre-
sponding to the
Expression (i)

(b) AST Corresponding to
Expression (ii) (c) AST Corresponding to

Expression (iii)

Fig. 1: ASTs Corresponding to the Expressions of Section 2.3

2.5 GPT
Inferring ordering constraints from a textual description is not an easy task, as it
requires complex mechanisms to understand the structure of the text, extract its com-
ponents (i.e., the tasks), and discover the multiple relationships connecting them. In
this work, Large Language Models (LLMs) are used to perform this analysis, and more
precisely, the GPT model. GPT, which stands for Generative Pre-trained Transformer,
is an open-access generative model developed by OpenAI, and freely accessible through
the well-known website ChatGPT. GPT, and more precisely its “3.5-turbo-0125”
version, is used in this work for its natural language processing capabilities, that are
helpful to produce expressions corresponding to the language presented in Section 2.3.

3 Core of the Approach

The approach proposed in this paper starts by submitting the textual requirements of
the user to a fine-tuned version of GPT and asks it to convert them into expressions
corresponding to the language defined in Section 2.3. Each resulting expression is
then parsed and mapped to its corresponding AST. When multiple expressions are
returned by GPT, and thus multiple ASTs are generated, it is not straightforward to
compute the corresponding BPMN process. This is due to the fact that the generated
BPMN process should contain all the information scattered among the generated
ASTs. To merge this information, the solution proposed in this paper consists in
analysing the generated ASTs in order to produce a single AST containing all the
information of the original ones. This AST can then be converted to its equivalent
BPMN process. Figure 2 illustrates these multiple steps, which are detailed in the
rest of this section, except for the parsing and mapping of the expressions to their
corresponding ASTs, which is straightforward.

3.1 Fine-tuned GPT 3.5
The standard version of the GPT 3.5 model has no knowledge about the expected
output language defined in Section 2.3. Thus, it is not straightforward for it to generate

6 Quentin Nivon and Gwen Salaün

Fig. 2: Overview of the Approach

expressions corresponding to this language. One of the opportunities of GPT is to
allow fine-tuning in order to increase its capabilities in precise fields. Roughly speaking,
fine-tuning is an approach consisting in improving a model by training it on new data.
Often, fine-tuning becomes a tedious task as adjusting hyper-parameters and providing
sufficient data can be rather complex and time-consuming. Hopefully, GPT proposes
intuitive and easy-to-follow fine-tuning options, which do not require large amount
of data to get started. This phase, which can be repeated at any time to improve the
quality of the results, has for now been performed on four hundred examples. It is
worth noting that the fine-tuning was performed on the version 3.5 of GPT, as more
recent models (such as GPT-4, GPT-4-o or GPT-4-turbo) are not yet available for fine-
tuning. The training examples provided to GPT consist of three elements. The first
one is a system prompt, which describes the expected behaviour of GPT (i.e., the fact
that GPT should extract task ordering constraints from the textual requirements given
as input) and the shape that its output should take. The second one is a user prompt
usually corresponding to the question asked by the user (i.e., the textual requirements
here). The last one is an assistant prompt, corresponding to the answer that GPT
should provide. For the system prompt and the assistant prompt, the expected
output is a set of expressions corresponding to the language defined in Section 2.3.
Once training and validation data are given to GPT, the fine-tuning process starts
automatically. When the fine-tuning finishes, it outputs a new version of the model
that can be used by its owner. After this fine-tuning phase, the generated model was
able to transform textual requirements into expressions. It is worth noting that, for a
single textual description, GPT may generate several expressions to represent all the
task ordering constraints that it found. It is for instance the case for the description “A
before C, B before C, B before D” that can not be represented with a single expression.
It requires at least two expressions, such as (A, B) < C and B < D. Indeed, a single
expression, such as (A, B) < (C, D) would add the unnecessary constraint A < D.

3.2 Directed Graph Construction

To gather the information scattered in the generated ASTs, the first step consists in
building the skeleton of the process-to-be. This is done by extracting the sequential
constraints stored in the ASTs, in order to build a unique directed graph comprising
all of them. This extraction is performed by a classical depth-first search algorithm,
which traverses each original AST and creates couples of tasks (T1, T2) for each

Automated Generation of BPMN Processes from Textual Requirements 7

node of the AST containing a ‘<’ operator. Once this algorithm terminates, the
generated couples are analysed by another algorithm in charge of generating a
directed (possibly cyclic) graph corresponding to the extracted sequential constraints.
The generated graph is then transitively reduced using classical algorithms [1].

Example. Let us consider the ASTs shown in Figure 1. The first algorithm
extracts the following couples from them: (RCP, ACP), (RCP, RSD), (ACP, RSD),
(CP, RSD), (RSD, UIR), (RSD, BV), (BV, RAI), (BV, CA), (UIR, RAI), (UIR, CA),
(RAI, RSD). From these couples, the second algorithm generates the directed cyclic
graph given in Figure 3. It is worth noting that some sequential constraints, such
as (RCP, RSD), have been suppressed by the transitive reduction algorithm.

Fig. 3: Directed Cyclic Graph Corresponding to the ASTs in Figure 1

3.3 Loops Management

The directed graph generated in the previous step may be cyclic, which indicates
loops in the process-to-be. As such structures generate complexity in the graph, they
are removed from the graph (i.e., the graph is made acyclic), and all the information
required to recreate them is stored in internal structures. In BPMN, a loop can be
represented using four elements: its entry nodes, its exit nodes, its mandatory paths,
and its optional paths. The entry nodes are the first reachable nodes of the graph
belonging to the loop. The exit nodes are the first reachable nodes of the loop having at
least one child node not belonging to the loop. Finally, the mandatory (resp. optional)
paths are all the paths starting with the entry (resp. exit) nodes and ending with an
exit (resp. entry) node. The computations of these four elements is presented below.

(i) To identify the entry node(s) of the loop, the graph is traversed in a depth-first
way. During the traversal, each node is analysed to detect whether it belongs to
a loop or not. If that is the case, it is marked as entry point and the exploration
stops for the current branch.

(ii) Similarly to step (i), the exit nodes are computed using a depth-first traversal of the
graph. For each node belonging to the loop, the algorithm checks whether it has at
least one child node that does not belong to the loop. If that is the case, the current
node is marked as exit point and the exploration stops for the current branch.

8 Quentin Nivon and Gwen Salaün

(iii) Similarly to the previous steps, a depth-first traversal of the graph between the
entry (resp. exit) node(s) and the exit (resp. entry) node(s) suffices to compute
all the mandatory (resp. optional) paths.

Once these elements are computed, the graph is made acyclic by removing all the
incoming transitions of the entry node(s) of the loop coming from nodes belonging
to the loop.

Example. Figure 4 depicts the four steps presented above. Figure 4(a) presents
the result of the computation of the entry nodes on the graph in Figure 3. RSD is the
first reachable node of the graph belonging to a loop. Thus, it is tagged as entry node
of the loop. Figure 4(b) shows the result of the computation of the exit nodes on
the graph of Figure 3. Both BV and UIR have a child node that does not belong to
the loop (CA), and both are at equal distance of the entry node. Thus, they are both
tagged as exit nodes of the loop. Figure 4(c) describes the result of the computation
of the mandatory paths of the loop, which are all the paths starting from the entry
node and ending with an exit node. In this case, there are two paths: (RSD, BV)
and (RSD, UIR). Figure 4(d) illustrates the result of the computation of the optional
paths of the loop, which are all the paths starting from an exit node and ending with
the entry node. For the given example there is only one path: (RAI, RSD). Finally,
the graph is made acyclic by removing the transition between RAI and RSD.

(a) Entry Nodes Computation (b) Exit Nodes Computation

(c) Mandatory Paths Computa-
tion (d) Optional Paths Computation

Fig. 4: Graph Loops Management

3.4 Directed Graph to AST

The next step consists in converting the directed graph into its corresponding AST.
To do so, the graph is traversed in a depth-first way. During this traversal, each task

Automated Generation of BPMN Processes from Textual Requirements 9

of the graph is examined to know whether it has already been added to the AST
or not. If not, all the ancestor (resp. successor) nodes of this task in the graph are
retrieved. Among them, only the closest ones already added to the AST are kept.
This computation returns the nodes of the AST after (resp. before) which the current
task should be placed. They are called the left-bounding nodes (resp. right-bounding
nodes). It is worth noting that the AST may already contain nodes between the
left-bounding nodes and the right-bounding nodes of the task to insert. As these
nodes are not bounding nodes, they are not constrained with regards to the task
to insert. Consequently, the task to insert will be put in parallel of them in the AST.
If the task is the entry node of a loop, the loop is entirely generated and added to
the AST at the position where the current task should have been inserted.

Example. Let us consider the AST shown in Figure 5(a). This AST already
contains tasks RCP, ACP, RSD, BV, UIR, RAI and CA. The loop containing RSD,
BV, UIR and RAI has been replaced by a “...” node for brevity. The next task to add
is CP. By analysing the graph in Figure 3, one can see that CP has no ancestor and
five successors: RSD, BV, UIR, RAI and CA. As it has no ancestor, it consequently
has no left-bounding node. On the other hand, the analysis of the AST shows that
the closest successor already in it is RSD. Thus, the right-bounding node of CP is
RSD. As RSD belongs to a loop to which CP does not belong, the right-bounding
node of CP becomes the root node of the loop, i.e., the ‘∗’ node. This means that
CP must be put on the left of this ‘∗’ node. As one can see, there are already two
nodes on the left of the ‘∗’ node, RCP and ACP. These nodes are not constrained
to CP (otherwise they would be bounding nodes), and will thus be put in parallel
of it. To preserve the sequential constraint between them, they will also be placed
under a new ‘<’ node. The result of this insertion is shown in Figure 5(b).

(a) AST without CP
(b) AST with CP

Fig. 5: Illustration of the AST Generation Process

3.5 Choices Management

The AST generated in the previous step is almost complete. The only constraints
that have not been managed yet are the eventual exclusive choices between the tasks.

10 Quentin Nivon and Gwen Salaün

For each exclusive choice between two tasks, the AST undergoes a modification
depending on its structure. The three possible modifications are listed below.

(i) The two tasks do not yet belong to the tree. In this case, the two tasks are put
below a ‘|’ node which is put in parallel of the whole tree.

(ii) One of the two tasks already belongs to the tree. In this case, the two tasks
are put below a ‘|’ node, which is inserted at the position of the task already
belonging to the tree, thus replacing it.

(iii) Both tasks already belong to the tree. In this case, they have a least common
ancestor that should be a ‘,’ node (otherwise they are already constrained and
can consequently not be mutually exclusive). This ‘,’ node is thus simply replaced
by a ‘|’ node to represent the exclusive choice between the two tasks.

Example. Figure 6(b) shows the result of adding the exclusive choice constraints
to the AST of Figure 6(a). As the reader can see, either RCP and ACP can be
chosen or CP, as required by the original textual description. The original constraints
also state that after UIR and BV, the process should contain an exclusive choice
executing either CA or RAI followed by RSD. This constraint, although not visible
in the AST, is implicitly present in it. Indeed, at the end of the mandatory part
of a loop, one can either execute the optional part that goes back to the beginning,
or leave the loop. Here, after UIR and BV, one can either perform RAI and restart
the loop with RSD, or leave it and execute CA. Thus, one has to make a “choice”
between RAI followed by RSD and CA.

(a) AST Corresponding to the Directed
Graph in Figure 3

(b) AST Corresponding to the Directed
Graph in Figure 3 with Choices

Fig. 6: Choices Management

Automated Generation of BPMN Processes from Textual Requirements 11

Table 1: Transformation Patterns from AST to BPMN
Pattern AST BPMN

(1) Sequential Pattern

(2) Parallel Pattern

(3) Choice Pattern

(4) Loop Pattern

3.6 AST to BPMN

At this step of the approach, the AST resulting from the former steps is complete, mean-
ing that it contains all the information of the original constraints stated by GPT. Thus,
it is ready to be converted into its equivalent BPMN process. To do so, the transforma-
tion patterns presented in Table 1 are applied recursively on the nodes of the AST in a
bottom-up fashion. Concretely, the deepest nodes of the AST (i.e., the task nodes) are
the first being generated. Then, these tasks are connected together by applying the ap-
propriate pattern. This generates a BPMN sub-process that will be connected to other
sub-processes by recursively applying the patterns on their parent nodes up to the root.

Example. The BPMN process in Figure 7 shows the result of the transformation
of the AST presented in Figure 6(b). This process was obtained by applying first the
sequential pattern to tasks RCP and ACP, then the choice pattern to task CP and
the freshly generated sub-process containing RCP and ACP in sequence, and so on
until reaching the root of the AST. It is worth noting that the ordering constraints
of the AST are respected, as are the textual requirements presented in the example
of Section 2.3.

12 Quentin Nivon and Gwen Salaün

Fig. 7: BPMN Process Generated from the AST in Figure 6(b)

4 Tool and Experiments

This approach has been entirely implemented and validated by a tool written in Java.
To facilitate its usage, the Java code has been embedded in the backend of a web server
which is freely available online2. The implementation details are given in Figure 8. The
user writes his textual description on the web application that is developed in HTML,
CSS, JavaScript and makes use of JQuery, Ajax and BootStrap. The description is
then transmitted to the backend written in NodeJS, which asks the Java program to
send description to GPT. The expressions returned by GPT are transformed into their
corresponding ASTs, which are eventually converted into the resulting BPMN process.
This process is finally rendered by bpmn.io3, and displayed in the web application.

This approach was tested and validated on 200 descriptions from various sources.
25% come from the literature (PET dataset [3], proceedings, ...). The remaining
75% were handcrafted by 9 users (5 experts and 4 novices) who experimented the
tool. All these examples contain tasks which were named beforehand. Experiments
were also conducted on raw descriptions (i.e., without names for tasks) and showed
a 24% loss of accuracy. This is mainly due to the fact that GPT often misses tasks
in the description, or does not detect implicit loops. It is also worth noting that, for
these 200 examples, GPT returned syntactically correct expressions with regards to
the grammar defined in Section 2.3. The central part of these experiments consisted
in comparing the tool proposed in this approach to other tools coming from the
literature, and to LLMs directly. To the best of our knowledge, only one tool is recent
enough and available online: ProMoAI [14]. Our tool was also compared to the LLMs
Gemini [4] and GPT-4-turbo [5]. ProMoAI was used as is, while the two LLMs were
given the simple instruction “I want you to generate the BPMN process corresponding
to the description provided between curvy brackets: {Lorem ipsum dolor sit amet,

2 https://quentinnivon.github.io/pages/givup.html
3 https://bpmn.io/

Automated Generation of BPMN Processes from Textual Requirements 13

Fig. 8: Overview of the Toolchain

consectetur adipiscing elit.}”. These experiments aimed at assessing both the accuracy
of the result and the time taken by the tools to generate the BPMN process.

The results, presented in Table 2, are split into three different groups. The first
group, labelled with a tick, represents the processes that were considered as valid by the
two experts who analysed the results, called reviewing experts. Here, the notion of va-
lidity relies on the correspondence between the expected process and the generated one.
In other words, a process is considered as valid if it corresponds exactly to the expecta-
tions of the reviewing experts, and thus to the textual requirements. The second group,
labelled with a question mark, represents the processes that were considered as am-
biguous by the reviewing experts. Such processes are considered as ambiguous because,
according to their textual description, one may generate several valid processes. As a
choice has to be done, one of these possible processes is generated, which may not corre-
spond to the expectations of the expert. For this reason, they belong to the group of am-
biguous processes. For instance, a simple sentence such as “I want A and B and C” does
not state how A, B, and C are related to each others. Thus, putting them in sequence,
in parallel or partially in sequence and in parallel remains correct with regards to the
description. Similarly, a sentence such as “I want A before B or C before D” can be inter-
preted as a choice between A before B and C before D, or as a sequence executing first
A, then B or C, and finally D. For this reason, such processes have been separated from
the others, but remain considered as valid. The third and last group, labelled with a
cross, represents the processes that were considered as invalid by the reviewing experts.
Such processes are at least partially non-compliant with the textual description. It is
for instance the case when a non-ambiguous constraint is missing (e.g., two tasks are
not put in sequence although they should be), or erroneous (e.g., two tasks are put in
an exclusive choice instead of one after the other). Invalid processes are generated when
GPT is not able to extract a constraint stated textually, or when it misinterprets it.

14 Quentin Nivon and Gwen Salaün

The results of these experiments, provided in Table 2, showed that our tool obtains
the best results both in terms of generation quality (with 78.5% of well-formed pro-
cesses) and execution time (with an average execution time of 4.07s). Without much
surprise, the execution time of this approach grows as the textual description grows,
and as the number of generated expressions increases. Regarding the 13.5% incorrect
processes, a deeper analysis shows that they are usually close to the expected process,
with very few missing or erroneous constraints. Rather surprisingly, GPT-4-turbo
obtained very good results, especially with regards to its low failure percentage. It also
greatly outperformed Gemini which obtained the worst results of these experiments.
However, the results obtained by the LLMs must be handled with care as they are very
probably overrated. Indeed, to the best of our knowledge and experiments, LLMs are,
for now, not capable of generating directly the XML code of a BPMN process correctly.
For this reason, the LLMs were asked to generate a textual representation of the BPMN
process, which was then visually analysed by the reviewing experts and used to com-
pute the score of these models. As generating the exact XML code adds an additional
difficulty layer for the LLM, it is likely that the results shown in Table 2 would be lower.

5 Related Work

In [10], the authors propose a solution for modelling BPMN processes from natural
language. To do so, they design a Domain-Specific Language (DSL) along with its
corresponding grammar to manage textually the dependencies that may exist between
the elements of the process-to-be. Once the user has written a specification that is
compliant with the proposed grammar, the DSL parser extracts traces from it. These
traces are then transformed into a BPMN model with the help of a process mining algo-
rithm. The goal of our approach is similar, in the sense that it also aims at generating a
BPMN process from a textual input. The main difference between their approach and
ours is that we allow textual descriptions written in natural language while they require
a description that is compliant with their grammar, and must be learned before use.

In [16], the authors give insights of how LLMs could be used within the Business
Process Management lifecyle. For each step, namely identification, discovery, analysis,
redesign, implementation and monitoring, they synthesise how LLMs could be used
jointly with human interactions to improve the quality of the result or lower the
time needed to perform the step. The work presented in [15] presents a theoretical
approach aiming at extracting a business process from a natural language specification

Table 2: Experimental Results

Tool/Model ✓ ? ✗ Avg. Exec. Time (s)
Our tool 78.5% 8% 13.5% 4.07
ProMoAI 50% 8.7% 41.2% 24.7
Gemini 32.2% 8.1% 59.7% 8.32

GPT-4-turbo 66.6% 21.1% 12.2% 19.2

Automated Generation of BPMN Processes from Textual Requirements 15

with the help of LLMs. In this work, the authors propose to use sentence level and
text level analysis to infer activities and dependencies from a specification in natural
language. In both works, the focus is made on partial extraction of data (activities,
actors, dependencies) that requires a human intervention in a second phase in order
to obtain a business process. In our case, we propose to automatically generate a
complete BPMN process from a textual description, without any human intervention.

In [12], the authors perform a series of question/answer exchanges with a
chatbot enhanced with natural language processing capabilities. The goal of
these iterations is to create or improve process models. In particular here, the
authors state that a fully integrated conversational modelling toolchain would
include task extraction, logic extraction, BPMN layout creation and BPMN
refinement capabilities, but they restrict their focus on the extraction of tasks. The
authors also provide several metrics about the quality of the results returned by
several well-known LLMs. In [2], the authors propose a technique to transform a
natural language specification into some formatted output that is understandable
by a computer. To do so, they make use of in-context learning, that gives the
opportunity of guiding the dialog towards the desired output. In both papers, the
authors end up with pieces of processes (tasks, participants, ...), which have to
be put together manually, while our approach automatically provides a BPMN
process in which the information extracted from the specification is represented.

In [8], the authors make use of subject-verb-object techniques to extract tasks
and participants from the specification, and search for gateway-related keywords
to extract information about gateways. From this information, they build an internal
spreadsheet format corresponding to the execution sequence of the process, which
is finally converted to BPMN. This approach requires partially formatted text in the
sense that non-verbal sentences, or sentences without keywords (i.e., “if” for choices)
are not likely to be recognised. Also, only sequential composition and choices seem
to be supported. In our approach, the input text does not need to be formatted,
and parallelism and loops are supported. In [7], the authors make use of a DSL to
pre-train a LLM on the BPMN semantics. By doing so, they are able to extract
tasks and relationships between them from natural language descriptions. However,
the supported syntax is restricted to exclusive and parallel gateways with two paths
and loops are not considered. In our approach, such elements are supported.

6 Concluding Remarks

The main goal of the approach proposed in this paper is to automatically convert
a textual description into its corresponding BPMN process. To do so, tasks and
constraints are extracted from the textual requirements and represented as ASTs.
These ASTs are then analysed, modified and recomposed through several steps in
order to obtain a single AST containing all the information of the original textual
description. Finally, this AST is converted to its corresponding BPMN process and
shown to the user. The approach has been implemented, tested and validated by
both experts of the BPMN community and novice users.

16 Quentin Nivon and Gwen Salaün

This work offers several axes of improvements. The main one being to use the
GPT-4 model (and/or derivatives) instead of GPT-3.5, which will be done as soon
as this model becomes available for fine-tuning. Using a more recent model is very
likely to improve significantly the quality of the generated expressions, and thus the
generated process. Similarly, increasing the fine-tuning training set would enlarge the
proportion of natural language understood by the model, thus limiting its mistakes and
increasing the quality of the resulting process. Another possibility could be to extend
this work with model checking driven by a temporal logic property written in text.

References

1. A. V. Aho, M. R. Garey, and J. D. Ullman. The Transitive Reduction of a Directed
Graph. SIAM Journal on Computing, 1(2):131–137, 1972.

2. P. Bellan, M. Dragoni, and C. Ghidini. Extracting Business Process Entities
and Relations from Text Using Pre-trained Language Models and In-Context Learning.
In Proc. EDOC’22, pages 182–199. Springer International Publishing, 2022.

3. P. Bellan, H. van der Aa, M. Dragoni, C. Ghidini, and S. P. Ponzetto. PET: An
Annotated Dataset for Process Extraction from Natural Language Text Tasks. volume
460 of Lecture Notes in Business Information Processing, pages 315–321. Springer, 2022.

4. G. T. et al. Gemini: A Family of Highly Capable Multimodal Models, 2024.
5. O. et al. GPT-4 Technical Report, 2024.
6. Y. Falcone, G. Salaün, and A. Zuo. Semi-automated Modelling of Optimized BPMN

Processes. In Proc. of SCC’21, pages 425–430. IEEE, 2021.
7. H.-G. e. a. Fill. Conceptual Modeling and Large Language Models: Impressions From

First Experiments With ChatGPT. In Proc. EMISAJ’23, pages 1–15, 2023.
8. K. Honkisz, K. Kluza, and P. Wiśniewski. A Concept for Generating Business Process

Models from Natural Language Description. In Proc. KSEM’18, pages 91–103, 2018.
9. ISO/IEC. International Standard 19510, Information technology – Business Process

Model and Notation. 2013.
10. A. e. a. Ivanchikj. From Text to Visual BPMN Process Models: Design and Evaluation.

In Proc. of MODELS’20, page 229–239. Association for Computing Machinery, 2020.
11. S. C. Kleene. Representation of Events in Nerve Nets and Finite Automata. Automata

Studies, pages 3–41, 1951.
12. N. Klievtsova, J.-V. Benzin, T. Kampik, J. Mangler, and S. Rinderle-Ma. Conversational

Process Modelling: State of the Art, Applications, and Implications in Practice. In
Proc. BPM’23, pages 319–336. Springer Nature Switzerland, 2023.

13. D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.
Addison-Wesley, Reading, MA, 1969.

14. H. Kourani, A. Berti, D. Schuster, and W. M. P. van der Aalst. ProMoAI: Process
Modeling with Generative AI, 2024.

15. K. Sintoris and K. Vergidis. Extracting Business Process Models Using Natural
Language Processing (NLP) Techniques. In Proc. KSEM’17, pages 135–139, 2017.

16. M. Vidgof, S. Bachhofner, and J. Mendling. Large Language Models for Business
Process Management: Opportunities and Challenges, 2023.

	Automated Generation of BPMN Processesfrom Textual Requirements

