
Asynchronous Testing of Synchronous
Components in GALS Systems

Lina Marsso1, Radu Mateescu1, Ioannis Parissis2, and Wendelin Serwe1

1 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP?, LIG, 38000 Grenoble, France
2 Univ. Grenoble Alpes, Grenoble INP?, LCIS, 26000 Valence, France

Abstract. GALS (Globally Asynchronous Locally Synchronous) sys-
tems, such as the Internet of Things or autonomous cars, integrate reac-
tive synchronous components that interact asynchronously. The complex-
ity induced by combining synchronous and asynchronous aspects makes
GALS systems difficult to develop and debug. Ensuring their functional
correctness and reliability requires rigorous design methodologies, based
on formal methods and assisted by validation tools. In this paper we
propose a testing methodology for GALS systems integrating: (1) syn-
chronous and asynchronous concurrent models; (2) functional unit test-
ing and behavioral conformance testing; and (3) various formal methods
and their tool equipments. We leverage the conformance test genera-
tion for asynchronous systems to automatically derive realistic scenarios
(input constraints and oracle), which are necessary ingredients for the
unit testing of individual synchronous components, and are difficult and
error-prone to design manually. We illustrate our approach on a simple,
but relevant example inspired by autonomous cars.

1 Introduction

A reactive system controls its environment by observing it (via input sensors)
and modifying it (via output commands) to obtain the desired behavior. A simple
example is the control of the room temperature by commanding a heater. The
synchronous approach [16] to reactive systems programming supposes that the
system operates triggered by a clock, such that at each clock instant the system
instantaneously computes the outputs from the inputs and its internal state. The
simplicity of this abstraction is the reason for the success of the synchronous
approach, which has been widely used for over two decades for the design and
analysis of safety critical systems in various application domains (e.g., avionics,
railway transportation, nuclear plants, etc.).

However, modern complex systems, such as autonomous cars or the Internet
of Things, are increasingly large and distributed, consisting of multiple compo-
nents that execute independently and interact with each other. As the assump-
tion of a global clock is less realistic, these systems are better described as GALS
(Globally Asynchronous, Locally Synchronous) [4,36], i.e., composed of concur-
rent synchronous reactive systems interacting with each other asynchronously,

? Institute of Engineering Univ. Grenoble Alpes

2 L. Marsso, R. Mateescu, I. Parissis, W. Serwe

by means of message passing with non-zero communication delays. For instance,
in an autonomous car, the perception devices (radar, lidar, cameras, etc.) and
the engine controls are separate components, located in various places of the car,
operating independently and connected through communication links. Each of
these components might be considered and implemented as a synchronous reac-
tive system, but the complete autonomous car is rather a GALS system. Notice
that the GALS approach allows the smooth integration and reuse of existing
and time-proven synchronous components when designing new systems that no
longer fit into the framework of synchronous programming.

GALS systems are intrinsically complex, and the simultaneous presence of
synchronous and asynchronous aspects makes their development and debugging
difficult. Hence, to ensure their functional correctness and reliability, it is neces-
sary to follow a rigorous design approach, based on formal methods and assisted
by efficient validation and verification tools. Such design approaches and tools
exist for the separate modeling and analysis of synchronous or asynchronous
parts of a GALS system, but their integration can further improve the effective
design of a GALS system.

In this paper we propose a testing methodology for GALS systems integrat-
ing: (1) synchronous and asynchronous concurrent models, (2) functional unit
testing and behavioral conformance testing, and (3) various formal methods and
their tool equipments. The idea is to exploit the information gathered by the
analysis of a globally asynchronous system to automate and finely tune the anal-
ysis of its individual synchronous components. First, we model the GALS system
in GRL (GALS Representation Language) [25,24], a formal language connected
to the CADP verification toolbox3 [10] for asynchronous systems. Using CADP,
we validate the asynchronous aspects of the GRL model, e.g., by checking tempo-
ral logic formulas expressing desired (global) correctness properties. Next, we use
TESTOR [27] to automatically generate conformance tests, which can be used
to assess whether an actual implementation of the GALS system conforms to the
GRL model. Then, we project such a conformance test on a synchronous com-
ponent C and translate it automatically into a scenario (i.e., input constraints
in Lutin [34] and an oracle in Lustre [18]), required to automate the testing of
C using Lurette [22], the test generation tool of the Lustre V6 toolbox4 [18,34].
Because these scenarios are automatically generated from the GRL model of the
GALS system, they correspond by construction to relevant (and often complex)
executions of the synchronous component.

We illustrate our approach on a simple, but relevant example, namely an
autonomous car, which has to reach a destination, following roads on a map,
in the presence of moving obstacles. The car is modeled as a GALS system,
comprising synchronous components for perception, decision, and action.

The remainder of the paper is organized as follows. In Section 2, we intro-
duce the formal GRL model of an autonomous car. In Section 3, we describe
the application of analysis techniques for asynchronous systems to the overall

3 http://cadp.inria.fr
4 http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/

http://cadp.inria.fr
http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/

Asynchronous Testing of Synchronous Components in GALS Systems 3

GALS system, in particular model checking and conformance test generation. In
Section 4, we recall techniques for the functional testing of synchronous compo-
nents. In Section 5, we present the main contribution of this paper, namely the
integration of asynchronous conformance testing with automated synchronous
testing to improve the latter. In Section 6, we compare our approach to existing
GALS validation approaches. Finally, in Section 7 we give concluding remarks
and suggest future research directions.

2 GRL Model of an Autonomous Car

To illustrate our approach, we consider the behavioral model of a (simplified)
autonomous car interacting with its physical environment, i.e., a given set of
moving obstacles (pedestrians, cyclists, other cars, etc.) evolving with the car
on a (geographical) map. To limit the complexity, each obstacle executes a fixed
number of random or statically chosen movements. The autonomous car itself
consists of four synchronous components:

(i) a GPS keeps the current position of the car updated,

(ii) a radar detects the presence of the obstacles close to the car and builds a
perception grid summarizing information about perceived obstacles,

(iii) a decision (or trajectory) controller computes an itinerary from the current
position to the destination, avoiding streets containing obstacles, and

(iv) an action controller commands the engine and direction to follow the
itinerary computed by the decision controller, using the perception grid
built by the radar to avoid collisions.

These four components communicate in various ways:

– the GPS sends the current position to the decision controller upon request,

– the radar periodically sends the perception grid to the action controller, and

– the action controller requests a new itinerary from the decision controller.

GRL (GALS Representation Language) [25,24] is a formal language designed to
model GALS systems. It integrates the synchronous reactive model underlying
dataflow languages and the asynchronous interleaving semantics of concurrency
underlying process algebras. Figure 1 shows the architecture of our GRL model
of the autonomous car. Each synchronous component (ACTION, RADAR, DECISION,
and GPS) is represented in GRL as a block, depicted as a (light blue) rectangle
with solid border in Figure 1. These blocks exchange data via asynchronous com-
munication media (POSITION, PATH, CURRENT_GRID), each of which is represented in
GRL as a medium, depicted as a (pink) ellipse with dashed border in Figure 1.
The interaction between blocks also respects constraints (MAP_MANAGEMENT), each
one being represented in GRL as an environment, depicted as a (light pink)
ellipse with thick dashed border in Figure 1. The overall model of the car is

4 L. Marsso, R. Mateescu, I. Parissis, W. Serwe

POSITION

MAP_MANAGEMENT

PATH

GRID
CURRENT_

DECISION

GPS RADAR

ACTION

SEND_

UPDATE_POSITION

POSITION

RECEIVE_
POSITION

POSITION
REQUESTED_

REQUEST_

: block

GRID
CURRENT_
SEND_

SEND PATH

PATH_AVOIDING GRID
CURRENT_
RECEIVE_

REQUEST PATH

RECEIVE_PATH

CAR_MOVE

POSITION

: medium

AR
RI
VA
L

POSITIONS

: environment : channels

Fig. 1. Architecture of the GRL model of an autonomous car

represented in GRL as a system, which describes the composition and interac-
tions of blocks, media, and environments. In the sequel, we present excerpts of
a block, a medium, and an environment of our GRL model (1271 lines).5

The map is represented as a directed graph, in which edges correspond to
streets and nodes correspond to crossroads; for simplicity, we assume that the car
or an obstacle occupies a street completely (a longer street can be represented
by several edges in the graph). A set of functions is defined to explore this graph,
to compute itineraries, etc. The GRL model is instantiated by providing global
constants encoding the map, the initial position and destination of the car, and
the set of obstacles with their initial positions and lists of movements.

A GRL block defines the deterministic code executed by the synchronous
component at each activation (i.e., clock instant). For instance, the radar of
our autonomous car is modeled by the GRL block RADAR, which has a static

variable previous_grid to keep track of the perception grid computed during the
previous activation. This grid is considered to be initially empty (i.e., it has the
value Grid (NIL)). At each activation, the radar receives the current positions
of the car and all the obstacles as input from the environment (in parameter
POSITIONS).6 It then computes the current perception grid indicating, for each
possible direction the car might take, whether at least radar_visibility steps
are free of any obstacle. If there is a change between previous_grid and grid,
both the variable previous_grid and the output CURRENT are updated; otherwise
the output is set to the particular value already_sent indicating that the grid
did not change. At the end of the activation, the computed grid is sent to the
connected medium (send parameter CURRENT).

5 The complete GRL model, test purpose, the MCL properties, SVL and XTL scripts,
and other resources related to the example are available as a demo in the GRL
distribution at http://convecs.inria.fr/software/grl.

6 Currently, for the interaction between a block and an environment, GRL requires to
wrap several inputs or outputs into a single structured input or output.

http://convecs.inria.fr/software/grl

Asynchronous Testing of Synchronous Components in GALS Systems 5

block RADAR (in POSITIONS: Car_Obstacle_Pos) [send CURRENT: Grid] is
static var previous_grid: Grid := Grid (NIL)

var grid: Grid

grid := perception (POSITIONS, radar_visibility);

if grid != previous_grid then
previous_grid := grid;

CURRENT := grid

else
CURRENT := Grid (already_sent)

end if
end block

A GRL medium enables (asynchronous) interaction between synchronous
blocks. Explicitly representing media makes it possible to finely model a large
panel of behaviors (i.e., message buffering, message loss, nondeterminism, etc.).
A medium is connected to each block by at most two channels, called receive

and send channels. Note that a receive channel corresponds to the reception of
some value in a variable prefixed by “?”. Each channel has an associated Boolean
condition (tested with a when clause), stating whether a message is available.
For instance, the following GRL medium CURRENT_GRID enables the block RADAR

to send the current perception grid (via the receive channel INPUT) to the block
ACTION (via the send channel OUTPUT); the transmission takes place only when
the perception grid has not already been sent.

medium CURRENT_GRID [receive INPUT: Radar_Grid,

send OUTPUT: Radar_Grid] is
static var buffer: Radar_Grid := Grid (NIL)

select
when ?INPUT ->

if INPUT != Grid (already_sent) then buffer := INPUT end if
[] when OUTPUT -> OUTPUT := buffer

end select
end medium

A GRL environment provides blocks with inputs and receives their out-
puts. Block activations are particular inputs, enabling an environment to pre-
cisely control the activations of synchronous blocks, e.g., to control the relative
clock speeds and/or drifts. The following fragment of the GRL environment
MAP_MANAGEMENT ensures that: (1) the positions of the car (map.c) and obstacles
(grid) are shared with the block RADAR (by sending this information to RADAR

as input POSITIONS); (2) this information is updated when the car or the obsta-
cles move (by receiving these moves from blocks ACTION and RADAR as outputs
CAR_MOVE and OBSTACLE_MOVE, respectively); and (3) the blocks are only activated
as long as the car neither arrived at destination, nor crashed. Note that an envi-
ronment may be nondeterministic, e.g., it may contain nondeterministic choices,
modelled in GRL using the select statement.

environment MAP_MANAGEMENT (block RADAR, ...

in OBSTACLE_MOVE: Obstacle,

in CAR_MOVE: Control, ...

6 L. Marsso, R. Mateescu, I. Parissis, W. Serwe

out POSITIONS: Car_Obstacle_Pos, ...) is
static var grid: Grid := Grid (NIL),

map: Localization := Localization (initial_street, initial_map),

crash: Bool := false, car_arrived: Bool := false, ..

var collison_detected: Bool, ...

if not (crash or car_arrived) then
select

−− send updated inputs (car and obstacle positions) to the radar
when POSITIONS -> POSITIONS := pos (map.c, grid)

[] −− car movement
when ?CAR_MOVE ->

−− update car position in the map
map := move_car (map, CAR_MOVE);

−− check for collisions (car and an obstacle on the same street)
collision_detected := intersection (grid, map);

if collision_detected then crash := true end if
[] −− potential obstacle movement

when ?OBSTACLE_MOVE ->
if OBSTACLE_MOVE != null_obstacle then
−− update obstacle positions in the grid
grid := move_obstacle_grid (grid, OBSTACLE_MOVE)

else
−− no effective movement
grid := grid

end if
...

end select
end if

end environment

GRL defines the semantics of a GALS system as an LTS (Labeled Transition
System), whose states represent the memories of all blocks, media, and environ-
ments of the system [24, Chapter 4]. The initial state is the initial memory, in
which each static variable has its (mandatory) initial value. Each transition go-
ing out of a state corresponds to the atomic execution of a block, which consists
in reading the values of input and receive channels, executing the code of that
block activation, and producing the values for the outputs and send channels
of the block. The transition is labeled with all these values, and its target state
corresponds to the updated memories of the participating components, i.e., the
block and its connected mediums and environments. Thus, the atomic execu-
tions of synchronous blocks are interleaved in the LTS, which reflects the GALS
nature of the system.

For technical reasons, we rely in this paper on the semantics of GRL as in-
duced by the current translation-based implementation of GRL (see below). In
this semantics [24, Chapter 5], the execution of a synchronous block activation is
split into an input transition followed by an output transition. These two transi-
tions are executed atomically, i.e., without interleaving of any other transitions
corresponding to an activation of another block.

Asynchronous Testing of Synchronous Components in GALS Systems 7

3 Model Checking and Conformance Test Generation

When considering a complete GALS system from the outside, all parts based
on the synchronous programming paradigm are hidden. Thus, the overall GALS
system is amenable for classic analysis techniques developed for asynchronous
systems. GRL is equipped with the GRL2LNT [25,24] translator to LNT [11], the
modern formal modeling language recommended as input for the CADP verifica-
tion toolbox [10]. Using GRL2LNT and CADP, for a map (with 22 streets and 8
crossroads) and two obstacles, each with a first random movement and a second
statically chosen movement, we generated (in about 4 minutes on a standard
laptop) the LTS corresponding to our GRL autonomous car model (3, 568, 781
states and 5, 619, 802 transitions; 287, 103 states and 406, 780 transitions after
strong bisimulation minimization).

3.1 Model Checking

We first validated our GRL model by checking several safety and liveness prop-
erties characterizing the correct behavior of the autonomous car. We expressed
the properties in MCL [29], which is the data-handling, action-based, branching-
time temporal logic of the on-the-fly model checker of CADP. For simplicity, we
describe here the properties in natural language, only giving and commenting
the MCL code of the first one to illustrate the flavor.5

– The position of the car is correctly updated after any movement of the
car. This safety property specifies that on all transition sequences, an up-
date of the car position (action “UPDATE_POSITION ?current_street”, where
current_street is the street on which the car is) followed by a car movement
(action “CAR_MOVE ?control”, where control is a movement command) must
be followed by an update of the car position consistent with current_street,
control, and the map. This can be expressed in MCL using the necessity
modality below, which forbids the transition sequences containing inconsis-
tent position updates:

[true* .

{ UPDATE_POSITION ?current_street:String } .

(not ({ CAR_MOVE ... } or { UPDATE_POSITION ... }))* .

{ CAR_MOVE ?control:String } .

(not ({ CAR_MOVE ... } or { UPDATE_POSITION ... }))* .

{ UPDATE_POSITION ?new_street:String where
not (Consistent_Move (current_street, control, new_street)) }

] false

The values of the current position, movement, and new position of the car
present on the actions UPDATE_POSITION and CAR_MOVE are captured in the
variables current_street, control, and new_street of the corresponding ac-
tion predicates (surrounded by { }) and reused in the where clause of the
last action predicate. The predicate Consistent_Move defines all valid combi-
nations for current_street, control, and new_street allowed by the map.

8 L. Marsso, R. Mateescu, I. Parissis, W. Serwe

– A same message from one of the autonomous car components must be con-
sidered only once. For instance, the radar should not send twice the same
perception grid, i.e., two successive occurrences of action SEND_CURRENT_GRID

must carry different values of the grid, reflecting the changes in perception
due to obstacle or car movements.

– Inevitably (by avoiding the non-progressing iterations of the synchronous
blocks), the system should reach a state where either the car arrived, a
collision occurred between the car and an obstacle, or all obstacles have
finished their list of movements.

3.2 Conformance Test Generation

Conformance testing aims at establishing whether an SUT (System Under Test)
conforms to a formal model, i.e., whether the SUT is an implementation of the
model. For concurrent asynchronous systems, both the formal model and the
SUT are represented as IOLTSs (Input-Output LTSs), i.e., LTSs whose actions
are separated into controllable inputs and observable outputs, even if the IOLTS
of the SUT is not necessarily known. A popular relation used for conformance
testing is ioco [37], which specifies that an SUT conforms to a model if af-
ter executing each trace of the model, the SUT exhibits only the outputs and
quiescences (i.e., deadlocks, outputlocks, and livelocks) allowed by the model.
A classical conformance testing approach consists in deriving from the formal
model a suite of test cases, which are then executed on the SUT to check the
conformance using black-box testing techniques. This approach is based on the
hypothesis of synchronous communication between tester and SUT; adaptations
are required if this hypothesis is not satisfied (e.g., in the case of remote interac-
tion using buffered channels) [32,13]. To focus the testing process and help the
test-case extraction, test purposes are used to describe the goal states, i.e., those
states of the model to be reached during execution of the test case on the SUT.
Executing a test case may produce one of three possible verdicts: pass when a
goal state has been reached, fail when the observed behavior of the SUT is not
conform to the model, and inconclusive if the goal states become unreachable.

The online-testing tool TESTOR [27] is capable of extracting controllable
test cases on the fly. Concretely, starting from the GRL model of a GALS sys-
tem, a description of the input actions, and a test purpose, TESTOR explores
the model and generates automatically a set of test cases or a complete test
graph (CTG) [23] to be executed on a physical implementation of the system.
Intuitively, a CTG denotes a set of traces containing visible actions and quies-
cence that should be executable by the SUT to assess its conformance with the
model and a test purpose. The quiescence is represented in the CTG as self-loops
labeled by a special output action δ on the quiescent states. TESTOR handles
possibly nondeterministic models and ensures by construction that the complete
test graph provides only inputs that allow to reach a goal state (if possible).

For the GRL model of the autonomous car (see Section 2), the only con-
trollable inputs are the movements of obstacles; the observable outputs make it
possible to study the behavior of the car. An example test purpose (T2) is to

Asynchronous Testing of Synchronous Components in GALS Systems 9

specify the situation where a collision occurs between a car and an obstacle. The
test purpose is expressed as an LTS (in the AUT format), where a transition
representing the collision (action COLLISION) should lead to a goal state, i.e,,
having an outgoing transition labelled by an ACCEPT action. We also defined four
other examples of test purposes (T1, T3, T4, and T5) constraining the car and
obstacles interaction on the map. For these test purposes, TESTOR generates
the complete test graphs in less than a minute (see Table 1).

4 Testing Techniques for Synchronous Components

Functional testing of a reactive system requires to provide a sequence of inputs
and observe the corresponding sequence of outputs. In general, the previously
observed outputs must be taken into account when computing the next input,
so as to provide the reactive system with a realistic behavior of the physical
environment the reactive system is controlling. Furthermore, the decision about
success or failure of a test also requires the sequence of (input, output) pairs, be-
cause the reactive system might change its function to adapt to its environment.
Hence, testing a reactive system requires specific techniques and tool support to
automate the testing process [21].

In this section, we briefly present the testing tool Lurette [22] for synchronous
programs. Using formal specifications of the input constraints and an oracle,
Lurette automates both, the generation of appropriate inputs for the SUT and
the decision about the test result. Lurette takes three inputs:

(i) a specification in Lutin [34] to dynamically constrain the inputs;

(ii) an oracle in Lustre [18] implementing the test decision; and

(iii) some parameters controlling the execution and the coverage-computation
of the generated and executed input sequences.

Lurette interacts with the SUT, generates the input sequences with their corre-
sponding outputs in a file, and displays the test decisions.

We illustrate the usage of Lurette to test an implementation of a radar in
the C language, which might be a part of an implementation of our GALS
autonomous car example described in Section 2. Usually, a radar builds an oc-
cupancy grid with respect to its position (this grid reflects the visibility of the
radar); in an autonomous car, the position of the radar is the position of the car.
To simplify, in our example, the radar takes as input the position of the car and
the obstacles (provided by the GRL environment on channel POSITIONS), and the
radar outputs the perception grid (sent to the medium CURRENT_GRID).

As in Section 3, we consider a fixed instance with two obstacles (leo and
lilly). Testing the synchronous radar component consists in providing a se-
quence of inputs and observing the generated sequence of outputs. Each of the
radar’s inputs (position of the car and the obstacles) can take one out of the 21
streets of the map, yielding 213 possible inputs. Fortunately, not all sequences
of these inputs are realistic, because the car is not flying and has to respect

10 L. Marsso, R. Mateescu, I. Parissis, W. Serwe

the constraints of the map. However, relevant tests of the radar should include
situations where the radar detects obstacles.

The input constraints for the radar should enforce that the positions of the
car and the obstacles evolve in a realistic manner, i.e., respecting the map. The
following Lutin code corresponds to a simple scenario, where the car starts on
street 9 and possibly moves to street 12, and lilly (respectively, leo) appears
on street 5 (respectively, street 14) and moves back and forth to street 12 (re-
spectively, street 11). This scenario can be described by an automaton with five
states and seven transitions; the corresponding constraints on the inputs of the
radar can be encoded in Lutin as a node input_constraints with four outputs
(the three inputs of the radar plus the state s of the automaton). Although sim-
ple, the scenario covers the apparition and movement of obstacles, and the case
where the perception grid should remain unchanged.

node input_constraints () returns (car, leo, lilly, s: int) =

let not_visible: int = 2000 in
(∗ initial state: car on street 9 and no visible obstacles ∗)
car = 9 and lilly = not_visible and leo = not_visible and s = 0 fby
loop {

| (∗ s = 0 −> car on street 9, lilly on street 5, leo on street 14, s = 1 ∗)
(pre s = 0) and car = 9 and lilly = 5 and leo = 14 and s = 1

| (∗ s = 0 −> car on street 12, lilly on street 5, leo on street 14, s = 2 ∗)
(pre s = 0) and car = 12 and lilly = 5 and leo = 14 and s = 2

| (∗ s = 1 −> car on street 9, leo on street 11, lilly on street 12, s = 3 ∗)
(pre s = 1) and car = 9 and lilly = 12 and leo = 11 and s = 3

| (∗ s = 1 −> car on street 12, leo on street 11, lilly on street 5, s = 4 ∗)
(pre s = 1) and car = 12 and lilly = 5 and leo = 11 and s = 4

| (∗ s = 2 −> car on street 12, leo on street 11, lilly on street 5, s = 4 ∗)
(pre s = 2) and car = 12 and lilly = 5 and leo = 11 and s = 4

| (∗ s = 3 −> car on street 12, leo on street 14, lilly on street 18, s = 1 ∗)
(pre s = 3) and car = 9 and lilly = 5 and leo = 14 and s = 1

| (∗ s = 4 −> car on street 12, leo on street 14, lilly on street 5, s = 2 ∗)
(pre s = 4) and car = 12 and lilly = 5 and leo = 14 and s = 2

}

At each iteration, Lurette generates inputs by executing one transition of the
Lutin node. Note that if the input values are not explicitly constrained in the
Lutin specification, random numbers will be generated. Although larger and
more complex scenarios can be written manually, this task is tedious and error-
prone, in particular due to the representation of street names by natural numbers
(the input language of Lutin supports only Boolean and numerical types), and
may easily introduce redundant definitions or equivalent states.

The role of oracles is to determine whether the generated outputs are correct
or not. An oracle should contain all possible pairs of inputs with the correspond-
ing expected outputs, and signal an error for each unexpected output.

In addition to checking correctness, Lurette supports additional Boolean out-
puts (called coverage variables) to measure coverage. While testing the SUT,
Lurette records the coverage variables that were at least once true, and com-

Asynchronous Testing of Synchronous Components in GALS Systems 11

putes the ratio of covered versus uncovered variables. This information is stored
in a file, and updated by any subsequent run of Lurette for the same SUT, input
constraints, and oracle.

A small example of an oracle for the previous scenario is given by the following
Lustre node oracle, describing the expected output (perception grid) for each
given input vector (the positions of the car and obstacles). As the Lutin node,
the oracle takes, besides the inputs and outputs of the radar, as input also the
state s to keep track of the evolution (according to the same small automaton
mentionned previously). The oracle outputs the verdict res, i.e., whether the
observed outputs are those expected for the state and the inputs. For instance,
in state 3, lilly (in street 12) and leo (in street 11) should both be detected
by the car (in street 9), whereas they should not be detected in the initial state.
The oracle also computes two coverage variables pass and blocked: the former
measures the coverage of state 2 (representing the situation where the car arrives
at destination and all obstacles appeared), and the latter measures the coverage
of the situation where the car is blocked by the obstacles.

const invisible = 2000, already_sent = 3000;

node oracle (s, car, lilly, leo, perception_leo, perception_lilly: int)

returns (res, pass, blocked: bool);

let res = true ->

((∗ lilly and leo are visible from the street 9 ∗)
(s = 0 and car = 9 and lilly = invisible and leo = invisible and
perception_lilly = invisible and perception_leo = invisible)

or (∗ the perception did not change, it is already sent ∗)
(s = 1 and car = 9 and lilly = 5 and leo = 14 and
perception_lilly = already_sent and perception_leo = already_sent)

or (∗ leo and lilly are visible from the street 9 ∗)
(s = 3 and car = 9 and lilly = 12 and leo = 11 and
perception_lilly = 12 and perception_leo = 11)

or ...);

(∗ true if the car reached the destination (state 2) ∗)
pass = false -> if s = 2 then true else pre pass;

(∗ true, if the car is blocked by the obstacles ∗)
blocked = false -> if s = 3 then true else pre pass;

tel

Even more than for the Lutin constraints, manually deriving the oracle is com-
plicated, mainly due to the dependency on the map and the necessity to enu-
merate all possible movements. For instance, to detect the already_sent, one
should manually follow the scenario’s evolution. Because one can easily forget
some cases, an automated generation of these input constraints and the oracle
is more convenient, as we illustrate in the next section.

5 Test Projection and Exploration

Each synchronous component of a GALS system is constrained by the other
synchronous components, communication media, and environments present in

12 L. Marsso, R. Mateescu, I. Parissis, W. Serwe

oracle

(Lustre)

scenario

(Lutin)

trace
weak

hide translate
+

& rename
extract_oracle

extract_constraints

(BCG)

(BCG)

input
labels

projection exploration

(BCG)

CTG

CTGC
(XTL)

(XTL)

Fig. 2. Overview of the derivation of synchronous test scenarios by projection and
exploration of an asynchronous complete test graph CTG

the system. In this section we explicitly exploit these constraints to improve the
unit testing of a synchronous component taken separately.

The idea is to automatically derive inputs for synchronous testing tools by
projecting the complete test graph generated for the entire GALS system on
the inputs and outputs of the synchronous component. In this way, the inputs
provided to the synchronous component are realistic and relevant, because they
are chosen according to possible execution scenarios of the overall GALS system.
Furthermore, the synchronous tests generated in this way contain all possible
inputs leading to the goals of test purposes (e.g., a possible input leading to
collision in the case of T2).

Figure 2 gives an overview of the approach. In a first step, a conformance
complete test graph for the overall GALS system is projected on the synchronous
component C to be tested, resulting in a test graph for C. In a second step, this
test graph is translated and renamed to be compatible with the synchronous
testing tool Lurette. In the last step, the test graph is explored (using XTL [28]
scripts), generating the input constraints and the oracle for testing C separately.
In the remainder of this section, we present the approach in more detail, illus-
trating how it improves the testing of the radar of our autonomous car example.

5.1 Test Graph Projection

Projecting a complete test graph CTG on a synchronous component C consists
in hiding all transitions labeled with an action that is neither an input nor an
output of C, and reducing the resulting graph for weak trace equivalence, yielding
the projected test graph CTGC . The reduction removes all internal transitions
(created by the hiding), so that all actions of CTGC are either an input or
an output of C. A precondition for a successful projection is that all inputs
and outputs of C, as well as the verdict transitions, are present and visible
in CTG. Notice that projecting onto the interface of C enables synchronous
interaction between the tester and an SUT of C, avoiding all issues related to
the asynchronous communication [32,13] present in the GALS model.

In the example of the autonomous car, the radar takes as input the positions
of the car and of the obstacles. The positions of the obstacles are also a con-
trollable input of the overall GALS system (see Section 3). But the position of
the car is computed by the scenario depending on the output of another syn-
chronous component, namely the action controller. The output of the radar is the

Asynchronous Testing of Synchronous Components in GALS Systems 13

Table 1. Sizes and run-time performance for the tests generated for the test purposes

TP CTG CTGRADAR constraints oracle time mem.
states trans. states trans. states trans. (Lutin) (Lustre) (s) (MB)

T1 5 4 15,466 29,665 89 281 286 295 29 200

T2 4 3 102,985 211,455 584 3617 3622 1916 1237 231

T3 5 4 15,444 29,957 83 258 263 282 26 200

T4 5 4 2,278 4,959 218 1119 1124 557 86 193

T5 5 5 21,930 42,788 105 356 361 344 36 201

perception grid, which is, inside the GALS system, sent to the action controller.
Hiding, in the complete test graph CTG, all transitions but those corresponding
to these inputs and outputs, and reducing the result with respect to weak trace
equivalence yields the LTS CTGRADAR. Columns 6 & 7 of Table 1 give the number
of states and transitions of CTGRADAR for the five test purposes considered.

5.2 Translating and Renaming

Because some of the data types used in the GALS model might not be exactly
the same as those supported by the synchronous testing tools, a preliminary
step is the conversion of the values present on the transition labels of CTGC , for
instance by applying appropriate renaming rules. Null values have been added,
in order to transform non scalar data on transitions into variable names and
values tuples of constant length.

We defined a generic format for the exploration tools to work properly. Each
input transition is renamed into “INPUT !s1 !v1 ... !sm !vm”, where si is the name
of the input and vi its value; each output transition is similarly renamed into
“OUTPUT !s1 !v1 ... !sn !vn”. For instance, the projected complete test graph CTGRADAR

contains non-scalar data structures, in particular, the perception grid computed
by the radar is represented as a list and streets are identified by their names (i.e.,
character strings). To be usable with the synchronous test generator Lurette [22],
these lists need to be transformed into tuples of constant length, and the street
names need to be translated into the corresponding (numeric) constants.

5.3 Test Graph Exploration

By construction, the projected CTGC is an LTS describing the interaction with
the SUT, and as such contains both, the sequence of inputs for the SUT and
the verdict concerning the test outcome (i.e., the test oracle). Because the test
inputs and oracle should be provided to Lurette using two different languages
(Lutin for the input constraints and Lustre for the oracle), two explorations of
(the renamed) CTGC are required.

The input constraints are generated by encoding CTGC as a possibly non-
deterministic node in Lutin with the XTL [28] script extract constraints

(87 lines). This node has the same inputs as C and an additional input variable

14 L. Marsso, R. Mateescu, I. Parissis, W. Serwe

s corresponding to the current state of CTGC , initialized to the initial state.
The main loop of the node contains a nondeterministic choice, with a branch
for each transition in CTGC . A branch corresponding to a transition T is ex-
ecuted if s is equal to the source state of T , and as result of execution it sets
s to the target state of T . A branch for an output transition specifies that the
inputs are kept unchanged, which corresponds to the behavior expected for the
special output transition δ on quiescent states. A branch for an input transi-
tion updates the corresponding inputs. A branch for a verdict transition (i.e., a
pass or inconclusive self-loop on a state of CTGC), resets the variable s to the
initial state of the CTG, thus avoiding to generate the same inputs (as a self-
loop would) and covering faster the whole CTG . Thus, the Lutin node describes
exactly the set of input sequences contained in CTGC .

An input of the radar is a new position of the car and the obstacles (lilly and
leo). Because the exploration takes into account all transitions of CTGRADAR, the
generated Lutin node incorporates all evolutions of the car and the obstacles that
are relevant for the considered test purpose. The generated Lutin nodes are quite
long (see Table 1) and complex, because they contain nondeterministic choices,
induced by the random movements of the obstacles. Writing similar Lutin nodes
by hand would probably have been difficult and error-prone.

Because a synchronous block C is executed atomically, i.e., not interleaved
with other synchronous components, a sequence of input transitions for C is im-
mediately followed by the expected sequence of output transitions. Because the
target state s of the last transition in such a sequence of inputs is also the source
state of the first transition in the sequence of outputs, we call such a state s a
corner state. For the radar, the sequence of input transitions corresponding to
new positions of the car or the obstacles is followed by an output transition corre-
sponding to the expected perception grid. The oracle is generated with the XTL
script extract oracle (263 lines), by encoding CTGC as a deterministic node
in Lustre, which, to each corner state and its set of inputs/outputs, associates
a Boolean verdict, indicating whether the outputs are the expected ones. This
node is also defined for the verdict states of CTGC . For a pass (respectively, fail)
verdict it always returns true (respectively, false). For an inconclusive verdict
it returns true iff the outputs are unchanged. In order to observe the coverage
of the generated tests, for each verdict state (pass and inconclusive) and each
other state of the CTG , a coverage variable is introduced in the Lustre node
generated for the oracle. These coverage variables are true if at least one of the
executions passed by the corresponding state of the CTG (see Section 4).

node oracle (s, car, lilly, leo, perception_leo, perception_lilly: int)

returns (res, pass, inconclusive, s0, ... s86: bool);

let
res = true -> (

if s = 6 then
(car = 11 and lilly = 13 and leo = 6 and
perception_lilly = 13 and perception_leo = 2000)

...);

pass = false -> if s = 83 then true else pre pass;

Asynchronous Testing of Synchronous Components in GALS Systems 15

inconclusive = false -> if s = 7 then true else pre inconclusive;

s0 = false -> if s = 0 then true else pre s0; ...

s86 = false -> if s = 86 then true else pre s86; ...

The generated oracles are quite long (see Table 1) and complex, because they
contain all oracle verdicts and coverage criteria. For each of the five test purposes,
we executed the generated scenarios on the radar SUT using Lurette (the last
columns of Table 1 indicate the time and memory consumed by the overall testing
process). This enabled us to discover (and fix) a mistake in the SUT related to
the incorrect management of the special value already_sent.

6 Related Work

Similar to our approach, test purposes for sub-systems can be obtained by pro-
jecting symbolic executions of the overall system [7]. A major difference of our
approach is that we handle GALS systems (rather than systems homogeneously
modeled by IOSTSs), requiring to integrate various formal methods and tools.

The differences between testing synchronous and asynchronous systems in
terms of test-suite length, abstraction level, mutation score, non-determinism,
and suitability for real-time systems are discussed in [26, Chap. 12]. This analysis
enabled to improve the overall testing of a GALS system by taking advantage
of the synchronous properties of the components (using a two-level approach
combining an overall asynchronous automaton with a dedicated synchronous
automaton creating the link to the concrete implementation). In our setting,
these properties are taken care of directly by the GRL semantics.

Milner’s proposal [30] to encode asynchronism in a synchronous process cal-
culus has been used to specify GALS systems using synchronous programming
approaches [17,14,31,19]. Here we follow the opposite way, by specifying the
global aspects of a GALS system in an asynchronous language, which enables us
to take advantage of the existing tools for asynchronous systems and to leverage
them to improve the testing of the synchronous components.

Following a bottom-up approach [15], which manually defines contracts
for the synchronous components (to be verified locally, for instance using
SCADE [2]), the overall GALS system can be verified by translating the network
of component contracts and verification properties into Promela (for verification
with SPIN [20]) or timed automata (for timing analysis with UPPAAL [1]).
Our approach is top-down and completely automatic, deriving test cases for the
synchronous components from a model of the overall GALS system.

A graphical tool set [33], based on the specification of the synchronous com-
ponents as communicating reactive state machines, translates the system and its
properties specified as observers into Promela for verification with SPIN. This
tool set focuses on the verification of the overall GALS system, whereas we aim
at improving the unit testing of the synchronous components.

Encapsulating synchronous components makes the overall GALS system
amenable for analysis with asynchronous verification tools. This approach has

16 L. Marsso, R. Mateescu, I. Parissis, W. Serwe

been followed for a combination of the synchronous language SAM, the asyn-
chronous language LNT, and the CADP toolbox [12], and a combination of the
synchronous language SIGNAL, the asynchronous language Promela, and the
model checker SPIN [6]. Compared to these two approaches, we retain a finer
modeling of the synchronous components in the overall GALS system and con-
sider the verification of both, the overall GALS system and its synchronous com-
ponents. Our approach to derive synchronous test scenarios might be adaptable
to these language combination techniques.

Focusing on communication media for GALS hardware circuits, the asyn-
chronous connections between synchronous blocks can be encoded into variants
of Petri nets dedicated to the analysis of hardware circuits [3]. On the contrary,
our approach targets the test of synchronous components of more generic GALS
systems, relying on less precise models of the communication signals.

7 Conclusion

We presented an automatic approach integrating both asynchronous and syn-
chronous testing tools to derive complex, but relevant unit test cases for the
synchronous components of a GALS system. From a formal model of the system
in GRL [25] and a test purpose, the conformance testing tool TESTOR [27]
automatically generates a complete test graph [23] capturing the asynchronous
behavior of the system relevant to the test purpose. Such a complete test graph
is then projected on a synchronous component C and explored using XTL [28]
scripts to provide a synchronous test scenario (input constraints in Lutin [34] and
an oracle in Lustre [18]) required to test C with the Lurette tool [22]. All these
steps have been automated in an SVL [9] script. The approach substantially
relieves the burden of handcrafting these test scenarios, because, by construc-
tion, the derived scenarios constrain the inputs provided to C to relevant values,
covering a test purpose, which might arise during the execution of the GALS
system. We illustrated the approach on an autonomous car example.

As future work, we plan to consider the behavioral coverage of GALS systems,
which can be achieved by identifying a test suite (ideally as small as possible)
covering the whole state space of a GALS system. Such a test suite could be
generated by deriving purposes from the action-based, branching-time temporal
properties of the model (similar to [8] in the state-based, linear-time setting),
by synthesizing purposes according to behavioral coverage criteria [35], or by
constructing a complete test suite for a fault domain of the GALS system [5].

Acknowledgements. This work was supported by the Région Auvergne-
Rhône-Alpes within the ARC6 programme.

References

1. G. Behrmann, A. David, K. G. Larsen, O. Möller, P. Pettersson, and W. Yi. Up-
paal: Present and Future. In: Decision and Control. IEEE (2001)

Asynchronous Testing of Synchronous Components in GALS Systems 17

2. G. Berry. SCADE: Synchronous design and validation of embedded control soft-
ware. In: Next Generation Design and Verification Methodologies for Distributed
Embedded Control Systems, pp. 19–33. Springer (2007)

3. F. P. Burns, D. Sokolov, and A. Yakovlev. A Structured Visual Approach to GALS
Modeling and Verification of Communication Circuits. IEEE Trans. on CAD of
Integrated Circuits and Systems 36(6), 938–951 (2017)

4. D. M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. Doctoral
thesis, Stanford University, Department of Computer Science (1984)

5. A. da Silva Simão and A. Petrenko. Generating Complete and Finite Test Suite
for ioco: Is It Possible? In: H. Schlingloff and A. K. Petrenko (eds.) MBT 2014,
EPTCS, vol. 141, pp. 56–70 (2014)

6. F. Doucet, M. Menarini, I. H. Krüger, R. K. Gupta, and J. Talpin. A Verification
Approach for GALS Integration of Synchronous Components. ENTCS 146(2),
105–131 (2006)

7. A. Faivre, C. Gaston, and P. Le Gall. Symbolic Model Based Testing for
Component Oriented Systems. In: A. Petrenko, M. Veanes, J. Tretmans, and
W. Grieskamp (eds.) Testing of Software and Communicating Systems, LNCS,
vol. 4581, pp. 90–106. Springer (2007)

8. Y. Falcone, J.-C. Fernandez, T. Jéron, H. Marchand, and L. Mounier. More testable
properties. STTT 14(4), 407–437 (2012)

9. H. Garavel and F. Lang. SVL: a Scripting Language for Compositional Verification.
In: M. Kim, B. Chin, S. Kang, and D. Lee (eds.) FORTE 2001, pp. 377–392. Kluwer
(2001)

10. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. STTT 15(2), 89–107 (2013)

11. H. Garavel, F. Lang, and W. Serwe. From LOTOS to LNT. In: J.-P. Katoen,
R. Langerak, and A. Rensink (eds.) ModelEd, TestEd, TrustEd – Essays Dedicated
to Ed Brinksma on the Occasion of His 60th Birthday, LNCS, vol. 10500, pp. 3–26.
Springer (2017)

12. H. Garavel and D. Thivolle. Verification of GALS Systems by Combining Syn-
chronous Languages and Process Calculi. In: C. Pasareanu (ed.) SPIN 2009, LNCS,
vol. 5578, pp. 241–260. Springer (2009)

13. A. Graf-Brill and H. Hermanns. Model-Based Testing for Asynchronous Systems.
In: L. Petrucci, C. Seceleanu, and A. Cavalcanti (eds.) FMICS-AVoCS 2017, LNCS,
vol. 10471, pp. 66–82. Springer (2017)

14. P. L. Guernic, J. Talpin, and J. L. Lann. POLYCHRONY for system design.
Journal of Circuits, Systems, and Computers 12(3), 261–304 (2003)

15. H. Günther, S. Milius, and O. Möller. On the formal verification of systems of syn-
chronous software components. In: SAFECOMP 2012, LNCS, vol. 7612, pp. 291–
304. Springer (2012)

16. N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer (1993)

17. N. Halbwachs and S. Baghdadi. Synchronous Modelling of Asynchronous Systems.
In: EMSOFT 2002, LNCS, vol. 2491, pp. 240–251. Springer (2002)

18. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language Lustre. Proceedings of the IEEE 79(9), 1305–1320 (1991)

19. N. Halbwachs and L. Mandel. Simulation and verification of asynchronous systems
by means of a synchronous model. In: ACSD 2006, pp. 3–14. IEEE (2006)

20. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley (2003)

18 L. Marsso, R. Mateescu, I. Parissis, W. Serwe

21. E. Jahier, N. Halbwachs, and P. Raymond. Engineering functional requirements of
reactive systems using synchronous languages. 8th IEEE International Symposium
on Industrial Embedded Systems, 8:140–149 (2013)

22. E. Jahier, P. Raymond, and P. Baufreton. Case studies with Lurette V2. STTT
8(6), 517–530 (2006)

23. C. Jard and T. Jéron. Tgv: Theory, principles and algorithms – a tool for the au-
tomatic synthesis of conformance test cases for non-deterministic reactive systems.
STTT 7(4), 297–315 (2005)

24. F. Jebali. Formal Framework for Modelling and Verifying Globally Asynchronous
Locally Synchronous Systems. PhD thesis, Grenoble Alpes University, France,
Sept. 2016.

25. F. Jebali, F. Lang, and R. Mateescu. Formal Modelling and Verification of GALS
systems using GRL and CADP. FAoC 28(5), 767–804 (2016)

26. F. Lorber. It’s about Time — Model-Based Mutation Testing for Synchronous and
Asynchronous Timed Systems. Phd thesis, Institute of Software Technology, Graz
University of Technology, Austria (2016)

27. L. Marsso, R. Mateescu, and W. Serwe. TESTOR: A Modular Tool for On-the-
Fly Conformance Test Case Generation. In: D. Beyer and M. Huisman (eds.)
TACAS 2018, LNCS, vol. 10806, pp. 211–228. Springer (2018)

28. R. Mateescu and H. Garavel. XTL: A Meta-Language and Tool for Temporal Logic
Model-Checking. In: T. Margaria (ed.) STTT 1998, pp. 33–42. BRICS (1998)

29. R. Mateescu and D. Thivolle. A Model Checking Language for Concurrent Value-
Passing Systems. In: J. Cuellar, T. Maibaum, and K. Sere (eds.) FM 2008, LNCS,
vol. 5014, pp. 148–164. Springer (2008)

30. R. Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer Science
25, 267–310 (1983)

31. M. R. Mousavi, P. L. Guernic, J.-P. Talpin, S. K. Shukla, and T. Basten. Modeling
and Validating Globally Asynchronous Design in Synchronous Frameworks. In:
DATE 2004, pp. 384–389. IEEE (2004)

32. N. Noroozi, R. Khosravi, M. R. Mousavi, and T. A. C. Willemse. Synchrony and
asynchrony in conformance testing. Software & Systems Modeling 14(1), 149–172
(2015)

33. S. Ramesh, S. Sonalkar, V. D’Silva, , N. Chandra, and B. Vijayalakshmi. A Toolset
for Modelling and Verification of GALS Systems. In: R. Alur and D. A. Peled (eds.)
CAV 2004, LNCS, vol. 3114, pp. 506–509. Springer (2004)

34. P. Raymond, Y. Roux, and E. Jahier. Lutin: a language for specifying and executing
reactive scenarios. EURASIP Journal on Embedded Systems (2008)

35. R. N. Taylor, D. L. Levine, and C. D. Kelly. Structural testing of concurrent
programs. IEEE Trans. Software Eng. 18(3), 206–215 (1992)

36. P. Teehan, M. Greenstreet, and G. Lemieux. A Survey and Taxonomy of GALS
Design Styles. IEEE Design Test of Computers 24(5), 418–428 (2007)

37. J. Tretmans. Conformance Testing with Labelled Transition Systems: Implementa-
tion Relations and Test Generation. Computer networks and ISDN systems 29(1),
49–79 (1996)

	Asynchronous Testing of Synchronous Components in GALS Systems

