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Abstract

Mutual exclusion protocols are an essential building block of concurrent shared-memory
systems: indeed, such a protocol is required whenever a shared resource has to be pro-
tected against concurrent non-atomic accesses. Hence, many variants of mutual exclusion
protocols exist, such as Peterson’s or Dekker’s well-known protocols. Although the func-
tional correctness of these protocols has been studied extensively, relatively little atten-
tion has been paid to their non-functional aspects, such as their performance in the long
run. In this paper, we report on experiments with the Cadp toolbox for model check-
ing and performance evaluation of mutual exclusion protocols using Interactive Markov
Chains. Steady-state analysis provides an additional criterion for comparing protocols,
which complements the verification of their functional properties. We also carefully re-
examined the functional properties of these protocols, whose accurate formulation as
temporal logic formulas in the action-based setting turns out to be quite involved.

Keywords: functional verification, interactive markov chain, Lotos NT, µ-calculus,
process algebra, steady-state simulation

1. Introduction

Mutual exclusion is a long-standing problem in concurrent programming, formulated
initially by Dijkstra almost half a century ago [1]. It consists in controlling the access
of concurrent processes to a shared resource such that at most one process can use the
resource at a time and that the execution of the protocol is guaranteed not to prevent
the system from progressing. In the shared-memory setting, in which processes com-
municate by atomic read and write operations on shared variables, a large number of
protocols implementing mutual exclusion were proposed and studied in the literature
(see, e.g., the surveys in [2–4]). Most of the effort has been concentrated on analyzing
the functional correctness of these protocols, either by hand-written proofs [1, 3, 5–10]
or by applying automated reasoning and model checking techniques [11–14]. However,
much less attention has been given to the model-based performance evaluation of these
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protocols, most of the existing works dealing with performance measurements of protocol
implementations on specific architectures [15, 16, 32]. Model-based approaches have the
advantage that they enable the analysis of systems that are yet to be built, and to guide
designers in their choices [24].

In this paper, we show how Interactive Markov Chains (Imc) [17] and their imple-
mentation in the Cadp verification toolbox [18] can be applied to the model checking
and performance analysis of shared-memory mutual exclusion protocols. We assume that
only the mean values of actual durations are known, which can be modeled conveniently
using exponentially distributed durations in the Imc setting. If more concrete duration
information is available, this can be encoded using Imcs by means of phase-type distri-
butions [19], which can be employed as precise approximations of arbitrary (discrete or
continuous) probability distributions.

As the high-level specification language for Imcs, we use Lotos NT [20, 21], a
process-algebraic language with imperative flavor accepted as input by Cadp. We study
the stochastic behavior of these protocols in the long run by further transforming the
Imcs generated from Lotos NT specifications into continuous-time Markov chains (in
which nondeterminism is solved by a uniform scheduler) and analyzing them using the
Bcg Steady [22] and Cunctator [23] tools of Cadp, which computes (respectively,
approximates) the throughputs of various actions at steady-state. This allows us to com-
pare the performance of various protocols and to study the impact of certain parameters
(e.g., number of processes, caching, relative speed of processes, fraction of time taken by
critical sections, etc.) on the performance of the system and/or of individual processes.
Another useful measure that can be obtained from steady-state analysis is the mean
number of accesses to shared variables performed by each process [24].

One advantage of Imcs is that the same specification of a protocol can be used for
both performance evaluation and functional verification [25]. Although mutual exclusion
protocols serve traditionally as basic examples to illustrate the use of model checkers,
it is not obvious how to find an accurate description of their correctness properties in
the action-based setting, in particular, for more than two processes. We revisit these
properties and specify them concisely using Mcl, an extension of alternation-free modal
µ-calculus with data-handling constructs and fairness operators accepted as input by the
Evaluator 4.0 [26] on-the-fly model checker. We observe that certain important prop-
erties are linear-time in nature, requiring formulas of Lµ2 (the µ-calculus of alternation
depth two) [27] or Actl∗ [28]. Using Mcl formulas parameterized by data values, we
also apply model checking to determine some non-functional parameters of the protocols,
such as the degree of overtaking between processes. The results of model checking (e.g.,
about the starvation of certain processes) are corroborated by the results of performance
evaluation.

This paper extends the study reported in [29] by formally specifying protocols with
more than two processes, by generalizing the correctness properties to an arbitrary num-
ber of processes, and by investigating the effect of non-uniform memory accesses (notably,
caches) on performance.

The paper is organized as follows: Section 2 defines the terminology, shows the en-
coding of mutual exclusion protocols using Lotos NT and how the stochastic aspects
are incorporated to yield Imc models; Section 3 presents the analysis of the protocols by
means of model checking and performance evaluation using Cadp; and finally, Section 4
gives some concluding remarks and directions for future work.
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2. Background

After a brief reminder of the mutual exclusion problem in the shared-memory setting,
we present in this section the modeling of the behavioral and stochastic aspects of mutual
exclusion protocols using Lotos NT.

2.1. Shared-Memory Mutual Exclusion Protocols

We briefly present here the mutual exclusion problem in the shared-memory setting
as formulated in [3]. Concurrent processes communicate and synchronize only by means
of atomic operations on shared variables. Each process consists of four parts of code,
executed cyclically in the following order: non-critical section, entry section, critical
section, and exit section. The shared resource can be accessed only in the critical section,
and the shared variables can be accessed only in the entry and exit sections. Processes
are allowed to stop in their non-critical section but must leave their critical section in a
finite amount of time. The entry and exit sections must manipulate the shared variables
in such a way that at most one process at a time is in its critical section and the execution
of processes is guaranteed to progress (see Sec. 3.1 for a more precise formulation of these
properties).

The earliest mutual exclusion protocols allowed only atomic read and write operations
on the shared variables1. More recent protocols take advantage of more powerful opera-
tions provided by modern processors (such as atomic compare-and-swap, fetch-and-store,
or read-and-increment), and are designed for cache-coherent multiprocessor architectures.
Some protocols use the numerical identifiers of processes to arbitrate between processes
trying to access the critical section at the same time, thus giving priority to the process
with the smaller or greater number. Finally, although most shared-memory mutual ex-
clusion protocols are designed for an arbitrary number of processes, some protocols are
optimized for the case of two processes only (general schemes for their extension to more
processes exist [30]).

2.2. Modeling Mutual Exclusion Protocols using LOTOS NT

We specified the mutual exclusion protocols formally using Lotos NT [20, 21], a
variant of the E-Lotos [31] standard implemented within Cadp. Lotos NT tries to
combine the best of process-algebraic languages and imperative programming languages:
a user-friendly syntax, common to data types and processes; constructed type defini-
tions and pattern-matching; and imperative statements (assignments, conditionals, loops,
etc.). Lotos NT is supported by the Lnt.Open tool, which translates Lotos NT spec-
ifications into labeled transition systems (Ltss) suitable for on-the-fly verification using
Cadp.

Figure 1 shows the Lotos NT specification of the protocol proposed by Burns &
Lynch [6], instantiated for two processes. This protocol uses two shared bits, which we
represent as the cells A[0] and A[1] of a two-bit array, in the same way as [30]. The original
pseudo-code of the protocol (see Fig. 1(a)) contains conditional jump statements, which
are translated in Lotos NT using “break” statements (see Fig. 1(b)). The non-critical

1The black-white bakery protocol [10] even allows a write operation to be simultaneous with several
read operations.
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loop
non-critical section;

L0: A[i] := 0;
if i = 1 and A[0] = 1 then
goto L0

end if;
A[i] := 1;
if i = 1 and A[0] = 1 then
goto L0

end if;
L1: if i = 0 and A[1] = 1 then

goto L1

end if;
critical section;
A[i] := 0

end loop

(a)

par A, CS, NCS in

par A in

par

P [NCS, CS, A] (0)
||

P [NCS, CS, A] (1)
end par

||

par

Var [A] (0,0) || Var [A] (1,0)
end par

end par

||

L [A, CS, NCS, MU]
end par

(c)

process P [NCS:Pid,CS:Access,A:Operation] (i:Nat) is

loop var a0, a1:Nat in

NCS (i);
loop L in

A (Write, i, 0, i);
A (Read, 0, ?a0, i);
if (i == 0) or (a0 == 0) then

A (Write, i, 1, i);
A (Read, 0, ?a0, i);
if (i == 0) or (a0 == 0) then

break L
end if

end if

end loop;
A (Read, 1, ?a1, i);
while (i == 0) and (a1 == 1) loop

A (Read, 1, ?a1, i)
end loop;
CS (Enter, i); CS (Leave, i);
A (Write, i, 0, i)

end var end loop

end process

(b)

process Var [A:Operation] (ind, val:Nat) is

loop

select

A (Read, ind, val, ?any Nat)
[]

A (Write, ind, ?val, ?any Nat)
end select

end loop

end process

(d)

Figure 1: Burns & Lynch protocol [6] for two processes: (a) Unstructured pseudo-code of process Pi

(i ∈ {0, 1}); (b) Lotos NT code of process Pi; (c) Lotos NT code of the systems’ architecture; (d)
Lotos NT code of the cell A[ind] of the shared array.
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Protocol Size (n = 2)
states transitions

Anderson 68 136

Burns & Lynch 65 130

B&W Bakery 1818 3636

Clh 246 492

Dekker 144 288

Dijkstra 256 512

Kessels 276 552

Knuth 168 336

Lamport 284 568

Mcs 75 150

Peterson 59 118

Petersont 65 130

Szymanski 98 196

tas 16 32

ttas 27 54

trivial 20 40

Generated Size (n = 2)
protocols states transitions

2b p1 63 126

2b p2 76 152

2b p3 84 168

3b p1 88 176

3b p2 151 302

3b c p1 orig 90 180

3b c p1 87 174

3b c p2 69 138

3b c p3 63 126

4b p1 84 168

4b p2 188 376

4b c p1 227 454

4b c p2 227 454

Table 1: State space sizes of the protocols for two processes (minimized for strong bisimulation)

and critical sections are modeled using the (non-synchronized) actions NCS and CS. The
operations on a shared variable are modeled as rendezvous synchronizations on gate A
with a process Var, which models a cell of the two-bit array (see Fig. 1(d)). Note that
process Var is parameterized by a natural number instead of merely a boolean value; this
will allow Var to be reused for other protocols involving shared natural numbers.

Emission and reception of values on a gate can take place simultaneously, as in the
action “A (Read, 0, ?a0, i)”, where the values Read, 0, and i are emitted and a value is
received in variable a0, previously declared using a “var” statement. Gates are typed in
Lotos NT: in process P, the types Pid, Access, and Operation denote the communica-
tion profiles (i.e., number and types of the exchanged values) of gates NCS, CS, and A,
respectively. Note that in the Lts generated by Lnt.Open, a synchronization on gate G
involving the communication of values v1, ..., vn is represented by an action of the form
G v1 ... vn. To facilitate the specification of temporal properties (see Sec. 3.1), the critical
section of process i is represented by two actions (“CS (Enter, i)” and “CS (Leave, i)”)
and each operation on a shared variable carries the identifier of the executing process.

The Lotos NT specification of process Pi follows very closely the pseudo-code of the
protocol, but makes explicit all read operations on shared variables before each evaluation
of an expression containing these variables. The architecture of the system (see Fig. 1(c))
shows the interconnection of processes and shared variables. For all protocols considered,
all shared variables are initialized to 0. We specified 24 mutual exclusion protocols in
Lotos NT following the scheme shown in Figure 1: Anderson’s array-based queue-
lock [32], Burns & Lynch [6], Craig and Landin & Hagersten (Clh) [33, 34], Dekker [35],
Dijkstra [1], Peterson [7], Knuth [5], Lamport [8], Kessels [36], Mellor-Crummey & Scott
(Mcs) [37], Szymanski [9], the black-white bakery protocol [10], and twelve protocols
generated automatically in [30]. Additionally, we also specified a trivial (incorrect) one-
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Protocol Size (n = 3) Size (n = 4) Size (n = 5)
states transitions states transitions states transitions

Anderson 474 1,422 3,104 12,416 21,160 105,800

Burns & Lynch 841 4,782 12,950 51,800 235,277 1,176,385

B&W Bakery 174,932 524,796 21,463,998 85,855,992 out of memory

Clh 5,544 16,632 159,480 637,920 5,834,160 29,170,800

Dijkstra 8,388 25,164 273,247 1,092,988 9,433,726 47,168,630

Knuth 3,174 9,522 67,486 269,944 1,634,490 8,172,450

Lamport 9,939 29,817 278,508 1,114,032 7,993,494 39,967,470

Mcs 810 2,430 10,341 41,364 157,788 788,940

Peterson 2,511 7,533 241,426 965,704 38,105,669 190,528,345

Petersont 965 2,895 14,025 56,100 394,600 1,973,000

Szymanski 1,971 5,913 50,228 200,912 1,554,216 7,771,080

tas 44 132 112 448 272 1,360

ttas 108 324 405 1,620 1,458 7,290

trivial 60 180 160 640 400 2,000

Table 2: State space sizes of the protocols for more than two processes (minimized for strong bisimulation)

bit protocol for benchmarking purposes and two one-bit semaphore protocols, namely a
test-and-set (written tas) and test–test-and-set (written ttas) [32]. The total size of the
specifications (including comments, and after factoring common datatypes and processes
in separate modules as much as possible) is about 5300 lines of Lotos NT.

Tables 1 and 2 give the state space sizes of the protocols (minimized for strong
bisimulation), for up to five processes, when applicable. Peterson’s protocol exists in
two versions: the one for n processes presented in [7] (written without index) and a
generalization of the optimized protocol for two processes, using a binary tree of binary
locks (written with index t). The protocols of [30] were generated for two processes only.

2.3. Transformation to Interactive Markov Chains

Each protocol is transformed into an Interactive Markov Chain (Imc) by adding
Markov delays in a constraint-oriented style [25]. Specifically, we compose the Lts cor-
responding to the protocol in parallel with an Imc associating a delay to each operation
of the protocol. This Imc can be described by a Lotos NT process L; Figure 2 shows
the process required for Burns & Lynch’s protocol.

Because process L is synchronized on all actions A, CS, and NCS, L enforces that
each of these actions is followed by a MU action, which can be renamed into a stochastic
transition once the Lts corresponding to the Lotos NT specification has been generated.
Due to this modeling style, in each Imc generated for the protocols, one can distinguish
two kinds of states: on the one hand, the states where process L lets elapse a delay, and
on the other hand, the states where each process can execute some interactive action.
The former kind of states has fanout 1, because there is only one delay to let elapse. The
latter kind of states has fanout n, because each process can execute some (but only one)
action at any time.

To model non-uniform memory access times due to local caches of the processors,
process L stores, for each shared variable, the status of all caches in a variable of type
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process L [NCS:Pid, CS:Access, A:Operation, MU:Latency] is
var

index, pid: Nat, a0, a1: Cache, sig: Signal, csig: Cache Signal
in

a0 := cache (Invalid); a1 := cache (Invalid);
loop

select

A (?sig, 0 of Nat, ?any Nat, ?pid);
eval csig := update caches (pid, sig, !?a0);
MU (csig, pid)

[]

A (?sig, 1 of Nat, ?any Nat, ?pid);
eval csig := update caches (pid, sig, !?a1);
MU (csig, pid)

[]

CS (?sig, ?pid);
if sig == Enter then

MU (sig, pid)
end if

[]

NCS (?pid);
MU (Work, pid)

end select

end loop

end var

end process

Figure 2: Auxiliary process for inserting Markov delays

“Cache” (variables a0 and a1 in Figure 2). Procedure “update caches” encapsulates
the cache coherence protocol (in our case, the Mesi protocol [38]) with a write-back
policy, which encodes the rules governing changes between the states of the cache lines
(Modified, Exclusive, Shared, Invalid). For an operation “sig” (e.g., read) executed by
process “pid”, the instruction “eval csig := update caches (pid, sig, !?c)” assigns to
variable “csig” the corresponding operation taking into account the cache status c (e.g.,
read from local cache, read from remote cache, or read from memory), and also updates
the status of the caches (stored in the array c). This approach of handling caching is
similar to the approach of [24].

The parameters of action MU enable us to distinguish, for each process, between a
read access, a write access (in the local cache or in global memory), a stay in the critical
section, and a stay in the non-critical section. We exploit these parameters to experiment
with different rates for all of these actions.

Unfortunately, although each process taken separately is deterministic and never
blocks (but rather enters a busy-wait loop), the Imcs obtained contain nondeterministic
choices whenever several concurrent accesses to shared variables are possible in the same
state. To resolve this nondeterminism, we assume the presence of a uniform scheduler,
which chooses equiprobably one of the actions (see Sec. 3.2 for technical details). This
assumption is based on the fact that a uniform scheduler provides the best choice (in the
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Protocol Size (n = 2)
states transitions

Anderson 596 826

Burns & Lynch 465 647

B&W Bakery 22,374 30,802

Clh 3,401 4,708

Dekker 1,156 1,612

Dijkstra 2,682 3,676

Kessels 3,299 4,517

Knuth 1,575 2,159

Lamport 2,424 3,310

Mcs 1,269 1,744

Peterson 846 1,178

Petersont 792 1,102

Szymanski 701 966

tas 88 122

ttas 165 232

trivial 92 127

Generated Size (n = 2)
protocols states transitions

2b p1 391 541

2b p2 459 639

2b p3 553 766

3b p1 872 1,203

3b p2 1,572 2,152

3b c p1 orig 1,077 1,494

3b c p1 1,110 1,540

3b c p2 850 1,178

3b c p3 894 1,242

4b p1 2,199 3,029

4b p2 3,003 4,137

4b c p1 2,235 3,053

4b c p2 2,235 3,053

Table 3: Imc sizes of the protocols for two processes (using compositional generation)

sense of maximizing entropy [39]) when no additional information is available about the
choice of actions performed by the physical system; otherwise, the additional information
could be used to specify a particular scheduler, e.g., as an additional Lotos NT process,
leading to different performance analysis results. A more general solution, inspired by a
technique used in the context of Markov decision processes [40], would be to consider all
possible schedulers to identify the interval (minimum and maximum) of possible through-
put values at steady state (an effective procedure for this analysis in the Imc setting was
proposed very recently [41], but is not yet available as an implementation).

Practically, the Imc for each protocol is generated compositionally as follows. Because
the Lts corresponding to process L alone may be significantly larger than the final Imc
(for instance, the Lts of L for the black-white bakery protocol with two processes has
396, 577 states and 84, 651, 704 transitions), the Lts of the protocol (see Tables 1 and
2) first serves as interface to generate, using semi-composition [42], a reduced Lts for L.
Composing the latter in parallel with the protocol then yields the Imc. The compositional
generation has the advantage of yielding a smaller Imc, because the protocol can be
minimized before inserting the delays. However, the reduction in Imc size comes at
the price of a longer overall generation time, mostly due to large interfaces used in the
semi-composition.

Tables 3 and 4 give the state space sizes of the Imcs obtained by compositionally
adding delays into the protocols (see Tables 1 and 2), for up to five processes.2

The generation of the protocols and Imcs has been automated by an Svl script (30

2The Imc sizes of Table 3 differ slightly from those given in [29, Table 1] because the generalization to
an arbitrary number of processes required a reformulation of the protocols (which might trigger different
optimizations in the Lotos NT and Lotos compilers), and because the protocols are now generated
compositionally and minimized for strong bisimulation.

8



Protocol Size (n = 3) Size (n = 4) Size (n = 5)
states transitions states transitions states transitions

Anderson 25,135 40,941 1,393,476 2,547,912 106,287,227 213,829,735

Burns & Lynch 13,680 21,832 452,729 774,353 16,982,847 30,225,807

B&W Bakery 6,101,735 9,458,933 1,642,516,115 2,709,189,923 out of memory

Clh 216,540 346,662 15,283,637 26,515,076 1,314,399,178 2,393,291,510

Dijkstra 992,233 1,561,687 176,592,305 300,610,628 out of memory

Knuth 80,044 124,932 3,909,396 6,528,075 201,320,700 350,053,036

Lamport 234,911 370,523 16,123,731 27,675,696 1,050,516,119 1,906,123,007

Mcs 50,961 80,865 1,794,617 3,085,592 61,003,493 110,128,765

Peterson 171,464 268,874 55,144,244 91,957,592 out of memory

Petersont 62,786 100,138 4,814,241 8,213,400 591,372,824 1,078,804,780

Szymanski 28,223 43,735 1,421,916 2,335,428 85,643,362 145,669,082

tas 380 630 1,368 2,556 4,422 9,010

ttas 1,011 1,707 5,193 9,912 24,013 50,165

trivial 390 614 1,325 2,246 3,984 7,080

Table 4: Imc sizes of the protocols for more than two processes (using compositional generation)

lines); the generation of all protocols and Imcs for two (respectively, three) processes
takes 5 (respectively, 40) minutes. This and all further experiments have been performed
using a computer with a 2.8 GHz Intel R© Xeon R© processor and 148 GB RAM.

3. Analysis of Mutual Exclusion Protocols using CADP

This section is devoted to the automated analysis of the mutual exclusion protocols
using the Cadp toolbox [18]. The protocols were analyzed by model checking and per-
formance evaluation, both kinds of analysis being automated using Svl [43] scripts.3

Therefore, we sought to be as generic as possible, in the sense that a property should
not be tailored to a particular protocol, but rather be applicable to all protocols. This
genericity comes at the price of additional transitions, such as “CS (Enter, i)” and “CS
(Leave, i)” to delimit the critical sections precisely.

3.1. Model Checking

We expressed the correctness properties of the mutual exclusion protocols as formulas
in the Mcl language [26], which extends the alternation-free µ-calculus [27] with regular
expressions over transition sequences similar to those of Pdl [44], data-handling con-
structs inspired from functional programming languages, and (a generalization of) the
infinite looping operator of Pdl-∆ [45]. Mcl enables a concise formulation of temporal
properties, especially when these properties are parameterized by data values, such as the
index of processes in mutual exclusion protocols. The Evaluator 4.0 model checker [26],
built using the Open/Cæsar [46] graph exploration environment of Cadp, implements

3The Lotos NT specifications of the protocols and Svl scripts for state space generation, model
checking, and performance evaluation will be included as a demo example in the next stable release of
Cadp.
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an efficient on-the-fly model checking procedure for Mcl, by translating Mcl formulas
into boolean equation systems (Bes) and solving them on the fly using the algorithms of
the Cæsar Solve library [47]. The model checker also exhibits full diagnostics (exam-
ples and counterexamples) as subgraphs of the Lts illustrating the truth value of Mcl
formulas.

Mcl is built from three kinds of formula. First, an action formula A characterizes
actions (transition labels) of the Lts, which contain a gate name G followed by a list
of values v1, ..., vn exchanged during the rendezvous on G. An action formula is built
from action patterns and the usual boolean connectors. An action pattern of the form
“{G ?x:T !e where b(x)}” matches every action of the form “G v1 v2” where v1 is a
value of type T that is assigned to variable x, v2 is the value obtained by evaluating the
expression e, and the boolean expression b(v1) evaluates to true. Arbitrary combinations
of value matchings (“!e”) and value extractions (“?x:T ”) are allowed for matching actions
containing several values. All variables assigned by value extraction are exported to the
enclosing formula. Gate names G can also be extracted and manipulated as ordinary
values of type String. The “?any” construct denotes a wildcard matching an arbitrary
value regardless of its type. The clause “...”, which may occur only once in an action
pattern, specifies a list of zero or more wildcards.

Second, a regular formula R characterizes sequences of transitions in the Lts. A
regular formula is built from action formulas and (extended) regular expression operators:
concatenation (“R1.R2”), choice (“R1|R2”), unbounded iterations (“R∗” and “R+”),
iterations bounded by counters (“R{n}”), and a for-loop construct (“for”).

Third, a state formula F characterizes states of the Lts by specifying (finite or
infinite) tree-like patterns going out from these states. A state formula is built from
boolean connectors, possibility (“<R>F”) and necessity (“[R]F”) modalities containing
regular formulas, minimal (“mu X.F”) and maximal (“nu X.F”) fixed point operators,
quantifiers over finite domains (“exists x:T.F” and “forall x:T.F”), and the infinite
looping operator (“<R>@”). An informal explanation of the semantics of Mcl state
formulas will be given by means of the examples below.

Mutual exclusion. This essential safety property of mutual exclusion protocols states
that two processes can never execute simultaneously their critical section code. It can be
expressed in Mcl by a single box modality containing a regular formula that characterizes
the undesirable sequences:

[ true* . { CS !”ENTER” ?i:Nat } . (not { CS !”LEAVE” !i })* .
{ CS !”ENTER” ?j:Nat where j <> i }

] false

This modality forbids the existence of sequences containing the entry of a process Pi in
the critical section followed by the entry of another process Pj with j 6= i in the critical
section before Pi has left the critical section. Note how the process index i is extracted
from a transition label by the first action pattern “{ CS !”ENTER” ?i:Nat }” and is used
subsequently in the formula. The formula above does not make any assumption about
the alternation of critical section entries and exits, but allows a process Pi to perform
several “CS (Enter, i)” (resp. “CS (Leave, i)”) actions while it is inside (resp. outside) its
critical section. Under the additional hypothesis that every process executes its critical
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loop
non-critical section;
A[i] := 1;
B := j;
while A[j] = 1

and B = j do
end while;
critical section;
A[i] := 0

end loop (a)

8 4 0

9 5 1

6 2

7 3

A !READ !1 !1 !0 B !READ !0 !1
NCS !1

B !READ !1 !0 NCS !0 A !WRITE !1 !1 !1
A !WRITE !0 !1 !0 B !WRITE !0 !1

B !WRITE !1 !0 A !READ !0 !0 !1

(b)

01 2

3 4

5 6

7 8

9 10

11 1213 14

15 16

B !READ !1 !0

NCS !0 NCS !1
A !WRITE !0 !1 !0 A !WRITE !1 !1 !1

NCS !1 NCS !0

A !WRITE !1 !1 !1 A !WRITE !0 !1 !0

B !WRITE !0 !1 B !WRITE !1 !0

A !READ !0 !1 !1 A !READ !1 !1 !0          

B !READ !0 !1 B !READ !1 !0A !READ !0 !1 !1 A !READ !1 !1 !0

B !READ !0 !1

(c)

Figure 3: (a) Peterson’s protocol for process Pi in a configuration with two processes (j = 1 − i);
(b) Livelock produced by spinning of process P0 when process P1 “has decided to stop”; (c) Livelocks
produced after P0 or P1 crashed while executing their entry sections.

section entries and exits in a strict alternation, the formula above could be simplified as
follows:

[ true* . { CS !”ENTER” ... } . (not { CS !”LEAVE” ... })* .
{ CS !”ENTER” ... }

] false

which forbids the execution of two consecutive entries in critical section without an exit
in between.

Livelock freedom. This liveness property4 states that each time a process is in its entry
section, then some process will eventually execute its critical section. A direct formula-
tion of this property in Mcl yields the formula below:

[ true* . { NCS ?i:Nat } .
(not { ?G:String ... !i where (G <> ”NCS”) and (G <> ”CS”) })* .
{ ?G:String ... !i where (G <> ”NCS”) and (G <> ”CS”) }

] mu X . (< true > true and [ not { CS !”ENTER” ?any } ] X)

The gate name extraction “?G:String” and the “where (G <> ”NCS”) and (G <> ”CS”)”
clause specify the actions performed on shared variables, i.e., the actions other than
accesses to critical and non critical sections. The minimal fixed point formula binding
the X variable expresses the inevitable execution of some critical section after process Pi

has executed the first read or write operation of its entry section. However, this formula
is violated by all the protocols considered, because each time some process decides to
stop its execution (an unrealistic hypothesis if we assume a fair scheduling of processes
by the underlying operating system) the other processes can spin forever on reading

4Although some authors [30] use the term deadlock for this property, we prefer the term livelock used
in [3] in order to avoid the confusion with the terminology used in model checking, in which deadlocks
denote the sink states (i.e., without successors) of the Lts. Indeed, in a shared-memory setting without
explicit locking operations, the behavior of the system cannot contain sink states, since each process can
at any time execute some instruction.
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shared variables. Figure 3(b) illustrates the counterexample of this formula exhibited
by Evaluator 4.0 for Peterson’s protocol with two processes. This protocol uses three
shared variables, two of which are encoded as array cells A[0], A[1] and the third one
by a separate variable B. The lasso-shaped diagnostic in Figure 3(b) shows that after
process P1 has executed its entry section and is ready to enter the critical section (because
variable B has value 0) but does not do so, process P0 may spin forever in the while loop
of its entry section.

In fact, as stated in [30], a livelock situation occurs when all processes are cyclically
executing at least one operation but none of them is able to progress towards its critical
section. Therefore, an accurate formulation of livelock freedom in Mcl must forbid the
existence of such cycles:

[ true* . { NCS ?i:Nat } .
(not { ?G:String ... !i where (G <> ”NCS”) and (G <> ”CS”) })* .
{ ?G:String ... !i where (G <> ”NCS”) and (G <> ”CS”) }

] not < for j:Nat from 0 to n − 1 do

(not { CS ... })* . { ?G:String ... !j where G <> ”CS” }
end for

> @

The “< ... > @” operator, which is the Mcl counterpart of the infinite looping operator
of Pdl-∆, expresses the existence of an infinite sequence consisting of the concatenation
of subsequences satisfying a regular formula (note that, since the Lts is finite, any in-
finite sequence ends with a possibly non-elementary cycle). The “for” regular formula
describes the repetition, for each 0 ≤ j ≤ n − 1 (where n is the number of processes) of
a subsequence consisting of zero or more actions different from a critical section entry or
exit, followed by one action, other than a critical section entry or exit, carried out by pro-
cess Pj . In other words, the “for” regular formula specifies a subsequence of operations
on shared variables containing (at least) one operation performed by each process in the
system. Note that imposing a precise order for the occurrences of operations does not
restrict the generality of the formula. Indeed, if there is some infinite sequence on which
each process Pj can execute infinitely often at least one operation, then this sequence
would also contain any ordering of these operations.

Starvation freedom. The absence of livelocks guarantees the global progress of the sys-
tem, but does not ensure the access of individual processes to their critical sections.
Starvation freedom is a stronger property (it implies livelock freedom), which states that
each time a process is in its entry section, then that process will eventually execute its
critical section. It can be expressed in Mcl as follows:

[ true* . { NCS ?i:Nat } .
(not { ?G:String ... !i where (G <> ”NCS”) and (G <> ”CS”) })* .
{ ?G:String ... !i where (G <> ”NCS”) and (G <> ”CS”) }

] not < for j:Nat from 0 to n − 1 do

(not { CS ... !i })*
{ ?G:String ... !j where (j = i) implies (G <> ”CS”) }

end for

> @
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The “< ... > @” operator describes a cycle containing at least one action performed by
each process, but no access of process Pi to its critical section. To ensure the absence of
starvation, a protocol must satisfy the necessary condition (stated in Section 2.1) that
no process should remain in its critical section forever.

Bounded overtaking. Even if a mutual exclusion protocol is starvation-free, it is inter-
esting to know, when a process Pi begins its entry section, how many times another
process Pj can access its critical section before Pi enters its own critical section. This
information can be determined using Evaluator 4.0 by checking the following Mcl
formula for increasing values of max :

< true* . { NCS !i } .
(not { ?G:String ... !i where (G <> ”NCS”) and (G <> ”CS”) })* .
{ ?G:String ... !i where (G <> ”NCS”) and (G <> ”CS”) } .
( for k:Nat from 0 to n − 1 do

(not { CS ... !i })* . { ?G:String ... !k where (k = i) implies (G <> ”CS”) }
end for .
(not { CS ?any !i })* . { CS !”ENTER” !j }

) { max }
> true

This formula expresses the existence of a sequence in which process Pi executes its non-
critical section, then the first instruction of its entry section, followed by max repetitions
of a subsequence in which Pi executes some instruction but only Pj enters its critical
section (a symmetric formula must be checked to determine the overtaking of process Pj

by Pi). For each starvation-free protocol and couple of processes Pi, Pj , there exists a
value of max i,j such that the formula above holds for max i,j and fails for max i,j +1. To
minimize the number of model checking invocations, one can start with max i,j = 1 and
(if the formula holds for this value) keep doubling it until finding the first value max ′

i,j

for which the formula fails, then use a dichotomic search to reduce the size of the interval
[max ′

i,j/2,max ′

i,j ] to 1. In general, a starvation-free protocol may have different values
of max i,j for different couples of processes Pi, Pj (as e.g., Szymanski’s protocol), this
fact indicating a lack of symmetry in the protocol.

First-Come, First-Served. Another way to estimate the quality of a mutual exclusion
protocol w.r.t. the overtaking of processes is the First-Come, First-Served (Fcfs) prop-
erty [48]. To formulate this property, one has to split the entry section of the protocol in
two parts: a doorway section, consisting of a finite sequence of instructions, and a wait-

ing section, consisting of an instruction sequence with unbounded length (which typically
contains loops). The Fcfs property states that whenever a process Pi has executed its
doorway section completely before another process Pj has executed the first instruction
of its doorway section, then Pi will enter its critical section before Pj . For Peterson’s
protocol with two processes shown in Figure 3(a), the doorway section consists of the
first two instructions of the entry section (“A[i] := 1; B := j”) and the waiting section
consists of the remaining loop of the entry section (“while A[j] = 1 and B = j do end
while”). For this protocol, the Fcfs property can be expressed in Mcl using the formula
below:
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loop
non-critical section;
A[i] := 1;
while A[j] = 1 do

if B != i then
A[i] := 0;
while B != i do
end while;
A[i] := 1

end if
end while;
critical section;
B := j;
A[i] := 0

end loop (a)

0
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16

NCS !1
NCS !0

A !WRITE !0 !1 !0

A !READ !1 !0 !0

CS !ENTER !0

CS !LEAVE !0
B !WRITE !1 !0

A !WRITE !0 !0 !0

NCS !0

A !WRITE !0 !1 !0

A !WRITE !1 !1 !1

A !READ !1 !1 !0

B !READ !1 !0

A !WRITE !0 !0 !0

A !READ !0 !0 !1

CS !ENTER !1

(b)

Figure 4: (a) Dekker’s protocol for process Pi in a configuration with two processes (j = 1 − i); (b)
Counterexample sequence showing that the protocol is not Fcfs concerning process P0.

[ true* . { NCS !j } . (not { ?G:String ... !j where G <> ”CS” })* .
{ A !”WRITE” !i !1 !i } .
(not ({ CS !”ENTER” !i } or { ?G:String ... !j where G <> ”CS” }))* .
{ B !”WRITE” !j !i } .
(not { CS !”ENTER” !i })* .
{ CS !”ENTER” !j }

] false

This safety property is satisfied by Peterson’s protocol with two processes, which is
therefore Fcfs. As outlined in [48], any mutual exclusion protocol that is both livelock-
free and Fcfs is also starvation-free; however, not all starvation-free protocols are Fcfs.
For example, Dekker’s protocol, shown in Figure 4(a), is not Fcfs. The corresponding
Mcl formula, which considers Dekker’s doorway section (“A[i] := 1”):

[ true* . { NCS !j } . (not { ?G:String ... !j where G <> ”CS” })* .
{ A !”WRITE” !i !1 !i } .
(not { CS !”ENTER” !i })* .
{ CS !”ENTER” !j }

] false

is violated by the protocol, as illustrated in Figure 4(b) by the shortest counterexample
sequence exhibited by Evaluator 4.0. Note that the problematic execution of the
doorway section by process P0 is the second one in the sequence (the transition between
states 9 and 10).

The Fcfs property has a different shape for each protocol, since it depends on the
partitioning of the entry section in doorway and waiting sections. We did not attempt
in this study to characterize each protocol w.r.t. Fcfs, but we considered instead the
more generic measure of overtaking degree.
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loop
non-critical section;
while B != i do
end while;
critical section;
B := j

end loop (a)

4

051

62 7

3

B !WRITE !1 !0

NCS !1CS !LEAVE !0
NCS !0CS !ENTER !0B !READ !1 !0

B !READ !0 !0NCS !0

(b)

Figure 5: (a) Trivial one-bit protocol for process Pi (j = 1− i); (b) Counterexample for the independent
progress of P0 when P1 has stopped in its non-critical section.

Independent progress. A requirement formulated explicitly by Dijkstra [1] was that if a
process stops (i.e., loops forever) in its non-critical section, this must not affect the access
of the other processes to their critical sections. In subsequent works, this requirement
is not mentioned as a property of mutual exclusion protocols, but is sometimes stated
aside in the definition of the framework [3, 6]. However, we believe that this requirement
is fundamental (at least from a model checking point of view) because it is not implied
by the mutual exclusion and starvation freedom requirements, and therefore should be
verified separately. In Mcl, it can be expressed using the following formula:

[ true* ] forall j:Nat among { 0 ... n − 1 } . (
< { NCS !j } > true

implies

[ (not { ... !j })* ] forall i:Nat among { 0 ... n − 1 } . (
(i <> j) implies < (not { ... !j })* > < { ... !i }* . { CS ... !i } > @

)
)

which states that whenever a process Pj has stopped in its non-critical section (i.e., it is
ready to execute the action “NCS (j)”, but does not do so), then all the other processes
Pi can access their critical section (modulo, of course, the mutual exclusion property
stated previously).

To see that the property of independent progress is not implied by the two other
properties of mutual exclusion protocols, consider the trivial one-bit protocol shown in
Figure 5(a). This trivial protocol satisfies mutual exclusion and starvation freedom, but
does not satisfy independent progress because it forces a strict alternation between the
accesses of the two processes to their critical sections. The evaluation of the formula
above on the Lts of the trivial protocol using Evaluator 4.0 yields the counterexample
shown in Figure 5(b), in which process P0 executes its main loop once but then spins
forever in its entry section because P1 has stopped in its non-critical section. The trivial
protocol should be considered an unacceptable solution to the mutual exclusion problem,
since it was proven in [6] (where independent progress is part of the framework definition)
that any livelock-free mutual exclusion protocol must use at least two shared bits.

Finally, we can remark that the independent progress property cannot be made
stronger without destroying the livelock or starvation freedom of the protocols: if a
process is allowed to stop (e.g., by crashing) outside its non-critical section, then the
other processes may spin forever without entering their critical sections. For all proto-
cols considered here, we checked that this indeed holds; Figure 3(c) shows the diagnostic
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produced by Evaluator 4.0 illustrating, in the case of Peterson’s protocol for two pro-
cesses, the livelock of each process when the other one has crashed after executing the
first instruction of its entry section.

Expressiveness and complexity. Regarding expressiveness, Mcl lies between the Lµ1 and
Lµ2 fragments of the modal µ-calculus, and is strictly more expressive than Ltl [49],
whose model checking problem can be translated into the evaluation of a single “< ... >@”
operator encoding the underlying Büchi automaton [50]. Infinite looping operators
“<R>@” whose regular subformulas R contain iteration operators (e.g., “∗”, “+”, “for”)
belong to the fragment Lµ2 of alternation depth two [27], because the maximal fixed
points corresponding to the looping operators are mutually recursive with the minimal
fixed points corresponding to the iteration operators of R. However, infinite looping
operators can be evaluated in linear-time w.r.t. the size of the underlying Bes (which is
in turn proportional to the product of the Lts size and the formula size) by using the
algorithm proposed in [26], which generalizes the detection of accepting cycles in Büchi
automata. Note that this fact does not yield a linear-time model checking procedure
for Ltl, because the translations from Ltl to µ-calculus [51] or to Pdl-∆ [52] are not
succinct.

Among the temporal properties shown above, several ones (livelock and starvation
freedom, independent progress) are expressed as Mcl formulas involving infinite loop-
ing operators. Livelock and starvation freedom (in their state-based variants) can be
also expressed in Ltl, by forbidding the existence of unfair cycles, as proposed in [30].
Independent progress can be also expressed in Actl∗ [28] but not in Ltl, because it
states the existence of infinite sequences starting from several states of the Lts that are
unknown in advance.

Model checking results. Tables 5 to 8 summarize the model checking results. In Tables 5
and 6, the first column gives the name of the protocol; the second and third columns
indicate for which processes the protocol is livelock- and/or starvation-free; the fourth
column indicates for which processes the protocol satisfies independent progress; the
last columns give the maximal number of times process Pi can overtake process Pj in
accessing the critical section (Pi/Pj). Table 7 contains the first to fourth columns for
four processes; the remaining columns are given in Table 8.

Because the Ltss of the protocols for two processes are small, the execution of the Svl
script (50 lines) implementing the model checking of all properties on all protocols takes
about 5 minutes. For three (respectively, four) processes, the verification of all properties
(including those for determining the degree of overtaking) on all protocols consists of
more than 1000 (respectively, 2000) model checking tasks, which take altogether about
26 hours (respectively, 4 days, three of which are required for model checking the black-
white bakery protocol), i.e., less than 2 (respectively, about 4) minutes per task on
average.

All the protocols satisfy mutual exclusion, livelock freedom, as well as local deadlock
freedom, i.e., the fact that in every state, each process can execute at least one action. All
the protocols livelock if one of the processes crashes in its entry section, except the test-

and-set, test–test-and-set, and the trivial protocol. Regarding the overtaking of processes,
all starvation-free protocols (except Szymanski’s and, for n ≥ 2, Knuth’s) are symmetric.
For n = 2, the maximal degree (4) of overtaking is reached by Dekker’s protocol. For n =
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Protocol Livelock- Starvation- Independent Overtaking
(2 processes) free free progress P0/P1 P1/P0

Anderson all all all 1 1

Burns & Lynch all P0 all ∞ 1

B&W Bakery all all all 2 2

Clh all all all 1 1

Dekker all all all 4 4

Dijkstra all none all ∞ ∞

Kessels all all all 2 2

Knuth all all all 1 1

Lamport all none all ∞ ∞

Mcs all all all 1 1

Peterson all all all 1 1

Petersont all all all 1 1

Szymanski all all all 2 1

tas all none all ∞ ∞

ttas all none all ∞ ∞

trivial all all none 1 1

2b p1 all P0 all ∞ 1

2b p2 all P0 all ∞ 1

2b p3 all P1 all 1 ∞

3b p1 all all all 2 2

3b p2 all P0 all ∞ 1

3b c p1 orig all all all 1 1

3b c p1 all all all 1 1

3b c p2 all all all 1 1

3b c p3 all all all 1 1

4b p1 all P0 all ∞ 1

4b p2 all all all 2 2

4b c p1 all P0 all ∞ 1

4b c p2 all P1 all 1 ∞

Table 5: Model checking results for two processes

3, the maximal degree (12) of overtaking is reached by the generalization of Peterson’s
protocol using a binary tree. For n = 4, the maximal degree (14) of overtaking is reached
by Peterson’s protocol. The unbounded overtaking of one process by another one has
been checked by replacing, in the bounded overtaking formula given above, the bounded
iteration operator “R{max}” by an infinite looping operator “< R > @”. All livelock-
free but not starvation-free protocols (except Dijkstra’s, Lamport’s, and the test-and-set

protocol) are asymmetric w.r.t. overtaking, only one process being able to overtake all
the others unboundedly.

3.2. Performance Evaluation

To measure the performance of a mutual exclusion protocol, we compute the through-
put of the critical section, i.e., the steady state probability of being in the critical section.
The higher the throughput, the more efficient the protocol, because the longer a process
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Protocol Livelock- Starv.- Indep. Overtaking
(3 processes) free free progress P0/P1 P0/P2 P1/P0 P1/P2 P2/P0 P2/P1

Anderson all all all 1 1 1 1 1 1

Burns & Lynch all P0 all ∞ ∞ 1 ∞ 1 ∞

B&W Bakery all all all 2 2 2 2 2 2

Clh all all all 1 1 1 1 1 1

Dijkstra all none all ∞ ∞ ∞ ∞ ∞ ∞

Knuth all all all 1 2 2 1 1 2

Lamport all none all ∞ ∞ ∞ ∞ ∞ ∞

Mcs all all all 1 1 1 1 1 1

Peterson all all all 6 6 6 6 6 6

Petersont all all all 1 1 1 1 12 12

Szymanski all all all 2 2 1 2 1 1

tas all none all ∞ ∞ ∞ ∞ ∞ ∞

ttas all none all ∞ ∞ ∞ ∞ ∞ ∞

trivial all all none 1 1 1 1 1 1

Table 6: Model checking results for three processes

Protocol Livelock- Starvation- Independent
(4 processes) free free progress

Anderson all all all

Burns & Lynch all P0 all

B&W Bakery all all all

Clh all all all

Dijkstra all none all

Knuth all all all

Lamport all none all

Mcs all all all

Peterson all all all

Petersont all all all

Szymanski all all all

tas all none all

ttas all none all

trivial all all none

Table 7: Model checking results for four processes (1/2)
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Protocol Overtaking
(4 processes) P0/P1P0/P2P0/P3P1/P0P1/P2P1/P3P2/P0P2/P1P2/P3P3/P0P3/P1P3/P2

Anderson 1 1 1 1 1 1 1 1 1 1 1 1

Burns & Lynch ∞ ∞ ∞ 1 ∞ ∞ 1 ∞ ∞ 1 ∞ ∞

B&W Bakery 2 2 2 2 2 2 2 2 2 2 2 2

Clh 1 1 1 1 1 1 1 1 1 1 1 1

Dijkstra ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Knuth 1 2 4 4 1 2 2 4 1 1 2 4

Lamport ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Mcs 1 1 1 1 1 1 1 1 1 1 1 1

Peterson 14 14 14 14 14 14 14 14 14 14 14 14

Petersont 1 12 12 1 12 12 12 12 1 12 12 1

Szymanski 2 2 2 1 2 2 1 1 2 1 1 1

tas ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

ttas ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

trivial 1 1 1 1 1 1 1 1 1 1 1 1

Table 8: Model checking results for four processes (2/2)

is in the critical section, the less time it spends executing the protocol or waiting to enter
the critical section.

Methodology and parameter setting. Performance evaluation of an Imc is based on the
transformation of the Imc into a Continuous-Time Markov Chain (Ctmc) extended with
probabilistic choices. This consists of three steps:

• A first step is to transform the Imc into a stochastic Lts by renaming all actions:
(1) each action not representing a delay is hidden, i.e., renamed into the invisible
action (written i in Lotos NT and Cadp), then (2) each MU action is transformed
into an exponential delay by associating a rate λ to it, i.e., renaming it into“rate λ”.
Our use of exponential delays reflects the fact that we make hypotheses only about
the relations between the mean values of the actual durations, because our model-
based performance evaluation does assume neither a particular application nor a
particular hardware architecture.

In all our experiments, we keep the rates for accesses to the shared variables con-
stant: each read access has a rate of 3000 and each write access has a rate of 2000,
reflecting that, on average, a write access is generally slower than a read access. For
complex operations, namely fetch-and-store (used by the protocols Clh and Mcs),
compare-and-swap (used by the protocols Mcs, test-and-set and test–test-and-set),
and read-and-increment (used by Anderson’s protocol), we used a rate correspond-
ing to a read access followed by a write access, reflecting that these operations have
first to read the memory and then to write it. We assume that reading from a local
cache is 50 times faster than reading from global memory, and that writing to a
local cache is 10% slower than reading. We also assume a write-back policy, i.e.,
a write into a local cache is not immediately propagated to global memory. Thus,
we used the following rates:
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– read from a local cache: 150, 000,

– read from global memory: 3000,

– read from a remote cache: 1200 (because the variable must first be written to
global memory, and than read from global memory),

– write to a local cache: 135, 000,

– write to global memory: 2000 (also in the case that another cache must be
invalidated),

– complex operation (i.e., fetch-and-store, compare-and-swap, and read-and-

increment) in a local cache: 71, 052 (because the value has to be read and
written),

– complex operation on a variable present in several caches: 1200 (because the
value has to be read and written), and

– complex operation on a variable present in another cache: 750 (because the
variable must first be written to global memory, and then read and written).

If not specified otherwise, we use the rate 100 for the critical section, i.e., making
the assumption that the critical section contains (on average) several accesses to
shared data. Hence, to compare the protocols in different usage scenarios, we vary
mainly the delay for the non-critical section.

• In a second step, the nondeterminism is solved as discussed in Section 2.3 by as-
suming a uniform scheduler.5 Practically, each nondeterministic choice is replaced
by a uniform probabilistic choice, by renaming all i transitions into “prob 1/n”.

• Finally, we compute the throughput of the entries into the critical sections by
all processes in the steady state using the Bcg Steady tool [22], which is able
to handle Ctmcs extended with probabilistic choices, and, for large Ctmcs, the
Cunctator on-the-fly steady state simulator [23], which provides a uniform sched-
uler to solve nondeterministic choices.

The results of our experiments are shown in Figures 6 to 10. Because these figures depend
on the chosen rates, the concrete values and rankings are less interesting than the relations
and tendencies when varying different parameters. Also, the long critical and non-critical
sections (that are the same for all protocols) mask to some extent differences between
protocols, especially for few processes, because each process spends most of its time in
the critical and non-critical section.

The performance evaluation experiments are automated by an Svl script (400 lines),
which, for each experiment, computes the appropriate rates, renames the transition la-
bels, and then computes the throughputs in the steady state.

5In [29], each renamed Imc is minimized for stochastic branching bisimulation [53] before solving the
remaining nondeterminism. We no longer perform this additional step, because it is incorrect for more
than two processes: indeed, it does not accumulate the probabilities when eliminating some, but not
all, internal transitions going out of a state (a situation that did not occur for the case of two processes
considered in [29]).
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(a) Global throughput without caching

(b) Global throughput with caching

(c) Global throughput with caching and very short critical section

Figure 6: Throughput for two processes (critical section two times faster than non-critical section)
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Steady-state analysis for two processes. For two processes, we compute all performance
measures in five minutes using Bcg Steady.

Figure 6 shows the throughputs of all protocols for two processes, using 50 for the
rate of the non-critical section (thus, the non-critical section is, on average, two times
longer than the critical section). Figure 6(a) shows the throughputs without considering
caches. As shown in Figure 6(b), taking caching into account (slightly) improves the
performance of the protocols, but also changes the ranking of the protocols concerning
their performance.6 Figure 6(c) shows the throughputs with caching and a very short
critical section (rate 10, 000, 000), an unrealistic situation that stresses the differences
in the performance of the protocols: interestingly, this has no influence on the ranking.
Therefore, in the subsequent experiments we keep the more realistic rates, even though
the differences between the protocols are somewhat covered by the long critical and
non-critical sections.

One observes significant differences in the throughputs of the two processes if and only
if the protocol is asymmetric, i.e., when one process can overtake more often than it can
be overtaken by the other process; for these protocols, the qualitative and quantitative
properties are related in the sense that the process that can overtake the other has a
significantly higher throughput. For symmetric protocols, the throughput of process
P0 is half the global throughput. A second observation is that the complexity of the
protocol (number of shared variables and length of entry and exit sections) impacts its
performance: for instance, the most complex protocol (black-white bakery) is among the
least efficient, whereas the trivial one-bit protocol is the most efficient.

We also observe that making a protocol symmetric might (slightly) improve its perfor-
mance. For instance, the original version of the automatically generated protocol 3b c p1
as described in [30] is asymmetric: with the same rates as in Figure 6(a), the throughput
of process P0 (14.86) is higher than the throughput of process P1 (14.67). However,
the symmetric version of this protocol has a higher global throughput (29.65 instead of
29.535, i.e., an increase of less than 0.4%, to be compared with the 15% performance
difference between the least and most efficient protocol).

The three plots of Figure 7 show the effect of varying the ratio between the non-
critical section rates of the two processes. In all three plots, for ratio 1, the rate of the
non-critical section is 50 for both processes; towards the left, process P0 is slowed down
(by decreasing the rate of the non-critical section of P0); towards the right, process P1

is slowed down (by decreasing the rate of the non-critical section of P1).
Figure 7(a) graphically justifies the term “symmetric” protocols: they are symmetric

in the sense that slowing down process P0 has exactly the same effect on the global
throughput as slowing down process P1: in both cases the general throughput decreases in
the same way. Figure 7(b) shows that the situation is different for asymmetric protocols:
slowing down the advantaged process that can overtake the other one reduces the general
throughput more than slowing down the disadvantaged process that can be overtaken.
This seems intuitive, because slowing down the advantaged process slows down both
processes, whereas slowing down the disadvantaged process should not overly impact the
advantaged process. Figure 7(c) confirms this intuition. On the one hand, for all those
asymmetric protocols where process P0 can overtake process P1 infinitely, slowing down

6Experiments with further increasing the speed-up of cache accesses with respect to an access to
global memory did not lead to a ranking different from the one shown in Figure 6(b).
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(a) Global throughput for symmetric protocols

(b) Global throughput for asymmetric protocols

(c) Throughput of process P0 for asymmetric protocols

Figure 7: Performance when varying the ratio ncs-rate-p0/ncs-rate-p1
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P1 has less impact on the throughput of P0 than slowing down P0. On the other hand,
for the two protocols 2b p3 and 4b c p2, where P0 can be overtaken infinitely by P1,
slowing down P1 has more impact on the throughput of P0 than slowing down P0.

Steady-state analysis for more than two processes. For some protocols, we also compute
the performance for more than two processes. For three processes, we compute all per-
formance measures in 47 hours (43 of which are required for the black-white bakery
protocol) using Bcg Steady. For more processes, we use Cunctator with three seeds
for the random number generator: executing ten million steps of all protocols requires
5.5 hours for four processes, 21.5 hours for five processes, and about three weeks for
ten processes. The standard deviation of the three numbers computed by Cunctator
is less than 0.15 (curiously, for five processes, even less than 0.1), i.e., the results can
be considered accurate up to 0.3. The precision is slightly better in the case without
caching; an explanation might be numerical stability due to closer transition rates than
in the case with caching. For four (respectively, five) processes, simulating fifty million
steps reduces the standard deviation to below 0.05 (respectively, 0.055). Concerning
the trade-off between precision and execution time, it seems reasonable to switch from
Bcg Steady to Cunctator when passing from three to four processes. On the one
hand, for three processes, using Cunctator requires more time to yield less precise
results7. On the other hand, for four processes, using Bcg Steady requires too much
time (e.g., for the Dijkstra’s and the black-white bakery protocol, Bcg Steady did not
manage to compute the result in five months).

The results of these experiments are shown in Figures 8 and 9, for all of which
we use the same rates as for Figures 6(a) (without caching) and 6(b) (with caching).
A first observation is that increasing the number of processes highlights performance
differences between the protocols: in the case without caching, the difference between
the throughputs of the fastest and slowest protocol almost doubles when passing from two
processes (4.07) to four processes (7.72). A second observation is that caching improves
the performance of the protocols, independently of the number of processes.

A third observation is that most protocols are equitable, in the sense that all processes
have similar throughputs (for three processes, strict equality holds for the protocols Clh,
Knuth, Mcs, test-and-set, test–test-and-set, and trivial). A notable exception is the
protocol proposed by Burns & Lynch [6], which clearly favors processes with lower indices.
Interestingly, although functional verification (i.e., Table 6) shows that, theoretically,
process P2 can overtake process P1 infinitely often, this seems rarely to occur in practice,
because the throughput of P2 (1.9 in the case with caching) is significantly lower than
that of P1 (7.98 in the case with caching).

Comparison to experimental performance measures. Comparing our results with exper-
imental performance measures found in the literature is not straighforward, because, on
the one hand, the precise delays of all different operations are not available, and on the
other hand, we do not have access to the particular architectures used in the experiments.
Furthermore, these experiments usually measure the overall execution time of a set of
processes on a given multiprocessor architecture, whereas we compute the throughput

7For three processes, to execute one billion steps for all protocols takes more than a week; the standard
deviation of the computed numbers is less than 0.001.
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(a) Global throughput without caching (b) Global throughput with caching

Figure 8: Throughput for three processes (critical section two times faster than non-critical section)

(a) Global throughput without caching (b) Global throughput with caching

Figure 9: Throughput for four processes (critical section two times faster than non-critical section)

(a) Scalable protocols (b) Unscalable protocols

Figure 10: Global throughput for an increasing number of processes

25



of the critical section. Nevertheless, to relate the tendencies computed for our models
with the measurements of executions on particular architectures, we computed the global
throughput for some protocols for up to 16 processes, the results of which are shown in
Figure 10. For these computations, we used rates inspired by the experiments of [32],
i.e., a rather short critical section (corresponding to the increment of a shared counter)
and a non-critical section five times as long as the critical section.

Figure 10(a) shows that the more recent protocols making use of complex operations
scale well in the sense that there is no significant drop in the global throughput when
increasing the number of processors. However, Figure 10(b) shows that other protocols
(including test-and-set and test–test-and-set) do not scale so well: increasing the number
of processes yields a significant drop in the global throughput of the critical section,
confirming the observation of [32], which led to the development of the array-based
queue lock.

Notice that these tendencies are also present, even if not so prominent, in Figures 6,
8(b), and 9(b), which show that, when increasing the number of processors from two
to four, the global throughput of test–test-and-set drops from 30.7 to 29.5, whereas the
global throughput of test-and-set drops from 31.5 to 27.7.

4. Conclusion and Future Work

This study illustrates a model-based approach, supported by the Cadp toolbox, for
analyzing the functional behavior and performance of shared-memory mutual exclusion
protocols. As the underlying semantic model, we used Imcs [17], which provide a uniform
framework suitable both for model checking and performance evaluation. We carried out
the analysis of 27 protocols using the state-of-the-art functionalities provided by the
Cadp toolbox [18]: formal specification using the Lotos NT imperative-style process-
algebraic language; description of functional properties using the Mcl data-based tem-
poral language; steady-state analysis of Imcs using the Bcg Steady and Cunctator
tools; and automation of the analysis procedures using Svl scripts.

We attempted to formulate the correctness properties of mutual exclusion protocols
accurately and observed that several of them (livelock and starvation freedom, indepen-
dent progress, unbounded overtaking) belong to Lµ2, the µ-calculus fragment of alterna-
tion depth two; however, they can still be expressed using the infinite looping operator
of Pdl-∆ [45], which can be checked in linear-time [26]. Performance evaluation made
it possible to compare the protocols according to their efficiency (global and individual
throughput of processes) and to study the effect of varying several parameters (relative
speeds of processes, ratio between the time spent in critical and non-critical sections,
etc.). We observed that symmetric protocols are more robust concerning the difference
in execution speed between processes, which confirms the importance of the symmetry
requirement originally formulated by Dijkstra [1]. The quantitative results were cor-
roborated by those of functional verification, in particular the presence of (asymmetric)
starvation of processes, detected using temporal formulas, was clearly reflected in the
steady-state behavior of the corresponding protocols. We also studied the performance
of mutual exclusion protocols involving n > 2 processes, which so far were subject only
to analytical studies [54].

Concerning future work, we plan to improve Bcg Steady by optimizing the internal
representation of sparse matrices; preliminary tests indicate a significant reduction of ex-
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ecution time. It would also be interesting to study the effect of the degree of contention
(i.e., the number of processes trying to enter the critical section at the same time) on
the performance of mutual exclusion protocols, as some of them (e.g., [8]) are specifically
optimized for this situation. Finally, our models could be extended to take into account
different assumptions, such as other cache-coherency policies (possibly allowing inconsis-
tent views of the memory) or a number of processors strictly smaller than the number
of processes.
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