
THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTE UNIVERSITE
GRENOBLE ALPES

Spécialité : informatique

Arrêté ministériel : 25 mai 2016

 Présentée par

Lina MARSSO

Thèse dirigée par Radu MATEESCU, responsable équipe
CONVECS, Inria Grenoble – Rhône-Alpes,

 codirigée par Ioannis PARISSIS, professeur, Grenoble INP
Laboratoire de Conception et d'Intégration de Systèmes (LCIS),
et co-encadrée per Wendelin SERWE, charge de recherche
CONVECS, Inria Grenoble - Rhône-Alpes

 préparée au sein du Laboratoire d'Informatique de Grenoble
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Étude de génération de tests à partir d'un
modèle pour les systèmes GALS

On Model-based Testing of GALS Systems

Thèse soutenue le 10 décembre 2019,
devant le jury composé de :

Monsieur Holger Hermanns
Professeur, Saarland University, Rapporteur

Madame Virginie Wiels
Directeur de Recherche, ONERA, Rapporteur

Monsieur Roland Groz
Professeur, Grenoble INP, Examinateur

Monsieur Eric Jenn
Ingénieur de Recherche, IRT SAINT-EXUPERY, Examinateur

Monsieur Dumitru Potop-Butucaru
Chargé de Recherche (HdR), Inria, Examinateur

Monsieur Radu Mateescu
DR2, INRIA, Directeur de thèse

Monsieur Ioannis Parissis
Professeur, Laboratoire de Conception et d'Intégration de Systèmes
(LCIS), Co-directeur de thèse

Monsieur Wendelin Serwe
Chargé de Recherche, Inria, Encadrant de thèse

Acknowledgements

I would like to thank my PhD advisors Radu Mateescu, Wendelin Serwe and Ioannis
Parissis, for their invaluable assistance and supervision throughout my PhD. I am very
grateful for their thorough involvement, their scientific and educational advice and their
patience without whom I would not be able to achieve my objectives. I have learned a
great deal from them, and benefited from their rich and complementary perspectives, both
in scientific terms and in terms of the research process. I have also deeply appreciated
their day-to-day kindness and care.

My sincere thanks also goes to Holger Hermanns and Virginie Wiels, for having accepted to
review my thesis, and for their precious remarks on my manuscript, and as well to Roland
Groz, Eric Jenn, and Dumitru Potop-Butucaru, for accepting to be part of the committee.

I am also grateful to all the CONVECS team members, whose team spirit, enthusiasm and
trust have been a great source of motivation during my PhD. I would like to thank Frederic,
Gwen, Fatma, Armen, Alexito, Philippe and Lucas, for both technical and theoretical
advices and for being such pleasant company. Thanks also to my fellows: Myriam, our
team assistant, a friend, for her kindness and the support with all the administrative
and everyday life concerns; My office mates Gianluca, Ajay, and Pierre for helping me,
for making the atmosphere enjoyable, for appearing at critical times, and for their soft
presence; Hubert, who, during my PhD, has been an amazing collaborator, a mentor, and
who generously dedicated some of his time to our scientific and cultural discussions, it has
been a great honor and pleasure to work closely with such brilliant mind and generous
individual.

My thoughts go also to the dedicated researchers, PhD students, interns at INRIA for
their continuous support throughout my PhD and for our fruitful scientific conversations.
And, I am very fortunate and grateful also for our collaborations and interactions in the
RIDINGS project, with Josip Bozic, Hermann Felbinger, Birgit Hofer and Franz Wotawa.

A special thank goes to the doctoral school assistant Zilora Zouaoui, for her precious help,
and for her ability to find solutions in tedious administrative situations.

Finally, last but not least, I place on record, my sense of gratitude to my family, my
teammate, for being the best, for supporting me every day, in the good and in the bad
times.

i

ii

Abstract

This dissertation focuses on the model-based testing of GALS (Globally Asynchronous and
Locally Synchronous) systems, which are inherently complex because of the combination
of synchronous and asynchronous aspects. To cope with this complexity, we explore three
directions: (1) techniques for synchronous components; (2) techniques for communication
protocols between components; and (3) techniques for complete GALS systems, combining
the results of the two previous directions.

In the first direction, we explore formal techniques for the functional testing of synchronous
components. As a case-study, we reconsider the Message Authenticator Algorithm (MAA),
a pioneering cryptographic function designed in the mid-80s, and formalize it as a syn-
chronous dataflow. The modeling and validation of the MAA enabled us to discover var-
ious mistakes in prior (informal and formal) specifications of the MAA, the test vectors
and code of the ISO 1987 and ISO 1990 standards, and in compilers and verification tools
used by us.

In the second direction, we explore the formalization and the functional testing of a com-
munication protocol. As a case-study, we reconsider the formalization of the Transport
Layer Security (TLS) handshake, a protocol responsible for the authentication and ex-
change of keys necessary to establish or resume a secure communication. Our model of
the TLS version 1.3 has been validated by an approach using our new on-the-fly confor-
mance test case generation tool, named TESTOR, developed on top of the CADP toolbox.
TESTOR explores the model and generates automatically a set of controllable test cases or
a complete test graph (CTG) to be executed on a physical implementation of the system.

In the third direction, we propose a testing methodology for GALS systems combining the
two previous directions. We leverage the conformance test generation for asynchronous
systems to automatically derive realistic scenarios (inputs constraints and oracles), which
are necessary ingredients for the unit testing of individual synchronous components, and
are difficult and error-prone to design manually. Thus our methodology integrates (1)
synchronous and asynchronous concurrent models; (2) functional unit testing and behav-
ioral conformance testing; and (3) various formal methods and their tool equipments. We
illustrate our methodology on a simple, but relevant example inspired by autonomous cars.

iii

Résumé

Cette thèse porte sur la génération de tests à partir d’un modèle pour les systèmes GALS
(Globalement Asynchrones et Localement Synchrones). La combinaison des aspects syn-
chrones et asynchrones en font des systèmes complexes, imposant de recourir à de nouvelles
méthodes d’analyse. Pour faire face à cette complexité, nous explorons trois directions :
(1) techniques pour les composants synchrones ; (2) techniques pour les protocoles de com-
munication entre les composants ; et (3) techniques pour des systèmes GALS complets,
combinant les résultats des deux directions précédentes.

Dans la première direction, nous explorons des techniques formelles pour le test fonc-
tionnel de composants synchrones. En tant qu’étude de cas, nous reprenons l’algorithme
d’authentification de message (MAA), une fonction cryptographique conçue au milieu des
années 80. Nous formalisons cet algorithme en tant que flux de données synchrone. La
modélisation et la validation du MAA nous ont permis de découvrir diverses erreurs dans
les spécifications (informelles et formelles) préalables du MAA, les vecteurs de test et code
des normes ISO 1987 et ISO 1990 ; dans les compilateurs et outils de vérification que nous
avons utilisés.

Dans la seconde direction, nous explorons la formalisation et le test fonctionnel d’un
protocole de communication. Dans notre étude de cas, nous évaluons le protocole
d’établissement d’une liaison sécurisé au niveau de la couche de transport (TLS), respons-
able de l’authentification et de l’échange de clés nécessaires pour établir ou reprendre une
communication sécurisée. Notre modèle de la version 1.3 TLS a été validé par une approche
utilisant notre nouvel outil de génération de cas de test de conformité à la volée, nommé
TESTOR, développé à partir de la bôıte à outils CADP. Cet outil explore le modèle et
génère automatiquement un ensemble de cas de tests ou un graphe de test complet (CTG),
à exécuter sur une implémentation physique d’un système.

Dans la troisième direction, nous proposons une méthodologie de test permettant d’analyser
les systèmes GALS dans leur ensemble. Nous tirons parti de la génération de tests
de conformité des systèmes asynchrones pour dériver automatiquement des scénarios
réalistes (contraintes d’entrées et oracles), qui sont ardus à concevoir manuellement et
sujet d’erreurs. Ainsi, notre méthodologie intègre (1) modèles concurrents synchrones et
asynchrones; (2) les tests unitaires fonctionnels et les tests de conformité comportementale;
et (3) diverses méthodes formelles et leurs outils. Nous illustrons notre méthodologie sur
un exemple simple, mais représentatif inspiré des voitures autonomes.

iv

Contents

1 Introduction 1

2 Formal Modelling and Validation of GALS Systems 7
2.1 Preliminaries . 7

2.1.1 Labelled Transition Systems (LTS) 7
2.1.2 Equivalence checking . 9
2.1.3 Model checking . 10
2.1.4 Testing and coverage criteria . 11

2.2 Synchronous Models and their Validation 12
2.2.1 Overview of the Lustre language . 12
2.2.2 Synchronous system validation . 14
2.2.3 Overview of the Lurette testing tool 15

2.3 Asynchronous Models and their Validation 19
2.3.1 Overview of the LNT language . 19
2.3.2 Verification of asynchronous systems 26
2.3.3 Asynchronous model-based testing (the ioco theory) 29

2.4 GALS Models and Validation . 35
2.4.1 An overview of the GRL language 37
2.4.2 Verification of GALS systems . 44

3 Validation Techniques for Synchronous Components 47
3.1 The Message Authenticator Algorithm (MAA) 47
3.2 Modelling the MAA in Lustre . 51
3.3 Testing the MAA Model . 54
3.4 Formal models of the Message Authenticator Algorithm (MAA) 59

4 Validation of Communication Protocols between Components 63
4.1 Transport Layer Security Handshake Protocol 63

4.1.1 Handshake TLS 1.3 interactions . 64
4.1.2 Main TLS 1.3 handshake messages 67

4.2 Formal Model of the TLS Handshake in LNT 68
4.2.1 Handshake interactions . 68

v

vi CONTENTS

4.2.2 Handshake messages . 69
4.3 TESTOR: On-the-Fly Conformance Test Case Generation 71

4.3.1 Architecture . 71
4.3.2 On-the-fly test selection algorithm 73
4.3.3 Examples of different ways to express a test purpose 74
4.3.4 Experimental comparison of TESTOR and TGV 77
4.3.5 Comparison of TESTOR and other MBTs 80

4.4 Testing the TLS Handshake Model with TESTOR 81

5 Validation of GALS Systems 85
5.1 GALS Example: An Autonomous Car . 85
5.2 GRL Model of the GALS System . 86
5.3 Model Checking of the GALS Behavior . 92
5.4 Manual Testing of a Synchronous Component 94
5.5 Test Projection and Exploration . 97

5.5.1 Test graph projection . 97
5.5.2 Translating and renaming . 99
5.5.3 Test graph exploration . 99

6 Conclusion 105

A Formal Model of the MAA in Lustre 109
A.1 Definitions for type Bit . 109
A.2 Definitions for Type Byte . 110
A.3 Definitions for Type OctetSum . 123
A.4 Definitions for Type Half . 124
A.5 Definitions for Type HalfSum . 125
A.6 Definitions for Type Block . 126
A.7 Definitions for Type BlockSum . 132
A.8 Definitions for Type Pair . 133
A.9 Definitions for Type Key . 134
A.10 Definitions (1) of MAA-specific Cryptographic Functions 134
A.11 Definitions (2) of MAA-specific Cryptographic Functions 136
A.12 Definitions (3) of MAA-specific Cryptographic Functions 137
A.13 Test Vectors (1) for Checking MAA Computations 140
A.14 Test Vectors (2) for Checking MAA Computations 142
A.15 Test vectors (3) for Checking MAA Computations 148
A.16 Test Vectors (4) for Checking MAA Computations 152
A.17 Functional Testing of MAA with Lurette 155

B Formal Model of a Simple Autonomous Car in GRL 157
B.1 Definitions for the Synchronous Blocks . 157
B.2 Definitions for the Asynchronous Mediums 160

CONTENTS vii

B.3 Definitions for the Asynchronous Environement 161
B.4 Definitions of the global GALS system . 165
B.5 Definitions of LNT library . 166

B.5.1 Definitions of LNT Graph Functions and Types 166
B.5.2 Definitions of LNT Datatypes . 170
B.5.3 Definitions of the Scenario . 179

C XTL Scripts Extracting Synchronous Test Scenarios 183
C.1 The Generation of Input Constraints (extract input) 183
C.2 The Generation of Oracles (extract oracle) 185

viii CONTENTS

List of Figures

1.1 Overview of the testing methodology for GALS systems 5

2.1 The LTS corresponding to a simple coffee/tea vending machine 8
2.2 The IOLTS (and the IOTS in green) corresponding to the LTS in Figure 2.1 9
2.3 Overview of the Lurette testing tool . 15
2.4 Simple scenario automaton with the inputs values of the heater

(actual_room_temperature and season) . 16
2.5 Part of the oracle automaton with output new_room_temperature and input

season, corresponding to an initial value of 20 for actual_room_temperature 17
2.6 Examples of the implementation relation ioco. 31
2.7 Model M of the running example [JJ05] . 33
2.8 Test purpose TP of the running example [JJ05] 33
2.9 The visible behavior SPvis , complete test graph CTG (gray), and a test case

TC (dark gray) of the running example [JJ05] 34
2.10 Simple smart room temperature management 36
2.11 Architecture of the GRL model of the room temperature management . . . 38
2.12 Overview of the tools and languages selected for this thesis 45

3.1 MAA data flow . 48
3.2 Mode of operation of the MAA . 50
3.3 The node MAC . 53
3.4 The function prelude . 54
3.5 Overview of the Lurette testing tool . 55
3.6 The MAC node rewritten . 56
3.7 Environment . 56
3.8 Tests (T3) inspired by Table 5 of [DC88]. 57
3.9 Oracle . 58

4.1 TLS handshake client . 65
4.2 TLS handshake server . 66
4.3 Architecture of TESTOR . 71
4.4 The visible behavior SPvis , complete test graph CTG (gray), and a test case

TC (dark gray) of the running example [JJ05]. 73

ix

x LIST OF FIGURES

4.5 TC I: TLS handshake with classical TLS 1.3 order 81
4.6 TC II: TLS handshake aborted with an unexpected Alert 81
4.7 TC III: TLS handshake with renegotiation 82

5.1 Simple autonomous cars . 86
5.2 Geographical map example with the autonomous car and a pedestrian . . . 87
5.3 Architecture of the GRL model of an autonomous car 88
5.4 GRL geographical map representation . 89
5.5 Geographical map, with natural numbers identifying the streets fragments. 94
5.6 Simple scenario automaton . 95
5.7 Overview of the derivation of synchronous test scenarios by projection and

exploration of an asynchronous complete test graph CTG 97
5.8 Test Purpose T1 . 98
5.9 Overview of the testing methodology for GALS systems 103

List of Tables

2.1 Synchronous test generation tools . 15
2.2 Comparison of ioco model-based testing tools 32
2.3 Approaches to model GALS systems . 37

4.1 Run-time performance for selected examples 77

5.1 Sizes and run-time performance for the complete test graphs for the test
purposes . 98

5.2 Sizes and run-time performance for the tests generated for the test purposes 99

xi

Chapter 1

Introduction

“On March 18, 2018, in Tempe, Arizona at 10pm, for the first time, an autonomous
vehicle, more particularly the Uber SUV, hit and killed a pedestrian. Per that report, the
Uber car’s radar and LiDAR sensors were able to detect an object in the path of the vehicle
(the pedestrian) about six seconds before the crash, but it misclassified her as an unknown
object, then a vehicle, then finally a bicycle. At 1.3 seconds before impact, the system tried
to initiate an emergency braking maneuver, but Uber had deactivated the vehicle’s factory-
equipped automated emergency braking system to help ensure less erratic testing.” [Eco18]

This crash, which killed a pedestrian, is the consequence of an error in the system con-
trolling the car. The LiDAR (Light Detection and Ranging) sensor can detect obstacles
perfectly well in the dark, with the same precision as in daylight. However, the sensor
is only responsible for the perception of the environment and does not make the decision
to brake the car, to slow down or to choose another route: these decisions are up to the
decision controller of the vehicle, which has to interpret and use the sensor data to initiate
appropriate actions.

The Uber car is an example of a critical system, i.e., a system whose failure or malfunction
may result in at least one of the following outcomes: death or serious injury to human,
loss or severe damage to equipment, and environmental harm. Nowadays, critical systems
can be found in almost any domain, such as infrastructure, medicine, nuclear engineering,
transport (railway, aviation, automobile, spaceflight). Because a malfunction of these
systems might endanger human life or cause an environmental damage, ensuring correct
functioning of critical systems is more important than ever.

Testing is still one of the most common practices to ensure that a system does but only
what it was designed to do. Testing enables to identify errors in a system and also any
missing requirements in the design of a system. Testing can be done manually or using
automated tools. One can distinguish three testing approaches. One can either test the
internal structure, design, and coding of the system, which is called white box or glass
testing. For instance, the system performing the perception of a LiDAR in an autonomous

1

2 Chapter 1. Introduction

car could be tested by analyzing its internal code. Otherwise, one can test the behavior,
without looking at the internal code structure, implementation details and knowledge of
internal system internals, which is called black box testing. For instance, the same system
performing the perception of a LiDAR can be tested by just focusing on the inputs and
observing the outputs without knowing the internal implementation. White-box testing
is difficult to achieve, because in order to test the global system one should access all its
internal details, which costs time and memory if it is even feasible at all. On the other hand,
black-box testing is sometimes too restrictive, especially when testing security systems,
where the principal information is hidden in the internal system. Between black-box and
white-box testing, an intermediate testing approach exists, called grey-box testing, where
the dynamic behavior of the system is described e.g., using high-level models in terms of
states and transitions systems (also called automata). Grey-box testing is based entirely
on the requirements and specifications. In this dissertation, we focus on grey-box testing,
and more particularly using formal methods for testing [BGM91, Gau95], as it is required
for the validation of critical systems [MLD+13].

Formal methods are mathematically well-founded techniques designed to assist the devel-
opment of correct complex systems [GG13]. A central idea of formal methods is to consider
systems as mathematical objects that can be described and analyzed rigorously. For the
description, formal methods are often associated with computer languages having a formal
semantics that could either describe the properties expected from a system or the observ-
able behavior of the system. For the analysis, formal methods are often equipped with
tools, ensuring that the system will function as expected, under certain assumptions. A
formal model can be used to verify and test a system. An important difference between
testing with formal methods and traditional testing techniques is the capacity of formal
methods to automatically analyze and test a large amount of possible and (by construction)
relevant behaviors of the system, and not only a few ones. Relevant behaviors characterize
interesting situations, including the ones that the system should do, that the system should
not do, and the ones stressing the system. This is essential for critical systems, where the
correct functioning of the system has to be mathematically demonstrated, and not only
estimated.

Model-Based Testing (MBT) [BJK+05] is a grey-box testing technique taking advantage
of a formal model of a system to automate the generation of relevant test cases. Here, the
model represents the expected behavior of the system, in other words, it should contain all
possible behaviors of the system. The model can also include a description of the system’s
environment, so as to precisely describe what the system expects from its environment,
i.e., what the environment can do, and what it cannot do. Relevant test cases are then
generated from this model, to ensure that the tester examines the system behavior from
as many angles as possible. A test case is a set of step-by-step instructions to test if the
system behaves as required. A test case usually contains the test steps, the expected result,
and the verdict corresponding to the result of the test execution. The MBT technique is
particularly suitable for concurrent systems, such as communication protocols [WTK00],
distributed systems [GBHG14], and multiprocessor architectures [GVZ00]. The model

3

describes the system’s requirements, thus the test cases generated are directly linked to
these requirements, which allows readability, understandability, and maintainability of the
test execution. Model-based testing also helps to ensure a repeatable scientific basis for
testing and has the potential to measure the coverage of the system’s behavior [Utt05].
Moreover, it is a way to reduce effort and cost and improve the quality of testing [BJK+05].
In this thesis we focus primarily on model-based testing of a specific kind of critical systems,
namely those that contain a reactive controller.

Reactive controllers [Ber89, Hal98] are characterized by the fact that they continuously
interact with their environment, by observing it (via input sensors) and modifying it (via
output commands) to obtain the desired behavior. A simple example is the control of
the room temperature by commanding a heater. The synchronous approach [Hal93] to
reactive systems programming supposes that the controller operates triggered by a clock,
such that at each clock pulse the system computes the outputs from the current inputs and
its internal state before the next clock pulse. Thus, time can be considered as discrete and
computation as atomic. There is no need to consider fluctuation and clock synchronization
difficulty, such as unpredictable message delay, different speed of components, and physical
distance. The conjunction of component actions at the same clock pulse constitutes an
action of the whole system. This synchronous approach is mainly supported by synchronous
languages, such as Esterel [BG92], Lustre [HCRP91], and Signal [BGJ91]. The simplicity
of this abstraction is the reason for the success of the synchronous approach, which has
been widely used for over two decades for the design and analysis of safety critical systems
in various application domains (e.g., avionics, railway transportation, nuclear plants, etc.).
For instance, Lustre, industrialized under the name SCADE [Ber07], serves for the control
of nuclear power plants, flight control software and in railway systems. SCADE models
can be validated with the synchronous MBT tool GATeL [MA00].

Critical systems are more and more often distributed, involving several components running
independently without a global clock and interacting with each other. For such systems,
the strong synchronous assumptions about time and order of events is not realistic any-
more, because of the concurrency between independent components of these systems and
message-passing communication. The asynchronous approaches [GR84, Gol88, GL88] are
more appropriate for describing these systems, the concurrency between components being
reduced to a nondeterministic choice between the possible sequences of the component ac-
tions, and these approaches are able to capture the nondeterminism induced by unknown
message transmission delays. This model of concurrency is mainly supported by process
algebras, such as CCS [Mil89], CSP [Hoa85], ACP [BK85], and LNT [GLS17]. Particularly
suited for nondeterministic concurrent systems, conformance testing aims at extracting
from a formal model of a system a set of test cases to assess whether an actual implemen-
tation of the system under test conforms to the model. In this setting, the most prominent
conformance relation is input-output conformance (ioco) [dT01, Tre08].

Nowadays, modern asynchronous systems, such as autonomous cars or the Internet of
Things, are not only increasingly large and distributed, but also consisting of multi-

4 Chapter 1. Introduction

ple synchronous components that execute independently and interact with each other.
These systems are adequately described as GALS (Globally Asynchronous, Locally Syn-
chronous) [Cha84], i.e., composed of concurrent synchronous reactive systems interacting
with each other asynchronously, by means of message passing with non-zero communication
delays. For instance, in an autonomous car, the perception devices (radar, GPS, cameras,
etc.) and the engine controls (decision-maker) are separate components, located in various
places of the car, operating independently and connected through communication links.
Each of these components might be considered and implemented as a synchronous reactive
system, but the complete autonomous car is rather a GALS system.

The GALS approach allows the smooth integration and reuse of existing and time-proven
synchronous components when designing new systems that no longer fit into the framework
of synchronous programming. Rigorous design approaches, based on formal methods and
assisted by efficient validation and verification tools exist for the separate modeling and
analysis of synchronous or asynchronous parts of a GALS system, but their combination
can further improve the effective support in the design of a complete GALS system. In this
thesis we consider three aspects of MBT for GALS systems: synchronous, asynchronous,
and their combination.

Contributions

In this thesis we bring two main contributions.

First, we propose a new on-the-fly MBT tool called TESTOR, which explores the model
and generates automatically a set of controllable test cases or a complete test graph to
be executed on a physical implementation of the system. The generated test cases are
automata that attempt to drive a system under test towards these desired states. TESTOR
extends the algorithms of the conformance test generation tool TGV [JJ05] to extract test
cases completely on the fly (i.e., during test case execution against the system under test),
making TESTOR suitable for online testing. Concretely, given a formal specification of
a system and a test purpose, TESTOR automatically generates test cases, which assess
using black box testing techniques the conformance to the specification of a system under
test. In this context, a test purpose describes the goal states to be reached by the test
and enables one to indicate parts of the specification that should be ignored during the
testing process. Compared to the conformance test generation tool TGV, TESTOR has a
more modular architecture, based on generic graph transformation components, is capable
of extracting a controllable test case completely on the fly, and enables a more flexible
expression of test purposes, taking advantage of the multiway rendezvous of LNT.

Then, we propose a testing methodology for GALS systems that integrates (1) synchronous
and asynchronous concurrent models; (2) functional unit testing and behavioral confor-
mance testing; and (3) various formal methods and their tool equipments. Figure 1.1 gives

5

conformance test generation synchronous unit testingprojection & translation & exploration

Lurette
verdict

I/O

(Lustre)
System Under Test

test purpose

(BCG)

scenario
(Lutin)

CTG

(BCG)

labels

input

model

(GRL)

projection

exploration

translation
TESTOR

(Lustre)

oracle &
coverage

Figure 1.1: Overview of the testing methodology for GALS systems

an overview of our GALS testing approach, combining the existing synchronous testing
tool Lurette presented in Chapter 2 and used in Chapter 3 and our new on-the-fly confor-
mance test case generation tool TESTOR described in Chapter 4. The idea is to exploit
the information gathered by the analysis of a globally asynchronous system to automate
and finely tune the testing of its individual synchronous components. We illustrate our ap-
proach on a simple, but relevant example, namely an autonomous car, which has to reach
a destination, following roads on a map, in the presence of moving obstacles. The car is
modeled as a GALS system, comprising synchronous components for perception, decision,
and action. As far as we know, this is the first approach of model-based testing for GALS
systems.

Structure of this thesis

This dissertation focuses on the MBT of GALS systems, taking into account synchronous
and asynchronous aspects. Chapter 2 briefly presents the scientific background necessary
for the subsequent chapters and also places our work with respect to the state of the art.

Chapter 3 explores formal techniques for the functional testing of synchronous compo-
nents, using the testing tool Lurette [JRB06] for synchronous programs. As a case-study,
we reconsider the Message Authenticator Algorithm (MAA), a pioneering cryptographic
function designed and standardized by ISO in the mid-80s. Formally modeling and val-
idating the MAA as a synchronous dataflow enabled us to discover various mistakes in
prior (informal and formal) specifications of the MAA, the test vectors and code of the
ISO standards, and in some of the compilers and verification tools used by us.

Chapter 4 describes the formalization and the functional testing of a communication
protocol and presents our new on-the-fly conformance test case generation tool, named
TESTOR [MMS18], developed on top of the CADP toolbox [GLMS13]. As a case-study,
we reconsider the formalization of the draft Transport Layer Security (TLS) handshake
version 1.3 [IET18], a protocol responsible for the authentication and exchange of keys
necessary to establish or resume a secure communication. Our TLS model has been vali-

6 Chapter 1. Introduction

dated using TESTOR.

In Chapter 5, we leverage the conformance test generation for asynchronous systems to
automatically derive realistic scenarios (input constraints and oracles), which are necessary
ingredients for the unit testing of individual synchronous components, and are difficult
and error-prone to design manually. We illustrate our approach on a simple, but relevant
example of an autonomous car modeled as a GALS system.

Finally, Chapter 6 concludes by summarizing our main contributions and discussing direc-
tions for future work.

Chapter 2

Formal Modelling and Validation of
GALS Systems

This chapter presents first some preliminary notions that we use in the rest of this thesis.
It also defines the perimeter of this thesis by listing aspects considered to be out of scope,
together with the reasons justifying this choice.

The rest if this chapter is structured in three parts, corresponding to the different techniques
required for the analysis of GALS systems: (1) techniques for synchronous components; (2)
techniques for the asynchronous communication; and (3) techniques for complete GALS
systems. For each part we present tools, languages, and an overview of the ones we used.
A reader familiar with our languages and tools can safely skip the overviews.

2.1 Preliminaries

In order to describe formally the behavior of discrete and concurrent systems, one may use
Labelled Transition Systems (LTS). In this section we define informally and formally LTS,
and we describe three approaches to validate them, namely equivalence checking, model
checking, and testing.

2.1.1 Labelled Transition Systems (LTS)

An LTS is a state-transition graph, in which the states do not provide information except for
the indication of the initial state. The information is represented in the labels (or actions)
related to transitions. Formally, an LTS (Q,A, T, q0) consists of a finite set of states Q,
a set of actions A, a transition relation T ⊆ Q × A × Q, and an initial state q0 ∈ Q. A
transition (q1, a, q2) ∈ T (also noted q1

a→ q2) indicates that the system can move from

7

8 Chapter 2. Formal Modelling and Validation of GALS Systems

coffee coin tea

ττ

q0

q2q1q3

Figure 2.1: The LTS corresponding to a simple coffee/tea vending machine

state q1 to state q2 by performing action a. Internal transitions, i.e., transitions whose label
is not visible, are labeled by the action τ . An LTS is said nondeterministic if there is more
than one initial state or if it exists a state q ∈ Q and an action a ∈ A, where more than one
state can be reached from q by performing the same action a. An example LTS is shown in
Figure 2.1, modelling the simple behavior of a coffee vending machine. The set of states of
this LTS is Q = {q0, q1, q2, q3}. The set of actions is A = {coin, coffee, tea,τ}. The initial
state is q0. An LTS can be represented explicitly, such as the textual AUTomaton (AUT)
format [FGK+96] and the Binary Coded Graph (BCG) format [Gar91]; or implicitly, by
providing the post function iterating over the outgoing transitions of a given state, for
instance using the Open/Caesar API [Gar98].

The LTS model of a system represents exhaustively its behavior, which can be described
intuitively as follows. The LTS starts with its initial state. From this initial state, the
LTS evolves according to its transition relation. Very often, more than one transition will
be possible from a given state. In that case, a transition is selected non-deterministically.
Coming back to Figure 2.1, from the initial state (q0), only one transition is possible. So,
the LTS of the vending machine will always perform a coin action first and reach q1. In q1,
there are two internal steps (τ). The LTS system will non-deterministically choose one of
them and then either perform a coffee or a tea action.

Individual execution sequences in an LTS are called traces. A trace of size n ∈ N is a
sequence of actions a1, a2, . . . , an ∈ A such that q0

a1−→ q1 ∈ T, q1
a2−→ q2 ∈ T, . . . , qn−1

an−→
qn ∈ T . A trace starts always with the initial state (q0). A trace is potentially infinite,
due to the presence of cycles in the LTS. The traces of the LTS in Figure 2.1 consist of
(infinite) repetitions of one or both of the following cycles:

i) q0
coin−−→ q1

τ−−→ q2
tea−−→ q0

ii) q0
coin−−→ q1

τ−−→ q3
coffee−−−→ q0

In this thesis, we also use a particular kind of LTS with the distinction between input
and output actions (LTS (Ai ∪ Ao)), called Input-Output Labelled Transition Systems
(IOLTS) [Tre99]. An IOLTS is an LTS (Q,A, T, q0) where the set of actions is partitioned
in A = AI ∪ AO ∪ {τ}, where AI, AO are the subsets of input and output actions, and
τ is the internal (unobservable) action. Input (resp. output) actions are noted ?a (resp.

2.1. Preliminaries 9

! coffee ? coin ! tea

? coin

? coin

? coinττ

q0

q2q1q3

Figure 2.2: The IOLTS (and the IOTS in green) corresponding to the LTS in Figure 2.1

!a). An example of IOLTS is illustrated in black in Figure 2.2, modelling the behavior
of a vending coffee machine. The machine receives coins, represented as input (?coin)
and delivers beverages, represented as outputs (!tea and !coffee) in the LTS. In order
to avoid any bias in the observation of the input actions of an IOLTS, the IOLTS can be
input enabled. This particular kind of IOLTS, with the property that any input action is
always enabled in any state, is called IOTS [Tre99]. An example of IOTS is illustrated in
Figure 2.2 with the additional input transitions in green.

2.1.2 Equivalence checking

Equivalence checking is a verification method consisting in comparing two LTSs modulo
an equivalence relation. There exist several equivalence relations in the literature, such as
strong equivalence, branching equivalence [vGW89], trace equivalence [FM91], weak trace
equivalence [BHR84], etc. We focus on two of them, namely the branching equivalence and
the weak trace equivalence.

Two LTS M = (Q,A, T, q0) and M � = (Q�, A�, T �, q�0) are equivalent according to an equiva-
lence relation ∼ (written M ∼ M �), if and only if their initial states are equivalent modulo
∼ (written q0 ∼ q�0).

Branching equivalence Two states p and q are branching equivalent (called p ∼bra q),
if and only if, it exists a relation Rbra such that pRbraq and:

1. for each transition p
a−−→ p� ∈ T

• either a = τ and p�Rbraq

• or it exists a sequence q
τ∗−−→ q�

a−−→ q�� ∈ T �∗ such as pRbraq
� and p�Rbraq

��

2. for each transition q
a−−→ q� ∈ T �

• either a = τ and pRbraq
�

• or it exists a sequence p
τ∗−−→ p�

a−−→ p�� ∈ T ∗ such as p�Rbraq and p��Rbraq
�

10 Chapter 2. Formal Modelling and Validation of GALS Systems

Weak trace equivalence Two states p and q are weak trace equivalent (called p ∼wtr q),
if and only if:

1. for all n ≥ 0 and all sequences p
τ∗.a1...τ∗.an−−−−−−−→ p� ∈ T ∗, there exists a sequence

q
τ∗.a1...τ∗.an−−−−−−−→ q� ∈ T �∗

2. for all n ≥ 0 and all sequences q
τ∗.a1...τ∗.an−−−−−−−→ q� ∈ T �∗, there exists a sequence

p
τ∗.a1...τ∗.an−−−−−−−→ p� ∈ T ∗

The CADP (Construction and Analysis of Distributed Processes) verification
toolbox [GLMS13] provides the tools BISIMULATOR [BDJM05, MO08] and
BCG CMP [Vas10] to compare LTSs, the tool REDUCTOR [Vas04] to reduce LTSs ac-
cording to the strong or weak trace equivalence, and the tool BCG MIN [BHH+06] to
minimize LTSs according to strong or branching equivalence.

2.1.3 Model checking

Model checking [CGP01] is a verification method establishing that a model of a system
(respectively, component) satisfies a property. A property defines how the system should
be designed and which features it should provide. Informally, model checking produces a
Boolean answer to the question: Does a given system satisfy a property ? Most model
checking approaches add a diagnostic that answers to the question: Where is this property
not satisfied by this system ? Concretely, model checking defines a satisfaction relation
between a system (respectively, component) and a property as a mathematical binary
relation that is true if and only if the property holds for the system, i.e., if the system
correctly implements the property. The system is described by a finite state model (e.g.,
an LTS) and a property is expressed in temporal logic.

Examples of properties are simple assertions, stating that a predicate on system variables
holds whenever the execution reaches a particular control location (e.g., the transition
coffee is reachable whenever a coin with the value 20 was inserted), or termination prop-
erties (e.g., “the vending machine system terminates on a coffee or tea transition”).
Principally, properties are classified as liveness, fairness and safety. A liveness property ex-
presses that something good eventually happens, e.g., all transition sequences starting after
an action coin eventually lead to an action tea or coffee. A fairness property expresses
that, under certain conditions, something should always happen, e.g., after an action coin,
all fair execution sequences (which avoid the infinite repetition of cycles) will lead to an
action tea or coffee. A safety property expresses that something bad never happens, e.g.,
if the action coin happens, then while there is no action tea or coffee, no other action coin

may happen.

Numerous model checkers exist for synchronous and asynchronous systems, verifying in the
supported modeling formalism and property languages (stochastic, probabilistic, timed,
etc.) including (in alphabetical order): CADP [GLMS13], CPAchecker [BK11], Cubi-

2.1. Preliminaries 11

cle [CGK+12], DREAM [PCdVA12], FDR [GABR14], Java Pathfinder [VHBP00], KIND
2 [CMST16], LESAR [SSC+04], mCRL2 [CGK+13], NuSMV [KTK09], Prism [HKNP06],
SAL 2 [dMOR+04], SLAM [BR01], SPIN [Hol97], TLA+ [Lam93], UPPAAL [BLL+95],
XEVE [Bou98], and Zing [AQR+04].

2.1.4 Testing and coverage criteria

Exhaustive testing is infeasible in practice, because the systems are complex and their
corresponding LTSs are large, the space of possible test cases being generally too big to
cover exhaustively in a reasonable time. Thus, strategies are required to decide when to
stop testing. Coverage criteria serve to decide when to stop testing, by measuring the
amount of the system already tested. More particularly, a coverage criterion is a measure
used to describe the degree to which the internal structure of a system has been exercised
when a particular a set of test cases, called a test suite, runs. Coverage criteria could
also guide automatic test generation, otherwise the test generation is simply random. One
can distinguish two complementary coverage methodologies. Functional coverage tries to
measure how scrupulously a system under test is tested against its informal specification,
e.g., system requirements. Functional coverage is helpful to reveal functionality defects.
Structural coverage tries to quantify how much the internal structure of a system under
test is exercised during its test process. Structural coverage is helpful for detecting unused
fragments of the system, as well as highlighting the fragments that have not been properly
exercised.

In this section, we focus on a particular structural coverage for model based testing, called
model coverage [UPL12]. Model coverage quantifies how much of the internal structure of
the model (e.g., a LTS) is explored and unexplored during the test process. Five coverage
criteria defined with respect to an LTS for the model coverage of a concurrent system are
proposed in [TLK92]:

1. all labels criterion, which covers all labels of the LTS at least once, a same label may
occur on several transitions in the LTS;

2. all states criterion, which covers all states of the LTS at least once;

3. all transitions criterion, which covers at least once all transitions in the LTS;

4. all proper paths criterion, which covers all finite trace in the LTS without any identical
states;

5. and all paths criterion, which covers all paths of the LTS at least once, which is
impossible to achieve in finite time if the LTS contains cycles.

A specific model coverage, called dataflow coverage criteria [FW88, Lak06], can be applied
to any modelling notation that contains variables. For instance, the academic tool Lus-
tructu [Lak06, LP05] includes these criteria for the synchronous dataflow language Lustre.

12 Chapter 2. Formal Modelling and Validation of GALS Systems

One can also directly specify custom criteria in the model test coverage module of the
SCADE environment [Ber07].

For large systems, it is not realistic to describe explicitly the LTS of the system. Such
large LTSs are described using higher level formalism, and in the next sections we present
synchronous, asynchronous, and GALS specific higher level formalisms.

2.2 Synchronous Models and their Validation

The synchronous paradigm [Hal93] for developing reactive systems is based on the syn-
chronous hypothesis : the time is discrete, and the inputs of the system are only changed
at a clock tick. Thus, defining the outputs of the system by equation on the inputs and
the current state is sound if the outputs are computed faster than the sampling rate. Syn-
chronous models enable to describe, simulate and verify reactive systems and to compile
the code or the hardware ensuring the same behavior described in the model, if the syn-
chronous hypothesis is verified. Synchronous programs have a cyclic behavior: at each
cycle, all inputs are read, processed and all outputs are transmitted simultaneously and
theoretically instantly. In the state of the art, one can principally distinguish two syn-
chronous paradigms of programming:

• The synchronous dataflow languages as Lustre [HCRP91]. The dataflow model is
based on a block diagram description. A block diagram can be described by a system
of equations. A system is made up of a network of operators acting in parallel and
at a pre-established pace.

• The control oriented languages as Esterel [BG92, PEB07]. This programming
paradigm is particularly suited to the description of systems whose behavior changes
frequently and depending on the data.

In this thesis we will use the synchronous data flow language Lustre taking advantage of
its connection to robust testing tools, actively supported and maintained by developers.
Moreover, Lustre is at the basis of industrial environments, such as SCADE [Ber07].

2.2.1 Overview of the Lustre language

In this section we give an overview of the Lustre language, readers familiar with Lustre can
safely skip this section. Lustre [HCRP91] is a synchronous language based on the dataflow
model. At each cycle, the value of the previous inputs can be memorized. The outputs of
a program at a given instant may depend on these memorized inputs, but not on future
inputs.

The relations between inputs and outputs are expressed using constants, operators, auxil-
iary variables, and functions. Lustre provides some predefined types, i.e., Boolean (bool),

2.2. Synchronous Models and their Validation 13

integer numbers (int), real numbers (real), and strings (string). For example, the follow-
ing Lustre constant average_temperature is defined as the integer 20, and could be used
to specify the desired average temperature in a room for a heater.

(∗ temperature in Celsius ∗)
const average_temperature:int = 20;

The user can also define record, array and enumeration types. For example, the following
Lustre enumeration seasons corresponds to the four seasons:

type seasons = enum {Winter, Spring, Summer, Autumn};

In addition to built-in operators for the predefined types, and all classical arithmetic and
logic operators, Lustre enables to define functions. For example, the following Lustre
function season_to_temperature associates a temperature to be set by the heater for each
season.

function season_to_temperature (s: season)

returns (temperature: int);

let
temperature = if s = Winter then average_temperature + 2

else if s = Spring then average_temperature

else if s = Summer then average_temperature - 2

else average_temperature + 1;

tel;

Lustre offers also the possibility to define new, complex operators, called nodes. Each
description written in Lustre is built up of a network of nodes. A node describes the
relation between its input and output parameters using a system of equations. A node has
a set of unordered equations that define each of the output parameters according to the
actual or previous input parameters. Being a data flow language, Lustre handles infinite
sequences of values, called streams.

In addition, Lustre has two specific flow manipulation operators for the nodes:

• the memory operator pre (“previous”) refers to the value of an input or output
variable at the previous cycle;

• the initialization operator −> (“followed by”) initializes a stream.

The code below represents a Lustre node corresponding to a simple synchronous heater.
The heater increases gradually the temperature (new_room_temperature), taking into ac-
count the previous temperature (pre new_room_temperature) and the expected tempera-
ture of a room (the variable expected_temperature). The input actual_room_temperature,
denoting the actual temperature of the environment (the room), is only used to ini-
tialize the value of the room temperature. The input season, denoting the actual sea-
son, is always taken into account to compute the expected temperature according to

14 Chapter 2. Formal Modelling and Validation of GALS Systems

the season. The output new_room_temperature is initialized with the actual temperature
(actual_room_temperature).

node heater (actual_room_temperature: int, season: seasons)

returns (new_room_temperature: int);

var expected_temperature: int;

let
expected_temperature = season_to_temperature (season);

new_room_temperature = actual_room_temperature −>
if pre new_room_temperature < expected_temperature then
pre new_room_temperature + 1

else pre new_room_temperature;

tel

For a more detailed presentation of Lustre see [JRH19].

2.2.2 Synchronous system validation

In this section, we present tools enabling the validation of reactive systems, more particu-
larly model checking and testing tools.

Synchronous models can be verified by using model checking. One can distinguish two kinds
of synchronous model checkers. Symbolic model checkers use logical representations of sets
of states, such as Binary Decision Diagrams (BDD) to describe regions of the state space
that satisfy the properties being evaluated such as: LESAR [SSC+04], NuSMV [KTK09],
SLAM [BR01] and XEVE [Bou98]. Model checkers based on satisfiability modulo theories
(SMT) solvers reason about infinite state models containing real numbers and unbounded
arrays, such as: KIND 2 [CMST16], Cubicle [CGK+12], and SAL 2 [dMOR+04]. In this
thesis, we did not use synchronous verification to validate synchronous components, but
we used synchronous test generation tools.

Model based testing of synchronous models includes automating test data generation.
Automating the test data generation consists in generating inputs for testing a synchronous
system. Often the inputs are generated from a model and a description of constraints on
the inputs of this model. The generation could also be guided by a scenario, in order
to generate relevant tests. The test generation can use a white box approach, such as
Gatel [MA00], or black box approach, such as Lutess v1 [dBORZ99], Lutess v2 [SP07],
Lurette [JRB06], and Testium [MDP14, MDP+16]. In this thesis, we focus on automating
the test data generation for testing the synchronous components of a GALS system.

Table 2.1 compares synchronous test data generators according to: (1) the testing paradigm
(white or black box); (2) the programming paradigm automating the test sequence genera-
tion, more particularly Constraint Logic Programming (CLP) or Binary Decision Diagrams
(BDD); (3) the presence of a scenario guiding the test sequence generation; and (4) the
presence of nondeterminism in the input constraint descriptions.

2.2. Synchronous Models and their Validation 15

inputs / outputs

verdict

environment constraints

test scenario

Lurette

SUT
system under test

oracle &
coverage criteria

Figure 2.3: Overview of the Lurette testing tool

Table 2.1: Synchronous test generation tools

tool
test programming

scenario language nondeterminism time
paradigm paradigm

Lutess v1 black BDD behavioral model no no
Lutess v2 black CLP no no no
Lurette black BDD Lutin scenario yes Lustre
Gatel white CLP no no Lustre

Testium black CLP SPTL scenario yes no

In this thesis, we use the black box testing tool Lurette for validating synchronous compo-
nents, taking advantage of its connection with the Lustre language.

2.2.3 Overview of the Lurette testing tool

In this section we give an overview of the testing tool Lurette [JRB06], readers familiar
with it can safely skip this section. Using formal specifications of the input constraints
and an oracle, Lurette automates both, the generation of appropriate inputs for the SUT
(system under test) and the decision about the test result.

Figure 2.3 (inspired by [JHR13, Figure 3]) gives an overview of Lurette. The tool takes
two inputs:

(i) a specification of the environment constraints in Lutin [RRJ08] to dynamically con-
strain the inputs;

(ii) an oracle in Lustre [HCRP91] implementing the test decision and the coverage-
computation of the generated and executed input sequences, and the coverage criteria
to evaluate these input sequences generated.

Lurette interacts with the SUT, logs the generated sequence of inputs and their corre-
sponding outputs in a file, and displays the test decisions. The admissible test inputs are
generally provided by a formal specification of the system environment. The correct corre-
sponding/respective outputs to an input vector are generally provided as formal properties
of the system.

16 Chapter 2. Formal Modelling and Validation of GALS Systems

1

0

32 4

(18, Winter) (26, Spring) (20, Autumn)(34, Summer)

Figure 2.4: Simple scenario automaton with the inputs values of the heater
(actual_room_temperature and season)

Lutin input constraints

The test sequence is generated uniformly and randomly by Lurette. Lurette builds and
submits to the SUT an input vector respecting the input constraints description. Then
the tool calculates a new input vector for SUT, based on the current state of the input
constraints and the last output of the SUT.

Lutin is a language to program stochastic reactive systems. It has been designed to model
input constraints and perform automated testing of reactive systems with Lurette. Lutin
supports the numerical and Boolean types of Lustre, as well as all Lustre statements, such
as variable assignment, conditional (if-then-else), previous (pre) and initialization oper-
ators (−>). In addition, Lutin has three specific operators: sequence (fby, for “followed
by”), Kleene star (loop), and probabilistic choice (|). Consider for example the following
Lutin node corresponding to the simple scenario defined by the automaton1 in Figure 2.4,
where the input values actual_room_temperature and season of the node heater (see Sec-
tion 2.2.1) can possibly take 18 and Winter respectively, or 26 and Spring, etc. Note that
the first actual_room_temperature input is only taken into account in the first activation of
the heater, then for the next iterations only the season input values are taken into account.
Because Lutin does not provide structured datatypes, we have to add four constants for
the four seasons.

node input_constraints () returns (actual_room_temperature, season: int) =

let Winter:int = 1, Spring:int = 2, Summer:int = 3, Autumn:int = 4 in
loop {

| actual_room_temperature = 18 and season = Winter

| actual_room_temperature = 26 and season = Spring

| actual_room_temperature = 34 and season = Summer

| actual_room_temperature = 20 and season = Autumn

}

At each iteration, Lurette generates inputs by executing one transition of the Lutin node.

1This automaton is not an LTS.

2.2. Synchronous Models and their Validation 17

(22, Autumn)(22, Winter)(21, Winter)

5

10 2

10

9

7

3

4 6 8

(22, Spring)

(22, Summer)

11

(20, Autumn)

(21, Summer)

(21, Autumn)

(20, Spring)

(21, Spring)

(20, Summer)

Figure 2.5: Part of the oracle automaton with output new_room_temperature and input
season, corresponding to an initial value of 20 for actual_room_temperature

Each input can only be a Boolean, or a numerical type (integer, real), mostly because
of the data types provided by the Lutin language. Note that if the input values are not
explicitly constrained in the Lutin specification, random numbers will be generated.

Lustre oracle

In order to determine whether the outputs generated by the SUT are correct or not, one
should define an oracle. An oracle should contain all possible pairs of inputs with the cor-
responding expected outputs, and signal an error for each unexpected output. In addition
to checking correctness, Lurette supports additional Boolean outputs (called coverage vari-
ables) to measure coverage. While testing the SUT, Lurette records the coverage variables
that were at least once true, and computes the ratio of covered versus uncovered variables.
The list of coverage variables with their status is stored in a file, and is updated by any
subsequent run of Lurette for the same SUT, input constraints, and oracle.

For instance, the temperature of the heater (new_room_temperature) can only increase, and
only if the previous room temperature (pre new_room_temperature) is lower than the ex-
pected temperature (expected_temperature), defined for each season. Because the heater
takes into account only the first actual room temperature (actual_room_temperature), the
possible values of the heater (new_room_temperature) depend on the value of the first actual
room temperature and on the next room temperature (new_room_temperature). Consider
for example all possible combinations of the input value (season) and the output value
(new_room_temperature) of the node heater: if we start with an actual temperature ini-

18 Chapter 2. Formal Modelling and Validation of GALS Systems

tialized with 20 in the automaton2 illustrated in Figure 2.5, then according to the season,
all possible temperatures of the heater can be explored. The oracle should take into ac-
count all these possible values, and also for all other possible initializations. The following
Lustre code corresponds to an excerpt of the oracle from the automaton illustrated in Fig-
ure 2.5. As the Lutin node input_constraints, the oracle takes the inputs and outputs
of the heater (season, temperature) as input and gives as outputs the verdict res, i.e.,
whether the observed outputs are those expected from the inputs. For instance, if the first
actual_room_temperature is 20, the temperature can only increase until 22, according to
the seasons and the previous temperature of the heater. The following oracle also computes
a coverage variable cover_seasons, measuring the coverage of all seasons at least once by
the generated input vectors.

const Winter = 1;

const Spring = 2;

const Summer = 3;

const Autumn = 4;

node oracle (season, temperature: int)

returns (res, cover_seasons: bool);

var s1, s2, s3, s4: bool;

let
res = true −>
(∗ if the first actual room temperature is 20 ∗)

((season = Winter and temperature = 21) or
(season = Winter and temperature = 22)

or (season = Spring and temperature = 20) or
(season = Spring and temperature = 21) or
(season = Spring and temperature = 22)

or (season = Summer and temperature = 20) or
(season = Summer and temperature = 21) or
(season = Summer and temperature = 22)

or (season = Autumn and temperature = 20) or
(season = Autumn and temperature = 21) or
(season = Autumn and temperature = 22)

(∗ the cases for the other first actual room temperature values ∗)
or ...);

(∗ each intermediate variables s1 − s4 are covering one season ∗)
s1 = false −> if season = Winter then true else pre s1;

s2 = false −> if season = Spring then true else pre s1;

s3 = false −> if season = Summer then true else pre s1;

s4 = false −> if season = Autumn then true else pre s1;

(∗ check the coverage of each season at least once ∗)
2This automaton is not an LTS.

2.3. Asynchronous Models and their Validation 19

cover_seasons = false −>
if s1 and s2 and s3 and s4 then true else pre cover_seasons;

tel

For a more detailed presentation of Lurette see [JRB06]. In the next section, we de-
scribe asynchronous model and validation for the asynchronous communication between
synchronous components.

2.3 Asynchronous Models and their Validation

Process calculi [AFV01] provide a formal means for the high-level description of interac-
tions, communications, and synchronizations between a set of independent components of
a concurrent system. They also provide rules to describe, manipulate, and analyze pro-
cesses. The interactions between independent processes are represented by message-passing
on communication gates (not modification of shared variables). Interleaving semantics is
used for the compositions of processes, i.e., if two processes P1 and P2 execute respectively
an action a1 and a2 in parallel, then the global behavior, represented by an LTS, will have
two possible paths: a1 then a2 and a2 then a1. In the asynchronous semantics two actions
never occur at the same time.

The ideas behind process algebra have been implemented in several languages includ-
ing: CCS [Mil89], CSP [Hoa85], ACP [BK85], LOTOS [BB88], mCRL2 [GMR+06], and
LNT [CCG+19]; and tools including: CADP [GLMS13], Concurrency Workbench [CPS89,
CPS93], FDR [GABR14], and mCRL2 [CGK+13].

In this thesis, we use LNT as specification language for obtaining LTSs models, mostly
because LNT is concise, expressive, easily readable, and user-friendly. Also LNT is the
recommended specification language of the CADP toolbox [GLMS13], which provides sev-
eral useful validation tools.

2.3.1 Overview of the LNT language

LNT is an improved version of formal specification language LOTOS [BB88], providing
more user-friendly notations than LOTOS, which combines traits from process calculi,
functional languages, and imperative languages. In order to let the reader understand the
LNT excerpts presented in Chapters 4 and 5, we present here a short introduction to the
LNT language. The reader familiar with LNT can safely skip this section.

LNT allows the definition of data types, functions, and processes.

LNT provides some predefined types, i.e., Boolean (bool), natural numbers (nat), integer
numbers (int), real numbers (real), characters (char) and strings (string). The user can

20 Chapter 2. Formal Modelling and Validation of GALS Systems

also declare abstract data types, through the use of the type keyword. For instance, we
define the enumeration type drink, corresponding to the different types of drinks of a
vending machine:

type drink is
coffee, tea, water, milk

end type

It is also possible to define record types, which have a single constructor regrouping several
types. For instance, the following definition of the type prices:

type price is
price (class: drink, cost: real)
with ’’get’’, ’’set’’

end type

The predefined functions get and set enable to access and respectively modify one field of
the record type price. For instance, the following LNT instructions of the ristretto price
illustrate two different ways to access and modify a field of this type:

ristretto := price (coffee, 20);
−− get the cost of the ristretto
get_cost (ristretto);
ristretto.cost;
−− modify the cost of the ristretto
set_cost (ristretto, 25);
ristretto.{cost => 2}

Note that comments in LNT can be single line comments, in the form −−comment, or
several lines, in the form (∗comment ∗).

LNT provides syntactic sugar to define types corresponding to the list, sorted list, set,
or array of another type. We can for instance have the following LNT list type coin,
corresponding to all possible coin values (from 5 cents to 2 euros), and the type coins

corresponding to a list of coins:

type coin is
5, 10, 20, 50, 1, 2

end type

type coins is
list of coin

end type

The latter is syntactic sugar for:

type coins is
cons (head: coin, tail: coins)

end type

2.3. Asynchronous Models and their Validation 21

Similarly, {} is converted to nil, and {0} is converted to cons (0, nil).

Functions define operations on types. The predefined data types are already provided with
predefined functions. Functions are defined with the function keyword. The passing of
parameters to a function can be done by copy (parameter in), or by reference (parameter
out or in out). By default, a parameter is passed by copy. A function can return a value
of a certain type. Recursive calls are allowed. Control structures, such as conditional
branching or loops, are available. Various statements can be used inside a function, for
instance correct termination (null), sequential composition (;), function return (return),
variable declaration (var), conditional construct (if), breakable loop construct (loop), for
loop construct (for). Value assignments to variables are performed with the := operator.
For instance, the LNT function n_coins takes as input a number n and a coin value, and
computes a list of n coins of this value:

function n_coins (n: int, value: coin) : coins is
var cash: coins in
cash := {};
loop L

if n <= 0 then break L

else
cash := cons (value, cash);
n := n - 1

end if
end loop;
return cash

end var
end function

The case operator allows pattern matching to be performed on values of any type. As
part of the pattern matching, the keyword any matches any value. The following function
returns the change if the cash passed as an argument is bigger than the price of the drink,
all coins of the cash are matched in order to compute the sum:

function give_change (cost: real, cash: coins) : real is
var sum: real in
sum := 0;
loop L in
if cash == {} then break L

else
case head(cash) in
5 -> sum := sum + 0.05

| 10 -> sum := sum + 0.10

| 20 -> sum := sum + 0.20

| 50 -> sum := sum + 0.50

| 1 -> sum := sum + 1

| 2 -> sum := sum + 2

22 Chapter 2. Formal Modelling and Validation of GALS Systems

end case;
cash := tail(cash)

end if
end loop;
return sum - cost

end var
end function

Note that LNT pattern matching should be exhaustive; the existence of a formal semantics
is guaranteed by static semantic constraints [Gar15] ensuring that all possible cases are
taken into account in the pattern matching.

A process executes actions. An action is either internal or a rendezvous synchronization on
a gate. The internal action in LNT is designated by i. External actions, i.e., realized on a
gate, are the observable events of the execution of a process. The formal semantics of LNT
defines how, from the specification of a process, one can build the LTS that represents the
possible behaviors of this process. An action on a gate is defined by the identifier of the gate,
possibly followed by a list of offers in parentheses. A gate is used to handle input/output
communications and synchronizations. Offers allow to exchange data on a gate, and they
can be an emission of an expression prefixed by an optional !, or the reception of a value
prefixed by ?. Here is for example a behavior that performs an internal action, followed
by an action on the gate cup where the first offer denotes the sending of a coin, and the
second one the receiving a drink.

var d: drink in
i;
cup (10, ?d);

end var

Gates can be untyped (any) or typed by a channel. The channel defines the gate profiles,
i.e., the possible offer combinations accepted by the gate. A channel is defined using the
channel keyword and must state one or more profiles, which are lists of parameters that
declare the number and types of authorized offers. Note that two gates are compatible
only if they have the same type, or they are both untyped (any). The channel none is
predefined and allows any profile offers. For instance, the following LNT channels define
one offer with the drink type and one offer with two possible types, respectively.

−− one offer with the drink type is allowed
channel single is (drink) end channel
−− several profiles allowed
channel change is
(coins),

(token)

end channel

2.3. Asynchronous Models and their Validation 23

Processes in LNT are defined with the process keyword. A process receives as argument
a list of gates on which it can perform actions. Every gate corresponds to a channel. In
order to make explicit the gates available for communication and synchronization between
processes, each processes has a list of gates parameters (between square brackets). Similar
to a function, a process can also receive a list of values as arguments (between parenthe-
ses). Statements presented for functions also apply to processes. A process terminates by
executing implicitly the special action exit.

A process can make nondeterministic choices between multiple actions using the select

operator. This operator allows to introduce several possible behaviors, which are delimited
by []. For instance, the following LNT process vending_machine and its corresponding LTS
make a nondeterministic choice between the action on the gate cup (coffee) and the one
on the gate cup (tea). Once it has realized an action of a branch of this non-deterministic
choice, it is forced to perform the rest of this branch.

process vending_machine [coins: none, cup: drink] is
coins;
−− nondeterministic choice (tea or coffee)
select

cup (coffee)

[]
cup (tea)

end select
end process

co
in

s
cup !tea

cup !coffee

exit

exit

q1

q4

q0

q2q3

Note that this corresponds to a state in the LTS with multiple outgoing transitions, where
each transition corresponds to one of the choices in a select construct.

Another construction can also perform nondeterminism in an expression. The keyword any

assigns any value of a type, possibly with a restriction introduced by the clause where. For
example, the following LNT process (and its corresponding LTS) can cyclically perform an
action on the gate cup passing a random type of drink different from water:

process vending_machine [coins: none, cup: drink] is
var kind: drink in
loop
coins;
−− nondeterministic choice of drink
kind := any drink where (kind != water);
cup (kind)

end loop
end var

end process

cu
p
 !co

ffee

co
in

s

cup !tea
cup !milk

q0

q1

The parallel composition operator can be used to handle communication between differ-

24 Chapter 2. Formal Modelling and Validation of GALS Systems

ent processes. Concretely, the parallel composing operator par is used to declare multiple
processes that run independently, in parallel, while specifying on which gates the processes
must synchronize their actions. Two or more processes synchronize and exchange infor-
mation during a rendezvous. A rendezvous involving an arbitrary number superior to two
processes is called multiway rendezvous. One can distinguish three kinds of treatments
on actions during a parallel composition. The actions on the gates for which no synchro-
nization is imposed are performed independently by each process. The termination action
(exit) is always synchronized between all processes in a parallel composition. Only actions
which are offered by every process in the parallel composition can be synchronized. The
following example shows the parallel composition of the tea_m and coffee_m processes,
which must synchronize their actions on gates coins, sugar, milk and honey:

−− coffee manager
process coffee_m [coins, coffee,

sugar, milk: none] is
coins;
coffee;
select
sugar

[]
milk

end select
end process

co
in

s
co

ff
ee

su
ga

r

milk exit

ex
itq1

q2

q3

q5

q6

q0

q4

−− tea manager
process tea_m [coins, tea,

sugar, honey: none] is
coins;
tea;
select
sugar

[]
honey

end select
end process

co
in

s

exit

ex
it

su
ga

rte
a

honey

q1

q2

q3

q5

q6

q0

q4

2.3. Asynchronous Models and their Validation 25

−− parallel composition
par coins, sugar, milk, honey in

coffee_m [coins, cofee, sugar, milk]

|| tea_m [coins, tea, sugar, honey]

end par

co
in

s

co
ffe

e tea

tea
co

ffe
e

sugar
exit

q0

q1

q2 q3

q4

q5 q6

The first action on gate coins is common to both processes. Then the actions on gates
coffee and tea do not have to be synchronized, so they can be realized in any order. Actions
on gates sugar, milk, and honey must be synchronized. When the process coffee_m is ready
for an action on the gate sugar or the gate milk, and the process tea_m is ready for action
on gate sugar or gate honey, so the only action that is possible for both processes is the
one on the sugar gate. Finally, the two processes synchronize their exit action.

Last, but not least, the disruption operator is also provided by LNT. The disrupt behavior
starts a behavior, however at any moment, this behavior can be interrupted by another
one. For instance, the following LNT disrupt behavior starts with the correct behavior
of the vending_machine (coins, etc.), which executes normally. However, at any moment,
the correct behavior can be interrupted, in which case the execution of the unexpected
behavior (an electrical failure) starts and the correct behavior is disrupted.

process vending_machine [coins, failure: none, cup: drink] is
disrupt
−− correct behavior
loop
coins;
select
cup (coffee)

[]
cup (tea)

end select
end loop

by
−− unexpected behavior
failure

end disrupt
end process

co
in

s

c
o
ffe

e

c
o
in

s coins

tea

failure

fa
il

u
re

failure

failure
exit

q0

q1

q3

q4

q5q2

Note, if the correct behavior successfully terminates before any action has taken place in
the unexpected behavior, the disrupt behavior terminates, meaning that the possibility to
be interrupted by an electrical failure disappears.

For a more detailed presentation of LNT see [CCG+19, GLS17].

26 Chapter 2. Formal Modelling and Validation of GALS Systems

2.3.2 Verification of asynchronous systems

In this section, we present model checking tools enabling the verification of asynchronous
systems, more particularly the property specification languages of the model checker
used in this thesis. Numerous model checkers exist for asynchronous systems, includ-
ing: CADP [GLMS13], CPAchecker [BK11], DREAM [PCdVA12], FDR [GABR14],
Java Pathfinder [VHBP00], mCRL2 [CGK+13], Prism [HKNP06], SPIN [Hol97],
TLA+ [Lam93], and UPPAAL [BLL+95].

In this thesis we will use the EVALUATOR 4.0 [MT08] model checker of CADP. EVAL-
UATOR 4.0 can verify temporal logic properties on the fly on an LTS, and exhibits full
diagnostics (portions of the LTS) illustrating the truth value of temporal logic formulas.
The temporal logic formulas are written in MCL [MT08]. We also used the executable
temporal Logic tool called XTL [MG98] of the CADP toolbox. We included the MCL for-
mulas and the XTL calls in an SVL (Script Verification Language) [GL01] script, in order
to automate the model verification and test generation method presented in Chapter 5.
This script avoids the need to explicitly name certain CADP tools, as SVL is responsible
for invoking the appropriate tools to conduct the required verifications. The SVL tool
executes verification scenarios expressed in the scripting language SVL. CADP tools are
traditionally called from the command line, and each tool has several options. The SVL
language makes it easy to describe verification scenarios which involve several CADP tools.
In addition, it is possible to insert any UNIX shell command within an SVL scenario, which
facilitates the automation of formal verifications.

Overview of the MCL language

In this section we give an overview of the MCL language, readers familiar with MCL can
safely skip this section. MCL (Model Checking Language) [MT08] is an action-based,
branching-time temporal logic suitable for expressing properties of concurrent systems,
including properties parameterized by data values. MCL is interpreted on Labelled Tran-
sition Systems (LTSs).

MCL language extends the temporal property specification formalism µ-calculus [Koz83],
with regular expressions over transition sequences similar to those of PDL [FL79], data-
handling constructs inspired from functional programming languages (quantified variables
and fixed point parameters), and a generalization of the infinite looping operator of PDL-
Δ [Str82] specifying fairness. MCL allows a concise and readable formulation of temporal
properties, notably when these properties are parameterized by data values.

We give below the MCL formulation of the four temporal properties defined in Section 2.1.3
and one additional MCL properties, in order to illustrate the MCL predicates used in this
thesis.

a) The following MCL formula encodes a liveness property expressing the existence of a

2.3. Asynchronous Models and their Validation 27

sequence leading to an action, e.g., one can potentially get a TEA after inserting a COIN

in the vending machine:

< true* . COIN . true*. TEA > true

b) The following MCL formula encodes a liveness property expressing inevitability using
fixed point operators. It states that all transition sequences starting at the current
state lead to TERMINATE actions after a finite number of steps, e.g., the vending machine
system terminates on a COFFEE or TEA transition:

mu X . (< true > true and [not TERMINATE] X)

where TERMINATE is an MCL macro denoting the termination actions (COFFEE or TEA):

macro TERMINATE () = (COFFEE or TEA) end macro

c) The following MCL formula encodes a fairness property, that expresses reachability of
actions by considering only fair execution sequences, e.g., after every COIN inserted,
all fair execution sequences (i.e., by skipping cycles) will lead to the reception of a
TERMINATE action:

[true* . COIN . (not TERMINATE)*] < true* . TERMINATE > true

d) The following MCL formula encodes a safety property, which expresses that something
bad never happens, e.g., if the action COIN occurs, then while there is no action TEA or
COFFEE, no other action COIN may happen:

[true*. COIN . (not (COFFEE or TEA))*. COIN] false

e) It is also possible to use action predicates in the MCL formulas, for instance the following
MCL formula encodes a safety property, which expresses that a kid should not get a
caffeine drink, denoted by the predicate caffeine(drink):

[true *. KID . {CUP ?drink:String where not (caffeine(drink))}] false

For a more detailed presentation of MCL see [MT08].

Overview of the XTL language

In this section we give an overview of the XTL language, readers familiar with XTL can
safely skip this section.

The XTL (eXecutable Temporal Logic) tool [MG98] is a tool that allows the parsing of
BCG (an explicit representation of LTS) [Gar91], and can perform operations at a lower
level than classical temporal logic. Since XTL is a programming language, it can also
be used to define non-standard temporal operators and, more generally, to perform any

28 Chapter 2. Formal Modelling and Validation of GALS Systems

computation on an LTS model. In this thesis, we used it to traverse the LTS and print
various information (e.g., list of labels going out of certain states).

XTL provides the standard predefined types with their usual operators, such as boolean,
integer, character, string, etc. XTL provides also the types corresponding to the elements
of a LTS model, such as the states and sets thereof (state and stateset), the transitions
and sets thereof (edge and edgeset), the labels and sets thereof (label and labelset).

XTL expressions are built from classical functional programming operators, such as func-
tion calls, or pattern-matching. For example, the following XTL code computes the set of
labels corresponding to the reception of a cup containing a drink different than coffee. The
variable D is initialized by pattern-matching with the corresponding value contained in the
label, and is used in the where clause, which allows additional filtering using a Boolean
condition:

{ A:label where A −> [CUP ?D:String where D <> "COFFEE"] }

In addition, XTL provides four specific operators for accessing and exploring the LTS and
its elements:

• the init operator returns the initial state of the LTS;

• the succ and pred operators access successors and predecessors of a state respectively;

• the in and out operators define incoming and outgoing transitions of a state respec-
tively;

• the source and target operators access the origin and the destination states of a
transition respectively.

An XTL expression can also contain quantifiers (exists) and conditional branching (if)
or loop (for) control structures. For binary operators, such as +, *, <=, both prefix and
infix notations are available. For instance, the definition of a corner state, i.e., the state
corresponding to the target of an input transition (COIN) and the source of an output
transition (CUP), can be implemented by the following XTL function:

def corner state (s: state): boolean =

exists e:edge among in (s) in e −> [COIN ...] end exists and
exists e:edge among out (s) in e −> [CUP ...] end exists

end def

XTL being a functional language, its loop control structures operate by performing iterative
computations over accumulation variables. For example, the following XTL loop for prints
all corner states of an LTS: The evaluation of the for proceeds as follows. First, the
accumulation variables, more precisely the state s and an action, are initialized with the
initial state (init) and the empty action (nop) respectively. Then, for all corner states, an
iteration is performed, that consist in assigning the state name to the accumulator (s) and
printing the information through the second accumulator (fby).

2.3. Asynchronous Models and their Validation 29

for s:state where corner state (s)

apply (replace, fby)
from (init, nop)
to (s,

printf ("the state ") fby print (s) fby
printf (" is a corner state\n"))

end for

For instance, the XTL loop execution on the following small LTS prints:

the state 1 is a corner state

co
in

s
cup !tea

cup !coffee

exit

exit

q1

q4

q0

q2q3

For certain for loops, such as the previous one, XTL also provides an abbreviated form:

<| fby on s:state where corner state (s) |> (

printf ("the state ") fby
print (s) fby
printf (" is a corner state\n")

)

As in MCL, one can also define macros in XTL, for instance the following example of XTL
macro definition implements the drink transition, characterizing all edges labeled by a
drink (coffee or tea) action:

macro drink transition (e) =

(((e) −> [TEA]) or ((e) −> [COFFEE]))

end macro

For a more detailed presentation of XTL see [Mat98, MG98].

2.3.3 Asynchronous model-based testing (the ioco theory)

After verifying the formal model of a system (e.g., using model checking), one can check
the conformance of the system under test (SUT) against this formal model. This can be
carried out by Model-Based Testing (MBT), which generates tests from the model. The

30 Chapter 2. Formal Modelling and Validation of GALS Systems

purpose of such test suites is either to check if the SUT is correct, or if the model does not
correspond to the SUT.

Conformance testing aims at extracting from a formal model (M) of a system a set of
test cases to assess whether an actual implementation of the SUT conforms to the model,
using black-box testing techniques (i.e., without knowledge of the actual code of the SUT).
This technique is particularly suited for nondeterministic concurrent systems, where the
behavior of the SUT can be observed and controlled by a tester only via dedicated in-
terfaces, called points of control and observation. Often, the formal model is an IOLTS3

(Input/Output Labelled Transition System), where transitions between states of the sys-
tem are labeled with an action classified as input, output, or internal (i.e., unobservable,
usually denoted by τ). In this setting, the most prominent conformance relation is input-
output conformance (ioco) [dT01, Tre08]. In this section, we present the ioco relation and
a few tools that use variants of the ioco conformance relation. Other model-based tools
for combinatorial and statistical testing, or white box testing are described in [UPL12].

According to this relation, the SUT conforms to the model if and only if the SUT passes
all tests generated from the model. In our context, we are interested in MBT using LTSs
and the input/output conformance (ioco) relation proposed by the conformance testing
theory. The SUT behaves as an input-enabled LTS (i.e., IOTS), from all states every input
is possible. Intuitively, a SUT (with initial state s) ioco-conforms to a model (with initial
state m), if and only if:

• when s produces an output !x after a trace σ, m can also produce the output !x after
the trace σ;

• and when s cannot produce any output after a trace σ, m cannot produce either any
output after this trace σ, which denotes the quiescence δ.

Formally, ioco relates an SUT ∈ IOTS and a model M ∈ IOLTS:

ioco ⊆ IOTS(Ai, Ao)× LTS(Ai ∪ Ao)

The ioco relation is defined in terms of observing outputs as follows:

SUT iocoM =def ∀σ ∈ Straces(m): out(s after σ) ⊆ out(m after σ)

where:

• p
δ−−→ p = ∀!x ∈ Ao ∪ {τ}.p � !x−−→

• Straces(m) = {σ ∈ (A ∪ {δ})∗|m σ
=⇒}

• p after σ = {p�|p σ
=⇒ p�}

• out(P) = {!x ∈ Ao|p !x−−→, p ∈ P} ∪ {δ|p δ−−→ p, p ∈ P}, where P is a set of state.

3More details about IOLTS are available in Section 2.1.1

2.3. Asynchronous Models and their Validation 31

ioco

co
in

s ?2
0

cup !coffee

cup !tea

cu
p

 !
co

ff
ee

co
in

s ?1
0

co
in

s
?2

0

cu
p

 !tea

not ioco

coins ?10
coins ?20

coins ?20

coins ?20
coins ?10

coins ?10

coins ?10

coins ?20

coins ?10
coins ?20

coins ?10
coins ?20

coins ?10

co
in

s ?2
0

co
in

s ?2
0

cu
p

 !
co

ff
ee

q0 q0

q1 q2

q3
q3 q2

q1

q0

q1
δ

q4q3

q2

(M) (S2)(S1)

Figure 2.6: Examples of the implementation relation ioco.

Essential properties of test suites are established for the ioco relation, i.e., soundness and
exhaustiveness [Tre96]. The ioco relation is sound, i.e., if the SUT ioco M then the SUT
passes the generated tests. The ioco relation is exhaustive, i.e., if the SUT passes all the
generated tests then the SUT ioco the IOLTS model. Although in practice, it may be
infeasible to generate all the tests (the test suite necessary for exhaustiveness may even be
infinite).

A test suite is valid if this test suite detects the non conformity:

s not iocom =⇒ ∃t : s fails t

and if the test suite never fails with a correct SUT:

s iocom =⇒ ∀t, s passes t

where s represents the system under test, m the model, and t a test of the test suite.

For instance, in the examples of the implementation relation ioco shown on Figure 2.6
(inspired by [Tre08, Figure 8]), the model M specifies that after input coins ?20 output
cup !coffee must occur, which is expressed as: out(M after coins ?20) = {cup !coffee}.
The system under test S2 satisfies this requirement, but S1 does not: out (S1 after coins
?20) = {cup !coffee, δ} �⊆ {cup !coffee}. Effectively S1 is not ioco M, because the system
under test should not produce more outputs than allowed by the model. Note that S2 ioco
M, even if out (S2 after coins ?10) = {cup !tea} because coins ?10 /∈ Straces(M).

Although model-based conformance testing has been intensively studied, there are only
a few tools that use variants of the ioco conformance relation and that are still actively
developed [BFS05]. In this section we will compare the main ones: AGEDIS [HN04],
JTorX [Bel10, Bel14], STG [CJRZ02], TGV [JJ05], TorX [TB03], TorXakis [MPS+09,
Tre17], Uppaal-Cover [HP06], Uppaal-Tron [LMNS05], and Uppaal-Yggdrasil [KLN+15].

32 Chapter 2. Formal Modelling and Validation of GALS Systems

Table 2.2 compares these ioco conformance tools by taking into account the following six
tool features: (1) online conformance testing (i.e., a simultaneous execution of the model
and the SUT or/and offline); (2) a test selection to generate relevant tests; (3) ont-the-fly
tests generation; (4) handling nondeterministic models; (5) handling timed models; and
(6) handling infinite models.

Table 2.2: Comparison of ioco model-based testing tools

tool
online/ coverage test

on-the-fly nondeter.
timed

offline criteria purpose LTS
AGEDIS offline yes yes yes yes no
JTorX both yes no yes yes no
STG offline no yes no yes no
TGV offline no yes yes yes no
TorX both no no yes yes no

TorXakis online no yes yes yes no
Uppaal-Cover both yes no yes no yes
Uppaal-Tron both no no yes yes yes

Uppaal-Yggdrasil both no yes yes no yes

Note that TGV and AGEDIS tools perform on-the-fly only the extraction of complete test
graphs, but not the extraction of controllable test cases.

In this thesis, in order to face the state-space explosion of the complex GALS model
we needed an on-the-fly model-based testing tool with test selection, the test selection
description could contain data, so we decided to extend the TGV approach.

The TGV approach

In this section we give an overview of the TGV approach, readers familiar with the TGV
approach can safely skip this section.

We assume that the behavior of the SUT can also be represented as an IOLTS, even if it
is unknown (the so-called testing hypothesis [JJ05]). In the sequel, we consider the same
running example as [JJ05], whose IOLTS model M is shown on Figure 2.7.

Input actions of the SUT are controllable by the environment, whereas output actions are
only observable. Testing allows one to observe the execution traces of the SUT, and also to
detect quiescence, i.e., the presence of deadlocks (states without successors), outputlocks
(states without outgoing output actions), or livelocks (cycles of internal actions). The
quiescence present in an IOLTS L (either the model M or the SUT) is modeled by a
suspension automaton Δ(L), an IOLTS obtained from L by adding self-loops labeled by
a special output action δ on the quiescent states. The SUT conforms to the model M

2.3. Asynchronous Models and their Validation 33

0

6

2

85

7

9

3

1

4

!x

?a
!y

?c

!z
?b?a

?y

?c

τ

τ

τ

τ

τ

τ

τ

Figure 2.7: Model M of the running example [JJ05]

0 1
Refuse

2
Accept

3

* ***

!z !y !z

Figure 2.8: Test purpose TP of the running example [JJ05]

modulo the ioco relation [Tre96] if after executing each trace of Δ(M), the suspension
automaton Δ(SUT) exhibits only those outputs and quiescences that are allowed by the
model. Since two sequences having the same observable actions (including quiescence)
cannot be distinguished, the suspension automaton Δ(M) must be determinized before
generating tests.

The test generation technique of TGV is based upon test purposes, which allow one to
guide the selection of test cases. A test purpose guides the exploration of the speci-
fication model to have more focused test cases. Formally, a test purpose for a model
M = (QM, AM, TM, qM0) is a deterministic and complete (i.e., in each state all actions
are accepted) IOLTS TP = (QTP, ATP, TTP, qTP

0), with the same actions as the model
ATP = AM. TP is equipped with two sets of trap states AcceptTP and RefuseTP, which
are used to select desired behaviors and to cut the exploration of M, respectively. In the
TP shown on Figure 2.8, the desired behavior consists of an action !y followed by !z and is
specified by the accepting state q3; notice that the occurrence of an action !z before a !y is
forbidden by the refusal state q2.

In a TP, a special transition of the form q
∗→ q� is an abbreviation for the complement

set of all other outgoing transitions of q. These *-transitions facilitate the definition of
a test purpose (which has to be a complete IOLTS) by avoiding the need to explicitly
enumerate all possible actions for all states. Test purposes are used to mark the accepting
and refusal states in the IOLTS of the model M. In TGV, this annotation is computed by
a synchronous product [JJ05, Definition 8] SP = M × TP. Notice that SP preserves all
behaviors of the model M because TP is complete and the synchronous product takes into
account the special *-transitions. When computing SP, TGV implicitly adds a self-looping
*-transition to each state of the TP with an incomplete set of outgoing transitions. To

34 Chapter 2. Formal Modelling and Validation of GALS Systems

!x

!x

?a

!x!z

!y

!y?c

?c
?a

?c

?b

!z!y
!y

?a
!y?b

12

8
9

57

3 1

0

2

11
Accept

6
Refuse

4
Refuse

pass

inconc

inconc

inconc

10

δ

δ

δ

δ

δ

δ

δ

δ

δ

Figure 2.9: The visible behavior SPvis , complete test graph CTG (gray), and a test case
TC (dark gray) of the running example [JJ05]

keep only the visible behaviors and quiescence, SP is suspended and determinized, leading
to SPvis = det(Δ(SP)). Figure 2.9 shows an excerpt of SPvis limited to the first accepting
and refusal states reachable from qSPvis

0 .

A test case is an IOLTS TC = (QTC, ATC, TTC, qTC
0) equipped with three sets of trap states

Pass ∪ Fail ∪ Inconc ⊆ QTC denoting verdicts. The actions of TC are partitioned into
ATC

I and ATC
O subsets4. A test case TC must be controllable, meaning that in every state,

no choice is allowed between two inputs or an input and an output (i.e., the tester must
either inject a single input to the SUT, or accept all the outputs of the SUT). Intuitively,
a TC denotes a set of traces containing visible actions and quiescence that should be
executable by the SUT to assess its conformance with the model M and a test purpose
TP. From every state of the TC, a verdict must be reachable: Pass indicates that TP has
been fulfilled, Fail indicates that SUT does not conform to M, and Inconc indicates that
correct behavior has been observed but TP cannot be fulfilled. An example of TC (dark
gray states) is shown on Figure 2.9. Pass verdicts correspond to accepting states (e.g.,
q11). Inconclusive verdicts correspond either to refusal states (e.g., q4 or q6) or to states
from which no accepting state is reachable (e.g., state q10). Fail verdicts, not displayed
on the figure, are reached from every state when the SUT exhibits an output action (or a
quiescence) not specified in the TC (e.g., an action !z or a quiescence in state q1).

In general, there are several test cases that can be generated from a given model and test
purpose. The union of these test cases forms the Complete Test Graph (CTG), which is

4In TGV [JJ05], the actions of test cases are symmetric w.r.t. those of the model M and the SUT, i.e.,
ATC

O ⊆ AM
I (TC emits only inputs of M) and ATC

I ⊆ ASUT
O ∪ {δ} (TC captures outputs and quiescences

of SUT). To avoid confusion, we consider here that inputs and outputs of TC are the same as those of M
and SUT.

2.4. GALS Models and Validation 35

an IOLTS having the same characteristics as a TC except for controllability. Figure 2.9
shows the CTG (light and dark gray states) corresponding to M and TP, which is not
controllable (e.g., in state q5 the two input actions ?a and ?b are possible). Formally, a
CTG is the subgraph of SPvis induced by the states L2A (lead to accept) from which an
accepting state is reachable, decorated with pass and inconclusive verdicts. A controllable
TC exists iff the CTG is not empty, i.e., qSPvis

0 ∈ L2A [JJ05].

The execution of a TC against the SUT corresponds to a parallel composition TC || SUT
with synchronization on common observable actions, verdicts being determined by the trap
states reached by a maximal trace of TC || SUT, i.e., a trace leading to a verdict state.
Quiescent livelock states (infinite sequences of internal actions in the SUT) are detected
using timers, and lead to inconclusive verdicts. A TC may have cycles, in which case global
timers are required to prevent infinite test executions. For a more detailed presentation of
TGV see [JJ05].

In this thesis, we will present a new tool for on-the-fly conformance test case generation
tool based on the TGV approach, but enabling online testing by generating controllable
test cases completely on the fly and a more versatile description of test purposes than the
TGV ones using the LNT language.

2.4 GALS Models and Validation

A GALS (Globally Asynchronous and Locally Synchronous) system consists of several
independent synchronous components that evolve concurrently, each at its own pace, and
communicate all together asynchronously. A GALS system is a particular asynchronous
system, but with additional difficulty when faithfully modelling it as a composition of
synchronous components, with all the synchronous constraints (one clock, no interleaving
during a component execution, synchronous loop). To model it formally and manage the
complexity of the underlying state space (and hence of the analysis), one has to consider
the following aspects:

C1. atomicity of synchronous components, i.e., the execution of the synchronous compo-
nent can not be interrupted or reduced before its end;

C2. interleaving of the execution of synchronous components, i.e., the order of synchronous
component executions is not fixed;

C3. nondeterminism induced by the absence of a shared clock and by the unreliable com-
munication media (messages can be delayed, lost, duplicated, or reordered);

C4. data constraints on the inputs and/or outputs of components, which, combined with
nondeterminism allow to calibrate the description of the system;

C5. activation constraints on the components, which allow to control the degree of asyn-

36 Chapter 2. Formal Modelling and Validation of GALS Systems

Figure 2.10: Simple smart room temperature management

chrony between components, and to describe realistic situations (failure and activation
strategies, etc.) in an abstract way.

For instance, Figure 2.10 presents an example of a GALS system, a smart room temperature
management system, whose goal is to control and monitor the room temperature of a smart
home. The system has one smart window contact component, which detects if the window
is open more than ten minutes, and a smart heater component, which regulates the room
temperature and stops heating if the window is open for too long. Both components (the
window contact and the smart heater) are independent, evolve concurrently at their own
pace, and the window contact communicates the status of the window (open for more than
ten minutes or closed) to the smart heater. In this smart room temperature management
system, the smart window contact and the smart heater are two synchronous reactive
systems: their behavior is deterministic and atomic (their executions are never interrupted).
At any time, the smart window contact can detect that the window is open for more than
ten minutes, and inform the smart heater; nondeterminism and interleaving are required to
model this behavior. The smart heater increases his temperature gradually; to model this
behavior, it is important to constrain the data (corresponding to the component inputs).
The smart window contact information should always be taken into account as soon as
possible; activation constraints enable to model this behavior.

Both synchronous and asynchronous languages have been used to model GALS systems.
Each approach, applied individually, is unable to model all behavioral subtleties of GALS
systems. Several combinations of synchronous and asynchronous languages to model GALS
systems have been studied, such as CRSM-Promela [RSD+04], SystemJ [MGS12], Signal-

2.4. GALS Models and Validation 37

Promela [DMK+06], and SAM-LNT [GT09]. Table 2.3 compares these GALS modeling
approaches by taking into account the five concepts described above, more particularly:
(C1) the modelling of the synchronous atomicity; (C2-C3) the nondeterminism in order to
model communication protocols, or an existing communication protocol; and (C4-C5) the
modelling of activation strategies and of data constraints on the components.

Table 2.3: Approaches to model GALS systems

name
synchronous communication constraints
atomicity nondeterministic protocol data activation

CRSM Esterel
yes no yes no

Promela synch. semantics
SAM-LNT functions yes user defined yes no

Signal Promela
yes LTTA yes

auto clock
Promela atomic constraints constraints

SYSTEMJ
Esterel

no no yes no
synch. semantics

GRL synch. blocks yes user defined yes yes

Due to the different semantics and abstraction level, a direct modeling with only syn-
chronous or asynchronous languages could be complex. Instead, using a single GALS-
specific language enables to reduce that complexity. Although GALS models have been in-
tensively studied, as far as we know GALS Representation Language (GRL) [JLM16, Jeb16]
is the only existing DSL with formal semantics specially designed for GALS systems.

Thus, in this thesis, we use GRL to describe the global behavior of GALS systems. GRL is
equipped with the GRL2LNT [JLM16, Jeb16] translator to LNT [GLS17], which provides
a connection to the CADP verification toolbox [GLMS13].

2.4.1 An overview of the GRL language

We present here an overview of the GRL language, the reader familiar with GRL can safely
skip this section. GRL [JLM16, Jeb16] is a formal language designed to model the behavior
of GALS systems. GRL enables the behavioral modelling of synchronous components
(determinism, atomicity), asynchronous communication (nondeterminism, asynchronous
concurrency), and constraints involving both component activations and the data carried by
component inputs. Concretely, GRL integrates the synchronous reactive model underlying
dataflow languages and the asynchronous interleaving semantics of concurrency underlying
process algebras.

GRL provides constructed data types, constants, statements built upon standard algo-
rithmic control structures, and functions. GRL supports all the basic types of LNT (see

38 Chapter 2. Formal Modelling and Validation of GALS Systems

state heatercontact
smart_

smart_
window_

room_temperature

smart_heater_activation

: block : medium

time

receive_info

temperature

send_info

: environment

smart_heaterstatus

: channels

Figure 2.11: Architecture of the GRL model of the room temperature management

Section 2.3.1), such as bool, int, real numbers, and character string, as well as user-defined
LNT types (bounded or unbounded), such as records, unions, lists, sets, and arrays. For
instance, the following LNT type defines the enumerated data type window_status. The
with clause specifies the predefined functions for this type (in our case, the comparison
operations).

type window_status is
open,

close,

already_sent

with "!=", "=="

end type

The constants are defined by the keyword const and are necessarily initialized. Here is an
example of numerical constant max_open_time, corresponding to the maximum duration
(in minutes) for which the window could be open without a reaction of the smart heater:

const max_open_time: nat := 10;

The GRL model reflects the modular specification, connecting the synchronous components
by a communication network. Figure 2.11 shows the architecture of a formal GRL model for
the smart room temperature management seen in Figure 2.10. Each of the two synchronous
components (smart_window_contact and smart_heater) is represented in GRL as a block,
depicted as a (light blue) rectangle with solid border in Figure 2.11. These blocks exchange
data via asynchronous communication media (state), which is represented in GRL as a
medium, depicted as a (pink) ellipse with dashed border in Figure 2.11. The interaction
between blocks has also to respect environmental constraints, represented in GRL as an
environment (room_temperature), depicted as a (light pink) ellipse with thick dashed
border in Figure 2.11. The overall model of the GALS is represented in GRL as a system,
which describes the composition and interactions of blocks, media, and environments.

2.4. GALS Models and Validation 39

Block

AGRL block defines the deterministic code executed at each activation (i.e., clock pulse) by
the synchronous component. GRL blocks behave as deterministic and atomic synchronous
components that interleave with other blocks. For defining blocks, GRL provides a set
of basic synchronous language constructs. GRL block statements are inspired by those of
LNT, such as variable assignment, sequential composition, conditional (if-then-else), loops
(for, while), and extended with block invocations, and communication primitives. Because
the initial idea behind GRL blocks was to generate them from a synchronous language,
one has to manually implement these three classical synchronous languages operators:

1) The synchronous parallel operator is not provided by GRL, the composition between
GRL blocks is sequential and require to define a correct order between blocks.

2) The delay operator is not explicitly present, but GRL makes explicit the internal state
through the usage of static variables. One should manage the access and update the
block’s internal states or the delay operators could be encoded in GRL libraries.

3) The explicit loop, for and while loops are also missing in GRL. One can encode bounded
operators in GRL libraries.

Therefore, GRL is less user-friendly for describing synchronous components5 than using
a full-fledged synchronous language, such as Lustre [HCRP91]. For instance, the smart
window contact of the smart room temperature management could be modeled by a GRL
block smart_window_contact (defined below). This block has three static variables, which
define its internal states:

• opening_time to keep track of the (abstract) time when the window is open from the
previous activation (this time is considered to be initially null);

• previous_info to keep track of the perception information (open window or closed
one) computed and sent during the previous activation;

• is_open to keep track of the perception information open or not even if the window
is open for less than max_open_time minutes.

At each activation, the smart_window_contact block receives the current time (in parame-
ter time). It then computes the current window status send_info indicating if the window
is open (opened for more than max_open_time minutes), or closed. If there is a change
between previous_info and info (the window was not open for more than max_open_time

minutes, or did not close after being open), both the variable previous_info and the output
send_info are updated; otherwise the output is set to the particular value already_sent

indicating that the status of the window did not change. At the end of the activa-

5Historically, GRL was defined as a pivot language between synchronous programs with graphical
syntax (e.g., function-block diagrams) and LNT, and evolved subsequently into a plain language for GALS
systems.

40 Chapter 2. Formal Modelling and Validation of GALS Systems

tion, the computed window status info is sent to the connected medium (send parameter
send_info), and it sends the status to the environment managing the activation of the block
smart_heater through the out status channel. The function perception_window_open de-
tects if the window is open or not.

block smart_window_contact (in time: nat, out status: window_status)

[send send_info: window_status] is
static var opening_time: nat := 0,

var previous_info: window_status := already_sent;

var is_open: bool := false;
var info: window_status

−− detects if the window is open
info := perception_window_open ();

if previous_info == info then
−− the same status as the previous activation
info := already_sent

elsif (info == open) and (previous_info == close) and (is_open == false) then
−− the window has been opened since the last activation
opening_time := time;

info := previous_info;

is_open := true
elsif (info == open) and (time - opening_time > max_open_time) then
−− the window has been open for more than max open time
opening_time := 0;

previous_info := open;

info := open;

is_open := false
else
−− the window has been closed since the last activation
−− (less than max open time minutes ago)
previous_info := close;

info := close;

is_open := false
end if;
send_info := info;

status := info

end block

Medium

Synchronous blocks interact with each other via asynchronous communication media. GRL
media do not impose any communication protocol, but provide enough expressiveness to
model general communication mechanisms. Explicitly representing these media makes it
possible to finely model a large panel of behaviors (i.e., message buffering, message loss,

2.4. GALS Models and Validation 41

nondeterminism, etc.). A medium is connected to each block by at most two channels,
called receive and send channels. Note that a receive channel corresponds to the re-
ception of some value in a variable prefixed by “?”. Channels are tuples of variables,
by which the synchronizations between components (rendezvous) take place. Each chan-
nel has an associated Boolean condition (tested with a when clause), stating whether a
message is available or should be sent. GRL media statements are those of the blocks
and extended with nondeterministic statements. For instance, the following GRL medium
state enables the block smart_window_contact to send the current perception window sta-
tus (via the receive channel send_info) to the block smart_heater (via the send channel
receive_info); the transmission takes place only when the window status information has
not already been sent.

medium state [receive send_info: window_status,

send receive_info: window_status] is
static var buffer: window_status := close

select
when ?send_info ->
if send_info != already_sent then buffer := send_info end if

[]
when receive_info -> receive_info := buffer

end select
end medium

Environment

GRL environments model the external environment of blocks; by providing their inputs and
receiving their outputs. Concretely, an environment is a loop, where at each iteration at
most one block is activated. Blocks and environments are connected through input and out-
put channels, with a primitive communication data signal, i.e., a data signal is executed by
the environment, if an interaction on a channel occurs (receiving in or sending out). Note
that an environment may be nondeterministic, e.g., it may contain nondeterministic choice,
modelled in GRL using the select statement, as in LNT. For instance, the following GRL
environment room_temperature ensures that: (1) the (abstract) time, which corresponds
to the number of activations (ticks), is shared with the block smart_window_contact (by
sending this information to smart_window_contact as input time); (2) the evolution of the
(abstract) temperature is changed gradually and shared with the block smart_heater (by
sending it as input temperature).

−− Environment constraining the data carried by blocks
environment room_temperature (out time: nat, out temperature: nat) is
static var ticks: int := 0,

pre_temperature: nat := 20

loop
ticks := ticks + 1;

42 Chapter 2. Formal Modelling and Validation of GALS Systems

select
−− The evolution of the temperature is abstract and changes gradually
when temperature ->
case pre_temperature is
18 -> select

temperature := 18

[] temperature := 19

end select
| 19 -> select

temperature := 18

[] temperature := 19

[] temperature := 20

end select
| 20 -> select

temperature := 19

[] temperature := 20

[] temperature := 21

end select
| 21 -> select

temperature := 20

[] temperature := 21

end select
| any -> temperature := 20

end case;
pre_temperature := temperature

[]
when time -> time := ticks

end select
end loop

end environment

Note that in order to execute its body several times, an environment should contain a loop,
whereas the synchronous loop is built-in in block definitions, therefore, the body of a block
contains only the code executed at each activation.

Block activations are particular implicit inputs of blocks, enabling an environment to pre-
cisely control the activations of synchronous blocks. GRL enables to model various activa-
tions, by using the keyword enable. In the following environment example, the activation
signal enable implements the permission for the block smart_heater to execute only if the
window is closed or open for less than ten minutes (window_status)):

−− Environment constraining the block activations
environment smart_heater_activation (block smart_heater

in status: window_status) is
loop
when status -> if status == false then enable smart_heater end if

2.4. GALS Models and Validation 43

end loop
end environment

System

GRL systems define GALS as sets of blocks, environments, and media. The system be-
havior can be refined to model detailed communication strategy and constraints. Also
to reduce the complexity, one can model in a system the behavior of blocks separately,
or a primary system behavior with simple communication media and test case scenarios.
The following GRL system describes the complete model of the smart room tempera-
ture management, built by composing the blocks smart_window_contact and smart_heater,
the medium state, and the environment room_temperature, introduced by the keywords
block list, medium list, and environment list, respectively. The component aliasing
smart_heater (heater) is required for the environment smart_heater_activation to con-
trol its activation.

system main (send_info, receive_info, status: window_status,

time, temperature: nat) is
alias smart_heater as heater

block list
smart_window_contact (time, ?status) [?send_info],
heater (temperature) [receive_info]

medium list
state [send_info, ?receive_info]

environment list
room_temperature (?time, ?temperature),
smart_heater_activation (heater, status)

end system

GRL defines the semantics of a GALS system as an LTS (Labeled Transition System),
whose states represent the memories of all blocks, media, and environments of the sys-
tem [Jeb16, Chapter 4]. The initial state is the initial memory, in which each static
variable has its (mandatory) initial value. Each transition going out of a state corresponds
to the atomic execution of a block, which consists in reading the values of input and re-
ceive channels, executing the code of that block activation, and producing the values for
the outputs and send channels of the block. The transition is labeled with all these values,
and its target state corresponds to the updated memories of the participating components,
i.e., the block and its connected media and environments. Thus, the atomic executions
of synchronous blocks are interleaved in the LTS, which reflects the GALS nature of the
system.

For technical reasons, we rely in this thesis on the semantics of GRL as induced by the
current translation-based implementation of GRL. In this semantics [Jeb16, Chapter 5],
the execution of a synchronous block activation is split into an input transition followed

44 Chapter 2. Formal Modelling and Validation of GALS Systems

by an output transition. These two transitions are executed atomically, i.e., without in-
terleaving with any other transitions corresponding to an activation of another block.
GRL is equipped with the GRL2LNT [JLM16, Jeb16] translator to LNT [GLS17], which
provides a connection to the CADP tools. For a more detailed presentation of GRL
see [Jeb16, JLM16].

2.4.2 Verification of GALS systems

Milner’s proposal [Mil83] to encode asynchronism in a synchronous process calculus has
been used to specify GALS systems using synchronous programming approaches [HB02,
GTL03, MGT+04, HM06]. These approaches do not retain a finer modeling of the overall
GALS system and consider only the synchronous verification. The global aspects of a
GALS system and the asynchronous validation are missing.

Following a bottom-up approach [GMM12], manually defining contracts for the syn-
chronous components (to be verified locally, for instance using SCADE [Ber07]), the overall
GALS system can be verified by translating the network of component contracts and ver-
ification properties into Promela (for verification with SPIN [Hol03]) or timed automata
(for timing analysis with UPPAAL [BDL+01]).

A graphical tool set [RSD+04], based on the specification of the synchronous components as
communicating reactive state machines, translates the system and its properties specified
as observers into Promela for verification with SPIN. This tool focuses on the verification
of the overall GALS system.

Encapsulating synchronous components makes the overall GALS system amenable for anal-
ysis with asynchronous verification tools. This approach has been followed for a com-
bination of the synchronous language SAM, the asynchronous language LNT, and the
CADP toolbox [GT09], and a combination of the synchronous language SIGNAL, the
asynchronous language Promela, and the model checker SPIN [DMK+06].

Focusing on communication media for GALS hardware circuits, the asynchronous connec-
tions between synchronous blocks can be encoded into variants of Petri nets dedicated
to the analysis of hardware circuits [BSY17]. On the contrary, our approach targets the
testing of synchronous components of more generic GALS systems, relying on less precise
models of the communication signals.

As far as we know, we propose the first approach of Model Based Testing for GALS systems.

2.4. GALS Models and Validation 45

test purpose
(LNT)

property
(MCL)

model
(GRL)

model
checker

IOCO
tool

input
labels

CTG
(BCG)

checker

connection
(XTL)

(SVL)

scenario
(Lutin)

oracle
& coverage

(Lustre)

Section 2.3.2

Section 2.4.1

Section 2.3.1

Section 2.3.3

Section 2.3.2

verdict
I/O

Section 2.2.1

Section 2.2.3

Lurette

equivalence

System Under Test

Section 2.1.2

Section 2.1.3

Yes

diagnostic

No +

Figure 2.12: Overview of the tools and languages selected for this thesis

� � �

In this thesis, we retain a fine modeling of the synchronous components in the overall GALS
system and consider the validation of both, the overall GALS system and its synchronous
components. The overall flow of our approach is illustrated in Figure 2.12. For modelling
and validating the synchronous components, we will use the synchronous data flow language
Lustre (see Section 2.2.1) and the synchronous Lurette testing tool (see Section 2.2.3). For
the global GALS behavior model, we chose the formal GRL language (see Section 2.4.1).
We will verify the global asynchronous model using model checking (see Section 2.1.3) with
MCL formulas (see Section 2.3.2), and test it using a new ioco model-based testing tool
(see Section 2.3.3) similar in spirit to the TGV tool (see Section 2.3.3). In order to connect
the synchronous and asynchronous techniques, we will also use equivalence checking (see
Section 2.1.2) and the XTL tool (see Section 2.3.2). We encapsulated all tool invocations
in an SVL script (see Section 2.3.2).

46 Chapter 2. Formal Modelling and Validation of GALS Systems

Chapter 3

Validation Techniques for
Synchronous Components

In this chapter we illustrate formal techniques for the functional testing of a synchronous
component, using a case study of a synchronous dataflow algorithm: The Message Authen-
ticator Algorithm (MAA), a pioneering cryptographic function designed in the mid-80s at
the National Physical Laboratory (NPL, United Kingdom). Part of this work has been
published in [GM17] and in [GM18].

The chapter is organized as follows. Section 3.1 presents the MAA, both from a technical
and an historical perspective. Section 3.2 presents the modeling of the MAA using the
synchronous dataflow language Lustre. Section 3.3 precises how the Lustre model has
been validated. Section 3.4 gives an overview of our supplementary work on three other
formal models describing the full MAA. Finally, we give summarizing remarks on our work
and synchronous testing.

3.1 The Message Authenticator Algorithm (MAA)

In data security, a Message Authentication Code (MAC) is a short sequence of bits that is
computed from a given message; a MAC ensures both the authenticity and integrity of the
message, i.e., that the message sender is the stated one and that the message contents have
not been altered. A MAC is more than a mere checksum, as it must be secure enough to
defeat attacks; its design usually involves cryptographic keys shared between the message
sender and receiver.

47

48 Chapter 3. Validation Techniques for Synchronous Components

T

S

W

Mn

W

X Y

M1

W

W

YX

Initialization

Discard V

future use

V

X0

J K

Prelude contains BYT/PAT, MUL1, MUL2

Z

PRELUDE

XOR

MAIN_LOOP

CODA

Keys

Message

M1

Mn

Y0 V0 W S T

Storage for

(Contains

MUL1
MUL2A)

1st MAIN_LOOP iteration

nth MAIN_LOOP iteration

X := X0 Y := Y0 V := V0

n+ 1thMAIN_LOOP iteration

n+ 2th MAIN_LOOP iteration

Figure 3.1: MAA data flow

One of the first MAC algorithms to gain widespread acceptance was the Message Authen-
ticator Algorithm (MAA, also known as the Message Authentication Algorithm) [Dav85,
DC88, Pre11] designed in 1983 by Donald Davies and David Clayden at the National Phys-

3.1. The Message Authenticator Algorithm (MAA) 49

ical Laboratory (NPL) in response to a request of the UK Bankers Automated Clearing
Services. The MAA was adopted by ISO in 1987 and became part of the international
standards 8730 [ISO86] and 8731-2 [ISO87]. Later, cryptanalysis of the MAA revealed
various weaknesses, including feasible brute-force attacks, existence of collision clusters,
and key-recovery techniques [PvO96, RPD96, PRvO97, PvO99, Pre11]. For this reason,
the MAA was withdrawn from ISO standards in 2002.

Nowadays, message authentication codes are computed using different families of algo-
rithms based on either cryptographic hash functions (HMAC), universal hash functions
(UMAC), or block ciphers (CMAC, OMAC, PMAC, etc.). Contrary to these modern ap-
proaches, the MAA was designed as a standalone algorithm that does not rely on any
preexisting hash function or cipher. In this section, we briefly explain the principles of the
MAA. More detailed explanations can be found in [Dav85, DC88] and [MvOV96, Algo-
rithm 9.68].

The MAA was intended to be implemented in software and to run on 32-bit computers.
Hence, its design intensively relies on 32-bit words (called blocks) and 32-bit machine
operations. Figure 3.1 (inspired by [DC88, Figure 21]), gives an overview of the data flow
of the MAA. The MAA takes as inputs a key and a message. The key has 64 bits and is
split into two blocks J and K. The message is seen as a sequence of blocks. If the number of
bytes of the message is not a multiple of four, extra null bytes are added at the end of the
message to complete the last block. The size of the message should be less than 1,000,000
blocks; otherwise, the MAA result is said to be undefined; we believe that this restriction,
which is not inherent to the algorithm itself, was added in the second ISO standard [ISO92]
to provide MAA implementations with an upper bound (four megabytes) on the size of
memory buffers used to store messages.

The MAA produces as output a block, which is the MAC value computed from the key
and the message. The fact that this result has only 32 bits proved to be a major weakness
enabling cryptographic attacks; MAC values computed by modern algorithms now have
a much larger number of bits. Apart from the aforementioned restriction on the size of
messages, the MAA behaves as a totally-defined function; its result is deterministic in the
sense that, given a key and a message, there is only a single MAC result, which neither
depends on implementation choices nor on hidden inputs, such as nonces or randomly-
generated numbers.

The MAA calculations rely upon conventional 32-bit logical and arithmetic operations,
among which: AND (conjunction), OR (disjunction), XOR (exclusive disjunction), CYC (circular
rotation by one bit to the left), ADD (addition), CAR (carry bit generated by 32-bit addition),
MUL (multiplication, sometimes decomposed into HIGH_MUL and LOW_MUL, which denote the
most- and least-significant blocks in the 64-bit product of a 32-bit multiplication). On
this basis, more involved operations are defined, among which MUL1 (result of a 32-bit
multiplication modulo 232 − 1), MUL2 (result of a 32-bit multiplication modulo 232 − 2),

50 Chapter 3. Validation Techniques for Synchronous Components

MUL2A (faster version of MUL2), FIX1 and FIX2 (two unary functions1 respectively defined
as x → AND(OR(x,A),C) and x → AND(OR(x,B),D), where A, B, C, and D are the four
hexadecimal block constants A = 02040801, B = 00804021, C = BFEF7FDF, and D =
7DFEFBFF). The MAA operates in three successive phases:

• The PRELUDE takes the two blocks J and K of the key and converts them into six
blocks X0, Y0, V0, W , S, and T . This phase is executed once. After the prelude, J
and K are no longer used.

• The MAIN_LOOP successively iterates on each block Mn of the message (M1, ..., Mn).
This phase maintains three variables X, Y , and V (initialized to X0, Y0, and V0,
respectively), which are modified at each iteration. The main loop also uses the
value of W , but neither S nor T .

• The CODA adds the blocks S and T at the end of the message and performs two more
iterations on these blocks. After the last iteration, the MAA result is XOR(X, Y),
called Z.

In 1987, the second ISO standard [ISO87, Section 5] introduced an additional feature
(called mode of operation), which concerns messages longer than 256 blocks and which,
seemingly, was not present in the early MAA versions designed at NPL.

MAA

MAA

MAA

MAA

final MAC result

Z1

Zn

Zi+1

segmenti+1segment1

segment2

segment2 last

last

segmenti+1

Figure 3.2: Mode of operation of the MAA

Figure 3.2 gives an overview of “the mode of operation”. Each message longer than 256
blocks must be split into segments of 256 blocks each, with the last segment possibly

1The names FIX1 and FIX2 are borrowed from [Mun91b, pages 36 and 77].

3.2. Modelling the MAA in Lustre 51

containing less than 256 blocks. The above MAA algorithm (prelude, main loop, and
coda) is applied to the first segment, resulting in a value noted Z1. This block Z1 is then
inserted before the first block of the second segment, leading to a 257-block message to
which the MAA algorithm is applied, resulting in a value noted Z2. This is done repeatedly
for all the n segments, the MAA result Zi computed for the i-th segment being inserted
before the first block of the (i+1)-th segment. Finally, the MAC for the entire message is
the MAA result Zn computed for the last segment.

From the point of view of formal methods, the MAA is interesting because of its pioneer-
ing nature, because its definition is freely available and stable, and because it is involved
enough while remaining of manageable complexity. Over the past decades, various formal
specifications of the MAA have been developed, either non-executable ones using VDM in
1990 [PO90, PO91], using Z in 1991 [Lai91], and LOTOS in 1990/1991 [Mun91b, Mun91a]
or executable ones using LOTOS, written by Hubert Garavel and Philippe Turlier in 1992
(LOTOS-92), and using LNT written by Wendelin Serwe in 2016 (LNT-16). For such
formalism, the usual examples often deal with syntax trees, which are explored using stan-
dard traversals (breadth-first, depth-first, etc.); contrary to such commonplace examples,
cryptographic functions (and the MAA, in particular) exhibit more diverse behavior, as
they rather seek to perform irregular computations than linear ones.

3.2 Modelling the MAA in Lustre

We considered the MAA models LOTOS-92 and LNT-16 and extended them to model the
full MAA algorithm in the synchronous formal language Lustre [HCRP91] (more details
about Lustre are available in Chapter 2 Section 2.2.1). We decided to take advantage of
Lustre connection to robust testing tools, actively supported and maintained by devel-
opers. A large part of our Lustre model contains general definitions, half of which are
largely independent of the MAA. The whole Lustre model of the MAA is presented in the
Appendix A. The architecture of this model follows the dataflow shown on Figure 3.1.

We chose to represent blocks as words of four bytes, rather than thirty-two bits. So doing,
the logical operations on blocks (AND, OR, XOR, and CYC) are easy to define using bitwise
and bytewise manipulations. The bits, bytes and blocks are represented with the three
following Lustre data structures:

type Bit = enum {X0,X1};

type Octet = struct {x1: Bit; x2: Bit; x3: Bit; x4: Bit;

x5: Bit; x6: Bit; x7: Bit; x8: Bit};

type Block = struct {o1: Octet; o2: Octet; o3: Octet; o4: Octet};

Then, we defined a set of functions to implement the corresponding logical operations

52 Chapter 3. Validation Techniques for Synchronous Components

on bits, bytes, and blocks. The arithmetical operations (ADD, CAR, and MUL) have been
implemented using 8-bit, 16-bit, and 32-bit adders and multipliers, more or less inspired
from the theory of digital circuits. Thus, the structure Pair shown below, represents results
of the multiplication of two blocks.

type Pair = struct {w1: Block; w2: Block};

A message is a list of blocks, each block of the message is an input of the main MAC node
in Lustre, shown in Figure 3.3. Long messages (i.e., containing more than one block) are
hard coded in functions, as for instance, the twenty-words message in the Appendix A.16.

The MAC node takes as input the message to encode, and a key, which corresponds to two
words (called K and J). A local variable init defines the beginning of a message, and
another variable n stores the number of blocks, in order to ensure the implementation of
the “mode of operation” of the MAA, i.e., segmentation of messages larger than 1024 bytes
(as explained in Section 3.1). The MAC gives as outputs the result of the intermediate
computations (prelude, mainloop) in the auxiliary blocks (X, Y, V, W, S, T), and the
result of its main computation, which is represented with a variable (Z) containing the
MAC for the given input (one key and a message). At each call of the Lustre node MAC,
one new block of the message is processed as follows:

• for the 1st block of the message, the auxiliary variables (X, Y, and V) are computed with
an iteration of the mainLoop function with the initial values (X0, Y0, V0) computed
by the function prelude shown in Figure 3.3;

• for the 257th block of the message, the auxiliary variables are computed with an
iteration of the mainLoop2 function, which consists of two iterations of the mainLoop,
one on the result of the previous coda (Z), and one on this block message;

• and, for the other blocks of the message, the auxiliary variables are computed by tak-
ing into account the previous auxiliary variables (pre X, pre Y, and pre V) computed
by the previous block.

Keys could also be represented using the type Pair, but we prefer introducing the follow-
ing dedicated structure Key to clearly distinguish between keys and, e.g., results of the
multiplication of two blocks:

type Key = struct {K: Block; J: Block};

We defined the “multiplicative” functions used for MAA computations, most of which were
present in [DC88] or have been later introduced in [MvOV96]. The three principal low-level
operations are MUL1, MUL2, and MUL2A, with its auxiliary functions. We also defined
the higher-level functions that implement the MAA algorithm on one segment (maximum
1024-byte), namely the prelude, the inner loop, the coda, as well as the principal function
MAC (that computes the 4-byte signature of a message).

It turned out that Lustre enables an elegant modeling of the involved data structures, such

3.2. Modelling the MAA in Lustre 53

1 node MAC (KJ: Key, word: Block)

2 returns (X, Y, V, W, S, T, Z: Block; n: int);

3 var X0, Y0, V0: Block;

4 let
5 -- identify the number of the block

6 init = true −> false;

7 n = if init then 1 else if pre n = 256 then 0 else pre n + 1;

8 -- prelude, initialisations

9 X0, Y0, V0, W, S, T = prelude (KJ.J, KJ.K);

10 -- main loops

11 X, Y, V = if init then
12 mainLoop (X0, Y0, V0, W, word)

13 else if n = 0 then
14 -- mode of operation

15 mainLoop2 (X0, Y0, V0, W, pre Z, word)

16 else mainLoop (pre X, pre Y, pre V, W, word);

17 -- coda

18 Z = coda (X, Y, V, W, S, T);

19 tel;

Figure 3.3: The node MAC

as enumeration (e.g., the enumeration Bit) and structures (e.g., the type Byte defined as
Octet). We briefly discuss below some of our choices for modeling the MAA in Lustre.

Usage of local variables. Local variables are essential to store computed results that
need to be used several times, thus avoiding identical calculations to be repeated.
Lustre allows to freely define and assign local variables; the compiler guaranties
that each variable is duly assigned before used. However, Lustre forbids successive
assignments to the same variable. For instance, the MUL2 function can be expressed
in Lustre as follows:

function MUL2 (w1, w2 : Block) returns (w: Block);

var w1w2, w3w4, w5w6: Pair; w3: Block;

let
w1w2 = mulBlock (w1, w2);

w3w4 = ADDC (w1w2.w1, w1w2.w1);

w3 = addBlock (w3w4.w2, addBlock (w3w4.w1, w3w4.w1));

w5w6 = ADDC (w3, w1w2.w2);

w = addBlock (w5w6.w2, addBlock (w5w6.w1, w5w6.w1));

tel;

Functions computing several results. There are several such functions in the MAA;
let us consider the prelude function which takes two block parameters J and K and
returns six block parameters X, Y, V, W, S, and T. By exploiting the fact that Lustre

54 Chapter 3. Validation Techniques for Synchronous Components

1 function prelude (J, K: Block) returns (X, Y, V, W, S, T: Block);

2 var P: Octet; J1, J12, J14, J16, J18, J22, J24, J26, J28: Block;

3 K1, K12, K14, K15, K17, K22, K24, K25, K27, K19, K29: Block;

4 H4, H0, H5, H6, H7, H8, H9: Block;

5 let
6 J1, K1 = BYT (J, K);

7 P = PAT (J, K);

8 J12, J14, J16, J18, J22, J24, J26, J28 = preludeJ (J1);

9 K12, K14, K15, K17, K19, K22, K24, K25, K27, K29 = preludeK (K1);

10 H4, H6, H8 = preludeHJ (J14, J16, J18, J24, J26, J28);

11 H0, H5, H7, H9 = preludeHK (K15, K17, K19, K25, K27, K29, P);

12 X, Y = BYT (H4, H5);

13 V, W = BYT (H6, H7);

14 S, T = BYT (H8, H9);

15 tel;

Figure 3.4: The function prelude

functions may return one or several parameters, we can elegantly define the prelude

function in Lustre as shown on Figure 3.4. The definitions of the auxiliary functions
preludeJ, preludeK, preludeHJ, and preludeHK are in Appendix A.12. This function
is invoked as follows (as it is done in the MAC node):

X, Y, V, W, S, T = prelude (J, K);

Our complete Lustre model of the MAA (see Appendix A) has 1271 lines. In the next
section, we present the validation process of this model, based on the testing framework
available for Lustre.

3.3 Testing the MAA Model

To validate our Lustre model, we defined four sets of test vectors derived from the specifi-
cation in [DC88]:

(T1) implements the 36 checks listed in Tables 1, 2, and 3 of [DC88]. These test vec-
tors specify, for a few given keys and messages, the expected values of intermediate
calculations (e.g., MUL1, MUL2, MUL2A, etc.).

(T2) is based upon Table 4 of [DC88], checking if the main loop of MAA (as described on
page 10 of [DC88]) is correctly implemented on six groups of checks (three single-block
messages and one three-block message); T2 corresponds to 56 tests.

(T3) is based upon Table 5 of [DC88], checking if the MAA signature is correctly computed

3.3. Testing the MAA Model 55

on four groups of checks, with two different keys and two different messages; T3
corresponds to 64 tests.

(T4) checks all intermediary values of the algorithm with a message of 20 blocks containing
only zeros directly taken from Table 6 of [DC88], T4 corresponds to 45 tests.

In all these series of test vectors [DC88], which corresponds to 201 tests, we found mistakes,
which we documented and for which we gave corrections in [GM18, Annex A].

We automate the test execution process, by using the testing tool Lurette [JRB06] taking
advantage of its connection with the Lustre language.

inputs / outputs

verdict

environment constraints

test scenario

Lurette

MAA

oracle &

coverage criteria

implementation

Figure 3.5: Overview of the Lurette testing tool

Figure 3.5 gives an overview of Lurette in the context of testing our MAA model. Lurette
takes two inputs: (i) an input constraints in Lutin [RRJ08]; (ii) an oracle implementing
the test decision, in our case the 12 possible pairs (one key K J, and a message of two
blocks), and the expected resulting MAC; and some parameters controlling the execution
and the coverage of the generated input sequences, e.g., the number of steps (n) in the
execution sequence. The Lurette tool is also connected to a system under test, in our
case the Lustre implementation of the MAA. More details about Lurette are available in
Section 2.2.3 (Chapter 2).

As seen below, we consider hard-coded messages, and for using Lurette, the inputs of the
system under test must only use the datatypes provided by Lutin (Boolean, reals, and
integers). Thus, we rewrote the Lustre MAC node as below: it has two inputs, a natural
number corresponding to the id of one key-message pair and a Boolean expressing the
beginning of a new message segment. In the rewritten Lustre node (Figure 3.6), the
function get_mess_key (line 6) takes as input an id, and returns the corresponding key and
a message (the possible messages blocks and pairs are hard-coded in this function).

The Lutin code in Figure 3.7 constrains the input of the MAA to one out of four messages,
containing each one two words.

Note that if the input values are not explicitly constrained in the Lutin environment,
random numbers will be generated. The environment contains the 12 possible pairs of keys
and messages. Although larger and more complex environments could be written, this task
is tedious and error-prone, in particular due to the representation of messages and keys by
natural numbers.

56 Chapter 3. Validation Techniques for Synchronous Components

1 node MAC (id: int; init: bool)

2 returns (X, Y, V, W, S, T, Z: Block; n: int);

3 var X0, Y0, V0: Block;

4 KJ: Key; Mn: Block;

5 let
6 Mn, KJ = get_mess_key (id);

7 n = if init then 1

8 else if pre n = 256 then 0

9 else pre n + 1;

10 -- initialisations

11 X0, Y0, V0, W, S, T = prelude (KJ.J, KJ.K);

12 -- mainloops

13 X, Y, V = if init then
14 mainLoop (X0, Y0, V0, W, Mn)

15 else if n = 0 then
16 -- mode of operation

17 mainLoop2 (X0, Y0, V0, W, pre Z, Mn)

18 else mainLoop (pre X, pre Y, pre V, W, Mn);

19 -- coda

20 Z = coda (X, Y, V, W, S, T);

21 tel;

Figure 3.6: The MAC node rewritten

1 node environment () returns (id: int; init: bool) =

2 loop {

3 |id = 1 and init = true fby id = 12 and init = false

4 |id = 2 and init = true fby id = 22 and init = false

5 |id = 3 and init = true fby id = 32 and init = false

6 |id = 4 and init = true fby id = 42 and init = false

Figure 3.7: Environment

3.3. Testing the MAA Model 57

Table 3.8 contains the test vector (T3), more precisely, four groups of checks, with two
different keys and two different messages.

MAA Variables Message 1 Message 2 Message 3 Message 4
J 00FF 00FF 00FF 00FF 5555 5555 5555 5555
K 0000 0000 0000 0000 5A35 D667 5A35 D667
P FF FF 00 00
X0 4A64 5A01 4A64 5A01 34AC F886 34AC F886
Y0 50DE C930 50DE C930 7397 C9AE 7397 C9AE
V0 5CCA 3239 5CCA 3239 7201 F4DC 7201 F4DC
W FECC AA6E FECC AA6E 2829 040B 2829 040B
M1 5555 5555 AAAA AAAA 0000 0000 FFFF FFFF
X 48B2 04D6 6AEB ACF8 2FD7 6FFB 8DC8 BBDE
Y 5834 A585 9DB1 5CF6 550D 91CE FE4E 5BDD
M2 AAAA AAAA 5555 5555 FFFF FFFF 0000 0000
X 4F99 8E01 270E EDAF A70F C148 CBC8 65BA
Y BE9F 0917 B814 2629 1D10 D8D3 0297 AF6F
S 51ED E9C7 51ED E9C7 9E2E 7B36 9E2E 7B36
X 3449 25FC 2990 7CD8 B1CC 1CC5 3CF3 A7D2
Y DB91 02B0 BA92 DB12 29C1 485F 160E E9B5
T 24B6 6FB5 24B6 6FB5 1364 7149 1364 7149
X 277B 4B25 28EA D8B3 288F C786 D048 2465
Y D636 250D 81D1 0CA3 9115 A558 7050 EC5E
Z F14D 6E28 A93B D410 B99A 62DE A018 C83B

Figure 3.8: Tests (T3) inspired by Table 5 of [DC88].

In our example, correct tests consist of the right output (a correct MAC value), given an
input vector (the id of the pair of one key and a message). A small example of oracle
for the previous Lutin code is given by the Lustre code of Figure 3.9, containing the test
decisions and the expected output: the auxiliary block values of X, Y and MAC value for
each block of message given in the Table 3.8.

The Lustre and Lutin model for the sets of test vectors (T1), (T2), (T3), (T4) has 1875
lines and contains 9 types (structures), 442 constants, 100 functions, and 2 nodes. Our
Lustre model of the MAA was validated by the 201 tests successfully.

58 Chapter 3. Validation Techniques for Synchronous Components

1 node oracle (id: int; init: bool; X, Y, Z: Block; n: int)

2 returns (res: bool);

3 let
4 res = true −>
5 -- X, Y: 1st MainLoop iteration

6 ((id = 1 and init and X = x48B204D6 and Y = x5834A585) or
7 -- X, Y: 2nd MainLoop iteration

8 (id = 12 and not init and X = x4F998E01 and Y = xBE9F0917) or
9 -- Z: coda

10 (id = 12 and Z = xF14D6E28) or
11 -- X, Y: 1st MainLoop iteration

12 (id = 2 and init and X = x6AEBACF8 and Y = x9DB15CF6) or
13 -- X, Y: 2nd MainLoop iteration

14 (id = 22 and not init and X = x270EEDAF and Y = xB8142629) or
15 -- Z: coda

16 (id = 22 and Z = xA93BD410) or
17 -- X, Y: 1st MainLoop iteration

18 (id = 3 and init and X = x2FD76FFB and Y = x550D91CE) or
19 -- X, Y: 2nd MainLoop iteration

20 (id = 32 and not init and X = xA70FC148 and Y = x1D10D8D3) or
21 -- Z: coda

22 (id = 32 and Z = xB99A62DE) or
23 -- X, Y: 1st MainLoop iteration

24 (id = 4 and init and X = x8DC8BBDE and Y = xFE4E5BDD) or
25 -- X, Y: 2nd MainLoop iteration

26 (id = 42 and not init and X = xCBC865BA and Y = x0297AF6F) or
27 -- Z: coda

28 (id = 42 and Z = xA018C83B)

29 -- All test vectors

30 and CHECK () = true);

31 tel;

Figure 3.9: Oracle

3.4. Formal models of the Message Authenticator Algorithm (MAA) 59

3.4 Formal models of the Message Authenticator Al-

gorithm (MAA)

Since Lustre does not implement the list data type, we had to to consider only messages
with fixed size in our Lustre model. Therefore, we also undertook the translation of
the LOTOS-92 and the LNT-2016 models of the MAA, in the term rewriting language
REC proposed in [DRB+09, Sect. 3] and [DRB+10, Sect. 3.1], and in the process algebra
languages: LOTOS and LNT2.

First, we undertook the translation of LOTOS-92 into a term rewrite system (REC-
17). This system was encoded in the simple language REC proposed in [Gar89, Sect. 3]
and [DRB+09, Sect. 3.1], which was slightly enhanced to distinguish between free construc-
tors and non-constructors. Contrary to higher-level languages such as LOTOS or LNT,
REC is a purely theoretical language that does not allow to import external fragments
of code written in a programming language. Thus, all types (starting by the most ba-
sic ones, such as Bit and Bool) and their associated operations were exhaustively defined
“from scratch” in the REC language. To check whether the MAA calculations are correct
or not, the REC model was enriched with the 201 test vectors used also to validate the
Lustre model, and 2 others to validate the “mode of operation” [GM17, Annexes B.18 to
B.21]. The resulting REC model has 1575 lines and contains 13 sorts, 18 constructors,
644 nonconstructors, and 684 rewrite rules. Using a collection of translators developed
at Inria Grenoble, the REC model was automatically translated into various languages:
AProVE (TRS), Clean, Haskell, LNT, LOTOS, Maude, mCRL2, OCaml, Opal, Rascal,
Scala, SML, Stratego/XT, and Tom. Using the interpreters, compilers, and checkers avail-
able for these languages, it was shown [GM17, Sect. 5] that the REC model terminates,
that it is confluent, and that sall the 203 tests pass successfully.

Then, we also performed a major revision of LOTOS-92 based upon the detailed knowledge
of the MAA acquired during the development of the REC model. Our goal was to pro-
duce an executable LOTOS model (LOTOS-17) as simple as possible, even if it departed
from the original not executable model LOTOS-91 written by Harold B. Munster. Many
changes were brought: the Nat sort was replaced almost everywhere by the Block sort;
about seventy operations were removed, while a dozen new operations were added; the
Block constructor evolved by taking four bytes rather than thirty-two bits; the Prelude
operation is executed only once per message, rather than once per segment; the detection
of messages larger than 1,000,000 blocks is now written directly in C; etc. These changes
led to a 266-line LOTOS model (see Annex C) with two companion C files (157 lines in
total) implementing the basic operations on blocks. Interestingly, all these files taken to-
gether are smaller than the original model LOTOS-91, demonstrating that executability
and conciseness are not necessarily antagonistic notions. Our LOTOS model was validated
by the CÆSAR.ADT compiler, which implements all the syntactic and semantic checks

2More details about LNT are available in Chapter 2 Section 2.3.1).

60 Chapter 3. Validation Techniques for Synchronous Components

stated in the definition of LOTOS [ISO89]. The C code generated from the LOTOS model
passed the test vectors specified in [ISO90, Annexes E.3.4 and E.4].

Finally, we entirely rewrote LNT-16 in order to obtain a simpler model. First, the same
changes as for LOTOS-17 were applied to the LNT model. Also, the sorts Pair, TwoPairs,
and ThreePairs, which had been introduced by Harold B. Munster to describe functions
returning two, four, and six blocks, have been eliminated; this was done by having LNT
functions that return their computed results using “out” or “in out” parameters (i.e., call
by result or call by value result) rather than tuples of values; the principal functions (e.g.,
MUL1, MUL2, MUL2A, PRELUDE, CODA, MAC, etc.) have been simplified by taking advantage of
the imperative style LNT, i.e., mutable variables and assignments; many auxiliary func-
tions have been gathered and replaced by a few larger functions (e.g., PreludeJ, PreludeK,
PreludeHJ, and PreludeHK) also written in the imperative style. These changes resulted
in a 268-line LNT model with a 136-line companion C file, which have nearly the same
size as LOTOS-17 , although the LNT version is more readable and closer to the original
MAA model [DC88], also expressed in an imperative style. As for Lustre, the LNT model
was then enriched with the same collection of test vectors, and supplementary test vectors
intended to specifically check for certain aspects (byte permutations and message segmen-
tation) that were not enough covered by the above tests; this was done by introducing a
makeMessage function acting as a pseudo-random message generator. Finally, the remain-
ing test vectors of [ISO90, Annexes E.3.4 and E.4], which were too lengthy to be included
in the Lustre model and the REC-17, have been stored in text files and can be checked by
running the C code generated from the LNT model. This makes LNT-17 the most complete
formal model of the MAA as far as validation is concerned. Our LNT model was validated
by the LNT2LOTOS translator, which implements the syntactic checks and (part of) the
semantic checks stated in the definition of LNT [CCG+19] and generates LOTOS code,
which is then validated by the CÆSAR.ADT compiler, therefore performing the remaining
semantics checks of LNT. The C code generated by the CÆSAR.ADT compiler passed the
test vectors specified in [ISO92, 17, Annex A], in [ISO90, Annexes E.3], in [ISO90, An-
nexes E.3.4 and E.4], and the supplementary test vectors based on an additional function
building messages.

� � �

The modelisation of the MAA and its validation enabled us to discover various mistakes
in prior (informal and formal) specifications of the MAA:

1. a mistake in the test vectors for the function PAT (part of the function Prelude),
given in [ISO92, Annex A] and [DC88], the correction and more details are available
in [GM17, Annex A];

2. a mistake in the test vectors for the full MAA algorithm, given in [ISO90, Annex E],
the correction and more details are available in [GM18, Annex A];

3. an error was found in the main C program provided by [DC88], which computed an
incorrect MAC value, as the list of blocks storing the message was built in reverse

3.4. Formal models of the Message Authenticator Algorithm (MAA) 61

order;

4. three others errors were found in the Lustre v6 toolbox: (i) lv6 compiler generating
invalid C code if a variable identifier uses quotes (’); (ii) another issue with constant
structures and the compiler lv6; and (iii) Lurette tool ignoring -2c-exec option; all
these errors have been communicated to the Lustre v6 developers and have been
quickly fixed by Erwan Jahier;

5. another error was found in the external implementation in C of the function HIGH_MUL,
which computes the highest 32 bits of the 64-bit product of two blocks and is imported
by the LOTOS and LNT models - this illustrates the risks arising when formal and
non-formal codes are mixed.

It is however fair to warn the reader that testing our Lustre MAA model was a tedious
task: in order to automate the tests validation with a Lutin environment and an oracle, we
had to define more than 400 constants. An automation of this testing process is therefore
highly beneficial, as it will be illustrated in Chapter 5.

62 Chapter 3. Validation Techniques for Synchronous Components

Chapter 4

Validation of Communication
Protocols between Components

In this chapter we illustrate the formalization and the functional testing of communication
protocols between synchronous components, taking as a case study the TLS (Transport
Layer Security) handshake version 1.3 [DR06, IET18], a protocol responsible for the authen-
tication and the exchange of keys necessary to establish or resume a secure communication.
The TLS [BMMW18] model has been validated using a new on-the-fly conformance test
case generation tool named TESTOR [MMS18].

This chapter is organized as follows. Section 4.1 gives an overview of the TLS 1.3 hand-
shake, from a technical perspective. Section 4.2 presents the LNT model of the TLS
1.3 handshake. Section 4.3 presents our new on-the-fly conformance test case generation
tool TESTOR and describes various experiments to validate it. Section 4.4 describes our
validation approach for the TLS handshake, using TESTOR to generate test cases.

4.1 Transport Layer Security Handshake Protocol

Security services are frequently used in fields like online banking, e-government and online
shops. With increased availability of such services, the number of security risks rises both
for users and providers alike. In order to ensure a secure communication between peers in
terms of authenticity, privacy, and data integrity, cryptographic protocols are applied to
regulate the data transfer. These protocols provide a standardized set of rules and methods
for the interaction between peers. Transport Layer Security (TLS) [DR06] is a widely used
security protocol, designed as a successor of Secure Sockets Layer (SSL) [Wea06]. Both
protocols encompass a set of rules for the communication between client and server and
rely on public-key cryptography to ensure integrity of exchanged data.

In this chapter, we focus on the TLS handshake protocol, which enables a TLS client

63

64 Chapter 4. Validation of Communication Protocols between Components

and server to establish a secure, authenticated communication link. The TLS handshake
consists of four steps: (i) consent on the version of the protocol to use and choose crypto-
graphic algorithms; (ii) exchange and validate certificates to authenticate each other; (iii)
generate a shared secret key; and (iv) abort the handshake with an alert if something goes
wrong. We present below the main TLS 1.3 handshake messages exchanged, as well as the
exchange process between the server and the client(s).

4.1.1 Handshake TLS 1.3 interactions

The TLS messages make up the interaction between a client and a server and exchange
values between them. The most important feature is the negotiation of cryptographic
parameters that ensures privacy and integrity of exchanged information. During the pro-
tocol, client and server agree on used protocol version, exchange random values and select
cryptographic algorithms for encryption and decryption of transferred data. Both peers
exchange keys and certificates and after the handshake is finished, they can start to encrypt
and exchange application data.

A summary of the interactions and the message exchanges from the client side and the
server side is respectively depicted in the state machines [IET18] shown on Figure 4.1 and
Figure 4.2. The state machines are transition-based (i.e., the state names are for sake of
readability only), and conditional actions are represented in brackets ([]).

Note that these state machines do not represent the client’s and server’s Alert message
interactions. The server and the client have to abort the handshake with an Alert message
if one of the TLS 1.3 requirements textually described in the draft TLS 1.3 handshake
[IET18] is not respected. As an example, we describe here three requirements taken from
the draft TLS 1.3 handshake [IET18]:

• The handshake messages should be sent in one of the orders represented in a path of
the state machines given in Figure 4.1 and Figure 4.2. If a message is sent in the wrong
order, the handshake connection will be aborted with an “unexpected message”
alert.

• The TLS 1.3 handshake refuses renegotiation without a hello retry request mes-
sage, thus the client hello message can only be exchanged in the beginning of the
protocol or after receiving a hello retry request message. If renegotiation takes
place without a hello retry request message, the handshake is aborted with an
“unexpected message” alert.

• When the client receives a hello retry request message, the client should check
that cryptographic information contained in the hello retry request is different
from the information in the initial client hello message. If not, the handshake is
aborted with an “illegal parameter” alert.

4.1. Transport Layer Security Handshake Protocol 65

The difficulty in modelling the TLS was the extraction of definitions from the informal def-
inition of the TLS 1.3 handshake requirements in [IET18]. Since this informal specification
is not self-contained, it refers to many documents, e.g., the alert management.

In the sequel, we will not consider the internal processing of the TLS handshake but we
will focus instead on the TLS messages, leaving the information exchange to be handled
by the execution framework and the SUT. In the next section, we detail the handshake
messages exchanged.

START

WAIT_SH

WAIT_EE

WAIT_CERT_CR

WAIT_CERT

WAIT_CV

Send ClientHello

[K_send = early data]

Recv

Recv ServerHello

K_recv = handshake

Recv EncryptedExtension

Using certif

Recv

Can send

early data

Can send

app data

after here

Certificate

Recv

Using PSK

Recv

WAIT_FINISHED

Recv Finished

K_send = handshake

CONNECTED

CertificateRequest

Certificate

Recv

CertificateVerify

HelloRetryRequest

[Send EndOfEarlyData]

K_send = K_recv

Send Finished

Figure 4.1: TLS handshake client

66 Chapter 4. Validation of Communication Protocols between Components

START

HelloRetryRequest
Recv ClientHello

Send

Select parameters

RECVD_CH

Can send

app data

after here

NEGOTIATED

CONNECTED

WAIT_FINISHED

WAIT_CV

WAIT_CERT

WAIT_FLIGHT2

WAIT_EOED

Send ServerHello

Send EncryptedExtensions

[Send CertificateRequest]

CertificateVerify]

Send Finished

K_send = application

[Send Certificate +

No 0−RTT

K_recv = early

0−RTT

K_recv = handshake

[Skip decrypt errors] data

Recv
early data

Client authNo auth

Recv

empty

Certificate

Recv Certificate

Recv

CertificateVerify

Recv

Recv Finished

K_recv = application

K_send = handshake

K_recv = handshake

Recv EndOfEarlyData

Figure 4.2: TLS handshake server

4.1. Transport Layer Security Handshake Protocol 67

4.1.2 Main TLS 1.3 handshake messages

The handshake itself consists of different message types, so-called TLS messages, and corre-
sponding parameters that are part of these messages. Every such parameter comprehends
specific values, where some of them are assigned dynamically during the handshake proce-
dure. The main messages exchanged during the TLS handshake steps are:

i. The client and the server agree upon the version of the protocol and cryptographic
algorithms to use by exchanging the client hello, hello retry request, server
hello, and encrypted extensions messages.

• The client hello is always the first message, and a client should resend a client
hello message only if the server responded to it by a hello retry request

message. It contains the client’s cryptographic information: the supported version
of protocol, the pre-shared keys, the list of symmetric cipher options, and the
extended functionalities.

• The server hello is the response (message) from the server to the client hello

message if the server was able to select an acceptable set of handshake parameters
based on the client hello. It contains the cryptographic information selected:
the protocol version, the list of symmetric cipher, and the server extensions.

• The hello retry request is the response (message) from the server to the
client hello message if the server was not able to select an acceptable set
of parameters. It contains the same cryptographic information as the server

hello message.

• The encrypted extensions message is sent by the server immediately after the
server hello message. This is the first message that is encrypted using keys
derived from the server handshake traffic secret. It contains extensions that can
be protected.

ii. An authentication with a certificate between the server and the client can be requested
by exchanging the certificate request, certificate, and certificate verify

messages.

• The certificate request message must be sent by the server directly after the
encrypted extensions message if the server requests a certificate. It contains
an identification of the certificate request and a set of extensions describing the
parameters of the certificate.

• The certificate message is sent by the server and by the client. It contains
their respective certificate to be used for authentication, and any other supporting
certificates.

• The certificate verify message is directly sent by the server and by the client
after the respective certificate message. It contains a signature using the private

68 Chapter 4. Validation of Communication Protocols between Components

key corresponding to the public key in the certificate message.

iii. The server and the client generate and share a secret key by exchanging the finished
message. The finished message is sent by the server, then by the client. It contains
a message authentication code (MAC).

iv. At any step of the handshake, the client or the server can abort the handshake, and
close the connection if a failure happened. To do so, they should exchange an alert

message. The alert message contains the description of the alert.

A number of TLS handshake messages contain encoded extensions. There are 21 types of
extensions defined in [IET18] (e.g., “supported versions”, “cookie”, “negotiated groups”,
etc.). For instance, the ”supported versions” extension is a list of supported versions
in preference order, and it is used by the client to indicate which versions of TLS it
supports and by the server to indicate which version it is using. The client sends its
extension requests in the client hello message and the server sends its responses in the
server hello extension, encrypted extensions, hello retry request extensions and
certificate messages.

4.2 Formal Model of the TLS Handshake in LNT

Taking the draft specification of the TLS [IET18] protocol version 1.3 as starting point,
we formalize the handshake protocol of TLS in the LNT language [GLS17, CCG+19]. In
this section, we give a brief description of our model, which encompasses the handshake
messages, and illustrate then the handshake interactions. We discuss the challenges to
specify the TLS handshake in LNT with concrete examples. The full LNT model is given
in [BMMW18]1.

4.2.1 Handshake interactions

Our modeling of the communication between client and server is based on the state ma-
chines (Figures 4.1 and 4.2) and the handshake TLS 1.3 requirements discussed in Sec-
tion 4.1.1.

The server and the client are modeled by two processes [BMMW18] communicating by
rendezvous on gates, i.e., the communication is blocked by both sending and receiving
messages: the one waiting for a rendezvous is suspended and terminates immediately after
the rendezvous takes place. Concretely, the server and the client processes correspond to
their respective state machines (Figure 4.1 and Figure 4.2) extended with the management
of the Alert message. Each kind (server or client) of handshake message is implemented

1http://mars-workshop.org/repository/018-TLS.html

4.2. Formal Model of the TLS Handshake in LNT 69

as a process, and two additional processes by kind of handshake message sent by the client
and the server. In total there are 15 processes.

The alert management is in charge of handling handshake errors. If a handshake require-
ment is not respected, the handshake should be aborted with an alert message. We defined
the following AlertType, an enumeration of all possible alert messages. Each process takes
as parameter an alert type, which is initialized by an “undefined” alert in the main pro-
cess. If a handshake requirement is not respected in a process, the corresponding alert
type should be assigned to the out alert parameter, and the handshake aborted with the
corresponding alert message.

type AlertType is
missing_extension,

unexpected_message,

unsupported_certificate,

...

undefined

end type

During the modeling process of the handshake interactions, we took advantage of the pow-
erful disruption operation of the LNT language. Consider for instance the following re-
quirement: the TLS 1.3 handshake refuses renegotiation without a hello retry request

message. The client hello message can only arrive at the beginning of the handshake, or
right after a hello retry request message. In all other cases, if a client hello message
arrives, the handshake should be aborted with an alert. To implement this requirement we
used the LNT operator disrupt, which allows at any time a possible disruption of a block
of code by another block. In the following LNT code, we have for instance the possible
disruption of a content behavior by a client hello message (ClientHello), followed by
an alert.

disrupt
... content

by
−− TLS 1.3 refuses renegotiation without a Hello Retry Request
ClientHello [clientHello_c] (false, !?CH_p, HRR_P, ?alert);
alert := unexpected_message;
−− abort the handshake with an ”unexpected message” alert
alert_c (alert)

end disrupt

4.2.2 Handshake messages

The handshake messages and their encryption information are defined as types. Our model
contains 43 types, with simple types as enumerations, lists, or more sophisticated ones, such

70 Chapter 4. Validation of Communication Protocols between Components

as “union like” types. Below is an example of structure-like type containing one constructor
with several fields.

type ClientHello is
ClientHello (legacy_version: ProtocolVersion, random: Random32,

legacy_session_id: SessionId, cipher_suite: Ciphers,

legacy_compression_methods: CompressionMethods,

extensions: Extensions)

end type

The main challenge was the definition of “union-like” types, regrouping several types,
the difficulty being to build this abstract tree of types from the informal TLS handshake
description. The advantage is that, once this was done, it became easy to bring new
extensions to our model. For instance, one of the encryption parameters of the client

hello message is of type Extensions, which is a list of elements of type Extension, i.e.,
a tuple containing an extension type and an extension data.

type Extensions is
list of Extension

with "cons", "remove"

end type

type Extension is
Extension (extension_type: ExtensionType,

extension_data: ExtensionData)

end type

LNT provides some predefined functions, which simplify the modeling task by avoiding
the definition of classical useful functions. For instance, the LNT definition of the client
hello message described in Section 4.1.2, uses three predefined functions to support nota-
tion x.f and compare values of the ClientHello type (cons and remove). Extension type
is defined by an enumeration of 21 extension types. Extension data is a type regroup-
ing several constructors, each of them having its own parameters and corresponding to
an extension type. Most of the extensions are optional, thus we implemented 9 of the 21
respective extension data constructors in our model.

type ExtensionType is
signature_algorithms,

supported_versions,

cookie,

...

end type

type ExtensionData is
Cookie (c: Cookie),

CertificateType (ct: CertificateType),

SupportedVersions (sv: supportedVersions),

...

end type

Consider for instance the definition of one of the mandatory extensions in TLS 1.3, the
supported version extension. We want to model a supported-version extension for the
protocol “TLS 1.2” in LNT. To do so, we need an extension with the supported version
type, and with an extension data using the constructor SupportedVersions, which takes
as a parameter a supportedVersions, i.e., a list of protocol versions.

4.3. TESTOR: On-the-Fly Conformance Test Case Generation 71

Extension(

supported_version,

SupportedVersion ({TLS12})

)

type SupportedVersions is
list of ProtocolVersion

end type

type ProtocolVersion is
TLS12,

...

end type

Our complete LNT model of the TLS handshake 1.3 (see in [BMMW18, Appendix 16]) has
918 lines and contains 15 processes, 8 functions, 42 types, and 10 channel definitions.

4.3 TESTOR: On-the-Fly Conformance Test Case

Generation

In this section, we present TESTOR2, a tool for on-the-fly conformance test case gen-
eration guided by test purposes. Following the approach of TGV [JJ05], a test purpose
characterizes some state(s) of the model as accepting. TESTOR extends the algorithms of
TGV to extract controllable test cases completely on the fly (i.e., during test case execution
against the SUT), making TESTOR suitable for online testing. The tool is built following
a modular architecture on top of the OPEN/CAESAR [Gar98] generic environment for
on-the-fly graph manipulation provided by CADP [GLMS13].

4.3.1 Architecture

τ τ
a

b
τ∗

explorer

(+diag)
yes/no

ϕl2a?

reductors

τ -compression τ -closure
determinizationsynchronous

product

M

TP

CTG

TC

solver

τ -confluence

I/O actions
Figure 4.3: Architecture of TESTOR

TESTOR takes as input a formal model (M), a test purpose (TP), and a predicate specify-
ing the input/output actions of M. Depending on the chosen options, it produces as output
either a complete test graph (CTG), or a test case (TC) extracted on the fly. TESTOR
has a modular component-based architecture consisting of several on-the-fly IOLTS trans-
formation components, interconnected according to the architecture shown on Figure 4.3.

2The TESTOR tool is available at http://convecs.inria.fr/software/testor

72 Chapter 4. Validation of Communication Protocols between Components

The boxes represent transformation components and the arrows between them denote the
implicit representations (post functions) of IOLTSs. The synchronous product and the
explorer are the only components newly developed, all the other ones (represented in gray
on Figure 4.3) being already available in the libraries of the OPEN/CAESAR [Gar98]
environment of CADP.

The first component produces the synchronous product (SP) between the model M and
the test purpose TP. Following the conventions of TGV [JJ05], the synchronous product
supports *-transitions and implements the implicit addition of self-looping *-transitions.
Note that the synchronous product is optional, one can instead use the multiway ren-
dezvous [Hoa78, HP06, GS17] to compositionally annotate the model. The next four
reduction components progressively transform SP into SPvis = det(Δ(SP)) as follows:

(i) τ -compression produces the suspension automaton Δ(SP) by squeezing the strongly
connected components of τ -transitions and replacing them with δ-loops representing
quiescence;

(ii) τ -confluence eliminates redundant interleavings by giving priority to confluent τ -
transitions, i.e., whose neighbor transitions (going out from the same source state)
do not bring new observational behavior;

(iii) τ -closure computes the transitive reflexive closure on τ -transitions;

(iv) the resulting τ -free IOLTS is determinized by applying the classical subset construc-
tion.

The reduction by τ -compression is necessary for τ -confluence (which operates on IOLTSs
without τ -cycles) and is also useful as a preprocessing step for τ -closure (whose algorithm
is simpler in the absence of τ -cycles). Although τ -confluence is optional, it may reduce
drastically the size of the IOLTS prior to τ -closure, therefore acting as an accelerator for the
whole test selection procedure when SP contains large diamonds of τ -transitions produced
by the interleavings of independent actions [Mat05]. The first three reductions [Mat05] are
applied only if TESTOR detects the presence of τ -transitions in SP.

The determinization produces as output the post function of the IOLTS SPvis , whose states
correspond to sets of states of the τ -free IOLTS produced by τ -closure. SPvis is processed by
the explorer component, which builds the CTG or the TC by computing the corresponding
subgraph whose states are contained in L2A (lead to accept). The reachability of accepting
states is determined on the fly by evaluating the PDL [FL79] formula ϕl2a = �true∗�accept
on the states visited by the explorer, where the atomic proposition accept denotes the
accepting states. This check is done by translating the verification problem into a Boolean
equation system (BES) and solving it on the fly using a BES solver component [Mat06].

4.3. TESTOR: On-the-Fly Conformance Test Case Generation 73

!x

!x

?a

!x!z

!y

!y?c

?c
?a

?c

?b

!z!y
!y

?a
!y?b

12

8
9

57

3 1

0

2

11
Accept

6
Refuse

4
Refuse

pass

inconc

inconc

inconc

10

δ

δ

δ

δ

δ

δ

δ

δ

δ

Figure 4.4: The visible behavior SPvis , complete test graph CTG (gray), and a test case
TC (dark gray) of the running example [JJ05].

4.3.2 On-the-fly test selection algorithm

We describe below the algorithm used by the explorer component to extract the CTG or
a (controllable) TC from the SPvis IOLTS on the fly.

Basically, the CTG is the subgraph of SPvis containing all states in L2A, extended with
some states denoting verdicts. The accepting states (which are by definition part of L2A)

correspond to pass verdicts. For every state q ∈ L2A, the output transitions q
!a→ q�

with q� �∈ L2A lead to inconclusive verdicts, and the output transitions other than those
contained in SPvis lead to fail verdicts. To compute the CTG, the explorer component
performs a forward traversal of SPvis and keeps the states q ∈ L2A, which satisfy the
formula ϕl2a. The check q |= ϕl2a is done by solving the variable Xq of the minimal fixed
point BES {Xq = (q |= accept) ∨�

q
b→q�

Xq�} denoting the interpretation of ϕl2a on SPvis .

The resolution is carried out on the fly using the algorithm for disjunctive BESs proposed
in [Mat06]. If the CTG is not empty (i.e., qSPvis

0 |= ϕl2a), then it contains at least one
controllable TC [JJ05].

The extraction of a TC uses a similar forward traversal as for generating the CTG, ex-
tended to ensure controllability, i.e., every state q of TC either has only one outgoing

input transition q
?a→ q� with q� ∈ L2A, or has all output transitions q

!a→ q�� of SPvis with
q�� ∈ L2A. The essential ingredient for selecting the input transitions on the fly is the
diagnostic generation for BESs [Mat00], which provides, in addition to the Boolean value
of a variable, also the minimal fragment (w.r.t. inclusion) of the BES illustrating the value
of that variable. For a variable Xq evaluated to true in the disjunctive BES underlying

ϕl2a, the diagnostic (witness) is a sequence Xq
b1→ Xq1

b2→ · · · bk→ Xqk where qk |= accept .

74 Chapter 4. Validation of Communication Protocols between Components

This induces a sequence of transitions q
b1→ q1

b2→ · · · bk→ qk in SPvis leading to an accepting
state. Since all states q, q1, ..., qk also belong to L2A, this diagnostic sequence is naturally
part of the TC under construction.

More precisely, the TC extraction algorithm works as follows. If qSPvis
0 |= ϕl2a, the di-

agnostic sequence for qSPvis
0 is inserted in the TC (otherwise the algorithm stops because

the CTG is empty). For the TC illustrated on Figure 4.4, this first diagnostic sequence

is q0
?a→ q1

!y→ q5
?b→ q9

!z→ q11. Then, the main loop consists in choosing an unexplored
transition of the TC and processing it.

• If it is an input transition q
?a→ q�, nothing is done, since the target state q� ∈ L2A

by construction. Furthermore, the presence of this transition in the TC makes its

source state q controllable. This is the case, e.g., for the transition q0
?a→ q1 in the

TC shown on Figure 4.4.

• If it is an output transition q
!a→ q�, each of its neighboring output transitions q

!a�→ q��

is examined in turn. If the target state q�� �∈ L2A, the transition is inserted in TC and
q�� is marked with an inconclusive verdict. This is the case, e.g., for the transition

q1
!x→ q4 in the TC on Figure 4.4. If q�� ∈ L2A, the transition in inserted in the TC,

together with the diagnostic sequence produced for q��. This is the case, e.g., for the

transition q9
!y→ q5 in the TC on Figure 4.4.

The insertion of a diagnostic sequence in the TC stops when it meets a state q that already
belongs to the TC, since by construction the TC already contains a sequence starting at
q and leading to an accepting state. This is the case, e.g., for the diagnostic sequence
starting at state q5 in the TC on Figure 4.4. In this way, the TC is built progressively by
inserting the diagnostic sequences produced for each of the encountered states in L2A.

During the forward traversal of SPvis , the explorer component continuously interacts with
the BES solver, which in turn triggers other forward explorations of SPvis to evaluate ϕl2a.
The repeated invocations of the solver have a cumulated linear complexity in the size of
the BES (and hence, the size of SPvis), because the BES solver keeps its context in memory
and does not recompute already solved Boolean variables [Mat06].

4.3.3 Examples of different ways to express a test purpose

A natural TP for the TLS handshake is to search for a sequence corresponding to the
exchange of handshake messages between the client and the server, for instance, the client
sends a client hello message. If the server is not satisfied with this request, it responds
with a hello retry request, and the client responds with a new client hello message.
Finally, if the server is satisfied, it responds with a server hello message. Using the
LNT language [GLS17, CCG+19], one would be tempted to write this TP as the process

4.3. TESTOR: On-the-Fly Conformance Test Case Generation 75

PURPOSE_A below, simply containing the desired sequence of the four handshake messages
(on gates CLIENT_HELLO, HELLO_RETRY_REQUEST, CLIENT_HELLO, and SERVER_HELLO):

process PURPOSE_A [CLIENT_HELLO: CH, HELLO_RETRY_REQUEST: HRR,

SERVER_HELLO: SH, T_ACCEPT: none] is
CLIENT_HELLO (CTLS12, 28byteRand, T_NULL, {}, T_NULL, {});

HELLO_RETRY_REQUEST (TLS12, TLS_AES_128_GCM_SHA256,

{Extension (signature_algorithms, SignatureSchemeList (sas))});

CLIENT_HELLO (CTLS12, 28byteRand, T_NULL, {TLS_AES_128_GCM_SHA256}, T_NULL,

{Extension (signature_algorithms, SignatureSchemeList (sas))});

SERVER_HELLO (TLS12, 28byteRand, TLS_AES_128_GCM_SHA256,

{Extension (signature_algorithms, SignatureSchemeList (sas))});

loop T_ACCEPT end loop
end process

Following the conventions of TGV, we mark accepting (respectively, refusal) states by a
self-loop labeled with T_ACCEPT (respectively, T_REFUSE).

However, PURPOSE_A is not complete: e.g., initially only one action out of the
possible set {CLIENT_HELLO(), HELLO_RETRY_REQUEST (...), SERVER_HELLO (...), ...}
is specified. Thus, when computing the synchronous product with the model,
PURPOSE_A is implicitly completed by self-loops labeled with “*” (as explained in
Section 2.3.3), yielding a significantly more complex TC than expected. For in-
stance, the implicit *-transition in the initial state allows the tester to perform
the sequence “CLIENT_HELLO (...); HELLO_RETRY_REQUEST (...); CLIENT_HELLO (...);
HELLO_RETRY_REQUEST (...); CLIENT_HELLO (...); SERVER_HELLO (...)” rather than
the expected simple sequence “CLIENT_HELLO (...); HELLO_RETRY_REQUEST (...);
CLIENT_HELLO (...); SERVER_HELLO (...)”. To force the generation of a TC corresponding
to the simple sequence, it is necessary to explicitly complete the TP with transitions to
refusal states, as shown by the LNT process PURPOSE_B, where gate OTHERWISE stands for
the special label “*”:

process PURPOSE_B [CLIENT_HELLO: CH, HELLO_RETRY_REQUEST: HRR,

SERVER_HELLO: SH, T_ACCEPT, T_REFUSE, OTHERWISE: none] is
select −− refuse any rendezvous but ”CLIENT HELLO (...)”

CLIENT_HELLO (CTLS12, 28byteRand, T_NULL, {}, T_NULL, {})

[] OTHERWISE; loop T_REFUSE end loop
end select;
select −− refuse any rendezvous but ”HELLO RETRY REQUEST (...)”

HELLO_RETRY_REQUEST (TLS12, TLS_AES_128_GCM_SHA256,

{Extension (signature_algorithms, SignatureSchemeList (sas))})

[] OTHERWISE; loop T_REFUSE end loop
end select;
select −− refuse any rendezvous but ‘‘CLIENT HELLO (...)’’
CLIENT_HELLO (CTLS12, 28byteRand, T_NULL, {TLS_AES_128_GCM_SHA256}, T_NULL,

{Extension (signature_algorithms, SignatureSchemeList (sas))})

76 Chapter 4. Validation of Communication Protocols between Components

[] OTHERWISE; loop T_REFUSE end loop
end select;
select −− refuse any rendezvous but ‘‘SERVER HELLO (...)’’
SERVER_HELLO (TLS12, 28byteRand, TLS_AES_128_GCM_SHA256,

{Extension (signature_algorithms, SignatureSchemeList (sas))});

loop T_ACCEPT end loop
[] OTHERWISE; loop T_REFUSE end loop
end select

end process

The modular architecture of TESTOR also makes the description of test purposes more
convenient, replacing the specific synchronous product of TGV by the LNT parallel com-
positions and taking advantage of the multiway rendezvous, a powerful primitive to express
communication and synchronization among a set of distributed processes. This approach
based on the multiway-rendezvous supports data handling, something which is necessary
for defining test purposes to validate. Instead of using the dedicated synchronous prod-
uct, it is also possible to take advantage of the multiway rendezvous [Hoa78, GS17] to
compositionally annotate the model, relying on the LNT operational semantics [CCG+19,
Appendix B] to cut undesired branches. For instance, the same effect as the synchronous
product with PURPOSE_B can be obtained by skipping the left-most component “synchronous
product” of Figure 4.3, i.e., feeding the τ -reduction steps with the IOLTS described by the
following LNT parallel composition:

par CLIENT_HELLO, HELLO_RETRY_REQUEST, SERVER_HELLO in
SERVER [CLIENT_HELLO, HELLO_RETRY_REQUEST, SERVER_HELLO]

|| PURPOSE_A [CLIENT_HELLO, HELLO_RETRY_REQUEST, SERVER_HELLO, T_ACCEPT]

end par

Note that SERVER denotes a process implementing the Server behavior.

This approach based on the multiway rendezvous even supports data handling. For in-
stance, to receive the hello request message (variable H), and to use the information directly
in the client hello message (H.cipher_suite and H.extensions), one has just to replace in
the above parallel composition the call to PURPOSE_A by a call to the process PURPOSE_C:

process PURPOSE_C [CLIENT_HELLO: CH, HELLO_RETRY_REQUEST: HRR,

SERVER_HELLO: SH, T_ACCEPT: none] is
var H: HelloRetryRequest, S: ServerHello in

CLIENT_HELLO (CTLS12, 28byteRand, T_NULL, {}, T_NULL, {});

HELLO_RETRY_REQUEST (?H);
CLIENT_HELLO (CTLS12, 28byteRand, T_NULL,

H.cipher_suite, T_NULL, H.extensions);

SERVER_HELLO (?S);
loop T_ACCEPT end loop

end var
end process

4.3. TESTOR: On-the-Fly Conformance Test Case Generation 77

Table 4.1: Run-time performance for selected examples

TESTOR TGV
example test case CTG test case CTG

time mem. time mem. time mem. time mem.

EnergyBus 3 81 182 181 2 137 52 858
EnergyBus (with REFUSE) 1 67 1 66 0 66 0 43
ACE UniqueDirty 45 121 346 451 75 159 3047 643
ACE SharedDirty 384 510 342 529 3821 746 3920 746
ACE SharedClean 298 415 325 523 2820 628 3474 663
ACE Data Inconsistency 24 116 580 711 24 142 6701 894
DES 22109 300 >1week >43GB >220GB
DES (with REFUSE) 27344 332 27 86 24 6177 24 6176
DES (with data) 2 74 4 100 not applicable

Execution time is given in seconds and memory usage in MB.

4.3.4 Experimental comparison of TESTOR and TGV

TESTOR follows TGV’s implementation of the ioco-based testing theory [Tre92, Tre08],
using the same IOLTS processing steps, adding only the τ -confluence reduction. For each
step, TESTOR uses components developed, tested, and used in other tools for more than
a decade. We focus on performance aspects and we compare TESTOR to TGV. For this
purpose, we conducted several experiments with models and test purposes, both automat-
ically generated and drawn from academic examples and realistic case studies. In this
section we present a summary of the evaluation process and experimentation (more details
are available in [MMS18]).

For assessing the correctness of TESTOR, we checked that each TC is included in the
CTG, and we compared the TCs and CTGs generated by TESTOR to those generated by
TGV. For each pair of model and TP, we measured the runtime and peak memory usage of
computing a TC or CTG (using TESTOR and TGV), excluding the fixed cost of compiling
the LNT code (model and TP) and generating the executable. The experiments presented
in this chapter were carried out using the petitprince cluster located in Luxembourg 3,
each machine of which is equipped with 2 Intel Xeon E5-2630L CPUs, 32GB RAM, and
running 64-bit Debian GNU/Linux 8 and CADP 2017-i. Each measurement corresponds
to the average of ten executions.

78 Chapter 4. Validation of Communication Protocols between Components

Test Purposes taken from case studies

Table 4.1 summarizes the results for some selected examples. The first two have been
kindly provided by Alexander Graf-Brill, and correspond to initial versions of TPs for
his EnergyBus model [GBHG14]; both aim at exhibiting a particular boot sequence, the
second one using REFUSE transitions. The next four examples have been used by STMi-
croelectronics to verify a cache-coherence protocol [KS15]. The last three correspond to
the three test purposes for an asynchronous implementation of the DES (Data Encryption
Standard) [Ser15] and check the correctness of a simplified4 version of the asynchronous
implementation of the DES (Data Encryption Standard). These examples cover a large
spectrum of characteristics: from no τ -transitions (ACE) to huge confluent τ -components
(DES), from few visible transitions (DES) to many outgoing visible transitions (Energy-
Bus), and a test selection more or less guided via refusal states.

We observe that TESTOR requires less memory than TGV for all examples, but most
significantly for the DES. However, although TESTOR is several orders of magnitude
slower than TGV for the DES when using the synchronous product (DES TPs without
and with REFUSE), TESTOR requires only two seconds to generate a TC or CTG when
using an LNT parallel composition with the DES TP with data handling. This is because
the LNT parallel composition, handled by the LNT compiler, enables more aggressive
optimizations. Thus, using LNT parallel composition to annotate the model’s accepting
and refusal states is not only more convenient (thanks to the multiway rendezvous) and
data aware, but also much more efficient — it is even possible to generate a TC for the
original DES model (167 million states, 1.5 billion transitions) in less than 40 minutes.

For the ACE examples, TESTOR is both faster and requires less memory than TGV. This
is partly due to an optimization of TESTOR, which deactivates the various reductions of
τ -transitions. For a fair comparison, we also run experiments forcing the execution of these
reductions. For the extraction of a TC, this increases the execution time by a factor of two
and the memory requirements by a factor of three. For the computation of a CTG, this
increases the memory requirements by a factor of one and a half, without modifying the
execution time significantly.

3The petit prince cluster is part of the Grid’5000 testbed, which is supported by a scientific in-
terest group hosted by Inria and including CNRS, RENATER and several Universities as well as other
organizations (see https://www.grid5000.fr).

4The S-boxes are executed sequentially rather than in parallel and the gate SUBKEY is left visible to
separate the iterations of the DES algorithm and thus significantly reduce the size of τ -components. For
the extraction of TC for the TP using REFUSE transitions, from the full version of the DES, TESTOR
would run for several weeks and TGV would require more than 700 GB of RAM.

4.3. TESTOR: On-the-Fly Conformance Test Case Generation 79

Automatically generated test purposes

To evaluate the performance, we used a collection of 9791 LTSs with up to 50 million
transitions, taken from the non-regression test-base of CADP. For each LTS M of the
collection, we automatically generated two TPs: one to test the reachability of an action
and another to test the presence of an execution sequence. For the former TP, we sorted
the actions of the LTS alphabetically, and checked the reachability of the first action,
considering the second half of the action set as inputs. For the latter TP, we used the
EXECUTOR tool5 to extract a sequence of up to 1000 visible actions, which we transformed
into a TP, considering all actions whose ranking is an odd number as inputs. Technically,
this transformation consists in adding to each state of the sequence a self-loop labeled with
τ and a *-transition to a refusal state. From the generated pairs (M, TP) we eliminated
those for which the automatic generation of a TP failed (for instance, due to special actions
that would require particular treatment) and those for which the computation of a TC or
CTG took too much time or required too much memory by either TESTOR or TGV. This
led to a collection of 13,142 pairs (M, TP) for which both tools could extract a TC. For
12,654 of them, both tools also could compute the CTG.

As for the case studies, we observe that TESTOR and TGV choose different tradeoffs
between computation time and memory requirements. On average, TESTOR requires 0.3
times less memory and runs 1.3 (respectively 0.5) times faster to compute a TC (respec-
tively the CTG). When considering only the 1005 pairs with more than 500,000 transitions
in the LTS, the average numbers show a larger difference. On average for these larger ex-
amples, to compute a CTG, TESTOR requires 1.4 times less memory, but runs 3.5 times
longer; to compute a TC, TESTOR requires 2.7 times less memory and runs 0.7 times
faster.

Also, while both tools required the exclusion of examples due to excessive runtime, we
excluded several examples due to insufficient memory for TGV, but not for TESTOR.
Given that TCs are usually much smaller than CTGs, the on-the-fly extraction of a TC
by TESTOR is generally faster and consumes less memory than the generation of the
CTG. We also observed that the CTGs produced by TESTOR are sometimes smaller than
(although strongly bisimilar to) those produced by TGV. While trying to understand these
results in more detail, we found examples where each tool is one or two magnitudes faster
or memory-efficient than the other.

Indeed, the benefits of the different reductions applied in the tools depend heavily on the
characteristics of the example, most notably the sizes of the various subgraphs explored
(τ -components, L2A). For instance, when the model M does not contain any τ -transition,
there is no point in applying the reductions (τ -compression, τ -confluence, and τ -closure).

5http://cadp.inria.fr/man/executor.html

80 Chapter 4. Validation of Communication Protocols between Components

4.3.5 Comparison of TESTOR and other MBTs

In the following, we compare TESTOR to the most closely related tools.

TorX [TB03] and JTorX [Bel10] are online test generation tools, equipped with a set of
adapters to connect the tester to the SUT. The latest versions support test purposes (TPs),
but they are used differently than in TESTOR. Indeed, JTorX yields a two-dimensional
verdict [Bel14]: one dimension is the ioco correctness verdict (pass or fail), and the other
dimension is an indication whether the test objective has been reached. This contrasts with
TESTOR, which generates test cases (TCs) ensuring by construction that the execution
stays inside the lead to accept states (L2A), and stopping the test execution as soon as
possible with a verdict: fail if non-conformance has been detected, pass if an accepting
state has been reached, or inconclusive if leaving L2A is unavoidable.

Uppaal is a toolbox for the analysis of timed systems, modeled as timed automata ex-
tended with data. Three test generation tools exist for Uppaal timed automata. Uppaal-
Tron [LMNS05] is an online test generation tool, taking as input a specification and an
environment model, used to constrain the test generation. Uppaal-Tron is also equipped
with a set of adapters to derive and execute the generated tests on the SUT. Contrary to
TESTOR, the TCs generated from Uppaal-Tron can be irrelevant, because the generation
is not guided by TPs. Uppaal-Cover [HP06] generates offline a comprehensive test suite
from a deterministic Uppaal model and coverage criteria specified by observer automata.
Uppaal-Cover attempts to build a small test suite satisfying the coverage criteria, by select-
ing those TCs satisfying the largest parts of the coverage criteria. In contrast to TESTOR
and Uppaal-Tron, Uppaal-Cover generates offline tests. Offline generation does not face
the state-space explosion, but also limits the expressiveness of the specification language
(e.g., nondeterministic models are not allowed). Uppaal-Yggdrasil [KLN+15] generates
offline test suites for deterministic Uppaal models, using a three-step strategy to achieve
good coverage: (i) a set of reachability formulas, (ii) random execution, and (iii) structural
coverage of the transitions in the model. The guidance of the test generation by a temporal
logic formula is similar to the use of a TP. However, the TPs supported by TESTOR (and
TGV) can express more complex properties than reachability, and enable one to control
the explored part of the model (using refusal states).

On-the-fly test generation tools also exist for the synchronous dataflow language Lustre
[HCRP91], e.g., Lutess [dBORZ99], Lurette [JRB06], and Gatel [MA00]. Contrary to
TESTOR, these tools do not check the ioco relation, but randomly select TCs, satisfying
constraints of an environment description and an oracle.

In IOLTS, actions are monolithic, which does not fit for realistic models that involve data
handling. STG (Symbolic Test Generator) [CJRZ02] breaks the monolithic structure of
actions, enabling access to the data values, and generates tests on the fly, handling data
values symbolically. This enables more user-friendly TPs and more abstract TCs, because
not all possible values have to be enumerated. However, the complexity of symbolic com-

4.4. Testing the TLS Handshake Model with TESTOR 81

q1

q2

q5

q6

q7

q8

q9

q10

q11

q0

INCONC

CR(..VOID F..)

CC(..)CR(..CA..)

CS(..)
FS(..)

EE(..) CV(..)

CH(..)

SH(..)

q3

q4

PASS

FC(..)

Figure 4.5: TC I: TLS handshake with classical TLS 1.3 order

q1 q3

q4

q5

q6

q7

q8

INCONC

q0
CH(..)

CR(..CA..)

CR(..VOID F..)

CS(..) CH(..)
ALERT(..)

PASS

SH(..) q2

EE(..)

Figure 4.6: TC II: TLS handshake aborted with an unexpected Alert

putation is not negligible in practice. When using the LNT parallel composition, TESTOR
can handle data (see example in Section 4.3.3) without the cost of symbolic computation,
but still has to enumerate data explicitly when generating the TC. T-Uppaal [MLN04] uses
symbolic reachability analysis to generate tests on the fly and then simultaneously executes
them on the SUT. The complexity of symbolic algorithms turns out to be expensive for
online testing.

4.4 Testing the TLS Handshake Model with TESTOR

We validated our LNT model using TESTOR, taking advantage of its ability to specify data
in the test purposes. We defined three test purposes corresponding to three requirements
from the draft TLS 1.3 handshake [IET18]:

I. The protocol messages must be sent in the right order, using classical TLS 1.3 order
(without hello retry request message).

II. The handshake must be aborted with an “unexpected message” alert, if there is a
client renegotiation.

III. The protocol messages are sent in the right order with an incorrect key shared (with
hello retry request message).

82 Chapter 4. Validation of Communication Protocols between Components

q2

q3

q4

q5

q7 q9

q6

q1

q8

q10

q12

q11q0

INCONC

CH(..)

HRR(..)

CR(..VOID F..)

CC(..)CR(..CA..)

CH(..)

SH(..)
CS(..)

FS(..)

EE(..) CV(..)
PASS

FC(..)

Figure 4.7: TC III: TLS handshake with renegotiation

The LNT models of these test purposes are given in [BMMW18, Appendix B1, B2, B3],
respectively. Given our formal LNT model of the TLS handshake and our test purposes,
we automatically generated with TESTOR the abstract test cases, represented in a sim-
plified form in Figures 4.5, 4.6, and 4.7 (TC I, TC II, and TC III). We simplified the
labels by removing the arguments and replacing the channel names with the following ini-
tials: client hello (CH), server hello (SH), hello retry request (HRR), encrypted
extensions (EE), certificate request (CR), certificate (CS for the server and CC for
the client), certificate verify (CV), and finished (FS for the server and FC for the
client). Note that we voluntarily left the initials of the certificate names (CA and VOID F) for
the certificate request actions, to keep a deterministic representation of the abstract
test cases.

During this validation process we found an error in our model, with test purpose III. We
couldn’t reach the accepting state of this test purpose, because of our initial implementation
of this requirement: “The server hello message should have the same cryptographic
information as the hello retry request message.” In fact, we were assigning to the
hello retry request encryption data the value of the server hello encryption data,
whereas the hello retry request message arrives before the server hello message. We
changed our model to correct this issue.

� � �

We illustrated the formalization and the functional testing of a communication protocol,
through a case study of the TLS handshake 1.3. We presented TESTOR, a new tool for
on-the-fly conformance test case generation for asynchronous concurrent systems. Like
the existing tool TGV, TESTOR was developed on top of the CADP toolbox [GLMS13]
and brings several enhancements: online testing by generating (controllable) test cases
completely on the fly; a more versatile description of test purposes using the LNT lan-
guage; and a modular architecture involving generic graph manipulation components from
the OPEN/CAESAR environment [Gar98]. The modularity of TESTOR simplifies main-
tenance and fine-tuning of graph manipulation components, e.g., by adding or removing
on-the-fly reductions, or by replacing the synchronous product. Besides the ability to per-
form online testing, the on-the-fly test selection algorithm sometimes makes possible the

4.4. Testing the TLS Handshake Model with TESTOR 83

extraction of test cases even when the generation of the complete test graph (CTG) is
infeasible. The experiments we carried out on ten-thousands of benchmark examples and
three industrial case studies show that TESTOR consumes less memory than TGV, which
in turn is sometimes faster, for generating CTGs.

A combination of this conformance test case generation tool and the synchronous testing
techniques presented in Chapter 3 is therefore beneficial for testing GALS systems, as it
will be illustrated in Chapter 5.

84 Chapter 4. Validation of Communication Protocols between Components

Chapter 5

Validation of GALS Systems

In this chapter we illustrate formal techniques for GALS systems, using a simple, but
relevant example, namely an autonomous car, which has to reach a destination, following
roads on a geographical map, in the presence of moving obstacles. The car is modeled as
a GALS system, comprising synchronous components for perception, decision, and action.
Part of this work has been published in [MMPS19].

This chapter is organized as follows. Section 5.1 presents the car example. Section 5.2 intro-
duces the formal GRL model of an autonomous car. Section 5.3 describes the application of
model checking for asynchronous systems to the overall GALS system. Section 5.4 exper-
iments manually the functional testing of synchronous components. Section 5.5 presents
the integration of asynchronous conformance testing with automated synchronous testing
to improve the latter. Finally, we give concluding remarks on our work and synchronous
testing.

5.1 GALS Example: An Autonomous Car

To illustrate our approach, we consider the behavioral model of a (simplified) autonomous
car interacting with its environment. The environment consists of a geographical map
shared by the car and a given set of moving obstacles (pedestrians, cyclists, other cars, etc.).
For instance, the autonomous car and a pedestrian could share the streets of Manchester
as it is shown in Figure 5.2. To limit the complexity, each obstacle executes a fixed number
of random or statically chosen movements.

The autonomous car shown in Figure 5.1, itself consists of four synchronous components:

(i) a GPS keeps the car position updated,

(ii) a radar detects the presence of the obstacles close to the car and builds a perception
grid summarizing information about perceived obstacles,

85

86 Chapter 5. Validation of GALS Systems

Figure 5.1: Simple autonomous cars

(iii) a decision (or trajectory) controller computes an itinerary from the current position
to the destination, avoiding streets containing obstacles, and

(iv) an action controller commands the engine and direction to follow the itinerary com-
puted by the decision controller, using the perception grid built by the radar to avoid
collisions.

These four components communicate in various ways:

• the GPS sends the current position to the decision controller upon request,

• the radar periodically sends the perception grid to the action controller, and

• the action controller requests a new itinerary from the decision controller.

This example is simple, but relevant, because it is representative of a GALS system, with
synchronous components (e.g., radar, action controller) interacting with each other, the
whole GALS system (e.g., autonomous car) being constrained by a realistic environment
(e.g., geographical map and obstacles).

5.2 GRL Model of the GALS System

GRL (GALS Representation Language) [JLM16, Jeb16] is a formal language designed to
model GALS systems (more details about GRL are available in Chapter 2 Section 2.4.1).
We decided to take advantage of the GRL2LNT [JLM16, Jeb16] translator to LNT [GLS17],
which provides a connection to the CADP verification toolbox [GLMS13]. The whole GRL
model of the car is presented in the Appendix B. Figure 5.3 shows the architecture of
our formal GRL model of the autonomous car. The GRL model reflects the modular
specification, connecting the synchronous components by a communication network. Each
synchronous component (ACTION, RADAR, DECISION, and GPS) is represented in GRL as a

5.2. GRL Model of the GALS System 87

Figure 5.2: Geographical map example with the autonomous car and a pedestrian

block, depicted as a (light blue) rectangle with solid border in Figure 5.3. These blocks
exchange data via asynchronous communication media (POSITION, PATH, CURRENT_GRID),
each of which is represented in GRL as a medium, depicted as a (pink) ellipse with
dashed border in Figure 5.3. The interaction between blocks also respects environmental
constraints (MAP_MANAGEMENT), each one being represented in GRL as an environment,
depicted as a (light pink) ellipse with thick dashed border in Figure 5.3. The overall model
of the GALS is represented in GRL as a system, which describes the composition and
interactions of blocks, media, and environments. In the sequel, we present excerpts of a
block, a medium, an environment, and the system of our GRL model (1189 lines).1

The geographical map is represented as a directed graph as illustrated in Figure 5.4, in
which edges correspond to streets and nodes correspond to crossroads; for simplicity, we
assume that the car or an obstacle occupies a street completely (a longer street can be
represented by several edges in the graph). A set of functions is defined to explore this
graph, to compute itineraries, etc. For instance, the following LNT constant initial_map
returns the graph corresponding to the map shown in Figure 5.4.

function initial_map : Graph is
var e: Edges, v: Vertices in

1The complete GRL model, test purpose, the MCL properties, XTL scripts, and other resources related
to the example are available at
http://convecs.inria.fr/software/projex_aQTspX.tgz.

88 Chapter 5. Validation of GALS Systems

PATHDECISION

GPS RADAR

ACTION

GRID
CURRENT_

MAP_MANAGEMENT

POSITION

POSITION
REQUESTED_

REQUEST_

: block

SEND PATH

PATH_AVOIDING

REQUEST PATH

RECEIVE_PATH

CAR_MOVE

POSITION

: medium

AR
RI
VA
L

: environment

POSITION
SEND_

RECEIVE_
POSITION

UPDATE_POSITION

GRID
CURRENT_
SEND_

GRID
CURRENT_
RECEIVE_

POSITIONS

: channels

Figure 5.3: Architecture of the GRL model of an autonomous car

v := {0, 1, 2, 3, 4, 5, 6, 7, 8};
e := {Edge (0, Coronation_Street, 1),

Edge (0, Corporation_Street, 3),

Edge (1, Coronation_Street_bis, 0),

Edge (1, two_Coronation_Street, 2),

Edge (1, Sackville, 4),

Edge (2, two_Coronation_Street_bis, 1),

Edge (2, Spring_Gardens, 5),

Edge (3, Corporation_Street_bis, 0),

Edge (3, Princess_Street, 4),

Edge (3, two_Corporation_Street, 6),

Edge (4, two_Princess_Street, 5),

Edge (4, two_Sackville, 7),

Edge (5, Spring_Gardens_bis, 2),

Edge (5, two_Princess_Street_bis, 4),

Edge (5, two_Spring_Gardens, 8),

Edge (6, two_Corporation_Street_bis, 3),

Edge (6, New_Cathedral_Street, 7),

Edge (7, two_Sackville_bis, 4),

Edge (7, New_Cathedral_Street_bis, 6),

Edge (7, two_New_Cathedral_Street, 8),

Edge (8, two_Spring_Gardens_bis, 5),

Edge (8, two_New_Cathedral_Street_bis, 7)

};
return Graph (v, e)

end var
end function

The GRL model is instantiated by providing global constants encoding the map, the initial
position and destination of the car, and the set of obstacles with their initial positions and
lists of movements.

5.2. GRL Model of the GALS System 89

Coronation Street

Princess Street

New Cathedral Street

C
o
rp

o
ratio

n
 S

treet

S
p
rin

g
 G

ard
en

s

S
ack

v
ille

1 2 3

654

987

Figure 5.4: GRL geographical map representation

A GRL block defines the deterministic code executed at each activation (i.e., clock instant)
by the synchronous component. For instance, the radar of our autonomous car is modeled
by the GRL block RADAR, which has a static variable previous_grid to keep track of the
perception grid computed during the previous activation. This grid is considered to be
initially empty (i.e., it has the value Grid (NIL)). At each activation, the radar receives
the current positions of the car and all the obstacles as input from the environment (in
parameter POSITIONS).2 It then computes the current perception grid indicating, for each
possible direction the car might take, whether at least radar_visibility steps are free
of any obstacle. If there is a change between previous_grid and grid, both the variable
previous_grid and the output CURRENT are updated; otherwise the output is set to the
particular value already_sent indicating that the grid did not change. At the end of the
activation, the computed grid is sent to the connected medium (send parameter CURRENT).

block RADAR (in POSITIONS: Car_Obstacle_Pos) [send CURRENT: Grid] is
static var previous_grid: Grid := Grid (NIL)

var grid: Grid

grid := perception (POSITIONS, radar_visibility);

if grid != previous_grid then
previous_grid := grid;

CURRENT := grid

else
CURRENT := Grid (already_sent)

2Currently, for the interaction between a block and an environment, GRL requires to wrap several
inputs or outputs into a single structured input or output.

90 Chapter 5. Validation of GALS Systems

end if
end block

Synchronous blocks interact with each other via asynchronous communication media. Ex-
plicitly representing these media makes it possible to finely model a large panel of behaviors
(i.e., message buffering, message loss, nondeterminism, etc.). A medium is connected to
each block by at most two channels, called receive and send channels. Note that a receive

channel corresponds to the reception of some value in a variable prefixed by “?”. Each chan-
nel has an associated Boolean condition (tested with awhen clause), stating whether a mes-
sage is available. For instance, the following GRL medium CURRENT_GRID enables the block
RADAR to send the current perception grid (via the receive channel SEND_CURRENT_GRID)
to the block ACTION (via the send channel RECEIVE_CURRENT_GRID); the transmission takes
place only when the perception grid has not already been sent.

medium CURRENT_GRID [receive SEND_CURRENT_GRID: Radar_Grid,

send RECEIVE_CURRENT_GRID: Radar_Grid] is
static var buffer: Radar_Grid := Grid (NIL)

select
when ?SEND_CURRENT_GRID ->
if SEND_CURRENT_GRID != Grid (already_sent) then

buffer := SEND_CURRENT_GRID end if
[]
when RECEIVE_CURRENT_GRID -> RECEIVE_CURRENT_GRID := buffer

end select
end medium

Environments provide blocks with inputs and receive their outputs. Block activations
are particular inputs, enabling an environment to precisely control the activations of
synchronous blocks. For instance, the following fragment of the GRL environment
MAP_MANAGEMENT ensures that: (1) the geographical map information, such as the posi-
tion of the car (map.c) and obstacles (grid), is shared with the block RADAR (by sending
this information to RADAR as input POSITIONS); (2) the geographical map information is
updated when the car or the obstacles move (by receiving these moves from blocks ACTION
and RADAR as outputs CAR_MOVE and OBSTACLE_MOVE, respectively); and (3) the blocks are
only activated as long as the car did neither arrive at destination, nor crashed. Note that
an environment may be nondeterministic, e.g., it may contain nondeterministic choice,
modelled in GRL using the select statement.

environment MAP_MANAGEMENT (block RADAR, ...

in OBSTACLE_MOVE: Obstacle,

in CAR_MOVE: Control, ...

out POSITIONS: Car_Obstacle_Pos, ...) is
static var grid: Grid := Grid (NIL),

map: Localization := Localization (initial_street, initial_map),

crash: Bool := false, car_arrived: Bool := false, ..

5.2. GRL Model of the GALS System 91

var collision_detected: Bool, ...

if not (crash) and not (car_arrived) then
select
−− send updated inputs (car and obstacle positions) to the radar
when POSITIONS -> POSITIONS := pos (map.c, grid)

[]
−− car movement
when ?CAR_MOVE ->
−− update car position in the map
map := move_car (map, CAR_MOVE);

−− check for collisions (car and an obstacle on the same street)
collision_detected := intersection (grid, map);

if collision_detected then
crash := true

end if
[]
−− potential obstacle movement
when ?OBSTACLE_MOVE ->
if OBSTACLE_MOVE != null_obstacle then
−− update obstacle positions in the grid
grid := move_obstacle_grid (grid, OBSTACLE_MOVE)

else
−− no effective movement
grid := grid

end if
...

end select
end environment

The following GRL system describes the composition of the complete model of the au-
tonomous car, i.e., the blocks RADAR and ACTION, the medium CURRENT_GRID, and the envi-
ronment MAP_MANAGEMENT.

system MAIN (SEND_CURRENT_GRID, RECEIVE_CURRENT_GRID: Grid,

POSITIONS: Car_Obstacle_Pos, REQUEST_PATH: Edges,

RECEIVE_PATH: Itinerary, CAR_MOVE: Control, ...) is
block list
ACTION (?CAR_MOVE) [?REQUEST_PATH,RECEIVE_CURRENT_GRID,RECEIVE_PATH],
RADAR (POSITIONS) [?SEND_CURRENT_GRID], ...

medium list
CURRENT_GRID [SEND_CURRENT_GRID, ?RECEIVE_CURRENT_GRID], ...

environment list
MAP_MANAGEMENT (RADAR, OBSTACLE_MOVE, ...

?POSITIONS, ?UPDATE_POSITION, ...)

end system

92 Chapter 5. Validation of GALS Systems

When considering a complete GALS system from the outside, all parts based on the syn-
chronous programming paradigm are hidden. Thus, the overall GALS system is amenable
to classic analysis techniques developed for asynchronous systems.

5.3 Model Checking of the GALS Behavior

Using GRL2LNT [JLM16, Jeb16] and CADP, for a geographical map (with 22 streets
and 8 crossroads) and two obstacles, each with a first random movement and a second
statically chosen movement, we generated (in about 12 minutes on a standard laptop)
the LTS corresponding to our GRL autonomous car model (952, 759 states and 1, 518, 227
transitions after strong bisimulation minimization). We first validated our GRL model
by checking several safety and liveness properties3 characterizing the correct behavior of
the autonomous car. We expressed the properties in MCL [MT08], which is the data-
handling, action-based, branching-time temporal logic of the on-the-fly model checker of
CADP (more details about MCL are available in Section 2.3.2). We describe here the
properties in natural language and in MCL.

• The position of the car is correctly updated after any movement of the car. This
safety property specifies that on all transition sequences, an update of the car position
(action “UPDATE_POSITION ?current_street”, where current_street is the street on
which the car is) followed by a car movement (action “CAR_MOVE ?control”, where
control is a movement command) cannot be followed by an update of the car position
inconsistent with current_street, control, and the map. This can be expressed in
MCL using the necessity modality below, which forbids the transition sequences
containing inconsistent position updates:

[true* .

{ UPDATE_POSITION ?current_street:String } .

(not ({ CAR_MOVE ... } or { UPDATE_POSITION ... }))* .

{ CAR_MOVE ?control:String } .

(not ({ CAR_MOVE ... } or { UPDATE_POSITION ... }))* .

{ UPDATE_POSITION ?new_street:String where
not (Consistent_Move (current_street, control, new_street)) }

] false

The values of the current position, the movement, and the new position of the
car present on the actions UPDATE_POSITION and CAR_MOVE are captured in the vari-
ables current_street, control, and new_street of the corresponding action predi-
cates (surrounded by curly braces) and reused in the where clause of the last ac-
tion predicate. The predicate Consistent_Move defines all valid combinations for
current_street, control, and new_street allowed by the map.

3More details about model checking and temporal properties are available in Section 2.1.3.

5.3. Model Checking of the GALS Behavior 93

• A same message from one of the autonomous car components must be considered only
once. For instance, the radar should not send twice the same perception grid, i.e.,
two successive occurrences of action SEND_CURRENT_GRID must carry different values of
the grid, reflecting the changes in perception due to obstacle or car movements. This
can be expressed by four properties in MCL, one for a SEND_CURRENT_GRID with no
perceivable obstacles, with one perceivable obstacle, with two perceivable obstacles,
and with no updated information (might be repeated). For simplicity, we only give
and comment the MCL code of the two perceivable obstacles to illustrate the flavor.1

This can be expressed in MCL using the necessity modality below, which forbids the
transition sequences containing twice the same values for the radar outputs.

[true* .

(

{ RADAR_OUTPUT ?obstacle1:String ?street1:String
?obstacle2:String ?street2:String } .

(not { RADAR_OUTPUT ... })* .

{ RADAR_OUTPUT !obstacle1 !street1 !obstacle2 !street2 }

)

] false

• Inevitably (by avoiding the non-progressing iterations of synchronous blocks), the
system should reach a state where either the car arrived (ARRIVED), or a collision
occurred between the car and an obstacle (COLLISION), or all obstacles have finished
their list of movements (END_OBSTACLE). This can be expressed in MCL using the
inevitability modality below, which forbids the infinite transition sequences avoiding
the non-progressing iterations of synchronous blocks (NO_UPDATE) and not leading to
one of the three terminal actions (TERMINATE).

not <(not TERMINATE)*> <(not TERMINATE) and (not NO_UPDATE)>@ ;

The predicate TERMINATE defines all valid actions allowed by the map (ARRIVED,
COLLISION, and END_OBSTACLE) and the predicate NO_UPDATE defines all repeated ac-
tions of a block.

We believe that the two last properties are to all GALS systems, because a GALS system
contains non-progressing iterations of its synchronous components. Therefore, it is neces-
sary to identify these non-progressing iterations and to verify that the system reaches the
terminal states by avoiding these iterations.

94 Chapter 5. Validation of GALS Systems

1

8

32

1610

9

17

19

12 18

22

20

15 21

14

11

137

4

6

5

Coronation Street

Princess Street

New Cathedral Street

C
o
rp

o
ratio

n
 S

treet

S
p
rin

g
 G

ard
en

s

S
ack

v
ille

1 2 3

654

987

Figure 5.5: Geographical map, with natural numbers identifying the streets fragments.

5.4 Manual Testing of a Synchronous Component

We use the Lurette testing tool4 [JRB06] to test an implementation of a radar in the C
language5, which might be a part of an implementation of our GALS autonomous car
example described in Section 5.2. Usually, a radar builds an occupancy grid with respect
to its position (this grid reflects the visibility of the radar); in an autonomous car, the
position of the radar is the position of the car. To simplify, in our example the radar takes
as input the position of the car and the obstacles (provided by the GRL environment on
channel POSITIONS) and outputs the perception grid (sent to the medium CURRENT_GRID).

In the C radar implementation, the street names of the geographical map presented in
Section 5.2 are represented by natural numbers, because the input language of Lutin (the
Lurette component for defining test scenarios) supports only Boolean and numerical types.
Figure 5.5 gives an overview of this encoding of the geographical map.

As in Section 5.2, we consider a fixed instance, here with two obstacles (called leo and
lilly). Testing the synchronous radar component consists in providing a sequence of inputs
and observing the generated sequence of outputs. Each of the radar’s inputs (position of
the car and the obstacles) can take one out of the 21 streets of the map, yielding 213

possible inputs. Fortunately, not all sequences of these inputs are realistic, because the
car is not flying and has to respect the constraints of the map and by being fixed on the
car, the possible inputs taken by the radar are also constrained by the possible movements

4More details about the Lurette tool are available in Section 2.2.3
5The radar implementation in C was generated from a Lustre program

5.4. Manual Testing of a Synchronous Component 95

(9, 2000, 2000)

31

0

2
4

(12, 5, 11)

(9, 14, 5)

(12, 5, 14)

(9, 11, 12)

Figure 5.6: Simple scenario automaton

of the car. However, relevant tests of the radar should include situations where the radar
detects obstacles.

The input constraints for the radar should enforce that the positions of the car and the
obstacles evolve in a realistic manner, i.e., respecting the map. The following Lutin code
corresponds to a simple scenario defined by the automaton in Figure 5.6, where the car
starts on street 9 and possibly moves to street 12, and lilly (respectively, leo) appears
on street 5 (respectively, street 14) and moves back and forth to street 12 (respectively,
street 11). The scenario automaton enables to constrain the test inputs generation to those
possible in the physical environment (geographical map, and possible movements of the car
and obstacles). Each state of the automaton contains a tuple with the three radar inputs
values (car, leo, and lilly), the value “2000” indicating that the obstacles are absent.
This scenario can be described by an automaton with five states and seven transitions; the
corresponding constraints on the inputs of the radar can be encoded in Lutin as a node
input_constraints with four outputs (the three inputs of the radar plus the state s of
the automaton). Although simple, the scenario covers the appearance and movement of
obstacles, and the case where the perception grid should remain unchanged.

node input_constraints () returns (car, leo, lilly, s: int) =

let not_visible: int = 2000 in
(∗ initial state: car on street 9 and no visible obstacles ∗)
car = 9 and lilly = not_visible and leo = not_visible and s = 0 fby
loop {

| (∗ s = 0 −> car on street 9, lilly on street 5, leo on street 14, s = 1 ∗)
(pre s = 0) and car = 9 and lilly = 5 and leo = 14 and s = 1

| (∗ s = 0 −> car on street 12, lilly on street 5, leo on street 14, s = 2 ∗)
(pre s = 0) and car = 12 and lilly = 5 and leo = 14 and s = 2

| (∗ s = 1 −> car on street 9, leo on street 11, lilly on street 12, s = 3 ∗)
(pre s = 1) and car = 9 and lilly = 12 and leo = 11 and s = 3

| (∗ s = 1 −> car on street 12, leo on street 11, lilly on street 5, s = 4 ∗)
(pre s = 1) and car = 12 and lilly = 5 and leo = 11 and s = 4

| (∗ s = 2 −> car on street 12, leo on street 11, lilly on street 5, s = 4 ∗)
(pre s = 2) and car = 12 and lilly = 5 and leo = 11 and s = 4

| (∗ s = 3 −> car on street 12, leo on street 14, lilly on street 5, s = 1 ∗)
(pre s = 3) and car = 9 and lilly = 5 and leo = 14 and s = 1

96 Chapter 5. Validation of GALS Systems

| (∗ s = 4 −> car on street 12, leo on street 14, lilly on street 5, s = 2 ∗)
(pre s = 4) and car = 12 and lilly = 5 and leo = 14 and s = 2

}

Although larger and more complex scenarios can be written manually, this task is tedious
and error-prone, in particular due to the representation of street names by natural numbers
(the input language of Lutin supports only Boolean and numerical types), and may easily
introduce redundant definitions or equivalent states.

A small example of an oracle for the previous scenario is given by the following Lustre node
oracle, describing the expected output (perception grid) for each given input vector (the
positions of the car and obstacles). As the Lutin node, the oracle takes, besides the inputs
and outputs of the radar, as input also the state s to keep track of the evolution (according
to the same small automaton shown in Figure 5.6). The oracle outputs the verdict res,
i.e., whether the observed outputs are those expected for the state and the inputs. For
instance, in state 3, lilly (in street 12) and leo (in street 11) should both be detected by
the car (in street 9), whereas they should not be detected in the initial state. The oracle
also computes two coverage variables pass and blocked: the former measures the coverage
of state 2 (representing the situation where the car arrives at destination and all obstacles
appeared), and the latter measures the coverage of the situation where the car is blocked
by the obstacles.

const invisible = 2000;

const already_sent = 3000;

node oracle (s, car, lilly, leo, perception_leo, perception_lilly: int)

returns (res, pass, blocked: bool);

let res = true −>
((∗ lilly and leo are visible from the street 9 ∗)
(s = 0 and car = 9 and lilly = invisible and leo = invisible and
perception_lilly = invisible and perception_leo = invisible)

or
(∗ the perception did not change, it is already sent ∗)
(s = 1 and car = 9 and lilly = 5 and leo = 14 and
perception_lilly = already_sent and perception_leo = already_sent)

or
(∗ leo and lilly are visible from the street 9 ∗)
(s = 3 and car = 9 and lilly = 12 and leo = 11 and
perception_lilly = 12 and perception_leo = 11)

or ...);

(∗ true if the car reached the destination (state 2) ∗)
pass = false −> if s = 2 then true else pre pass;

(∗ true, if the car is blocked by the obstacles ∗)
blocked = false −> if s = 3 then true else pre pass;

tel

Even more than for the Lutin constraints, manually deriving the oracle is complicated,

5.5. Test Projection and Exploration 97

oracle

(Lustre)

scenario

(Lutin)

trace
weak

hide translate
+

& rename
extract_oracle

extract_constraints

(BCG)

(BCG)

inputs
labels

projection exploration

(BCG)

CTG

CTGC
(XTL)

(XTL)

Figure 5.7: Overview of the derivation of synchronous test scenarios by projection and
exploration of an asynchronous complete test graph CTG

mainly due to the dependency on the map and the necessity to enumerate all possible
movements. For instance, to detect the already_sent, one should manually follow the
scenario’s evolution. Because one can easily forget some cases, an automated generation
of these input constraints and the oracle is more convenient, as we illustrate in the next
section.

5.5 Test Projection and Exploration

Each synchronous component of a GALS system is constrained by the other synchronous
components, communication media, and environments present in the system. In this sec-
tion we propose an approach that explicitly exploits these constraints to improve the unit
testing of a synchronous component taken separately.

The idea is to automatically derive inputs for synchronous testing tools by projecting the
complete test graph generated for the entire GALS system on the inputs and outputs of the
synchronous component. In this way, the inputs provided to the synchronous component
are realistic and relevant, because they are chosen according to possible execution scenarios
of the overall GALS system. Furthermore, the synchronous tests generated in this way
contain all possible inputs leading to the goals of test purposes (e.g., a possible input
leading to collision in the case of T1, see Figure 5.8).

Figure 5.7 gives an overview of the approach. In a first step, a complete test graph for the
overall GALS system is projected on the synchronous component C to be tested, resulting
in a test graph for C. In a second step, this test graph is translated and renamed to be
compatible with the synchronous testing tool Lurette. In the last step, the test graph is
explored (using XTL [MG98] scripts), generating the input constraints and the oracle for
testing C separately. In the remainder of this section, we present the approach in more
detail, illustrating how it improves the testing of the radar of our autonomous car example.

5.5.1 Test graph projection

Projecting a complete test graph CTG on a synchronous component C consists in hiding all
transitions labeled with an action that is neither an input nor an output of C, and reducing

98 Chapter 5. Validation of GALS Systems

COLLISION
q0 q1

ACCEPT

∗

q2

Figure 5.8: Test Purpose T1

Table 5.1: Sizes and run-time performance for the complete test graphs for the test purposes

TP CTG time mem.
states trans. states trans. (s) (MB)

T1 2 3 102,985 211,455 1237 231
T2 3 4 15,466 29,665 29 200
T3 3 4 15,444 29,957 26 200
T4 3 4 2,278 4,959 86 193
T5 3 5 21,930 42,788 36 201

the resulting graph for weak trace equivalence (see Section 2.1.2), yielding the projected
test graph CTGC . The reduction removes all internal transitions (created by the hiding),
so that all actions of CTGC are either an input or an output of C. A precondition for a
successful projection is that all inputs and outputs of C, as well as the verdict transitions,
are present and visible in CTG.

For the GRL model of the autonomous car (see Section 5.2), the only controllable inputs
are the movements of obstacles; the observable outputs make it possible to study the
behavior of the car. An example test purpose (T1) is to specify the situation where a
collision occurs between a car and an obstacle. The test purpose is expressed as an LTS
(in the AUT format) and shown in Figure 5.8, where a transition representing the collision
(action COLLISION) should lead to a goal state, i.e., having an outgoing transition labelled
by an ACCEPT action.

We also defined four other test purposes (T2, T3, T4, and T5) constraining the car and
obstacles interaction on the map. For these test purposes, TESTOR generates the complete
test graphs in less than a minute (see Table 5.1).

More particularly, the radar takes as input the positions of the car and of the obstacles.
The positions of the obstacles are also a controllable input of the overall GALS system. But
the position of the car is computed by the scenario depending on the output of another
synchronous component, namely the action controller. The output of the radar is the
perception grid, which is, inside the GALS system, sent to the action controller. Hiding,
in the complete test graph CTG, all transitions but those corresponding to these inputs
and outputs, and reducing the result with respect to weak trace equivalence yields the LTS
CTGRADAR. Columns 2 & 3 of Table 5.2 give the number of states and transitions of CTGRADAR
for the five test purposes considered.

5.5. Test Projection and Exploration 99

Table 5.2: Sizes and run-time performance for the tests generated for the test purposes

CTGRADAR constraints oracle time mem.
states trans. (Lutin lines) (Lustre lines) (s) (MB)

T1 584 3617 3622 1916 1237 231
T2 89 281 286 295 29 200
T3 83 258 263 282 26 200
T4 218 1119 1124 557 86 193
T5 105 356 361 344 36 201

5.5.2 Translating and renaming

Because some of the data types used in the GALS model might not be exactly the same as
those supported by the synchronous testing tools, a preliminary step is the conversion of
the values present on the transition labels of CTGC , for instance by applying appropriate
renaming rules. Null values have been added, in order to transform non scalar data on
transitions into variable names and value tuples of constant length.

We defined a generic format for the exploration tools to work properly. Each input transi-
tion is renamed into “INPUT !s1 !v1 ... !sm !vm”, where si is the name of the input variable
and vi its value; each output transition is similarly renamed into “OUTPUT !s1 !v1 ... !sn
!vn”. For instance, the projected complete test graph CTGRADAR contains non-scalar data
structures, in particular, the perception grid computed by the radar is represented as a list
and streets are identified by their names (i.e., character strings). To be usable with the
synchronous test generator Lurette [JRB06], these lists need to be transformed into tu-
ples of constant length, and the street names need to be translated into the corresponding
(numeric) constants.

5.5.3 Test graph exploration

By construction, the projected CTGC is an LTS describing the interaction with the SUT,
and as such contains both, the sequence of inputs for the SUT and the verdict concerning
the test outcome (i.e., the test oracle). Because the test inputs and oracle should be
provided to Lurette using two different languages (Lutin for the input constraints and
Lustre for the oracle), two explorations of (the renamed) CTGC are required.

The generation of input constraints

The input constraints are generated by encoding CTGC as a possibly nondeterministic node
in Lutin with the XTL6 [MG98] script extract constraints (87 lines). The whole XTL

6More details about XTL are available in Section 2.3.2

100 Chapter 5. Validation of GALS Systems

script extract constraints is presented in the Appendix C.1. This node has the same
inputs as C and an additional input variable s corresponding to the current state of CTGC ,
initialized to the initial state. The main loop of the node contains a nondeterministic choice,
with a branch for each transition in CTGC . A branch corresponding to a transition T is
executed if s is equal to the source state of T , and as result of execution it sets s to the
target state of T . A branch for an output transition specifies that the inputs are kept
unchanged, which corresponds to the behavior expected for the special output transition δ
on quiescent states. A branch for an input transition updates the corresponding inputs. A
branch for a verdict transition, instead of looping on the same verdict state of the CTGC

(pass and inconclusive), sets the variable s to the initial state of the CTG, thus enabling
to not generate the same inputs as a self-loop would do and to cover faster the whole
CTG when a verdict is reached. Thus, the Lutin node describes exactly the set of input
sequences contained in CTGC .

An excerpt of the second step of the script extract constraints is given by the following
XTL code, illustrating the CTG encoding into the nondeterministic node in Lutin. In the
first step of the script, the names of the inputs (stored in the variables iv1, iv2, iv3)
and their initial values are extracted. Then we explore all transitions of the CTG
(<|fby on e:edge |>(...)), and first extract and print the source state (s) of the tran-
sition, then match, extract and print the new input values (p2, p4, p6) through the
print info function for the input transition (INPUTS ?...), or match and print unchanged
input values using the memory Lustre operator (pre)7 for output transitions. Finally, we
print the target states (target (e)) for all other transitions except the verdict transitions
(INCONCLUSIVE and PASS), where the target state is replaced by the state -1, which corre-
sponds to an intermediary state where the values are reset to the initial ones and leading
to the initial state.

<| fby on e:edge |> (

printf (" | pre s = ") fby
print (source (e)) fby
if (e −> [INPUTS ?p1:raw ?p2:natural ?p3:raw ?p4:natural

?p5:raw ?p6: natural]) then
(∗ car movement; obstacles do not move ∗)
print info (p1, p3, p5, p2, p4, p6)

else
(∗ output or verdict transition: keep inputs unchanged ∗)
printf (" and ") fby
print (iv1) fby printf (" = pre ") fby print (iv1) fby
printf (" and ") fby
print (iv2) fby printf (" = pre ") fby print (iv2) fby
printf (" and ") fby
print (iv3) fby printf (" = pre ") fby print (iv3)

end if fby

7More details about the Lustre pre operator are available in Section 2.2.1

5.5. Test Projection and Exploration 101

(∗ change s to the target state ∗)
printf (" and s = ") fby
if e −> [INCONCLUSIVE] or e −> [PASS] then
printf ("-1")

else
print (target (e))

end if fby
printf ("\n")

) fby

An input of the radar is a new position of the car and the obstacles (lilly and leo).
Because the exploration takes into account all transitions of CTGRADAR, the generated Lutin
node incorporates all evolution of the car and the obstacles that are relevant for the consid-
ered test purpose. The generated Lutin nodes are quite long (see Table 5.2) and complex,
because they contain nondeterministic choices, induced by the random movements of the
obstacles. Note that the generated Lutin node corresponds to a specific automatically gen-
erated automaton scenario (cf. Section 5.4). Writing similar Lutin nodes by hand would
probably have been difficult and error-prone.

The generation of oracles

Because a synchronous block C is executed atomically, i.e., not interleaved with other
synchronous components, a sequence of input transitions for C is immediately followed
by the expected sequence of output transitions. Because the target state s of the last
transition in such a sequence of inputs is also the source state of the first transition in
the sequence of outputs, we call such a state s a corner state. For the radar, the se-
quence of input transitions corresponding to new positions of the car or the obstacles is
followed by an output transition corresponding to the expected perception grid. The or-
acle is generated with the XTL script extract oracle (263 lines), by encoding CTGC as
a deterministic node in Lustre, which, to each corner state and its set of inputs/outputs,
associates a Boolean verdict, indicating whether the outputs are the expected ones. The
whole XTL script extract oracle is presented in the Appendix C.2. An excerpt of the
script extract oracle is given by the following XTL code describing the rules of extrac-
tion for corner states. In this code for each corner state s, we iterate over pairs of an
input and an output transition, assign the input values (i1, i2, i3), to the accumulator
(a i1, a i2, a i3) and print them with the source state (s) and the output values (o1, o2)
through the print corner function.

<| fby on s:state where corner state (s) |>
let (a: action, i1, i2, i3: natural) =

for in e: edge among in (s), out e: edge among out (s)

in (a: action, a i1, a i2, a i3: natural)
where in e −> [INPUTS ...] and out e −> [OUTPUTS ...]
apply (fby, replace, replace, replace)

102 Chapter 5. Validation of GALS Systems

from (nop, 0, 0, 0)

to
if in e −> [INPUTS ?i1:natural ?i2:natural ?i3:natural] then
if (i1 = a i1) and (i2 = a i2) and (i3 = a i3) then
(∗ already handled combination of inputs : skip ∗)
(nop, i1, i2, i3)

else if out e −> [OUTPUTS ?o1:natural ?o2:natural] then
(print corner (s, iv1, iv2, iv3, ov1, ov2, i1, i2, i3, o1, o2),

i1, i2, i3)

else (∗ never reached ∗)
(nop, a i1, a i2, a i3)

end if
else (∗ never reached ∗)
(nop, a i1, a i2, a i3)

end if
end for

in
use i1, i2, i3 in a end use

end let fby

The oracle node is also defined for the verdict states of CTGC . For a pass (respectively, fail)
verdict it always returns true (respectively, false). For an inconclusive verdict it returns
true iff the outputs are unchanged; this matches the generation of the input constraints.
In order to observe the coverage of the generated tests, for each verdict state (pass and
inconclusive) and each other state of the CTGC , a coverage variable is introduced in the
Lustre node generated for the oracle. These coverage variables are true if at least one of
the executions passed by the corresponding state of CTGC (see Section 5.4).

node oracle (s, car, lilly, leo, perception_leo, perception_lilly: int)

returns (res, pass, inconclusive, s0, ... s86: bool);

let
res = true −> (

if s = 6 then
(car = 11 and lilly = 13 and leo = 6 and
perception_lilly = 13 and perception_leo = 2000)

...);

pass = false −> if s = 83 then true else pre pass;

inconclusive = false −> if s = 7 then true else pre inconclusive;

s0 = false −> if s = 0 then true else pre s0; ...

s86 = false −> if s = 86 then true else pre s86; ...

The generated oracles are quite long (see Table 5.2) and complex, because they contain all
oracle verdicts and coverage criteria. For each of the five test purposes, we executed the
generated scenarios on the radar SUT using Lurette (the last columns of Table 5.2 indicate
the overall time and memory consumed by the overall testing process). This enabled us to

5.5. Test Projection and Exploration 103

discover (and fix) a mistake in the SUT related to the incorrect management of the special
value already sent.

� � �

conformance test generation synchronous unit testingprojection & translation & exploration

Lurette
verdict

I/O

(Lustre)
System Under Test

test purpose

(BCG)

scenario
(Lutin)

CTG

(BCG)

labels

input

model

(GRL)

projection

exploration

translation
TESTOR

(Lustre)

oracle &
coverage

Figure 5.9: Overview of the testing methodology for GALS systems

We presented an automatic approach (see Figure 5.9) integrating both asynchronous and
synchronous testing tools to derive complex, but relevant unit test cases for the synchronous
components of a GALS system. From a formal model of the system in GRL [JLM16] and
a test purpose, the conformance testing tool TESTOR [MMS18] automatically generates a
complete test graph [JJ05] capturing the asynchronous behavior of the system relevant to
the test purpose. Such a complete test graph is then projected on a synchronous component
C and explored using XTL [MG98] scripts to provide a synchronous test scenario (input
constraints in Lutin [RRJ08] and an oracle in Lustre [HCRP91]) required to test C with
the Lurette tool [JRB06]. We automated all these steps using an SVL [GL01] script. The
approach substantially relieves the burden of handcrafting these test scenarios, because, by
construction, the derived scenarios constrain the inputs provided to C to relevant values,
covering a test purpose, which might arise during the execution of the GALS system. We
illustrated the approach on an autonomous car example. This work also enabled us to
observe two common properties of GALS systems, more precisely that it is necessary to
identify the non-progressing iterations of GALS’s synchronous components and verify that
the system reaches the terminal states by avoiding these iterations.

104 Chapter 5. Validation of GALS Systems

Chapter 6

Conclusion

GALS (Globally Asynchronous, Locally Synchronous) [Cha84] systems consist of multiple
synchronous components that execute independently and interact with each other. They
are intrinsically complex, often critical, and nowadays become increasingly large and dis-
tributed. The simultaneous presence of synchronous and asynchronous aspects makes their
development and debugging difficult. Hence, to ensure their functional correctness and re-
liability, it is required to use a rigorous testing process based on formal methods, such as
model-based testing [BJK+05], a validation technique taking advantage of a model of a sys-
tem (both, requirements and behavior) to automate the generation of relevant test cases.
In this dissertation, we have explored different ways to carry out the model-based testing
of GALS systems. In particular, we have presented testing techniques for synchronous
components, for communication protocols between components, and how to combine these
two techniques for testing complete GALS systems.

Synchronous formal techniques for the functional testing of components

In the first part of this dissertation, we explored formal techniques for the functional test-
ing of synchronous components. As a case-study, we reconsidered the Message Authen-
ticator Algorithm (MAA), a pioneering cryptographic function designed in the mid-80s,
and we formalized it as a synchronous dataflow algorithm in the synchronous language
Lustre [HCRP91]. A large part of our Lustre model contains general definitions, half of
which are largely independent of the MAA. To validate our Lustre model, we defined sets
of test vectors derived from the specification in [DC88]. We automated the test execu-
tion process, by using the test generation tool Lurette [JRB06] of the Lustre V6 tool-
box1 [HCRP91, RRJ08]. The modeling and validation of the MAA enabled us to discover
various mistakes in prior (informal and formal) specifications of the MAA, the test vectors
and code of the ISO 1990 [ISO90, Annex E], and the ISO 1992 [ISO92, Annex A] standards,

1http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/

105

106 Chapter 6. Conclusion

in the main program (implementation of the MAA in C) provided by [DC88], and in some
of the compilers and verification tools that we used. Testing our Lustre MAA model was
a tedious task: in order to automate the tests validation with a Lutin environment and an
oracle, we had to define more than 400 constants. An automation of this testing process
is therefore highly beneficial.

Asynchronous conformance testing techniques for a communication protocol

Then, we explored the formalization and the functional testing of a communication
protocol between two (synchronous) components. For this purpose, we introduced
TESTOR [MMS18], a new tool for on-the-fly conformance test case generation for asyn-
chronous concurrent systems. TESTOR explores the model and generates automatically
a set of test cases or a CTG (Complete Test Graph) to be executed on a physical imple-
mentation of the system. Like the existing tool TGV [JJ05], TESTOR was developed on
top of the CADP2 toolbox [GLMS13] and brings several enhancements: online testing by
generating (controllable) test cases completely on the fly; a more versatile description of
test purposes using the LNT language; and a modular architecture involving generic graph
manipulation components from the OPEN/CAESAR environment [Gar98]. The modular-
ity of TESTOR simplifies maintenance and fine-tuning of graph manipulation components,
e.g., by adding or removing on-the-fly reductions, or by replacing the synchronous product
between the model and the test purpose. Besides the ability to perform online testing, the
on-the-fly test selection algorithm sometimes makes possible the extraction of test cases
even when the generation of the CTG is infeasible. The experiments we carried out on ten-
thousands of benchmark examples and three industrial case studies show that TESTOR
consumes less memory than TGV for generating CTGs. As a case-study, we reconsider
the formalization of the Transport Layer Security (TLS) 1.3 handshake, a protocol re-
sponsible for the authentication and exchange of keys necessary to establish or resume a
secure communication. Taking the draft specification of the TLS [IET18] protocol Version
1.3 as starting point, we formalized the TLS handshake protocol in the LNT language
[GLS17, CCG+19]. Our LNT model of TLS 1.3 handshake has been validated against a
concrete implementation of TLS by an approach using TESTOR [BMMW18]. The vali-
dation process enabled us to find an ambiguity in the specification of the draft TLS 1.3
handshake [IET18].

Combined synchronous and asynchronous testing techniques for GALS systems

Finally, we proposed a combination of conformance test generation and synchronous test-
ing techniques that cumulates their benefits for testing a complete GALS system. We
presented an automatic approach combining both techniques, to minimize the handwriting
test effort while maximizing the coverage. Our methodology integrates: (1) synchronous

2https://cadp.inria.fr/

107

and asynchronous concurrent models, (2) functional unit testing and behavioral confor-
mance testing, and (3) various formal methods and their supporting tools. First, the
GALS system is modelled in GRL (GALS Representation Language) [JLM16, Jeb16], a
formal language designed for describing GALS systems. The asynchronous aspects of the
GRL model can be validated using CADP, e.g., by checking temporal logic formulas ex-
pressing desired (global) correctness properties. Next, from the formal model of the system
in GRL and a test purpose, the TESTOR tool can be used to automatically generate CTGs,
capturing the asynchronous behavior of the system relevant to the test purpose, which can
be used to assess whether an actual implementation of the GALS system conforms to the
GRL model. Then, the CTG is projected on a synchronous component C and subsequently
translated automatically, using XTL [MG98] scripts, into a scenario (i.e., input constraints
in Lutin [RRJ08] and an oracle in Lustre), required to automate the testing of C using
the synchronous test generation tool Lurette. Because these scenarios are automatically
generated from the GRL model of the GALS system, they correspond by construction
to relevant (and often complex) executions of the synchronous component. The whole
methodology has been automated using SVL [GL01] scripts. The approach substantially
relieves the burden of handcrafting these test scenarios, because, by construction, the de-
rived scenarios constrain the inputs provided to C to relevant values, covering a high-level
test purpose, which might arise during the execution of the GALS system. We illustrated
the approach on an autonomous car example.

Perspectives

As future work, we plan to consider the behavioral coverage of GALS systems, which
can be achieved by identifying a set of test purposes (ideally as small as possible) whose
corresponding CTGs cover the whole state space of a GALS system. The set of test
purposes could be built by deriving them from the action-based, branching-time temporal
properties of the model (following the results of [FFJ+12] in the state-based, linear-time
setting) or by synthesizing them according to behavioral coverage criteria.

Furthermore, we also plan to consider the transition coverage of a CTG, which can be
achieved by identifying a set of test cases (ideally as small as possible) covering all states
and transitions of a CTG. The difficulty is to find a simple solution, which extracts au-
tomatically controllable test cases (TCs) from an acyclic CTG, and which can cover the
CTG using as few TCs as possible. This could be done by invoking the TESTOR algo-
rithm repeatedly on the CTG itself, and by ensuring that the generated TCs have covered
all CTG transitions, by taking into account also the transitions looping in the cycles pos-
sibly requiring unfolding of some cycles. The extraction strategy has to be studied and
finely-tuned experimentally.

Finally, to execute a generated TC against a system under test (SUT), it is necessary to
refine the TC to take into account the asynchronous communication between the SUT

108 Chapter 6. Conclusion

and the tester. Actually, the SUT accepts every input at any time, whereas the TC is
deterministic, i.e., there is no choice between an input and an output. An approach for
connecting a TC (randomly selected) and an asynchronous SUT was defined in [WW09].
A similar approach using test purposes (TPs) to guide the test generation was proposed
in [Bha14] and subsequently extended to timed automata [Bha17]. Recently, this kind
of connection was automated by the MOTEST tool [GH17]. It would be interesting to
investigate how these solutions could be integrated into our methodology to automate the
execution of TCs on asynchronous SUTs, and to experiment it on a real GALS system.

Appendix A

Formal Model of the MAA in Lustre

This annex presents the specification of the MAA in the Lustre language. This specification
is fully self-contained, meaning that it does not depend on any externally-defined library –
with the minor disadvantage of somewhat lengthy definitions for byte and blocks constants.
For readability, the specification has been split into 16 parts, each part being devoted to
a particular type, a group of functions sharing a common purpose, or a collection of test
vectors. The first parts contain general definitions that are largely independent from the
MAA; starting from Section A.10, the definitions become increasingly more MAA-specific.
All machine words (bytes, blocks, etc.) are represented according to the “big endian”
convention, i.e., the first argument of each corresponding constructor denote the most
significant bit.

A.1 Definitions for type Bit

We define bits using an enumeration Bit (X0 and X1), together with functions implementing
logical operations on bits.

type Bit = enum {X0, X1};

--

function notBit (x1: Bit) returns (x: Bit);

let
x = if x1 = X0 then X1 else X0;

tel;
--

function andBit (x1, x2: Bit) returns (x: Bit);

let
x = if x2 = X0 then X0 else x1;

tel;

109

110 Chapter A. Formal Model of the MAA in Lustre

--

function orBit (x1, x2: Bit) returns (x: Bit);

let
x = if x2 = X0 then x1 else X1;

tel;
--

function xorBit (x1, x2: Bit) returns (x: Bit);

let
x = if x2 = X0 then x1 else notBit (x1);

tel;
--

A.2 Definitions for Type Byte

We define bytes (octets) using a structure Octet that contains the eight bits of a byte,
together with functions implementing bitwise logical operations, left-shift and right-shift
operations on bytes, as well as all byte constants needed to formally describe the MAA
and its test vectors.

type Octet = struct {x1: Bit; x2: Bit; x3: Bit; x4: Bit;

x5: Bit; x6: Bit; x7: Bit; x8: Bit};

--

const x00 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

const x01 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X1};

const x02 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = X1; x8 = X0};

const x03 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = X1; x8 = X1};

const x04 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = X1; x7 = X0; x8 = X0};

const x05 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = X1; x7 = X0; x8 = X1};

const x06 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = X1; x7 = X1; x8 = X0};

const x07 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = X1; x7 = X1; x8 = X1};

const x08 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X1; x6 = X0; x7 = X0; x8 = X0};

const x09 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X1; x6 = X0; x7 = X0; x8 = X1};

const x0A = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X1; x6 = X0; x7 = X1; x8 = X0};

A.2. Definitions for Type Byte 111

const x0B = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X1; x6 = X0; x7 = X1; x8 = X1};

const x0C = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X1; x6 = X1; x7 = X0; x8 = X0};

const x0D = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X1; x6 = X1; x7 = X0; x8 = X1};

const x0E = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X1; x6 = X1; x7 = X1; x8 = X0};

const x0F = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X1; x6 = X1; x7 = X1; x8 = X1};

const x10 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X1;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

const x11 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X1;

x5 = X0; x6 = X0; x7 = X0; x8 = X1};

const x12 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X1;

x5 = X0; x6 = X0; x7 = X1; x8 = X0};

const x13 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X1;

x5 = X0; x6 = X0; x7 = X1; x8 = X1};

const x14 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X1;

x5 = X0; x6 = X1; x7 = X0; x8 = X0};

const x15 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X1;

x5 = X0; x6 = X1; x7 = X0; x8 = X1};

const x16 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X1;

x5 = X0; x6 = X1; x7 = X1; x8 = X0};

const x17 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X1;

x5 = X0; x6 = X1; x7 = X1; x8 = X1};

const x18 = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X1;

x5 = X1; x6 = X0; x7 = X0; x8 = X0};

const x1A = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X1;

x5 = X1; x6 = X0; x7 = X1; x8 = X0};

const x1B = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X1;

x5 = X1; x6 = X0; x7 = X1; x8 = X1};

const x1C = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X1;

x5 = X1; x6 = X1; x7 = X0; x8 = X0};

const x1D = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X1;

x5 = X1; x6 = X1; x7 = X0; x8 = X1};

const x1E = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X1;

x5 = X1; x6 = X1; x7 = X1; x8 = X0};

const x1F = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X1;

x5 = X1; x6 = X1; x7 = X1; x8 = X1};

const x20 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

const x21 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X1};

const x22 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X0;

112 Chapter A. Formal Model of the MAA in Lustre

x5 = X0; x6 = X0; x7 = X1; x8 = X0};

const x23 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X0;

x5 = X0; x6 = X0; x7 = X1; x8 = X1};

const x24 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X0;

x5 = X0; x6 = X1; x7 = X0; x8 = X0};

const x25 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X0;

x5 = X0; x6 = X1; x7 = X0; x8 = X1};

const x26 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X0;

x5 = X0; x6 = X1; x7 = X1; x8 = X0};

const x27 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X0;

x5 = X0; x6 = X1; x7 = X1; x8 = X1};

const x28 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X0;

x5 = X1; x6 = X0; x7 = X0; x8 = X0};

const x29 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X0;

x5 = X1; x6 = X0; x7 = X0; x8 = X1};

const x2A = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X0;

x5 = X1; x6 = X0; x7 = X1; x8 = X0};

const x2B = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X0;

x5 = X1; x6 = X0; x7 = X1; x8 = X1};

const x2D = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X0;

x5 = X1; x6 = X1; x7 = X0; x8 = X1};

const x2E = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X0;

x5 = X1; x6 = X1; x7 = X1; x8 = X0};

const x2F = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X0;

x5 = X1; x6 = X1; x7 = X1; x8 = X1};

const x30 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X1;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

const x31 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X1;

x5 = X0; x6 = X0; x7 = X0; x8 = X1};

const x32 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X1;

x5 = X0; x6 = X0; x7 = X1; x8 = X0};

const x33 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X1;

x5 = X0; x6 = X0; x7 = X1; x8 = X1};

const x34 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X1;

x5 = X0; x6 = X1; x7 = X0; x8 = X0};

const x35 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X1;

x5 = X0; x6 = X1; x7 = X0; x8 = X1};

const x36 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X1;

x5 = X0; x6 = X1; x7 = X1; x8 = X0};

const x37 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X1;

x5 = X0; x6 = X1; x7 = X1; x8 = X1};

const x38 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X1;

x5 = X1; x6 = X0; x7 = X0; x8 = X0};

const x39 = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X1;

x5 = X1; x6 = X0; x7 = X0; x8 = X1};

A.2. Definitions for Type Byte 113

const x3A = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X1;

x5 = X1; x6 = X0; x7 = X1; x8 = X0};

const x3B = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X1;

x5 = X1; x6 = X0; x7 = X1; x8 = X1};

const x3C = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X1;

x5 = X1; x6 = X1; x7 = X0; x8 = X0};

const x3D = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X1;

x5 = X1; x6 = X1; x7 = X0; x8 = X1};

const x3E = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X1;

x5 = X1; x6 = X1; x7 = X1; x8 = X0};

const x3F = Octet {x1 = X0; x2 = X0; x3 = X1; x4 = X1;

x5 = X1; x6 = X1; x7 = X1; x8 = X1};

const x40 = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

const x41 = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X1};

const x42 = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = X1; x8 = X0};

const x43 = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = X1; x8 = X1};

const x44 = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X0;

x5 = X0; x6 = X1; x7 = X0; x8 = X0};

const x45 = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X0;

x5 = X0; x6 = X1; x7 = X0; x8 = X1};

const x46 = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X0;

x5 = X0; x6 = X1; x7 = X1; x8 = X0};

const x47 = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X0;

x5 = X0; x6 = X1; x7 = X1; x8 = X1};

const x48 = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X0;

x5 = X1; x6 = X0; x7 = X0; x8 = X0};

const x49 = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X0;

x5 = X1; x6 = X0; x7 = X0; x8 = X1};

const x4A = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X0;

x5 = X1; x6 = X0; x7 = X1; x8 = X0};

const x4B = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X0;

x5 = X1; x6 = X0; x7 = X1; x8 = X1};

const x4C = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X0;

x5 = X1; x6 = X1; x7 = X0; x8 = X0};

const x4D = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X0;

x5 = X1; x6 = X1; x7 = X0; x8 = X1};

const x4E = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X0;

x5 = X1; x6 = X1; x7 = X1; x8 = X0};

const x4F = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X0;

x5 = X1; x6 = X1; x7 = X1; x8 = X1};

const x50 = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X1;

114 Chapter A. Formal Model of the MAA in Lustre

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

const x51 = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X1;

x5 = X0; x6 = X0; x7 = X0; x8 = X1};

const x53 = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X1;

x5 = X0; x6 = X0; x7 = X1; x8 = X1};

const x54 = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X1;

x5 = X0; x6 = X1; x7 = X0; x8 = X0};

const x55 = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X1;

x5 = X0; x6 = X1; x7 = X0; x8 = X1};

const x58 = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X1;

x5 = X1; x6 = X0; x7 = X0; x8 = X0};

const x5A = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X1;

x5 = X1; x6 = X0; x7 = X1; x8 = X0};

const x5B = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X1;

x5 = X1; x6 = X0; x7 = X1; x8 = X1};

const x5C = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X1;

x5 = X1; x6 = X1; x7 = X0; x8 = X0};

const x5D = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X1;

x5 = X1; x6 = X1; x7 = X0; x8 = X1};

const x5E = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X1;

x5 = X1; x6 = X1; x7 = X1; x8 = X0};

const x5F = Octet {x1 = X0; x2 = X1; x3 = X0; x4 = X1;

x5 = X1; x6 = X1; x7 = X1; x8 = X1};

const x60 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

const x61 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X1};

const x62 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X0;

x5 = X0; x6 = X0; x7 = X1; x8 = X0};

const x63 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X0;

x5 = X0; x6 = X0; x7 = X1; x8 = X1};

const x64 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X0;

x5 = X0; x6 = X1; x7 = X0; x8 = X0};

const x65 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X0;

x5 = X0; x6 = X1; x7 = X0; x8 = X1};

const x66 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X0;

x5 = X0; x6 = X1; x7 = X1; x8 = X0};

const x67 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X0;

x5 = X0; x6 = X1; x7 = X1; x8 = X1};

const x69 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X0;

x5 = X1; x6 = X0; x7 = X0; x8 = X1};

const x6A = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X0;

x5 = X1; x6 = X0; x7 = X1; x8 = X0};

const x6B = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X0;

x5 = X1; x6 = X0; x7 = X1; x8 = X1};

A.2. Definitions for Type Byte 115

const x6C = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X0;

x5 = X1; x6 = X1; x7 = X0; x8 = X0};

const x6D = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X0;

x5 = X1; x6 = X1; x7 = X0; x8 = X1};

const x6E = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X0;

x5 = X1; x6 = X1; x7 = X1; x8 = X0};

const x6F = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X0;

x5 = X1; x6 = X1; x7 = X1; x8 = X1};

const x70 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X1;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

const x71 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X1;

x5 = X0; x6 = X0; x7 = X0; x8 = X1};

const x72 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X1;

x5 = X0; x6 = X0; x7 = X1; x8 = X0};

const x73 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X1;

x5 = X0; x6 = X0; x7 = X1; x8 = X1};

const x74 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X1;

x5 = X0; x6 = X1; x7 = X0; x8 = X0};

const x75 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X1;

x5 = X0; x6 = X1; x7 = X0; x8 = X1};

const x76 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X1;

x5 = X0; x6 = X1; x7 = X1; x8 = X0};

const x77 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X1;

x5 = X0; x6 = X1; x7 = X1; x8 = X1};

const x78 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X1;

x5 = X1; x6 = X0; x7 = X0; x8 = X0};

const x79 = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X1;

x5 = X1; x6 = X0; x7 = X0; x8 = X1};

const x7A = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X1;

x5 = X1; x6 = X0; x7 = X1; x8 = X0};

const x7B = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X1;

x5 = X1; x6 = X0; x7 = X1; x8 = X1};

const x7C = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X1;

x5 = X1; x6 = X1; x7 = X0; x8 = X0};

const x7D = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X1;

x5 = X1; x6 = X1; x7 = X0; x8 = X1};

const x7E = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X1;

x5 = X1; x6 = X1; x7 = X1; x8 = X0};

const x7F = Octet {x1 = X0; x2 = X1; x3 = X1; x4 = X1;

x5 = X1; x6 = X1; x7 = X1; x8 = X1};

const x80 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

const x81 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X1};

const x83 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X0;

116 Chapter A. Formal Model of the MAA in Lustre

x5 = X0; x6 = X0; x7 = X1; x8 = X1};

const x84 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = X1; x7 = X0; x8 = X0};

const x85 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = X1; x7 = X0; x8 = X1};

const x86 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = X1; x7 = X1; x8 = X0};

const x89 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X0;

x5 = X1; x6 = X0; x7 = X0; x8 = X1};

const x8C = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X0;

x5 = X1; x6 = X1; x7 = X0; x8 = X0};

const x8D = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X0;

x5 = X1; x6 = X1; x7 = X0; x8 = X1};

const x8E = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X0;

x5 = X1; x6 = X1; x7 = X1; x8 = X0};

const x8F = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X0;

x5 = X1; x6 = X1; x7 = X1; x8 = X1};

const x90 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X1;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

const x91 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X1;

x5 = X0; x6 = X0; x7 = X0; x8 = X1};

const x92 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X1;

x5 = X0; x6 = X0; x7 = X1; x8 = X0};

const x93 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X1;

x5 = X0; x6 = X0; x7 = X1; x8 = X1};

const x94 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X1;

x5 = X0; x6 = X1; x7 = X0; x8 = X0};

const x95 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X1;

x5 = X0; x6 = X1; x7 = X0; x8 = X1};

const x96 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X1;

x5 = X0; x6 = X1; x7 = X1; x8 = X0};

const x97 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X1;

x5 = X0; x6 = X1; x7 = X1; x8 = X1};

const x98 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X1;

x5 = X1; x6 = X0; x7 = X0; x8 = X0};

const x99 = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X1;

x5 = X1; x6 = X0; x7 = X0; x8 = X1};

const x9A = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X1;

x5 = X1; x6 = X0; x7 = X1; x8 = X0};

const x9B = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X1;

x5 = X1; x6 = X0; x7 = X1; x8 = X1};

const x9C = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X1;

x5 = X1; x6 = X1; x7 = X0; x8 = X0};

const x9D = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X1;

x5 = X1; x6 = X1; x7 = X0; x8 = X1};

A.2. Definitions for Type Byte 117

const x9E = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X1;

x5 = X1; x6 = X1; x7 = X1; x8 = X0};

const x9F = Octet {x1 = X1; x2 = X0; x3 = X0; x4 = X1;

x5 = X1; x6 = X1; x7 = X1; x8 = X1};

const xA1 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X1};

const xA0 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

const xA3 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X0;

x5 = X0; x6 = X0; x7 = X1; x8 = X1};

const xA4 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X0;

x5 = X0; x6 = X1; x7 = X0; x8 = X0};

const xA5 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X0;

x5 = X0; x6 = X1; x7 = X0; x8 = X1};

const xA6 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X0;

x5 = X0; x6 = X1; x7 = X1; x8 = X0};

const xA7 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X0;

x5 = X0; x6 = X1; x7 = X1; x8 = X1};

const xA8 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X0;

x5 = X1; x6 = X0; x7 = X0; x8 = X0};

const xA9 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X0;

x5 = X1; x6 = X0; x7 = X0; x8 = X1};

const xAA = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X0;

x5 = X1; x6 = X0; x7 = X1; x8 = X0};

const xAB = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X0;

x5 = X1; x6 = X0; x7 = X1; x8 = X1};

const xAC = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X0;

x5 = X1; x6 = X1; x7 = X0; x8 = X0};

const xAE = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X0;

x5 = X1; x6 = X1; x7 = X1; x8 = X0};

const xAF = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X0;

x5 = X1; x6 = X1; x7 = X1; x8 = X1};

const xB0 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X1;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

const xB1 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X1;

x5 = X0; x6 = X0; x7 = X0; x8 = X1};

const xB2 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X1;

x5 = X0; x6 = X0; x7 = X1; x8 = X0};

const xB3 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X1;

x5 = X0; x6 = X0; x7 = X1; x8 = X1};

const xB5 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X1;

x5 = X0; x6 = X1; x7 = X0; x8 = X1};

const xB6 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X1;

x5 = X0; x6 = X1; x7 = X1; x8 = X0};

const xB8 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X1;

118 Chapter A. Formal Model of the MAA in Lustre

x5 = X1; x6 = X0; x7 = X0; x8 = X0};

const xB9 = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X1;

x5 = X1; x6 = X0; x7 = X0; x8 = X1};

const xBA = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X1;

x5 = X1; x6 = X0; x7 = X1; x8 = X0};

const xBB = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X1;

x5 = X1; x6 = X0; x7 = X1; x8 = X1};

const xBC = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X1;

x5 = X1; x6 = X1; x7 = X0; x8 = X0};

const xBE = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X1;

x5 = X1; x6 = X1; x7 = X1; x8 = X0};

const xBF = Octet {x1 = X1; x2 = X0; x3 = X1; x4 = X1;

x5 = X1; x6 = X1; x7 = X1; x8 = X1};

const xC0 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

const xC1 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X1};

const xC2 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = X1; x8 = X0};

const xC4 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X0;

x5 = X0; x6 = X1; x7 = X0; x8 = X0};

const xC5 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X0;

x5 = X0; x6 = X1; x7 = X0; x8 = X1};

const xC6 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X0;

x5 = X0; x6 = X1; x7 = X1; x8 = X0};

const xC7 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X0;

x5 = X0; x6 = X1; x7 = X1; x8 = X1};

const xC8 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X0;

x5 = X1; x6 = X0; x7 = X0; x8 = X0};

const xC9 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X0;

x5 = X1; x6 = X0; x7 = X0; x8 = X1};

const xCA = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X0;

x5 = X1; x6 = X0; x7 = X1; x8 = X0};

const xCB = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X0;

x5 = X1; x6 = X0; x7 = X1; x8 = X1};

const xCC = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X0;

x5 = X1; x6 = X1; x7 = X0; x8 = X0};

const xCD = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X0;

x5 = X1; x6 = X1; x7 = X0; x8 = X1};

const xCE = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X0;

x5 = X1; x6 = X1; x7 = X1; x8 = X0};

const xD0 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X1;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

const xD1 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X1;

x5 = X0; x6 = X0; x7 = X0; x8 = X1};

A.2. Definitions for Type Byte 119

const xD2 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X1;

x5 = X0; x6 = X0; x7 = X1; x8 = X0};

const xD3 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X1;

x5 = X0; x6 = X0; x7 = X1; x8 = X1};

const xD4 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X1;

x5 = X0; x6 = X1; x7 = X0; x8 = X0};

const xD5 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X1;

x5 = X0; x6 = X1; x7 = X0; x8 = X1};

const xD6 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X1;

x5 = X0; x6 = X1; x7 = X1; x8 = X0};

const xD7 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X1;

x5 = X0; x6 = X1; x7 = X1; x8 = X1};

const xD9 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X1;

x5 = X1; x6 = X0; x7 = X0; x8 = X1};

const xD8 = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X1;

x5 = X1; x6 = X0; x7 = X0; x8 = X0};

const xDB = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X1;

x5 = X1; x6 = X0; x7 = X1; x8 = X1};

const xDC = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X1;

x5 = X1; x6 = X1; x7 = X0; x8 = X0};

const xDD = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X1;

x5 = X1; x6 = X1; x7 = X0; x8 = X1};

const xDE = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X1;

x5 = X1; x6 = X1; x7 = X1; x8 = X0};

const xDF = Octet {x1 = X1; x2 = X1; x3 = X0; x4 = X1;

x5 = X1; x6 = X1; x7 = X1; x8 = X1};

const xE0 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

const xE1 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X1};

const xE2 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X0;

x5 = X0; x6 = X0; x7 = X1; x8 = X0};

const xE3 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X0;

x5 = X0; x6 = X0; x7 = X1; x8 = X1};

const xE6 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X0;

x5 = X0; x6 = X1; x7 = X1; x8 = X0};

const xE8 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X0;

x5 = X1; x6 = X0; x7 = X0; x8 = X0};

const xE9 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X0;

x5 = X1; x6 = X0; x7 = X0; x8 = X1};

const xEA = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X0;

x5 = X1; x6 = X0; x7 = X1; x8 = X0};

const xEB = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X0;

x5 = X1; x6 = X0; x7 = X1; x8 = X1};

const xEC = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X0;

120 Chapter A. Formal Model of the MAA in Lustre

x5 = X1; x6 = X1; x7 = X0; x8 = X0};

const xED = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X0;

x5 = X1; x6 = X1; x7 = X0; x8 = X1};

const xEE = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X0;

x5 = X1; x6 = X1; x7 = X1; x8 = X0};

const xEF = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X0;

x5 = X1; x6 = X1; x7 = X1; x8 = X1};

const xF0 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X1;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

const xF1 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X1;

x5 = X0; x6 = X0; x7 = X0; x8 = X1};

const xF2 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X1;

x5 = X0; x6 = X0; x7 = X1; x8 = X0};

const xF3 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X1;

x5 = X0; x6 = X0; x7 = X1; x8 = X1};

const xF4 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X1;

x5 = X0; x6 = X1; x7 = X0; x8 = X0};

const xF5 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X1;

x5 = X0; x6 = X1; x7 = X0; x8 = X1};

const xF6 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X1;

x5 = X0; x6 = X1; x7 = X1; x8 = X0};

const xF7 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X1;

x5 = X0; x6 = X1; x7 = X1; x8 = X1};

const xF8 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X1;

x5 = X1; x6 = X0; x7 = X0; x8 = X0};

const xF9 = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X1;

x5 = X1; x6 = X0; x7 = X0; x8 = X1};

const xFA = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X1;

x5 = X1; x6 = X0; x7 = X1; x8 = X0};

const xFB = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X1;

x5 = X1; x6 = X0; x7 = X1; x8 = X1};

const xFC = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X1;

x5 = X1; x6 = X1; x7 = X0; x8 = X0};

const xFD = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X1;

x5 = X1; x6 = X1; x7 = X0; x8 = X1};

const xFE = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X1;

x5 = X1; x6 = X1; x7 = X1; x8 = X0};

const xFF = Octet {x1 = X1; x2 = X1; x3 = X1; x4 = X1;

x5 = X1; x6 = X1; x7 = X1; x8 = X1};

--

function andOctet (o1, o2: Octet) returns (o: Octet);

let
o = Octet {x1 = andBit (o1.x1, o2.x1); x2 = andBit (o1.x2, o2.x2);

x3 = andBit (o1.x3, o2.x3); x4 = andBit (o1.x4, o2.x4);

x5 = andBit (o1.x5, o2.x5); x6 = andBit (o1.x6, o2.x6);

A.2. Definitions for Type Byte 121

x7 = andBit (o1.x7, o2.x7); x8 = andBit (o1.x8, o2.x8)};

tel;
--

function orOctet (o1, o2: Octet) returns (o: Octet);

let
o = Octet {x1 = orBit (o1.x1, o2.x1); x2 = orBit (o1.x2, o2.x2);

x3 = orBit (o1.x3, o2.x3); x4 = orBit (o1.x4, o2.x4);

x5 = orBit (o1.x5, o2.x5); x6 = orBit (o1.x6, o2.x6);

x7 = orBit (o1.x7, o2.x7); x8 = orBit (o1.x8, o2.x8)};

tel;
--

function xorOctet (o1, o2: Octet) returns (o: Octet);

let
o = Octet {x1 = xorBit (o1.x1, o2.x1); x2 = xorBit (o1.x2, o2.x2);

x3 = xorBit (o1.x3, o2.x3); x4 = xorBit (o1.x4, o2.x4);

x5 = xorBit (o1.x5, o2.x5); x6 = xorBit (o1.x6, o2.x6);

x7 = xorBit (o1.x7, o2.x7); x8 = xorBit (o1.x8, o2.x8)};

tel;
--

function leftOctet1 (o1: Octet) returns (o: Octet);

let
o = Octet {x1 = o1.x2; x2 = o1.x3; x3 = o1.x4; x4 = o1.x5;

x5 = o1.x6; x6 = o1.x7; x7 = o1.x8; x8 = X0};

tel;
--

function leftOctet2 (o1: Octet) returns (o: Octet);

let
o = Octet {x1 = o1.x3; x2 = o1.x4; x3 = o1.x5; x4 = o1.x6;

x5 = o1.x7; x6 = o1.x8; x7 = X0; x8 = X0};

tel;
--

function leftOctet3 (o1: Octet) returns (o: Octet);

let
o = Octet {x1 = o1.x4; x2 = o1.x5; x3 = o1.x6; x4 = o1.x7;

x5 = o1.x8; x6 = X0; x7 = X0; x8 = X0};

tel;
--

function leftOctet4 (o1: Octet) returns (o: Octet);

let
o = Octet {x1 = o1.x5; x2 = o1.x6; x3 = o1.x7; x4 = o1.x8;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

tel;
--

function leftOctet5 (o1: Octet) returns (o: Octet);

let

122 Chapter A. Formal Model of the MAA in Lustre

o = Octet {x1 = o1.x6; x2 = o1.x7; x3 = o1.x8; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

tel;
--

function leftOctet6 (o1: Octet) returns (o: Octet);

let
o = Octet {x1 = o1.x7; x2 = o1.x8; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

tel;
--

function leftOctet7 (o1: Octet) returns (o: Octet);

let
o = Octet {x1 = o1.x8; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = X0};

tel;
--

function rightOctet1 (o1: Octet) returns (o: Octet);

let
o = Octet {x1 = X0; x2 = o1.x1; x3 = o1.x2; x4 = o1.x3;

x5 = o1.x4; x6 = o1.x5; x7 = o1.x6; x8 = o1.x7};

tel;
--

function rightOctet2 (o1: Octet) returns (o: Octet);

let
o = Octet {x1 = X0; x2 = X0; x3 = o1.x1; x4 = o1.x2;

x5 = o1.x3; x6 = o1.x4; x7 = o1.x5; x8 = o1.x6};

tel;
--

function rightOctet3 (o1: Octet) returns (o: Octet);

let
o = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = o1.x1;

x5 = o1.x2; x6 = o1.x3; x7 = o1.x4; x8 = o1.x5};

tel;
--

function rightOctet4 (o1: Octet) returns (o: Octet);

let
o = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = o1.x1; x6 = o1.x2; x7 = o1.x3; x8 = o1.x4};

tel;
--

function rightOctet5 (o1: Octet) returns (o: Octet);

let
o = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = o1.x1; x7 = o1.x2; x8 = o1.x3};

tel;

A.3. Definitions for Type OctetSum 123

--

function rightOctet6 (o1: Octet) returns (o: Octet);

let
o = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = o1.x1; x8 = o1.x2};

tel;
--

function rightOctet7 (o1: Octet) returns (o: Octet);

let
o = Octet {x1 = X0; x2 = X0; x3 = X0; x4 = X0;

x5 = X0; x6 = X0; x7 = X0; x8 = o1.x1};

tel;

A.3 Definitions for Type OctetSum

We define type OctetSum that stores the result of the addition of two octets. Values of this
type are 9-bit words, made up using the structure OctetSum that gathers one bit for the
carry and an octet for the sum. The two principal functions for this type are addOctetSum
(which adds two octets and an input carry bit, and returns both an output carry bit and
an 8-bit sum), and addOctet (which is derived from the former one by dropping the input
and output carry bits); the other functions are auxiliary functions implementing an 8-bit
adder.

type OctetSum = struct {x: Bit; o: Octet};

--

function addBit (x1, x2, x3: Bit) returns (x: Bit);

let
x = xorBit (xorBit (x1, x2), x3);

tel;
--

function carBit (x1, x2, x3: Bit) returns (x: Bit);

let
x = orBit (andBit (andBit (x1, x2), notBit (x3)),

andBit (orBit (x1, x2), x3));

tel;
--

function addOctetSum (o1, o2: Octet; x: Bit) returns (os: OctetSum);

var x1, x11, x2, x22, x3, x33, x4, x44, x5, x55: Bit;

x6, x66, x7, x77, x8, x88: Bit;

let
x1 = carBit (o1.x8, o2.x8, x);

x11 = addBit (o1.x8, o2.x8, x);

x2 = carBit (o1.x7, o2.x7, x1);

124 Chapter A. Formal Model of the MAA in Lustre

x22 = addBit (o1.x7, o2.x7, x1);

x3 = carBit (o1.x6, o2.x6, x2);

x33 = addBit (o1.x6, o2.x6, x2);

x4 = carBit (o1.x5, o2.x5, x3);

x44 = addBit (o1.x5, o2.x5, x3);

x5 = carBit (o1.x4, o2.x4, x4);

x55 = addBit (o1.x4, o2.x4, x4);

x6 = carBit (o1.x3, o2.x3, x5);

x66 = addBit (o1.x3, o2.x3, x5);

x7 = carBit (o1.x2, o2.x2, x6);

x77 = addBit (o1.x2, o2.x2, x6);

x8 = carBit (o1.x1, o2.x1, x7);

x88 = addBit (o1.x1, o2.x1, x7);

os = OctetSum {x = x8;

o = Octet {x1 = x88; x2 = x77; x3 = x66; x4 = x55;

x5 = x44; x6 = x33; x7 = x22; x8 = x11}};

tel;
--

function dropCarryOctetSum (os: OctetSum) returns (o: Octet);

let
o = os.o;

tel;
--

function addOctet (o1, o2: Octet) returns (o: Octet);

let
o = dropCarryOctetSum (addOctetSum (o1, o2, X0));

tel;
--

A.4 Definitions for Type Half

We define 16-bit words (“named half words”) using a structure Half that contains two
bytes corresponding to a half word, together with two usual constants, and a function
implementing operation mulOctet that takes two octets and computes their 16-bit product;
the other functions are auxiliary functions implementing an 8-bit multiplier.

type Half = struct {o1: Octet; o2: Octet};

--

const x0000 = Half {o1 = x00; o2 = x00};

const x0001 = Half {o1 = x00; o2 = x01};

--

function mulOctetA (h1: Half; o1, o2: Octet) returns (h: Half);

var o3: Octet; os: OctetSum;

let

A.5. Definitions for Type HalfSum 125

o3 = addOctet (h1.o1, o1);

os = addOctetSum (h1.o2, o2, X0);

h = if os.x = X0 then
Half {o1 = o3; o2 = os.o}

else Half {o1 = addOctet (o3, x01); o2 = os.o};

tel;
--

function mulOctet (o1, o2: Octet) returns (h: Half);

var h1, h2, h3, h4, h5, h6, h7: Half;

let
h1 = if o1.x1 = X0 then x0000

else mulOctetA (x0000, rightOctet1 (o2), leftOctet7 (o2));

h2 = if o1.x2 = X0 then h1

else mulOctetA (h1, rightOctet2 (o2), leftOctet6 (o2));

h3 = if o1.x3 = X0 then h2

else mulOctetA (h2, rightOctet3 (o2), leftOctet5 (o2));

h4 = if o1.x4 = X0 then h3

else mulOctetA (h3, rightOctet4 (o2), leftOctet4 (o2));

h5 = if o1.x5 = X0 then h4

else mulOctetA (h4, rightOctet5 (o2), leftOctet3 (o2));

h6 = if o1.x6 = X0 then h5

else mulOctetA (h5, rightOctet6 (o2), leftOctet2 (o2));

h7 = if o1.x7 = X0 then h6

else mulOctetA (h6, rightOctet7 (o2), leftOctet1 (o2));

h = if o1.x8 = X0 then h7

else mulOctetA (h7, x00, o2);

tel;
--

A.5 Definitions for Type HalfSum

We define type HalfSum that stores the result of the addition of two half words. Values
of this type are 17-bit words, made up using the constructor buildHalfSum that gathers
one bit for the carry and a half word for the sum. The five principal non-constructors for
this type are eqHalfSum (which tests equality), addHalfSum (which adds two half words
and returns both a carry bit and a 16-bit sum), addHalf (which is derived from the former
one by dropping the carry bit), addHalfOctet and addHalfOctets (which are similar to the
former one but take byte arguments that are converted to half words before summation);
the other non-constructors are auxiliary functions implementing a 16-bit adder built using
two 8-bit adders.

type HalfSum = struct {x: Bit; h: Half};

--

126 Chapter A. Formal Model of the MAA in Lustre

function addHalfSum (h1, h2: Half) returns (hs: HalfSum)

var os, os1: OctetSum;

let
os = addOctetSum (h1.o2, h2.o2, X0);

os1 = addOctetSum (h1.o1, h2.o1, os.x);

hs = HalfSum {x = os1.x; h = Half {o1 = os1.o; o2 = os.o}};

tel;
--

function dropCarryHalfSum (hs: HalfSum) returns (h: Half);

let
h = hs.h;

tel;
--

function addHalf (h1, h2: Half) returns (h: Half);

let
h = dropCarryHalfSum (addHalfSum (h1, h2));

tel;
--

function addHalfOctet (o1: Octet; h1: Half) returns (h: Half);

let
h = addHalf (Half {o1 = x00; o2 = o1}, h1);

tel;
--

function addHalfOctets (o1, o2: Octet) returns (h: Half);

let
h = addHalf (Half {o1 = x00; o2 = o1}, Half {o1 = x00; o2 = o2});

tel;
--

A.6 Definitions for Type Block

We define 32-bit words (named “blocks” according to the MAA terminology) using a
constructor buildBlock that takes four bytes and returns a block. The seven principal
non-constructors for this type are eqBlock (which tests equality), andBlock, orBlock, and
xorBlock (which implement bitwise logical operations on blocks), HalfU and HalfL (which
decompose a block into two half words), and mulHalf (which takes two half words and
computes their 32-bit product); the other non-constructors are auxiliary functions imple-
menting a 16-bit multiplier built using four 8-bit multipliers, as well as all block constants
needed to formally describe the MAA and its test vectors.

type Block = struct {o1: Octet; o2: Octet; o3: Octet; o4: Octet};

--

A.6. Definitions for Type Block 127

const x00000000 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x00};

const x00000001 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x01};

const x00000002 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x02};

const x00000003 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x03};

const x00000004 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x04};

const x00000005 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x05};

const x00000006 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x06};

const x00000007 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x07};

const x00000008 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x08};

const x00000009 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x09};

const x0000000A = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x0A};

const x0000000B = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x0B};

const x0000000C = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x0C};

const x0000000D = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x0D};

const x0000000E = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x0E};

const x0000000F = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x0F};

const x00000010 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x10};

const x00000012 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x12};

const x00000014 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x14};

const x00000016 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x16};

const x00000018 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x18};

const x0000001B = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x1B};

const x0000001D = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x1D};

const x0000001E = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x1E};

const x0000001F = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x1F};

const x00000031 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x31};

const x00000036 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x36};

const x00000060 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x60};

const x00000080 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = x80};

const x000000A5 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = xA5};

const x000000B6 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = xB6};

const x000000C4 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = xC4};

const x000000D2 = Block {o1 = x00; o2 = x00; o3 = x00; o4 = xD2};

const x00000100 = Block {o1 = x00; o2 = x00; o3 = x01; o4 = x00};

const x00000129 = Block {o1 = x00; o2 = x00; o3 = x01; o4 = x29};

const x0000018C = Block {o1 = x00; o2 = x00; o3 = x01; o4 = x8C};

const x00004000 = Block {o1 = x00; o2 = x00; o3 = x40; o4 = x00};

const x00010000 = Block {o1 = x00; o2 = x01; o3 = x00; o4 = x00};

const x00020000 = Block {o1 = x00; o2 = x02; o3 = x00; o4 = x00};

const x00030000 = Block {o1 = x00; o2 = x03; o3 = x00; o4 = x00};

const x00040000 = Block {o1 = x00; o2 = x04; o3 = x00; o4 = x00};

const x00060000 = Block {o1 = x00; o2 = x06; o3 = x00; o4 = x00};

const x00804021 = Block {o1 = x00; o2 = x80; o3 = x40; o4 = x21};

const x00FF00FF = Block {o1 = x00; o2 = xFF; o3 = x00; o4 = xFF};

const x0103050B = Block {o1 = x01; o2 = x03; o3 = x05; o4 = x0B};

128 Chapter A. Formal Model of the MAA in Lustre

const x01030703 = Block {o1 = x01; o2 = x03; o3 = x07; o4 = x03};

const x01030705 = Block {o1 = x01; o2 = x03; o3 = x07; o4 = x05};

const x0103070F = Block {o1 = x01; o2 = x03; o3 = x07; o4 = x0F};

const x02040801 = Block {o1 = x02; o2 = x04; o3 = x08; o4 = x01};

const x0297AF6F = Block {o1 = x02; o2 = x97; o3 = xAF; o4 = x6F};

const x07050301 = Block {o1 = x07; o2 = x05; o3 = x03; o4 = x01};

const x07C72EAA = Block {o1 = x07; o2 = xC7; o3 = x2E; o4 = xAA};

const x0A202020 = Block {o1 = x0A; o2 = x20; o3 = x20; o4 = x20};

const x0AD67E20 = Block {o1 = x0A; o2 = xD6; o3 = x7E; o4 = x20};

const x10000000 = Block {o1 = x10; o2 = x00; o3 = x00; o4 = x00};

const x11A9D254 = Block {o1 = x11; o2 = xA9; o3 = xD2; o4 = x54};

const x11AC46B8 = Block {o1 = x11; o2 = xAC; o3 = x46; o4 = xB8};

const x1277A6D4 = Block {o1 = x12; o2 = x77; o3 = xA6; o4 = xD4};

const x13647149 = Block {o1 = x13; o2 = x64; o3 = x71; o4 = x49};

const x160EE9B5 = Block {o1 = x16; o2 = x0E; o3 = xE9; o4 = xB5};

const x17065DBB = Block {o1 = x17; o2 = x06; o3 = x5D; o4 = xBB};

const x1D10D8D3 = Block {o1 = x1D; o2 = x10; o3 = xD8; o4 = xD3};

const x1D3B7760 = Block {o1 = x1D; o2 = x3B; o3 = x77; o4 = x60};

const x1D9C9655 = Block {o1 = x1D; o2 = x9C; o3 = x96; o4 = x55};

const x1F3F7FFF = Block {o1 = x1F; o2 = x3F; o3 = x7F; o4 = xFF};

const x21D869BA = Block {o1 = x21; o2 = xD8; o3 = x69; o4 = xBA};

const x24B66FB5 = Block {o1 = x24; o2 = xB6; o3 = x6F; o4 = xB5};

const x270EEDAF = Block {o1 = x27; o2 = x0E; o3 = xED; o4 = xAF};

const x277B4B25 = Block {o1 = x27; o2 = x7B; o3 = x4B; o4 = x25};

const x2829040B = Block {o1 = x28; o2 = x29; o3 = x04; o4 = x0B};

const x288FC786 = Block {o1 = x28; o2 = x8F; o3 = xC7; o4 = x86};

const x28EAD8B3 = Block {o1 = x28; o2 = xEA; o3 = xD8; o4 = xB3};

const x29907CD8 = Block {o1 = x29; o2 = x90; o3 = x7C; o4 = xD8};

const x29C1485F = Block {o1 = x29; o2 = xC1; o3 = x48; o4 = x5F};

const x29EEE96B = Block {o1 = x29; o2 = xEE; o3 = xE9; o4 = x6B};

const x2A6091AE = Block {o1 = x2A; o2 = x60; o3 = x91; o4 = xAE};

const x2BF8499A = Block {o1 = x2B; o2 = xF8; o3 = x49; o4 = x9A};

const x2E80AC30 = Block {o1 = x2E; o2 = x80; o3 = xAC; o4 = x30};

const x2FD76FFB = Block {o1 = x2F; o2 = xD7; o3 = x6F; o4 = xFB};

const x30261492 = Block {o1 = x30; o2 = x26; o3 = x14; o4 = x92};

const x303FF4AA = Block {o1 = x30; o2 = x3F; o3 = xF4; o4 = xAA};

const x33D5A466 = Block {o1 = x33; o2 = xD5; o3 = xA4; o4 = x66};

const x344925FC = Block {o1 = x34; o2 = x49; o3 = x25; o4 = xFC};

const x34ACF886 = Block {o1 = x34; o2 = xAC; o3 = xF8; o4 = x86};

const x3CD54DEB = Block {o1 = x3C; o2 = xD5; o3 = x4D; o4 = xEB};

const x3CF3A7D2 = Block {o1 = x3C; o2 = xF3; o3 = xA7; o4 = xD2};

const x3DD81AC6 = Block {o1 = x3D; o2 = xD8; o3 = x1A; o4 = xC6};

const x3F6F7248 = Block {o1 = x3F; o2 = x6F; o3 = x72; o4 = x48};

const x48B204D6 = Block {o1 = x48; o2 = xB2; o3 = x04; o4 = xD6};

const x4A645A01 = Block {o1 = x4A; o2 = x64; o3 = x5A; o4 = x01};

A.6. Definitions for Type Block 129

const x4C49AAE0 = Block {o1 = x4C; o2 = x49; o3 = xAA; o4 = xE0};

const x4CE933E1 = Block {o1 = x4C; o2 = xE9; o3 = x33; o4 = xE1};

const x4D53901A = Block {o1 = x4D; o2 = x53; o3 = x90; o4 = x1A};

const x4DA124A1 = Block {o1 = x4D; o2 = xA1; o3 = x24; o4 = xA1};

const x4F998E01 = Block {o1 = x4F; o2 = x99; o3 = x8E; o4 = x01};

const x50DEC930 = Block {o1 = x50; o2 = xDE; o3 = xC9; o4 = x30};

const x51AF3C1D = Block {o1 = x51; o2 = xAF; o3 = x3C; o4 = x1D};

const x51EDE9C7 = Block {o1 = x51; o2 = xED; o3 = xE9; o4 = xC7};

const x550D91CE = Block {o1 = x55; o2 = x0D; o3 = x91; o4 = xCE};

const x55555555 = Block {o1 = x55; o2 = x55; o3 = x55; o4 = x55};

const x55DD063F = Block {o1 = x55; o2 = xDD; o3 = x06; o4 = x3F};

const x5834A585 = Block {o1 = x58; o2 = x34; o3 = xA5; o4 = x85};

const x5A35D667 = Block {o1 = x5A; o2 = x35; o3 = xD6; o4 = x67};

const x5BC02502 = Block {o1 = x5B; o2 = xC0; o3 = x25; o4 = x02};

const x5CCA3239 = Block {o1 = x5C; o2 = xCA; o3 = x32; o4 = x39};

const x5EBA06C2 = Block {o1 = x5E; o2 = xBA; o3 = x06; o4 = xC2};

const xF0239DD5 = Block {o1 = xF0; o2 = x23; o3 = x9D; o4 = xD5};

const x5F38EEF1 = Block {o1 = x5F; o2 = x38; o3 = xEE; o4 = xF1};

const x613F8E2A = Block {o1 = x61; o2 = x3F; o3 = x8E; o4 = x2A};

const x63C70DBA = Block {o1 = x63; o2 = xC7; o3 = x0D; o4 = xBA};

const x6AD6E8A4 = Block {o1 = x6A; o2 = xD6; o3 = xE8; o4 = xA4};

const x6AEBACF8 = Block {o1 = x6A; o2 = xEB; o3 = xAC; o4 = xF8};

const x6D67E884 = Block {o1 = x6D; o2 = x67; o3 = xE8; o4 = x84};

const x7050EC5E = Block {o1 = x70; o2 = x50; o3 = xEC; o4 = x5E};

const x717153D5 = Block {o1 = x71; o2 = x71; o3 = x53; o4 = xD5};

const x7201F4DC = Block {o1 = x72; o2 = x01; o3 = xF4; o4 = xDC};

const x7397C9AE = Block {o1 = x73; o2 = x97; o3 = xC9; o4 = xAE};

const x74B39176 = Block {o1 = x74; o2 = xB3; o3 = x91; o4 = x76};

const x7783C51D = Block {o1 = x77; o2 = x83; o3 = xC5; o4 = x1D};

const x7792F9D4 = Block {o1 = x77; o2 = x92; o3 = xF9; o4 = xD4};

const x7BC180AB = Block {o1 = x7B; o2 = xC1; o3 = x80; o4 = xAB};

const x7DB2D9F4 = Block {o1 = x7D; o2 = xB2; o3 = xD9; o4 = xF4};

const x7DFEFBFF = Block {o1 = x7D; o2 = xFE; o3 = xFB; o4 = xFF};

const x7F76A3B0 = Block {o1 = x7F; o2 = x76; o3 = xA3; o4 = xB0};

const x7F839576 = Block {o1 = x7F; o2 = x83; o3 = x95; o4 = x76};

const x7FFFFFF0 = Block {o1 = x7F; o2 = xFF; o3 = xFF; o4 = xF0};

const x7FFFFFF1 = Block {o1 = x7F; o2 = xFF; o3 = xFF; o4 = xF1};

const x7FFFFFFC = Block {o1 = x7F; o2 = xFF; o3 = xFF; o4 = xFC};

const x7FFFFFFD = Block {o1 = x7F; o2 = xFF; o3 = xFF; o4 = xFD};

const x80000000 = Block {o1 = x80; o2 = x00; o3 = x00; o4 = x00};

const x80000002 = Block {o1 = x80; o2 = x00; o3 = x00; o4 = x02};

const x800000C2 = Block {o1 = x80; o2 = x00; o3 = x00; o4 = xC2};

const x80018000 = Block {o1 = x80; o2 = x01; o3 = x80; o4 = x00};

const x80018001 = Block {o1 = x80; o2 = x01; o3 = x80; o4 = x01};

const x80397302 = Block {o1 = x80; o2 = x39; o3 = x73; o4 = x02};

130 Chapter A. Formal Model of the MAA in Lustre

const x81D10CA3 = Block {o1 = x81; o2 = xD1; o3 = x0C; o4 = xA3};

const x89D635D7 = Block {o1 = x89; o2 = xD6; o3 = x35; o4 = xD7};

const x8CE37709 = Block {o1 = x8C; o2 = xE3; o3 = x77; o4 = x09};

const x8DC8BBDE = Block {o1 = x8D; o2 = xC8; o3 = xBB; o4 = xDE};

const x9115A558 = Block {o1 = x91; o2 = x15; o3 = xA5; o4 = x58};

const x91896CFA = Block {o1 = x91; o2 = x89; o3 = x6C; o4 = xFA};

const x9372CDC6 = Block {o1 = x93; o2 = x72; o3 = xCD; o4 = xC6};

const x98D1CC75 = Block {o1 = x98; o2 = xD1; o3 = xCC; o4 = x75};

const x9D15C437 = Block {o1 = x9D; o2 = x15; o3 = xC4; o4 = x37};

const x9DB15CF6 = Block {o1 = x9D; o2 = xB1; o3 = x5C; o4 = xF6};

const x9E2E7B36 = Block {o1 = x9E; o2 = x2E; o3 = x7B; o4 = x36};

const xA018C83B = Block {o1 = xA0; o2 = x18; o3 = xC8; o4 = x3B};

const xA0B87B77 = Block {o1 = xA0; o2 = xB8; o3 = x7B; o4 = x77};

const xA44AAAC0 = Block {o1 = xA4; o2 = x4A; o3 = xAA; o4 = xC0};

const xA511987A = Block {o1 = xA5; o2 = x11; o3 = x98; o4 = x7A};

const xA70FC148 = Block {o1 = xA7; o2 = x0F; o3 = xC1; o4 = x48};

const xA93BD410 = Block {o1 = xA9; o2 = x3B; o3 = xD4; o4 = x10};

const xAAAAAAAA = Block {o1 = xAA; o2 = xAA; o3 = xAA; o4 = xAA};

const xAB00FFCD = Block {o1 = xAB; o2 = x00; o3 = xFF; o4 = xCD};

const xAB01FCCD = Block {o1 = xAB; o2 = x01; o3 = xFC; o4 = xCD};

const xAB6EED4A = Block {o1 = xAB; o2 = x6E; o3 = xED; o4 = x4A};

const xABEEED6B = Block {o1 = xAB; o2 = xEE; o3 = xED; o4 = x6B};

const xACBC13DD = Block {o1 = xAC; o2 = xBC; o3 = x13; o4 = xDD};

const xB1CC1CC5 = Block {o1 = xB1; o2 = xCC; o3 = x1C; o4 = xC5};

const xB8142629 = Block {o1 = xB8; o2 = x14; o3 = x26; o4 = x29};

const xB99A62DE = Block {o1 = xB9; o2 = x9A; o3 = x62; o4 = xDE};

const xBA92DB12 = Block {o1 = xBA; o2 = x92; o3 = xDB; o4 = x12};

const xBBA57835 = Block {o1 = xBB; o2 = xA5; o3 = x78; o4 = x35};

const xBE9F0917 = Block {o1 = xBE; o2 = x9F; o3 = x09; o4 = x17};

const xBF2D7D85 = Block {o1 = xBF; o2 = x2D; o3 = x7D; o4 = x85};

const xBFEF7FDF = Block {o1 = xBF; o2 = xEF; o3 = x7F; o4 = xDF};

const xC1ED90DD = Block {o1 = xC1; o2 = xED; o3 = x90; o4 = xDD};

const xC21A1846 = Block {o1 = xC2; o2 = x1A; o3 = x18; o4 = x46};

const xC4EB1AEB = Block {o1 = xC4; o2 = xEB; o3 = x1A; o4 = xEB};

const xC6B1317E = Block {o1 = xC6; o2 = xB1; o3 = x31; o4 = x7E};

const xCBC865BA = Block {o1 = xCB; o2 = xC8; o3 = x65; o4 = xBA};

const xCD959B46 = Block {o1 = xCD; o2 = x95; o3 = x9B; o4 = x46};

const xD0482465 = Block {o1 = xD0; o2 = x48; o3 = x24; o4 = x65};

const xD636250D = Block {o1 = xD6; o2 = x36; o3 = x25; o4 = x0D};

const xD7843FDC = Block {o1 = xD7; o2 = x84; o3 = x3F; o4 = xDC};

const xD78634BC = Block {o1 = xD7; o2 = x86; o3 = x34; o4 = xBC};

const xD8804CA5 = Block {o1 = xD8; o2 = x80; o3 = x4C; o4 = xA5};

const xDB79FBDC = Block {o1 = xDB; o2 = x79; o3 = xFB; o4 = xDC};

const xDB9102B0 = Block {o1 = xDB; o2 = x91; o3 = x02; o4 = xB0};

const xE0C08000 = Block {o1 = xE0; o2 = xC0; o3 = x80; o4 = x00};

A.6. Definitions for Type Block 131

const xE6A12F07 = Block {o1 = xE6; o2 = xA1; o3 = x2F; o4 = x07};

const xEB35B97F = Block {o1 = xEB; o2 = x35; o3 = xB9; o4 = x7F};

const xF14D6E28 = Block {o1 = xF1; o2 = x4D; o3 = x6E; o4 = x28};

const xF2EF3501 = Block {o1 = xF2; o2 = xEF; o3 = x35; o4 = x01};

const xF6A09667 = Block {o1 = xF6; o2 = xA0; o3 = x96; o4 = x67};

const xFD297DA4 = Block {o1 = xFD; o2 = x29; o3 = x7D; o4 = xA4};

const xFDC1A8BA = Block {o1 = xFD; o2 = xC1; o3 = xA8; o4 = xBA};

const xFE4E5BDD = Block {o1 = xFE; o2 = x4E; o3 = x5B; o4 = xDD};

const xFECCAA6E = Block {o1 = xFE; o2 = xCC; o3 = xAA; o4 = x6E};

const xFEFC07F0 = Block {o1 = xFE; o2 = xFC; o3 = x07; o4 = xF0};

const xFF2D7DA5 = Block {o1 = xFF; o2 = x2D; o3 = x7D; o4 = xA5};

const xFFEF0001 = Block {o1 = xFF; o2 = xEF; o3 = x00; o4 = x01};

const xFFFF00FF = Block {o1 = xFF; o2 = xFF; o3 = x00; o4 = xFF};

const xFFFFFF2D = Block {o1 = xFF; o2 = xFF; o3 = xFF; o4 = x2D};

const xFFFFFF3A = Block {o1 = xFF; o2 = xFF; o3 = xFF; o4 = x3A};

const xFFFFFFF0 = Block {o1 = xFF; o2 = xFF; o3 = xFF; o4 = xF0};

const xFFFFFFF1 = Block {o1 = xFF; o2 = xFF; o3 = xFF; o4 = xF1};

const xFFFFFFF4 = Block {o1 = xFF; o2 = xFF; o3 = xFF; o4 = xF4};

const xFFFFFFF5 = Block {o1 = xFF; o2 = xFF; o3 = xFF; o4 = xF5};

const xFFFFFFF7 = Block {o1 = xFF; o2 = xFF; o3 = xFF; o4 = xF7};

const xFFFFFFF9 = Block {o1 = xFF; o2 = xFF; o3 = xFF; o4 = xF9};

const xFFFFFFFA = Block {o1 = xFF; o2 = xFF; o3 = xFF; o4 = xFA};

const xFFFFFFFB = Block {o1 = xFF; o2 = xFF; o3 = xFF; o4 = xFB};

const xFFFFFFFC = Block {o1 = xFF; o2 = xFF; o3 = xFF; o4 = xFC};

const xFFFFFFFD = Block {o1 = xFF; o2 = xFF; o3 = xFF; o4 = xFD};

const xFFFFFFFE = Block {o1 = xFF; o2 = xFF; o3 = xFF; o4 = xFE};

const xFFFFFFFF = Block {o1 = xFF; o2 = xFF; o3 = xFF; o4 = xFF};

--

function andBlock (w1, w2: Block) returns (w: Block);

let
w = Block {o1 = andOctet (w1.o1, w2.o1); o2 = andOctet (w1.o2, w2.o2);

o3 = andOctet (w1.o3, w2.o3); o4 = andOctet (w1.o4, w2.o4)};

tel;
--

function orBlock (w1, w2: Block) returns (w: Block);

let
w = Block {o1 = orOctet (w1.o1, w2.o1); o2 = orOctet (w1.o2, w2.o2);

o3 = orOctet (w1.o3, w2.o3); o4 = orOctet (w1.o4, w2.o4)};

tel;
--

function xorBlock (w1, w2: Block) returns (w: Block);

let
w = Block {o1 = xorOctet (w1.o1, w2.o1); o2 = xorOctet (w1.o2, w2.o2);

o3 = xorOctet (w1.o3, w2.o3); o4 = xorOctet (w1.o4, w2.o4)};

tel;

132 Chapter A. Formal Model of the MAA in Lustre

--

function HalfU (w: Block) returns (o1o2: Half);

let
o1o2 = Half {o1 = w.o1; o2 = w.o2};

tel;
--

function HalfL (w: Block) returns (o3o4: Half);

let
o3o4 = Half {o1 = w.o3; o2 = w.o4};

tel;
--

function mulHalf (h1, h2: Half) returns (w: Block);

var h3, h4, h5, h6, h7, h8, h9: Half;

let
h3 = mulOctet (h1.o1, h2.o1);

h4 = mulOctet (h1.o1, h2.o2);

h5 = mulOctet (h1.o2, h2.o1);

h6 = mulOctet (h1.o2, h2.o2);

h7 = addHalfOctet (h4.o2, addHalfOctets (h5.o2, h6.o1));

h8 = addHalfOctet (h7.o1, addHalfOctet (h3.o2,

addHalfOctets (h4.o1, h5.o1)));

h9 = addHalfOctets (h8.o1, h3.o1);

w = Block {o1 = h9.o2; o2 = h8.o2; o3 = h7.o2; o4 = h6.o2};

tel;
--

A.7 Definitions for Type BlockSum

We define type BlockSum that stores the result of the addition of two blocks. Values of
this type are 33-bit words, made up using the constructor buildBlockSum that gathers
one bit for the carry and a block for the sum. The five principal non-constructors for this
type are eqBlockSum (which tests equality), addBlockSum (which adds two blocks and
returns both a carry bit and a 32-bit sum), addBlock (which is derived from the former
one by dropping the carry bit), addBlockHalf and addBlockHalves (which are similar to the
former one but take half-word arguments that are converted to blocks before summation);
the other non-constructors are auxiliary functions implementing a 32-bit adder built using
four 8-bit adders.

type OctetSum = struct {x: Bit; o: Octet};

type BlockSum = struct {x: Bit; b: Block};

--

function addBlockSum (w1, w2 : Block) returns (ws: BlockSum);

var os, os1, os2, os3: OctetSum;

A.8. Definitions for Type Pair 133

let
os = addOctetSum (w1.o4, w2.o4, X0);

os1 = addOctetSum (w1.o3, w2.o3, os.x);

os2 = addOctetSum (w1.o2, w2.o2, os1.x);

os3 = addOctetSum (w1.o1, w2.o1, os2.x);

ws = BlockSum {x = os3.x;

w = Block {o1 = os3.o; o2 = os2.o;

o3 = os1.o; o4 = os.o}};

tel;
--

function dropCarryBlockSum (ws: BlockSum) returns (w: Block);

let
w = ws.w;

tel;
--

function addBlock (w1, w2 : Block) returns (w: Block);

let
w = dropCarryBlockSum (addBlockSum (w1, w2));

tel;
--

function addBlockHalf (h1: Half; w1: Block) returns (w: Block);

let
w = addBlock (Block {o1 = x00; o2 = x00; o3 = h1.o1; o4 = h1.o2}, w1);

tel;
--

function addBlockHalves (h1, h2: Half) returns (w: Block);

let
w = addBlock (Block {o1 = x00; o2 = x00; o3 = h1.o1; o4 = h1.o2},

Block {o1 = x00; o2 = x00; o3 = h2.o1; o4 = h2.o2});

tel;
--

A.8 Definitions for Type Pair

We define 64-bit words (named “pair” according to the MAA terminology) using a con-
structor buildPair that takes two blocks and returns a pair. The main function for this type
is mulBlock (which takes two blocks and computes their 64-bit product); using auxiliary
functions presented in Section A.6 implementing a 32-bit multiplier built using four 16-bit
multipliers defined in Section A.4.

type Pair = struct {w1: Block; w2: Block};

--

134 Chapter A. Formal Model of the MAA in Lustre

function mulBlock (w1, w2: Block) returns (ww: Pair);

var w11, w12, w21, w22, w3, w4, w5: Block;

let
w11 = mulHalf (HalfU (w1), HalfU (w2));

w12 = mulHalf (HalfU (w1), HalfL (w2));

w21 = mulHalf (HalfL (w1), HalfU (w2));

w22 = mulHalf (HalfL (w1), HalfL (w2));

w3 = addBlockHalf (HalfL (w12),

addBlockHalves (HalfL (w21), HalfU (w22)));

w4 = addBlockHalf (HalfU (w3), addBlockHalf (HalfL (w11),

addBlockHalves (HalfU (w12), HalfU(w21))));

w5 = addBlockHalves (HalfU (w4), HalfU (w11));

ww = Pair {w1 = Block {o1 = w5.o3; o2 = w5.o4;

o3 = w4.o3; o4 = w4.o4};

w2 = Block {o1 = w3.o3; o2 = w3.o4;

o3 = w22.o3; o4 = w22.o4}};

tel;
--

A.9 Definitions for Type Key

We define a type Key that is intended to represent the 64-bit keys (J, K) used by the MAA.
This type has a constructor buildKey that takes two blocks and returns a key. In [MvOV96],
keys are represented using the type Pair, but we prefer introducing a dedicated type to
clearly distinguish between keys and, e.g., results of the multiplication of two blocks.

type Key = struct {K: Block; J: Block};

A.10 Definitions (1) of MAA-specific Cryptographic

Functions

We define a first set of functions to be used for MAA computations, most of which were
present in [DC88] or have been later introduced in [MvOV96].

function CYC (w1: Block) returns (w: Block);

let
w = Block {o1 = Octet {x1 = w1.o1.x2; x2 = w1.o1.x3; x3 = w1.o1.x4;

x4 = w1.o1.x5; x5 = w1.o1.x6; x6 = w1.o1.x7;

x7 = w1.o1.x8; x8 = w1.o2.x1};

o2 = Octet {x1 = w1.o2.x2; x2 = w1.o2.x3; x3 = w1.o2.x4;

A.10. Definitions (1) of MAA-specific Cryptographic Functions 135

x4 = w1.o2.x5; x5 = w1.o2.x6; x6 = w1.o2.x7;

x7 = w1.o2.x8; x8 = w1.o3.x1};

o3 = Octet {x1 = w1.o3.x2; x2 = w1.o3.x3; x3 = w1.o3.x4;

x4 = w1.o3.x5; x5 = w1.o3.x6; x6 = w1.o3.x7;

x7 = w1.o3.x8; x8 = w1.o4.x1};

o4 = Octet {x1 = w1.o4.x2; x2 = w1.o4.x3; x3 = w1.o4.x4;

x4 = w1.o4.x5; x5 = w1.o4.x6; x6 = w1.o4.x7;

x7 = w1.o4.x8; x8 = w1.o1.x1};};

tel;
--

function FIX1 (w1: Block) returns (w: Block);

let
w = andBlock (orBlock (w1, x02040801), xBFEF7FDF);

tel;
--

function FIX2 (w1: Block) returns (w: Block);

let
w = andBlock (orBlock (w1, x00804021), x7DFEFBFF);

tel;
--

function needAjust (o: Octet) returns (b: bool);

let
b = ((o = x00) or (o =xFF));

tel;
--

function adjustCode (o: Octet) returns (x: Bit);

let
x = if needAjust (o) = true then X1 else X0;

tel;
--

function adjust (o1, o2: Octet) returns (o: Octet);

let
o = if needAjust (o1) = true then xorOctet (o1, o2) else o1;

tel;
--

function PAT(w1, w2: Block) returns (o: Octet);

let
o = Octet {x1 = adjustCode (w1.o1); x2 = adjustCode (w1.o2);

x3 = adjustCode (w1.o3); x4 = adjustCode (w1.o4);

x5 = adjustCode (w2.o1); x6 = adjustCode (w2.o2);

x7 = adjustCode (w2.o3); x8 = adjustCode (w2.o4)};

tel;
--

function BYT (w1, w2: Block) returns (w, wp: Block);

var opat: Octet;

136 Chapter A. Formal Model of the MAA in Lustre

let
opat = PAT (w1, w2);

w = Block {o1 = adjust (w1.o1, rightOctet7 (opat));

o2 = adjust (w1.o2, rightOctet6 (opat));

o3 = adjust (w1.o3, rightOctet5 (opat));

o4 = adjust (w1.o4, rightOctet4 (opat))};

wp = Block {o1 = adjust (w2.o1, rightOctet3 (opat));

o2 = adjust (w2.o2, rightOctet2 (opat));

o3 = adjust (w2.o3, rightOctet1 (opat));

o4 = adjust (w2.o4, opat)};

tel;
--

function ADDC (w1, w2: Block) returns (ww: Pair);

var ws: BlockSum;

let
ws = addBlockSum (w1, w2);

ww = if ws.x = X0 then
Pair {w1 = x00000000; w2 = ws.w}

else Pair {w1 = x00000001; w2 = ws.w};

tel;
--

A.11 Definitions (2) of MAA-specific Cryptographic

Functions

We define a second set of functions, namely the “multiplicative” functions used for MAA
computations. The three principal operations are MUL1, MUL2, and MUL2A.

function MUL1 (w1, w2 : Block) returns (w: Block);

var w1w2, w3w4: Pair;

let
w1w2 = mulBlock (w1, w2);

w3w4 = ADDC (w1w2.w1, w1w2.w2);

w = addBlock (w3w4.w2, w3w4.w1);

tel;
--

function MUL2 (w1, w2 : Block) returns (w: Block);

var w1w2, w3w4, w5w6: Pair; w3: Block;

let
w1w2 = mulBlock (w1, w2);

w3w4 = ADDC (w1w2.w1, w1w2.w1);

w3 = addBlock (w3w4.w2, addBlock (w3w4.w1, w3w4.w1));

w5w6 = ADDC (w3, w1w2.w2);

A.12. Definitions (3) of MAA-specific Cryptographic Functions 137

w = addBlock (w5w6.w2, addBlock (w5w6.w1, w5w6.w1));

tel;
--

function MUL2A (w1, w2 : Block) returns (w: Block);

var w1w2, w3w4: Pair; w3: Block;

let
w1w2 = mulBlock (w1, w2);

w3 = addBlock (w1w2.w1, w1w2.w1);

w3w4 = ADDC (w3, w1w2.w2);

w = addBlock (w3w4.w2, addBlock (w3w4.w1, w3w4.w1));

tel;
--

A.12 Definitions (3) of MAA-specific Cryptographic

Functions

We define a third set of auxilary functions used for MAA computations, and the higher-
level functions that implement the MAA algorithm, namely the prelude, the inner loop,
and the coda; the two principal functions are MAA (which computes the signature of a
nonsegmented message) and MAC (which splits a message into 1024-byte segments and
computes the overall signature of this message by iterating on each segment, the 4-byte
signature of each segment being prepended to the bytes of the next segment).

function squareHalf (h: Half) returns (w: Block);

let
w = mulHalf (h, h);

tel;
--

function Q (o: Octet) returns (w: Block);

let
w = squareHalf (addHalf (Half {o1 = x00; o2 = o}, x0001));

tel;
--

function preludeJ (J1 : Block) returns (J12, J14, J16, J18: Block;

J22, J24, J26, J28: Block);

let
J12 = MUL1 (J1, J1);

J14 = MUL1 (J12, J12);

J16 = MUL1 (J12, J14);

J18 = MUL1 (J12, J16);

J22 = MUL2 (J1, J1);

J24 = MUL2 (J22, J22);

138 Chapter A. Formal Model of the MAA in Lustre

J26 = MUL2 (J22, J24);

J28 = MUL2 (J22, J26);

tel;
--

function preludeK (K1: Block) returns (K12, K14, K15, K17, K19: Block;

K22, K24, K25, K27, K29: Block);

let
K12 = MUL1 (K1, K1);

K14 = MUL1 (K12, K12);

K15 = MUL1 (K1, K14);

K17 = MUL1 (K12, K15);

K19 = MUL1 (K12, K17);

K22 = MUL2 (K1, K1);

K24 = MUL2 (K22, K22);

K25 = MUL2 (K1, K24);

K27 = MUL2 (K22, K25);

K29 = MUL2 (K22, K27);

tel;
--

function preludeHJ (J14, J16, J18, J24, J26, J28: Block)

returns (H4, H6, H8: Block);

let
H4 = xorBlock (J14, J24);

H6 = xorBlock (J16, J26);

H8 = xorBlock (J18, J28);

tel;
--

function preludeHK (K15, K17, K19, K25, K27, K29: Block; P : Octet)

returns (H0, H5, H7, H9: Block);

let
H0 = xorBlock (K15, K25);

H5 = MUL2 (H0, Q (P));

H7 = xorBlock (K17, K27);

H9 = xorBlock (K19, K29);

tel;
--

function prelude (J, K: Block) returns (X, Y, V, W, S, T: Block);

var P: Octet; J1, J12, J14, J16, J18, J22, J24, J26, J28: Block;

K1, K12, K14, K15, K17, K22, K24, K25, K27, K19, K29: Block;

H4, H0, H5, H6, H7, H8, H9: Block;

let
J1, K1 = BYT (J, K);

P = PAT (J, K);

J12, J14, J16, J18, J22, J24, J26, J28 = preludeJ (J1);

K12, K14, K15, K17, K19, K22, K24, K25, K27, K29 = preludeK (K1);

A.12. Definitions (3) of MAA-specific Cryptographic Functions 139

H4, H6, H8 = preludeHJ (J14, J16, J18, J24, J26, J28);

H0, H5, H7, H9 = preludeHK (K15, K17, K19, K25, K27, K29, P);

X, Y = BYT (H4, H5);

V, W = BYT (H6, H7);

S, T = BYT (H8, H9);

tel;
--

function mainLoop (X, Y, V, W, B: Block) returns (Xp, Yp, Vp: Block);

var E: Block;

let
Vp = CYC (V);

E = xorBlock (Vp,W);

Xp = MUL1 (xorBlock (X, B), FIX1 (addBlock (xorBlock (Y, B), E)));

Yp = MUL2A (xorBlock (Y, B), FIX2 (addBlock (xorBlock (X, B), E)));

tel;
--

function mainLoop2 (X0, Y0, V0, W, Z, B: Block) returns (Xp, Yp, Vp: Block);

var X, V, Y: Block;

let
X, Y, V = mainLoop (X0, Y0, V0, W, Z);

Xp, Yp, Vp = mainLoop (X, Y, V, W, B);

tel;
--

function coda (X, Y, V, W, S, T: Block) returns (Z: Block);

var X1, X2, Y1, Y2, V1, V2: Block;

let
X1, Y1, V1 = mainLoop (X, Y, V, W, S);

X2, Y2, V2 = mainLoop (X1, Y1, V1, W, T);

Z = xorBlock (X2,Y2);

tel;
--

node MAC (KJ: Key; Mn: Block)

returns (X, Y, V, W, S, T, Z: Block);

var X0, Y0, V0: Block;

init: bool; n: int;

let
init = true −> false;

n = if init then 1

else if pre n = 256 then 0

else pre n + 1;

-- initialisations

X0, Y0, V0, W, S, T = prelude (KJ.J, KJ.K);

-- mainloops

X, Y, V = if init then
mainLoop (X0, Y0, V0, W, Mn)

140 Chapter A. Formal Model of the MAA in Lustre

else if n = 0 then
-- mode of operations

mainLoop2 (X0, Y0, V0, W, pre Z, Mn)

else mainLoop (pre X, pre Y, pre V, W, Mn);

-- coda

Z = coda (X, Y, V, W, S, T);

tel;

A.13 Test Vectors (1) for Checking MAA Computa-

tions

We define a first set of test vectors for the MAA. The following expressions implement the
checks listed in Tables 1, 2, and 3 of [DC88] and should all evaluate to true if the MAA
functions are correctly implemented.

function check_Table_1_2 () returns (res: bool);

var U, L, U’, L’, U’’, L’’: Block;

let

-- test vectors for function mul1 - cf. Table 1 of [ISO 8731-2:1992]

assert (mul1 (x0000000F, x0000000E) = x000000D2);

assert (mul1 (xFFFFFFF0, x0000000E) = xFFFFFF2D);

assert (mul1 (xFFFFFFF0, xFFFFFFF1) = x000000D2);

-- test vectors for function mul2 - cf. Table 1 of [ISO 8731-2:1992]

assert (mul2 (x0000000F, x0000000E) = x000000D2);

assert (mul2 (xFFFFFFF0, x0000000E) = xFFFFFF3A);

assert (mul2 (xFFFFFFF0, xFFFFFFF1) = x000000B6);

-- test vectors for function mul2A - cf. Table 1 of [ISO 8731-2:1992]

assert (mul2A (x0000000F, x0000000E) = x000000D2);

assert (mul2A (xFFFFFFF0, x0000000E) = xFFFFFF3A);

assert (mul2A (x7FFFFFF0, xFFFFFFF1) = x800000C2);

assert (mul2A (xFFFFFFF0, x7FFFFFF1) = x000000C4);

-- test vectors for function BYT - cf. Table 2 of [ISO 8731-2:1992]

U, L = BYT (x00000000, x00000000);

assert (U = x0103070F);

assert (L = x1F3F7FFF);

U’, L’ = BYT (xFFFF00FF, xFFFFFFFF);

assert (U’ = xFEFC07F0);

assert (L’ = xE0C08000);

U’’, L’’ = BYT (xAB00FFCD, xFFEF0001);

A.13. Test Vectors (1) for Checking MAA Computations 141

assert (U’’ = xAB01FCCD);

assert (L’’ = xF2EF3501);

-- test vectors for function PAT - cf. Table 2 of [ISO 8731-2:1992]

assert (PAT(x00000000, x00000000) = xFF);

assert (PAT(xFFFF00FF, xFFFFFFFF) = xFF);

assert (PAT(xAB00FFCD, xFFEF0001) = x6A);

res = true;

tel;
--

function check_Table_3 () returns (res: bool);

var U, U’, U’’, L, L’, L’’: Block;

J1, J12, J14, J16, J18, J22, J24, J26, J28: Block;

K1, K12, K14, K15, K17, K19, K22, K24, K25, K27, K29: Block;

H0, H4, H5, H6, H7, H8, H9: Block; P: Octet;

let
J1 = x00000100;

K1 = x00000080;

P = x01;

J12, J14, J16, J18, J22, J24, J26, J28 = preludeJ (J1);

K12, K14, K15, K17, K19, K22, K24, K25, K27, K29 = preludeK (K1);

H4, H6, H8 = preludeHJ (J14, J16, J18, J24, J26, J28);

H0, H5, H7, H9 = preludeHK (K15, K17, K19, K25, K27, K29, P);

-- test vectors for J1i values - cf. Table 3 of [ISO 8731-2:1992]

assert (J12 = x00010000);

assert (J14 = x00000001);

assert (J16 = x00010000);

assert (J18 = x00000001);

-- test vectors for J2i values - cf. Table 3 of [ISO 8731-2:1992]

assert (J22 = x00010000);

assert (J24 = x00000002);

assert (J26 = x00020000);

assert (J28 = x00000004);

-- test vectors for Hi values - cf. Table 3 of [ISO 8731-2:1992]

assert (H4 = x00000003);

assert (H6 = x00030000);

assert (H8 = x00000005);

-- test vectors for K1i values - cf. Table 3 of [ISO 8731-2:1992]

assert (K12 = x00004000);

assert (K14 = x10000000);

142 Chapter A. Formal Model of the MAA in Lustre

assert (K15 = x00000008);

assert (K17 = x00020000);

assert (K19 = x80000000);

-- test vectors for K2i values - cf. Table 3 of [ISO 8731-2:1992]

assert (K22 = x00004000);

assert (K24 = x10000000);

assert (K25 = x00000010);

assert (K27 = x00040000);

assert (K29 = x00000002);

-- test vectors for Hi values - cf. Table 3 of [ISO 8731-2:1992]

assert (H0 = x00000018);

assert (Q (P) = x00000004);

assert (H5 = x00000060);

assert (H7 = x00060000);

assert (H9 = x80000002);

-- test vectors for function PAT - cf. Table 3 of [ISO 8731-2:1992]

assert (PAT (H4, H5) = xEE);

assert (PAT (H6, H7) = xBB);

assert (PAT (H8, H9) = xE6);

-- test vectors for function BYT - logically inferred from Table 3

U, L = BYT (H4, H5);

assert (U = x01030703);

assert (L = x1D3B7760);

U’, L’ = BYT (H6, H7);

assert (U’ = x0103050B);

assert (L’ = x17065DBB);

U’’, L’’ = BYT (H8, H9);

assert (U’’ = x01030705);

assert (L’’ = x80397302);

res = true;

tel;

A.14 Test Vectors (2) for Checking MAA Computa-

tions

We define a second set of test vectors for the MAA, based upon Table 4 of [DC88]. The
following expressions implement six groups of checks (three single-block messages and one

A.14. Test Vectors (2) for Checking MAA Computations 143

three-block message). They should all evaluate to true if the main loop of MAA (as
described page 10 of [DC88]) is correctly implemented.

function check_Table_4_m1 () returns (res: bool);

var A, B, C, D, E, F, F’, F’’, G, G’, G’’, M, V, V’: Block;

W, X0, X, X’, Y0, Y, Y’, Z: Block;

let
-- test vectors for the first single-Block message

A = x00000004; -- fake "A" constant

B = x00000001; -- fake "B" constant

C = xFFFFFFF7; -- fake "C" constant

D = xFFFFFFFB; -- fake "D" constant

V = x00000003;

W = x00000003;

X0 = x00000002;

Y0 = x00000003;

M = x00000005;

V’ = CYC (V); assert (V’ = x00000006);

E = xorBlock (V’, W); assert (E = x00000005);

X = xorBlock (X0, M); assert (X = x00000007);

Y = xorBlock (Y0, M); assert (Y = x00000006);

F = addBlock (E, Y); assert (F = x0000000B);

G = addBlock (E, X); assert (G = x0000000C);

F’ = orBlock (F, A); assert (F’ = x0000000F);

G’ = orBlock (G, B); assert (G’ = x0000000D);

F’’ = andBlock (F’, C); assert (F’’ = x00000007);

G’’ = andBlock (G’, D); assert (G’’ = x00000009);

X’ = mul1 (X, F’’); assert (X’ = x00000031);

Y’ = mul2A (Y, G’’); assert (Y’ = x00000036);

Z = xorBlock (X’, Y’); assert (Z = x00000007);

res = true;

tel;
--

function check_Table_4_m2 () returns (res: bool);

var A, B, C, D, E, F, F’, F’’, G, G’, G’’, M, V, V’: Block;

W, X0, X, X’, Y0, Y, Y’, Z: Block;

let
-- test vectors for the second single-Block message

A = x00000001; -- fake "A" constant

B = x00000004; -- fake "B" constant

C = xFFFFFFF9; -- fake "C" constant

D = xFFFFFFFC; -- fake "D" constant

V = x00000003;

W = x00000003;

144 Chapter A. Formal Model of the MAA in Lustre

X0 = xFFFFFFFD;

Y0 = xFFFFFFFC;

M = x00000001;

V’ = CYC (V); assert (V’ = x00000006);

E = xorBlock (V’, W); assert (E = x00000005);

X = xorBlock (X0, M); assert (X = xFFFFFFFC);

Y = xorBlock (Y0, M); assert (Y = xFFFFFFFD);

F = addBlock (E, Y); assert (F = x00000002);

G = addBlock (E, X); assert (G = x00000001);

F’ = orBlock (F, A); assert (F’ = x00000003);

G’ = orBlock (G, B); assert (G’ = x00000005);

F’’ = andBlock (F’, C); assert (F’’ = x00000001);

G’’ = andBlock (G’, D); assert (G’’ = x00000004);

X’ = mul1 (X, F’’); assert (X’ = xFFFFFFFC);

Y’ = mul2A (Y, G’’); assert (Y’ = xFFFFFFFA);

Z = xorBlock (X’, Y’); assert (Z = x00000006);

res = true;

tel;
--

function check_Table_4_m3 () returns (res: bool);

var A, B, C, D, E, F, F’, F’’, G, G’, G’’, M, V, V’: Block;

W, X0, X, X’, Y0, Y, Y’, Z: Block;

let
-- test vectors for the third single-Block message

A = x00000001; -- fake "A" constant

B = x00000002; -- fake "B" constant

C = xFFFFFFFE; -- fake "C" constant

D = x7FFFFFFD; -- fake "D" constant

V = x00000007;

W = x00000007;

X0 = xFFFFFFFD;

Y0 = xFFFFFFFC;

M = x00000008;

V’ = CYC (V); assert (V’ = x0000000E);

E = xorBlock (V’, W); assert (E = x00000009);

X = xorBlock (X0, M); assert (X = xFFFFFFF5);

Y = xorBlock (Y0, M); assert (Y = xFFFFFFF4);

F = addBlock (E, Y); assert (F = xFFFFFFFD);

G = addBlock (E, X); assert (G = xFFFFFFFE);

F’ = orBlock (F, A); assert (F’ = xFFFFFFFD);

G’ = orBlock (G, B); assert (G’ = xFFFFFFFE);

F’’ = andBlock (F’, C); assert (F’’ = xFFFFFFFC);

G’’ = andBlock (G’, D); assert (G’’ = x7FFFFFFC);

A.14. Test Vectors (2) for Checking MAA Computations 145

X’ = mul1 (X, F’’); assert (X’ = x0000001E);

Y’ = mul2A (Y, G’’); assert (Y’ = x0000001E);

Z = xorBlock (X’, Y’); assert (Z = x00000000);

res = true;

tel;
--

function check_3_messages_m1 () returns (res: bool);

var A, B, C, D, E, F, F’, F’’, G, G’, G’’, M, V, V’: Block;

W, X0, X, X’, Y0, Y, Y’, Z: Block;

let
-- test vectors for the three-Block message: first Block

A = x00000002; -- fake "A" constant

B = x00000001; -- fake "B" constant

C = xFFFFFFFB; -- fake "C" constant

D = xFFFFFFFB; -- fake "D" constant

V = x00000001;

W = x00000001;

X0 = x00000001;

Y0 = x00000002;

M = x00000000;

V’ = CYC (V); assert (V’ = x00000002);

E = xorBlock (V’, W); assert (E = x00000003);

X = xorBlock (X0, M); assert (X = x00000001);

Y = xorBlock (Y0, M); assert (Y = x00000002);

F = addBlock (E, Y); assert (F = x00000005);

G = addBlock (E, X); assert (G = x00000004);

F’ = orBlock (F, A); assert (F’ = x00000007);

G’ = orBlock (G, B); assert (G’ = x00000005);

F’’ = andBlock (F’, C); assert (F’’ = x00000003);

G’’ = andBlock (G’, D); assert (G’’ = x00000001);

X’ = mul1 (X, F’’); assert (X’ = x00000003);

Y’ = mul2A (Y, G’’); assert (Y’ = x00000002);

Z = xorBlock (X’, Y’); assert (Z = x00000001);

res = true;

tel;
--

function check_3_messages_m2 () returns (res: bool);

var A, B, C, D, E, F, F’, F’’, G, G’, G’’, M, V, V’: Block;

W, X0, X, X’, Y0, Y, Y’, Z: Block;

let
-- test vectors for the three-Block message: second Block

146 Chapter A. Formal Model of the MAA in Lustre

A = x00000002; -- fake "A" constant

B = x00000001; -- fake "B" constant

C = xFFFFFFFB; -- fake "C" constant

D = xFFFFFFFB; -- fake "D" constant

V = x00000002;

W = x00000001;

X0 = x00000003;

Y0 = x00000002;

M = x00000001;

V’ = CYC (V); assert (V’ = x00000004);

E = xorBlock (V’, W); assert (E = x00000005);

X = xorBlock (X0, M); assert (X = x00000002);

Y = xorBlock (Y0, M); assert (Y = x00000003);

F = addBlock (E, Y); assert (F = x00000008);

G = addBlock (E, X); assert (G = x00000007);

F’ = orBlock (F, A); assert (F’ = x0000000A);

G’ = orBlock (G, B); assert (G’ = x00000007);

F’’ = andBlock (F’, C); assert (F’’ = x0000000A);

G’’ = andBlock (G’, D); assert (G’’ = x00000003);

X’ = mul1 (X, F’’); assert (X’ = x00000014);

Y’ = mul2A (Y, G’’); assert (Y’ = x00000009);

Z = xorBlock (X’, Y’); assert (Z = x0000001D);

res = true;

tel;
--

function check_3_messages_m3 () returns (res: bool);

var A, B, C, D, E, F, F’, F’’, G, G’, G’’, M, V, V’: Block;

W, X0, X, X’, Y0, Y, Y’, Z: Block;

let
-- test vectors for the three-Block message: third Block

A = x00000002; -- fake "A" constant

B = x00000001; -- fake "B" constant

C = xFFFFFFFB; -- fake "C" constant

D = xFFFFFFFB; -- fake "D" constant

V = x00000004;

W = x00000001;

X0 = x00000014;

Y0 = x00000009;

M = x00000002;

V’ = CYC (V’); assert (V’ = x00000008);

E = xorBlock (V’, W); assert (E = x00000009);

X = xorBlock (X0, M); assert (X = x00000016);

Y = xorBlock (Y0, M); assert (Y = x0000000B);

A.14. Test Vectors (2) for Checking MAA Computations 147

F = addBlock (E, Y); assert (F = x00000014);

G = addBlock (E, X); assert (G = x0000001F);

F’ = orBlock (F, A); assert (F’ = x00000016);

G’ = orBlock (G, B); assert (G’ = x0000001F);

F’’ = andBlock (F’, C); assert (F’’ = x00000012);

G’’ = andBlock (G’, D); assert (G’’ = x0000001B);

X’ = mul1 (X, F’’); assert (X’ = x0000018C);

Y’ = mul2A (Y, G’’); assert (Y’ = x00000129);

Z = xorBlock (X’, Y’); assert (Z = x000000A5);

res = true;

tel;
--

We complete the above tests with additional test vectors taken from [ISO90, Annex E.3.3],
which only gives detailed values for the first block of the 84-block test message.

function check_Annex_E () returns (res: bool);

var A, B, C, D, E, F, F’, F’’, G, G’, G’’, M, V0, V: Block;

W, X0, X, X’, Y0, Y, Y’: Block;

let
-- test vectors for block x0A202020 with key (J = xE6A12F07, K = x9D15C437)

A = x02040801; -- true "A" constant

B = x00804021; -- true "B" constant

C = xBFEF7FDF; -- true "C" constant

D = x7DFEFBFF; -- true "D" constant

X0 = x21D869BA;

Y0 = x7792F9D4;

V0 = xC4EB1AEB;

W = xF6A09667;

M = x0A202020;

V = CYC (V0); assert (V = x89D635D7);

E = xorBlock (V, W); assert (E = x7F76A3B0);

X = xorBlock (X0, M); assert (X = x2BF8499A);

Y = xorBlock (Y0, M); assert (Y = x7DB2D9F4);

F = addBlock (E, Y); assert (F = xFD297DA4);

G = addBlock (E, X); assert (G = xAB6EED4A);

F’ = orBlock (F, A); assert (F’ = xFF2D7DA5);

G’ = orBlock (G, B); assert (G’ = xABEEED6B);

F’’ = andBlock (F’, C); assert (F’’ = xBF2D7D85);

G’’ = andBlock (G’, D); assert (G’’ = x29EEE96B);

X’ = mul1 (X, F’’); assert (X’ = x0AD67E20);

Y’ = mul2A (Y, G’’); assert (Y’ = x30261492);

res = true;

148 Chapter A. Formal Model of the MAA in Lustre

tel;
--

A.15 Test vectors (3) for Checking MAA Computa-

tions

We define a third set of test vectors for the MAA, based upon Table 5 of [DC88]. The
following expressions implement four groups of checks, with two different keys and two
different messages. They should all evaluate to true if the MAA signature is correctly
computed.

function check_Table_5_v1 () returns (res: bool);

var J, K, X0, X, X’, X’’, X’’’, Y0, Y, Y’, Y’’, Y’’’: Block;

V0, V, V’, V’’, V’’’, W, S, T, Z, M1, M2: Block;

let
-- test vectors of the first column of Table 5

J = x00FF00FF;

K = x00000000;

M1 = x55555555;

M2 = xAAAAAAAA;

assert (PAT (J, K) = xFF);

X0, Y0, V0, W, S, T = prelude (J, K);

assert (X0 = x4A645A01);

assert (Y0 = x50DEC930);

assert (V0 = x5CCA3239);

assert (W = xFECCAA6E);

assert (S = x51EDE9C7);

assert (T = x24B66FB5);

-- 1st MainLoop iteration

X, Y, V = mainLoop (X0, Y0, V0, W, M1);

assert (X = x48B204D6);

assert (Y = x5834A585);

-- 2nd MainLoop iteration

X’, Y’, V’ = mainLoop (X, Y, V, W, M2);

assert (X’ = x4F998E01);

assert (Y’ = xBE9F0917);

-- Coda: MainLoop iteration with S

X’’, Y’’, V’’ = mainLoop (X’, Y’, V’, W, S);

assert (X’’ = x344925FC);

assert (Y’’ = xDB9102B0);

-- Coda: MainLoop iteration with T

X’’’, Y’’’, V’’’ = mainLoop (X’’, Y’’, V’’, W, T);

A.15. Test vectors (3) for Checking MAA Computations 149

assert (X’’’ = x277B4B25);

assert (Y’’’ = xD636250D);

Z = xorBlock (X’’’,Y’’’);

assert (Z = xF14D6E28);

res = true;

tel;
--

function check_Table_5_v2 () returns (res: bool);

var J, K, X0, X, X’, X’’, X’’’, Y0, Y, Y’, Y’’, Y’’’: Block;

V0, V, V’, V’’, V’’’, W, S, T, Z, M1, M2: Block;

let
-- test vectors of the second column of Table 5

J = x00FF00FF;

K = x00000000;

M1 = xAAAAAAAA;

M2 = x55555555;

assert (PAT (J, K) = xFF);

X0, Y0, V0, W, S, T = prelude (J, K);

assert (X0 = x4A645A01);

assert (Y0 = x50DEC930);

assert (V0 = x5CCA3239);

assert (W = xFECCAA6E);

assert (S = x51EDE9C7);

assert (T = x24B66FB5);

-- 1st MainLoop iteration

X, Y, V = mainLoop (X0, Y0, V0, W, M1);

assert (X = x6AEBACF8);

assert (Y = x9DB15CF6);

-- 2nd MainLoop iteration

X’, Y’, V’ = mainLoop (X, Y, V, W, M2);

assert (X’ = x270EEDAF);

assert (Y’ = xB8142629);

-- Coda: MainLoop iteration with S

X’’, Y’’, V’’ = mainLoop (X’, Y’, V’, W, S);

assert (X’’ = x29907CD8);

assert (Y’’ = xBA92DB12);

-- Coda: MainLoop iteration with T

X’’’, Y’’’, V’’’ = mainLoop (X’’, Y’’, V’’, W, T);

assert (X’’’ = x28EAD8B3);

assert (Y’’’ = x81D10CA3);

Z = xorBlock (X’’’,Y’’’);

assert (Z = xA93BD410);

150 Chapter A. Formal Model of the MAA in Lustre

res = true;

tel;
--

function check_Table_5_v3 () returns (res: bool);

var J, K, X0, X, X’, X’’, X’’’, Y0, Y, Y’, Y’’, Y’’’: Block;

V0, V, V’, V’’, V’’’, W, S, T, Z, M1, M2: Block;

let
-- test vectors of the third column of Table 5

J = x55555555;

K = x5A35D667;

M1 = x00000000;

M2 = xFFFFFFFF;

assert (PAT (J, K) = x00);

X0, Y0, V0, W, S, T = prelude (J, K);

assert (X0 = x34ACF886);

assert (Y0 = x7397C9AE);

assert (V0 = x7201F4DC);

assert (W = x2829040B);

assert (S = x9E2E7B36);

assert (T = x13647149);

-- 1st MainLoop iteration

X, Y, V = mainLoop (X0, Y0, V0, W, M1);

assert (X = x2FD76FFB);

assert (Y = x550D91CE);

-- 2nd MainLoop iteration

X’, Y’, V’ = mainLoop (X, Y, V, W, M2);

assert (X’ = xA70FC148);

assert (Y’ = x1D10D8D3);

-- Coda: MainLoop iteration with S

X’’, Y’’, V’’ = mainLoop (X’, Y’, V’, W, S);

assert (X’’ = xB1CC1CC5);

assert (Y’’ = x29C1485F);

-- Coda: MainLoop iteration with T

X’’’, Y’’’, V’’’ = mainLoop (X’’, Y’’, V’’, W, T);

assert (X’’’ = x288FC786);

assert (Y’’’ = x9115A558);

Z = xorBlock (X’’’,Y’’’);

assert (Z = xB99A62DE);

res = true;

tel;
--

function check_Table_5_v4 () returns (res: bool);

A.15. Test vectors (3) for Checking MAA Computations 151

var J, K, X0, X, X’, X’’, X’’’, Y0, Y, Y’, Y’’, Y’’’: Block;

V0, V, V’, V’’, V’’’, W, S, T, Z, M1, M2: Block;

let
-- test vectors of the fourth column of Table 5

J = x55555555;

K = x5A35D667;

M1 = xFFFFFFFF;

M2 = x00000000;

assert (PAT (J, K) = x00);

X0, Y0, V0, W, S, T = prelude (J, K);

assert (X0 = x34ACF886);

assert (Y0 = x7397C9AE);

assert (V0 = x7201F4DC);

assert (W = x2829040B);

assert (S = x9E2E7B36);

assert (T = x13647149);

-- 1st MainLoop iteration

X, Y, V = mainLoop (X0, Y0, V0, W, M1);

assert (X = x8DC8BBDE);

assert (Y = xFE4E5BDD);

-- 2nd MainLoop iteration

X’, Y’, V’ = mainLoop (X, Y, V, W, M2);

assert (X’ = xCBC865BA);

assert (Y’ = x0297AF6F);

-- Coda: MainLoop iteration with S

X’’, Y’’, V’’ = mainLoop (X’, Y’, V’, W, S);

assert (X’’ = x3CF3A7D2);

assert (Y’’ = x160EE9B5);

X’’’, Y’’’, V’’’ = mainLoop (X’’, Y’’, V’’, W, T);

assert (X’’’ = xD0482465);

assert (Y’’’ = x7050EC5E);

Z = xorBlock (X’’’,Y’’’);

assert (Z = xA018C83B);

res = true;

tel;
--

We complete the above tests with additional test vectors taken from from [ISO90, An-
nex E.3.3], which gives prelude results computed for another key.

function check_Prelude_Annex_E33 () returns (res: bool);

var J, K, X, Y, V, W, S, T: Block;

let
-- test vectors of Annex E.3.3 of [ISO 8730:1990]

152 Chapter A. Formal Model of the MAA in Lustre

J = xE6A12F07;

K = x9D15C437;

X, Y, V, W, S, T = prelude (J, K);

assert (X = x21D869BA);

assert (Y = x7792F9D4);

assert (V = xC4EB1AEB);

assert (W = xF6A09667);

assert (S = x6D67E884);

assert (T = xA511987A);

res = true;

tel;
--

A.16 Test Vectors (4) for Checking MAA Computa-

tions

We define a last set of test vectors for the MAA. The first one (a message of 20 blocks
containing only zeros) was directly taken from Table 6 of [DC88].

function check_message_20 () returns (res: bool);

var B, J, K, X0, Y0, V0, W, S, T: Block;

X, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11: Block;

X12, X13, X14, X15, X16, X17, X18, X19, X20, X21: Block;

Y, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11: Block;

Y12, Y13, Y14, Y15, Y16, Y17, Y18, Y19, Y20, Y21: Block;

V, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11: Block;

V12, V13, V14, V15, V16, V17, V18, V19, V20, V21: Block;

let
-- test vectors for the whole algorithm

J = x80018001;

K = x80018000;

-- test mentioned in Table 6 of [ISO 8731-2:1992]

-- iterations on a message containg 20 null Blocks

X0, Y0, V0, W, S, T = prelude (J, K);

B = x00000000;

-- 1st MainLoop iteration

X, Y, V = mainLoop (X0, Y0, V0, W, B);

assert (X = x303FF4AA);

assert (Y = x1277A6D4);

-- 2nd MainLoop iteration

A.16. Test Vectors (4) for Checking MAA Computations 153

X1, Y1, V1 = mainLoop (X, Y, V, W, B);

assert (X1 = x55DD063F);

assert (Y1 = x4C49AAE0);

-- 3rd MainLoop iteration

X2, Y2, V2 = mainLoop (X1, Y1, V1, W, B);

assert (X2 = x51AF3C1D);

assert (Y2 = x5BC02502);

-- 4th MainLoop iteration

X3, Y3, V3 = mainLoop (X2, Y2, V2, W, B);

assert (X3 = xA44AAAC0);

assert (Y3 = x63C70DBA);

-- 5th MainLoop iteration

X4, Y4, V4 = mainLoop (X3, Y3, V3, W, B);

assert (X4 = x4D53901A);

assert (Y4 = x2E80AC30);

-- 6th MainLoop iteration

X5, Y5, V5 = mainLoop (X4, Y4, V4, W, B);

assert (X5 = x5F38EEF1);

assert (Y5 = x2A6091AE);

-- 7th MainLoop iteration

X6, Y6, V6 = mainLoop (X5, Y5, V5, W, B);

assert (X6 = xF0239DD5);

assert (Y6 = x3DD81AC6);

-- 8th MainLoop iteration

X7, Y7, V7 = mainLoop (X6, Y6, V6, W, B);

assert (X7 = xEB35B97F);

assert (Y7 = x9372CDC6);

-- 9th MainLoop iteration

X8, Y8, V8 = mainLoop (X7, Y7, V7, W, B);

assert (X8 = x4DA124A1);

assert (Y8 = xC6B1317E);

-- 10th MainLoop iteration

X9, Y9, V9 = mainLoop (X8, Y8, V8, W, B);

assert (X9 = x7F839576);

assert (Y9 = x74B39176);

-- 11th MainLoop iteration

X10, Y10, V10 = mainLoop (X9, Y9, V9, W, B);

assert (X10 = x11A9D254);

assert (Y10 = xD78634BC);

-- 12th MainLoop iteration

X11, Y11, V11 = mainLoop (X10, Y10, V10, W, B);

assert (X11 = xD8804CA5);

assert (Y11 = xFDC1A8BA);

-- 13th MainLoop iteration

X12, Y12, V12 = mainLoop (X11, Y11, V11, W, B);

154 Chapter A. Formal Model of the MAA in Lustre

assert (X12 = x3F6F7248);

assert (Y12 = x11AC46B8);

-- 14th MainLoop iteration

X13, Y13, V13 = mainLoop (X12, Y12, V12, W, B);

assert (X13 = xACBC13DD);

assert (Y13 = x33D5A466);

-- 15th MainLoop iteration

X14, Y14, V14 = mainLoop (X13, Y13, V13, W, B);

assert (X14 = x4CE933E1);

assert (Y14 = xC21A1846);

-- 16th MainLoop iteration

X15, Y15, V15 = mainLoop (X14, Y14, V14, W, B);

assert (X15 = xC1ED90DD);

assert (Y15 = xCD959B46);

-- 17th MainLoop iteration

X16, Y16, V16 = mainLoop (X15, Y15, V15, W, B);

assert (X16 = x3CD54DEB);

assert (Y16 = x613F8E2A);

-- 18th MainLoop iteration

X17, Y17, V17 = mainLoop (X16, Y16, V16, W, B);

assert (X17 = xBBA57835);

assert (Y17 = x07C72EAA);

-- 19th MainLoop iteration

X18, Y18, V18 = mainLoop (X17, Y17, V17, W, B);

assert (X18 = xD7843FDC);

assert (Y18 = x6AD6E8A4);

-- 20th MainLoop iteration

X19, Y19, V19 = mainLoop (X18, Y18, V18, W, B);

assert (X19 = x5EBA06C2);

assert (Y19 = x91896CFA);

-- Coda: MainLoop iteration with S

X20, Y20, V20 = mainLoop (X19, Y19, V19, W, S);

assert (X20 = x1D9C9655);

assert (Y20 = x98D1CC75);

-- Coda: MainLoop iteration with T

X21, Y21, V21 = mainLoop (X20, Y20, V20, W, T);

assert (X21 = x7BC180AB);

assert (Y21 = xA0B87B77);

assert (coda (X19, Y19, V19, W, S, T) = xDB79FBDC);

res = true;

tel;

A.17. Functional Testing of MAA with Lurette 155

A.17 Functional Testing of MAA with Lurette

We automate the test execution process, by using the testing tool Lurette [JRB06], for this
purpose we added a function selecting a message (get_mess_key), and adapted the main
node MAC.

function get_mess_key (id: int) returns (message: Block; JK: Key);

let
message = if (id = 1 or id = 22) then x55555555

else if (id = 2 or id = 12) then xAAAAAAAA

else if (id = 3 or id = 42) then x00000000

else xFFFFFFFF;

JK = if (id = 1 or id = 12 or id = 2 or id = 22) then
Key {K = x00000000; J = x00FF00FF}

else Key {K = x5A35D667; J = x55555555};

tel;
--

node MAC (id: int; init: bool)

returns (X, Y, V, W, S, T, Z: Block; n: int);

var X0, Y0, V0: Block;

KJ: Key; Mn: Block;

let
Mn, KJ = get_mess_key (id);

n = if init then 1

else if pre n = 256 then 0

else pre n + 1;

-- initialisations

X0, Y0, V0, W, S, T = prelude (KJ.J, KJ.K);

-- mainloops

X, Y, V = if init then
mainLoop (X0, Y0, V0, W, Mn)

else if n = 0 then
-- mode of operations

mainLoop2 (X0, Y0, V0, W, pre Z, Mn)

else mainLoop (pre X, pre Y, pre V, W, Mn);

-- coda

Z = coda (X, Y, V, W, S, T);

tel;
--

node oracle (id: int; init: bool; X, Y, Z: Block; n: int)

returns (res: bool);

let
res = true −>
((id = 1 and init and X = x48B204D6 and Y = x5834A585) or
(id = 12 and not init and X = x4F998E01 and Y = xBE9F0917) or

156 Chapter A. Formal Model of the MAA in Lustre

(id = 12 and Z = xF14D6E28) or
(id = 2 and init and X = x6AEBACF8 and Y = x9DB15CF6) or
(id = 22 and not init and X = x270EEDAF and Y = xB8142629) or
(id = 22 and Z = xA93BD410) or
(id = 3 and init and X = x2FD76FFB and Y = x550D91CE) or
(id = 32 and not init and X = xA70FC148 and Y = x1D10D8D3) or
(id = 32 and Z = xB99A62DE) or
(id = 4 and init and X = x8DC8BBDE and Y = xFE4E5BDD) or
(id = 42 and not init and X = xCBC865BA and Y = x0297AF6F) or
(id = 42 and Z = xA018C83B)

and CHECK () = true);

tel;

Appendix B

Formal Model of a Simple
Autonomous Car in GRL

This appendix contains the sources for the running example of the Chapter 5. Precisely,
this directory contains: the GRL model the autonomous car with required LNT libraries
and the the XTL scripts to extract the synchronous test scenarios.

B.1 Definitions for the Synchronous Blocks

We define here each synchronous component of the autonomous car; ACTION, RADAR,
DECISION, and GPS as a block. In order to model the environmnet, we also define three
others blocks:

• OBSTACLE_EXECUTION block manages an obstacle action.

• INIT_BLOCKS block initialise and print the component information; i.e., the names of
their inputs and their initialisation values.

• FIN_CAR block is activated when the car arrived, or a collision occurred between the
car and an obstacle, or all obstacles have finished their list of movements.

block RADAR (in POSITIONS: Car_Obstacle_Pos) [send CURRENT_GRID: Grid]

is
static var PREVIOUS_GRID: Grid := Grid (NIL)

var grid: Grid

grid := perception (POSITIONS, radar_visibility);

if grid != PREVIOUS_GRID then
PREVIOUS_GRID := grid;

CURRENT_GRID := grid

else

157

158 Chapter B. Formal Model of a Simple Autonomous Car in GRL

CURRENT_GRID := Grid (already_sent)

end if
end block
−−
block GPS (in UPDATE_POSITION: Edge)

[receive REQUESTED_POS: bool,
send CURRENT_POSITION: Edge]

is
static var CUR_POS: Edge := initial_street

if (REQUESTED_POS == true) and
(UPDATE_POSITION != CUR_POS) then

CUR_POS := UPDATE_POSITION

else
CUR_POS := already

end if;
CURRENT_POSITION := CUR_POS

end block
−−
block DECISION (out ARRIVAL: bool)

[receive PATH_AVOIDING: Edges,

send REQUEST_POS: bool,
send CURRENT_PATH: Itinerary,

receive CURRENT_POSITION: Edge]

is
var map: Localization := Localization (initial_street, initial_map),

dest: Edge

dest := destination;

REQUEST_POS := true;
if CURRENT_POSITION == dest then
−− the car arrived to the final destination
CURRENT_PATH := NIL;

ARRIVAL := true
else
ARRIVAL := false;
−− compute an itineray and send it to the driving controller
CURRENT_PATH := compute_itinary (map.G,

CURRENT_POSITION, dest,

PATH_AVOIDING) −− streets to avoid
end if

end block
−−
block ACTION (out CAR_MOVE: Control)

[send REQUEST_PATH: Edges,

receive CURRENT_GRID: Grid,

receive CURRENT_PATH: Itinerary]

B.1. Definitions for the Synchronous Blocks 159

is
−− check feasibility of the itinerary
REQUEST_PATH := get_grid (CURRENT_GRID);

if CURRENT_PATH != NIL then
CAR_MOVE := car_controls (head (CURRENT_PATH))

else
CAR_MOVE := brakes

end if
end block
−−
block OBSTACLE_EXECUTION (in OBSTACLE_i: Obstacle_Info,

out OBSTACLE_MOVE: Obstacle_Wait)

is
var args: Obstacle_Wait,

no_action: Bool,

op: Obstacle

op := get_obstacle_inf (OBSTACLE_i);

if (op == null_obstacle) then
no_action := True;

args := obst_wait (OBSTACLE_i.o, true)
else
args := obstacle_movement (OBSTACLE_i.car,

OBSTACLE_i.obstacles,

OBSTACLE_i.o);

no_action := get_action (args)

end if;
if (no_action == False) then
OBSTACLE_MOVE := args

else
OBSTACLE_MOVE := obst_wait (OBSTACLE_i.o, true)

end if
end block
−−
block INIT_BLOCKS (in INIT_V: Block_Init, out INIT_E: Block_Sent)

is
var grid_obstacle: Grid := Grid (already_sent),

v1: String,

v2: String

v1 := ret_b1(INIT_V);

v2 := ret_b2(INIT_V);

−− INIT E := INIT V
INIT_E := already_values (v1, grid_obstacle, v2, already)

end block
−−
block FIN_CAR (in LOG_CAR: LOG_END_CAR, out FIN_CAR: LOG_END_CAR)

160 Chapter B. Formal Model of a Simple Autonomous Car in GRL

is
FIN_CAR := LOG_CAR

end block

B.2 Definitions for the Asynchronous Mediums

The blocks exchange data via asynchronous communication media, which is represented in
GRL as a medium. We define here the mediums POSITION, PATH, and CURRENT_GRID.

−−
medium Medium_CURRENT_GRID [receive Input : Grid,

send Output : Grid] is
static var Buffer: Grid := Grid (NIL)

select
when ?Input -> if Input != Grid (already_sent) then

Buffer := Input

end if
[]
−− Value emission
when Output -> Output := Buffer

end select
end medium
−−
medium Medium_POSITION [receive Input: Edge,

receive REQUEST: bool,
send POS_REQUESTED: bool,
send Output: Edge] is

static var Buffer: Edge := initial_street,

REQUEST_POS: bool := false
select
when ?REQUEST -> REQUEST_POS := REQUEST

[]
when POS_REQUESTED -> POS_REQUESTED := REQUEST_POS

[]
when ?Input -> if Input != already then

Buffer := Input

end if
[]
−− Value emission
when Output -> Output := Buffer

end select
end medium
−−
medium Medium_PATH [receive REQUEST_PATH: Edges,

B.3. Definitions for the Asynchronous Environement 161

send PATH_AVOIDING: Edges,

receive SEND_PATH: Itinerary,

send RECEIVE_PATH: Itinerary] is
static var Buffer: Itinerary := init_itinary,

l_avoid: Edges := NIL,

itinerary_requested: bool := false
select
when ?REQUEST_PATH -> l_avoid := REQUEST_PATH;

itinerary_requested := true
[]
when PATH_AVOIDING -> PATH_AVOIDING := l_avoid;

l_avoid := NIL

[]
when ?SEND_PATH -> if itinerary_requested == true then

Buffer := SEND_PATH;

itinerary_requested := false
end if

[]
−− Value emission
when RECEIVE_PATH -> RECEIVE_PATH := Buffer;

Buffer := NIL

end select
end medium

B.3 Definitions for the Asynchronous Environement

The interaction between blocks also respects environmental constraints, each one being
represented in GRL as an environment. We present here the environment MAP_MANAGEMENT
managing the positions of the car and obstacles on the map.

−−
environment Env_MAP_MANAGEMENT (block ACTION,

block DECISION,

block RADAR,

block GPS,

block OBSTACLE_EXECUTION,

block FIN_CAR,

block INIT_BLOCKS,

in CAR_MOVE: Control,

in OBSTACLE_MOVE: Obstacle_Wait,

in ARRIVAL: bool,
in FC: LOG_END_CAR,

in E: Block_Sent,

out UPDATE_POSITION: Edge,

162 Chapter B. Formal Model of a Simple Autonomous Car in GRL

out POS_GRID: Car_Obstacle_Pos,

out OBSTACLE_i: Obstacle_Info,

out FIN: LOG_END_CAR,

out V: Block_Init)

is
static var grid: Grid := Grid (NIL),

map: Localization := Localization (initial_street, initial_map),

crash: bool := false,
car_arrived: bool := false,
init: Bool := True,

obstacles: The_Obstacles := init_obstacles,

nb_obst : Nat := lgth_obst_grid (init_obstacles),

log_end : LOG_END_CAR := END_OBSTACLE

var collision_detected: Bool, l_obst: The_Obstacles,

oi: Obstacle, waiting: Bool, b: Obstacle_behaviour,

opi: Operation, n1: Nat, l_break: bool := true
if init == True then
select
enable INIT_BLOCKS

[]
when V -> V := init_block_values ("RADAR", pos (map.c, grid), "GPS", map.c)

[]
when ?E -> init := get_false (E)

end select
else
if (crash == false) and (car_arrived == false) and (nb_obst > 0) then
select
enable ACTION

[]
enable DECISION

[]
enable RADAR

[]
enable GPS

[]
enable OBSTACLE_EXECUTION

[]
−− initialize the position of the car: the map in the car’s GPS does not
−− change, thus send only the current street
when UPDATE_POSITION -> UPDATE_POSITION := get_localizalitation(map)

[]
−− handle car movement
when ?CAR_MOVE ->
−− compute car position
map := move_car (map, CAR_MOVE);

B.3. Definitions for the Asynchronous Environement 163

collision_detected := intersection (grid, map);

−− check if the car is in the same edge as an obstacle
if collision_detected == True then
crash := true;
log_end := COLLISION

end if
[]
−− handle car movement
when ?ARRIVAL -> car_arrived:= ARRIVAL;

log_end := ARRIVED

[]
−− after a car movement, update the radar grid
when POS_GRID -> POS_GRID := pos (map.c, grid)

[]
−− select an obstacle movement (the car and obstacles positions)
when OBSTACLE_i ->

oi := null_obstacle;

l_obst := obstacles;

while (l_break) and (l_obst != NIL) loop
b := get_obstacle_behaviour (head (l_obst));

if b != NIL then
oi := head (l_obst);

select
l_break := false
[]
l_obst := tail (l_obst)

end select
else
l_obst := tail (l_obst)

end if
end loop;
b := get_obstacle_behaviour (oi);

if (oi != null_obstacle) and (b != NIL) then
opi := head (b);

if opi == random then
l_break := true;
n1 := next_street (map, oi);

while (l_break == true) loop
if (n1 > 0) then
select
n1 := n1 - 1

[]
opi := turned_n (n1); l_break := false

[]
opi := leave; l_break := false

164 Chapter B. Formal Model of a Simple Autonomous Car in GRL

end select
else
opi := turned_n (n1); l_break := false

end if
end loop;
oi := Obstacle (oi.name, oi.position,

cons (opi, tail(b)))

end if
end if;
OBSTACLE_i := obst_inf (oi, map.c, grid)

[]
−− handle obstacle movement

when ?OBSTACLE_MOVE ->
−− compute new grid for the radar and
−− inform the radar and the obstacles about the change
waiting := get_action(OBSTACLE_MOVE);

if (waiting == False) then
grid := move_obstacle_grid (grid, OBSTACLE_MOVE.o);

obstacles := update_obstacle_in_L (obstacles, OBSTACLE_MOVE.o)

else
grid := grid

end if;
b := get_obstacle_behaviour (OBSTACLE_MOVE.o);

if b == NIL then
nb_obst := nb_obst - 1

end if
end select

else
select
enable FIN_CAR

[]
when FIN -> FIN := log_end

[]
when ?FC -> log_end := FC

end select
end if
end if

end environment
−−

B.4. Definitions of the global GALS system 165

B.4 Definitions of the global GALS system

The overall model of the GALS is represented in GRL as a system, which describes the
composition and interactions of blocks, media, and environments. We present here the
system Main of our GRL model.

−−
system Main (SEND_CURRENT_GRID, RECEIVE_CURRENT_GRID: Grid,

UPDATE_POSITION: Edge,

SEND_CURRENT_POSITION, RECEIVE_CURRENT_POSITION: Edge,

POSITIONS: Car_Obstacle_Pos, REQUEST_PATH: Edges,

PATH_AVOIDING: Edges, SEND_PATH, RECEIVE_PATH: Itinerary,

CAR_MOVE: Control, ARRIVAL: bool,
REQUEST_POS: bool, REQUESTED_POS: bool,
OBSTACLE_MOVE: Obstacle_Wait, OBSTACLE_i: Obstacle_Info,

LOG_CAR, FIN_CAR: LOG_END_CAR, V: Block_Init, E: Block_Sent)

is
alias
ACTION as ACT, OBSTACLE_EXECUTION as OBST_EXEC, DECISION as DECI,

RADAR as PER_RADAR, GPS as PER_GPS, FIN_CAR as FN, INIT_BLOCKS as INIT

block list
PER_RADAR (POSITIONS) [?SEND_CURRENT_GRID],
PER_GPS (UPDATE_POSITION) [REQUESTED_POS, ?SEND_CURRENT_POSITION],
DECI (?ARRIVAL)

[PATH_AVOIDING, ?REQUEST_POS, ?SEND_PATH, RECEIVE_CURRENT_POSITION],

ACT (?CAR_MOVE) [?REQUEST_PATH, RECEIVE_CURRENT_GRID, RECEIVE_PATH],

OBST_EXEC (OBSTACLE_i, ?OBSTACLE_MOVE),
FN (LOG_CAR, ?FIN_CAR),
INIT (V, ?E)

environment list
Env_MAP_MANAGEMENT (ACT, DECI, PER_RADAR, PER_GPS, OBST_EXEC, FN, INIT,

CAR_MOVE, OBSTACLE_MOVE, ARRIVAL, FIN_CAR, E,

?UPDATE_POSITION, ?POSITIONS, ?OBSTACLE_i,
?LOG_CAR, ?V)

medium list
Medium_CURRENT_GRID [SEND_CURRENT_GRID, ?RECEIVE_CURRENT_GRID],
Medium_POSITION [SEND_CURRENT_POSITION, REQUEST_POS,

?REQUESTED_POS, ?RECEIVE_CURRENT_POSITION],
Medium_PATH [REQUEST_PATH, ?PATH_AVOIDING, SEND_PATH, ?RECEIVE_PATH]

end system

166 Chapter B. Formal Model of a Simple Autonomous Car in GRL

B.5 Definitions of LNT library

We define here the LNT types together with functions related to this case study, and the
LNT functions defining the scenario used in this case study.

B.5.1 Definitions of LNT Graph Functions and Types

We define here the types related to graph definitions together with the classical graph
functions.

type Corner is
0,

1,

2,

3,

4,

5,

6,

7,

8

end type
−−
type Edge is
Edge (q1: Corner, l: Street, q2: Corner)

end type
−−
type Edges is
−− hash−table used as cache
!card 100000

list of Edge

with "head", "tail", "reverse", "length"

end type
−−
type Vertices is
list of Corner

with "head", "tail"

end type
−−
type Graph is
−− Digraph (directed graph)
Graph (V: Vertices, E: Edges)

end type
−−
−− Functions

B.5. Definitions of LNT library 167

−−
function add_Edge (q1, q2: Corner, l: Street, e: Edges): Edges is
return cons (Edge (q1, l, q2), e)

end function
−−
function succ_s (in var E: Edges, s: Corner) : Vertices is
var list_succ: Vertices in
list_succ := {};
loop
case E in
var q1, q2: Corner in
NIL -> return list_succ

| CONS (Edge (q1, any Street, q2), E) ->
if q1 == s then
list_succ := cons (q2, list_succ)

end if
end case

end loop
end var

end function
−−
function succ_l (in var L: Edges, e: Edge) : Edges is
var list_succ: Edges in
list_succ := {};
loop
case L in
var q1, q2: Corner, s: Street in
NIL -> return reverse (list_succ)

| CONS (Edge (q1, s, q2), L) ->
if q1 == e.q2 then
list_succ := cons (Edge (q1, s, q2), list_succ)

end if
end case

end loop
end var

end function
−−
function succ_l_s (in var E: Edges, l: Street) : Corner is
−− return succesor of a label
loop
assert E != {};
if head(E).l == l then
return head(E).q2

end if;
E := tail (E)

168 Chapter B. Formal Model of a Simple Autonomous Car in GRL

end loop
end function
−−
function edge_l (in var E: Edges, l: Street) : Edge is
−− return succesor of a label
loop
assert E != {};
if head(E).l == l then
return head(E)

end if;
E := tail (E)

end loop
end function
−−
function is_l_in_E (in var E: Edges, l: Street) : Bool is
loop
if E == {} then
return false

else
if head(E).l == l then
return true

end if;
E := tail(E)

end if
end loop

end function
−−
function is_e_l (e: Edge, in var L: Edges) : Bool is
loop L1 in
if L == {} then
break L1

end if;
if head(L) == e then
return true

end if;
L := tail (L)

end loop;
return false

end function

−−

function is_s_l (S: Corner, in var V: Vertices) : Bool is
loop L1 in
if V == {} then

B.5. Definitions of LNT library 169

break L1

end if;
if head(V) == S then
return true

end if;
V := tail (V)

end loop;
return false

end function
−−
function pred_edge (E: Edges, in var D: Edge)

: Edges is
−− retrace predecessors leading to D
var pred, temp: Edges in
pred := {D};
temp := E;
loop L in
if temp == {} then
return pred

end if;
if (head (temp).q2 == D.q1) then
D := head(temp);
pred := cons (D, pred)

else
temp := tail (temp)

end if
end loop

end var
end function

−−

function delete_l_in_E (in var E: Edges, l: Street) : Edges is
var new: Edges in
new := {};
loop
if E == {} then
return new

else
if head(E).l != l then
new := cons (head(E), new)

end if;
E := tail(E)

end if
end loop

170 Chapter B. Formal Model of a Simple Autonomous Car in GRL

end var
end function
−−
function is_q1q2_in_E (in var E: Edges, A: Edge) : Bool is
loop
if E == {} then
return false

else
if (head(E).q1) == A.q1 and (head(E).q2 == A.q2) then
return true

end if;
E := tail(E)

end if
end loop

end function
−−

B.5.2 Definitions of LNT Datatypes

The definition of the main types related to this case study together with heir functions.

−−
type Localization is !printedby "PRINT_LOCALIZATION"

−− global localization (GPS)
−− localisation (graph with anotate state for the current position)
Localization (c: Edge,

G: Graph)

end type
−−
type Grid is
−− local localization
Grid (E: Edges)

end type
−−
type Direction is
turn_n (N: Nat) −− 5th if crossroads

end type
−−
type Itinerary is
list of Direction

with "head", "tail", "reverse"

end type
−−
type Control is

B.5. Definitions of LNT library 171

−− direction
turned_n (N: Nat),

brakes

end type
−−
type Operation is
−− obstacle operations
turned_n (N: Nat), −− 5th if crossroads,
leave,

random

end type
−−
type Obstacle_behaviour is
list of Operation

with "head", "tail"

end type
−−
type Obstacle is
Obstacle (name: Street, position: Edge, behaviour: Obstacle_behaviour)

end type
−−
type The_Obstacles is
list of Obstacle

with "head", "tail", "length"

end type
−−
type LOG_END_CAR is
COLLISION,

ARRIVED,

END_OBSTACLE

end type
−−
type Obstacle_Wait is
obst_wait (o: Obstacle, waiting: bool)

end type
−−
type Obstacle_Info is
obst_inf (o: Obstacle, car: Edge, obstacles: Grid)

end type
−−
type Car_Obstacle_Pos is
pos (car: Edge, obstacles: Grid)

end type
−−
type Block_Init is

172 Chapter B. Formal Model of a Simple Autonomous Car in GRL

init_block_values (b1: String, v1: Car_Obstacle_Pos, b2: String, v2: Edge)

end type
−−
type Block_Sent is

already_values (b1: String, v1: Grid, b2: String, v2: Edge)

end type
−−
−− Functions
−−
function succ_avoid_reach_D (in E: Edges, P: Edge, D: Edge, avoid: Edges)

: Edges is
−− compute successors leading to D avoiding the edges in a given list
var a: Edge, pred, succ, succ_t: Edges, dejavu: Vertices in
if is_e_l (P, E) == false then
return {}

end if;
a := P;
pred := {a};
succ := succ_l (E, a);
succ_t := succ;
dejavu := {a.q2};
loop
if is_e_l (D, succ_t) then
return pred_edge (pred, D)

elsif succ == {} then
return {}

else
a := head (succ);
succ := tail(succ);
if (is_s_l (a.q2, dejavu) == false) and

(is_e_l (a, avoid) == false) then
succ_t := succ_l (E, a);
pred := cons (a, pred);
succ := union (succ_t, succ);
dejavu := cons (a.q2, dejavu)

end if
end if

end loop
end var

end function
−−
function edges_to_itinerary (map: Localization, in var succ: Edges)

: Itinerary is
var eg: Edges, it: Itinerary, I: Nat in
it := {};

B.5. Definitions of LNT library 173

eg := map.G.E;
loop
if (succ == {}) or (eg == {}) then
return reverse (it)

end if;
if head (eg) == head (succ) then
I:= 0;
succ := tail (succ);
loop L in
if (succ != {}) then
eg := tail (eg);
if eg == {} then
eg := map.G.E

end if;
if head(eg).q1 == head (succ).q1 then
if head(eg).q2 == head (succ).q2 then
it := cons (turn_n (I), it);
break L

end if;
I := I + 1

end if
else
return it

end if
end loop;
eg := map.G.E

else
eg := tail (eg)

end if
end loop

end var
end function
−−
function compute_itinary (map: Graph, position, destination: Edge,

avoid: Edges)

: Itinerary is
−− return if possible an itinerary leading from S to D in map
var succ: Edges in
succ := succ_avoid_reach_D (map.E, position, destination, avoid);
return edges_to_itinerary (Localization (position, map), succ)

end var
end function
−−
function car_controls (dir: Direction) : Control is
case dir in

174 Chapter B. Formal Model of a Simple Autonomous Car in GRL

var N: Nat in
turn_n (N) -> return turned_n (N)

end case
end function
−−
function move_n (G: Graph, P: Edge, N: Nat) : Edge is
−− return the car advancing in the n−th neighbourd
var eg: Edges, i: Nat in
eg := G.E;
i := 0;
loop L in
if eg == {} then
−− no successor found: do not move
return P

end if;
if head (eg).q1 == P.q2 then
if i == N then
return head(eg)

else
i := i + 1

end if
end if;
eg := tail (eg)

end loop
end var

end function
−−
function move_car (map: Localization, action: Control) : Localization is
case action in
var N: Nat in
turned_n (N) -> return Localization (move_n (map.G, map.c, N), map.G)

| any -> return map

end case
end function
−−
function move_obstacle (g: Graph, movement: Operation, o: Obstacle)

: Edge is
case movement in
var N: Nat in
turned_n (N) -> return move_n (g, o.position, N)

| leave -> return Edge (0, HIDDEN, 1)

| random -> return Edge (0, HIDDEN,1)

end case
end function
−−

B.5. Definitions of LNT library 175

function move_obstacle_grid (in var maj_radar: Grid,

obst: Obstacle)

: Grid is
−− return the same obstacle position exists
if is_q1q2_in_E (maj_radar.E, obst.position) then
return maj_radar

end if;
−− delete the previous obstacle position
maj_radar := Grid (delete_l_in_E (maj_radar.E, obst.name));
−− add the new obstacle position
return Grid (add_Edge (obst.position.q1, obst.position.q2,

obst.name, maj_radar.E))

end function
−−
function succ_edge (in var R: Grid, D: Edge)

: Grid is
−− sucesseur of D
var succ: Edges, temp: Edge in
succ := {};
loop L in
if R.E == {} then
return Grid (succ)

end if;
temp := head (R.E);
if (temp.q1 == D.q2) then
succ := cons (temp, succ)

end if;
R := R.{E => tail (R.E)}

end loop
end var

end function
−−
function succ_n_depth (in R: Grid, in var D: Edge, in var n: Nat)

: Grid is
var succ, succ_n, succ_t: Edges in
succ := (succ_edge (R, D)).E;
succ_n := succ;
succ_t := {};
loop
if n == 0 then
return Grid (succ)

end if;
n := n - 1;
loop L in
if (succ_n == {}) or (n == 0) then

176 Chapter B. Formal Model of a Simple Autonomous Car in GRL

break L

end if;
D := head (succ_n);
succ_n := tail (succ_n);
succ_t := union (succ_t, (succ_edge (R, D)).E)

end loop;
succ := union (succ, succ_t);
succ_n := succ_t;
succ_t := {}

end loop
end var

end function
−−
function perception (POSITIONS: Car_Obstacle_Pos, VISIBILITY: Nat)

: Grid is
return succ_n_depth (POSITIONS.obstacles, POSITIONS.car, VISIBILITY)

end function
−−
function obstacle_in_L (in var l_obs: The_Obstacles, l: Street)

: Obstacle is
−− return Obstacle corresponding to a name
loop
assert l_obs != {};
if head(l_obs).name == l then
return head(l_obs)

end if;
l_obs := tail (l_obs)

end loop
end function
−−
function update_obstacle_in_L (in var l_obs: The_Obstacles,

o: Obstacle)

: The_Obstacles is
−− return the obstacles list updated
var up_l: The_Obstacles in
up_l := {};
loop L in
if l_obs == {} then
break L

end if;
if head(l_obs).name == o.name then
up_l := cons (o, up_l)

else
up_l := cons (head(l_obs), up_l)

end if;

B.5. Definitions of LNT library 177

l_obs := tail (l_obs)

end loop;
return up_l

end var
end function
−−
function is_q1q2_in_R (R: Grid, A: Localization) : bool is
var E : Edges, P: Edge in
E := R.E;
P := A.C;
loop
if E == {} then
return false

else
if (head(E).q1) == P.q1 and (head(E).q2 == P.q2) then
return true

end if;
E := tail(E)

end if
end loop

end var
end function
−−
function intersection (R: Grid, A: Localization) : bool is
return is_q1q2_in_R (R, A)

end function
−−
function get_localizalitation (L: Localization) : Edge is
return L.C

end function
−−
function get_graph (L: Localization) : Graph is
return L.G

end function
−−
function get_grid (R: Grid) : Edges is
return R.E

end function
−−
function get_obstacle (OW: Obstacle_Wait) : Obstacle is
return OW.o

end function
−−
function get_action (OW: Obstacle_Wait) : bool is
return OW.waiting

178 Chapter B. Formal Model of a Simple Autonomous Car in GRL

end function
−−
function get_obstacle_behaviour (O: Obstacle) : Obstacle_behaviour is
return O.behaviour

end function
−−
function null_obstacle : Obstacle is
return Obstacle (NO_OBSTACLE, Edge (0, DIED ,0), {})

end function
−−
function lgth_obst_grid (l: The_Obstacles) : Nat is
return length (l)

end function
−−
function is_obst_in_L (in var L: The_Obstacles, o: Obstacle) : bool is
loop
if L == {} then
return false

else
if head(L).name == o.name then
return true

end if;
L := tail(L)

end if
end loop

end function
−−
function get_map_streets (map: Localization) : Edges is

return map.G.E

end function
−−
function already: Edge is

return Edge (0, NO_UPDATE,0)

end function
−−
function already_sent: Edges is

return {already}

end function
−−
function next_street (map: Localization, o: Obstacle) : Nat is
return length (succ_l (get_map_streets(map), o.position))

end function
−−
function get_obstacle_inf (obi: Obstacle_Info) : Obstacle is
return obi.o

B.5. Definitions of LNT library 179

end function
−−
function get_false (b: Block_Sent) : bool is
use b;
return false

end function
−−
function ret_b1 (b: Block_Init) : String is
return b.b1

end function
−−
function ret_b2 (b: Block_Init) : String is
return b.b2

end function
−−

B.5.3 Definitions of the Scenario

We present here all functions corresponding to the scenario information of our model,
which is modifiable such as the geographical map, the obstacles behaviors, the initial and
destination streets.

−−
−− Geographical map
−−
−− ATTENTION : the edges must be ordered by increasing source state, and
−− the by increasing target state

function initial_map : Graph is
var e: Edges, v: Vertices in
v := {0, 1, 2, 3, 4, 5, 6, 7, 8};
e := {Edge (0, Coronation_Street, 1),

Edge (0, Corporation_Street, 3),

Edge (1, Coronation_Street_bis, 0),

Edge (1, two_Coronation_Street, 2),

Edge (1, Sackville, 4),

Edge (2, two_Coronation_Street_bis, 1),

Edge (2, Spring_Gardens, 5),

Edge (3, Corporation_Street_bis, 0),

Edge (3, Princess_Street, 4),

Edge (3, two_Corporation_Street, 6),

Edge (4, two_Princess_Street, 5),

Edge (4, two_Sackville, 7),

Edge (5, Spring_Gardens_bis, 2),

180 Chapter B. Formal Model of a Simple Autonomous Car in GRL

Edge (5, two_Princess_Street_bis, 4),

Edge (5, two_Spring_Gardens, 8),

Edge (6, two_Corporation_Street_bis, 3),

Edge (6, New_Cathedral_Street, 7),

Edge (7, two_Sackville_bis, 4),

Edge (7, New_Cathedral_Street_bis, 6),

Edge (7, two_New_Cathedral_Street, 8),

Edge (8, two_Spring_Gardens_bis, 5),

Edge (8, two_New_Cathedral_Street_bis, 7)

};
return Graph (v, e)

end var
end function
−−
−− Radar visibility
−−
function radar_visibility: Nat is
return 1

end function
−−
−− Position initial
−−
function initial_street: Edge is
return Edge (3, Princess_Street, 4)

end function
−−
−− Destination
−−
function destination: Edge is
−− return Edge (5, Spring Gardens bis, 2)
−− return Edge (2, Spring Gardens, 5)
−− return Edge (8, two Spring Gardens bis, 5)
return Edge (0, Coronation_Street, 1)

end function
−−
−− Init itinary
−−
function init_itinary: Itinerary is
var it: Itinerary in
it := compute_itinary (initial_map, initial_street, destination, {});
assert it != {};
return it

end var
end function
−−

B.5. Definitions of LNT library 181

−− Obstacles
−−
function init_obstacles: The_Obstacles is
var b1, b2: Obstacle_behaviour, baby, cyclist: Obstacle in
−− initialization of obstacle behaviours
b1 := {random, turned_n (0)};
b2 := {random, turned_n (0)};
−− initialization of obstacle positions
−− baby := Obstacle (Lilly, Edge (1, Sackville, 4), b1);
−− cyclist := Obstacle (Leo, Edge (5, two Princess Street bis, 4), b2);
−− baby := Obstacle (Lilly, Edge (1, Coronation Street bis, 0), b1);
−− cyclist := Obstacle (Leo, Edge (4, two Princess Street, 5), b2);
baby := Obstacle (Lilly, Edge (5, Spring_Gardens_bis, 2), b1);
cyclist := Obstacle (Leo, Edge (2, two_Coronation_Street_bis, 1), b2);
return {baby, cyclist}

end var
end function
−−
−− Functions
−−
function obstacle_movement (in car_position: Edge,

in obstacles_grid: Grid,

in var o: Obstacle) : Obstacle_Wait is

var map: Graph, present: Bool, pos: Edge, outputs: Obstacle_Wait in
map := initial_map;
present := is_l_in_E (obstacles_grid.E, o.name);
−− apparition of the obstacle at its initial position
if not (present or is_q1q2_in_E (cons (car_position, obstacles_grid.E),

o.position))

then
outputs := obst_wait (o, false)

−− movement of the obstacle
elsif present and (o.behaviour != NIL) then
−− if o.position == Edge (0, HIDDEN,1) then
−− pos := move n (map, car position, 1)

−− else
pos := move_obstacle (map, head (o.behaviour), o);

−− end if;
if is_q1q2_in_E (cons (car_position, obstacles_grid.E),

pos) == false
then
o := Obstacle (o.name, pos, tail (o.behaviour));
outputs := obst_wait (o, false)

else

182 Chapter B. Formal Model of a Simple Autonomous Car in GRL

outputs := obst_wait (o, true)
end if

else
outputs := obst_wait (o, true)

end if;
return outputs

end var
end function
−−

Appendix C

XTL Scripts Extracting Synchronous
Test Scenarios

This appendix contains the XTL [MG98] scripts to extract the synchronous test scenarios.
More particularly we present two XTL scripts exploring the test graph (CTGC) in order
to generate the input constraints and the oracle for testing a component C separately.

C.1 The Generation of Input Constraints

(extract input)

We define here the XTL script extract constraints generating the input constraints by
encoding a CTGC as a possibly nondeterministic node in Lutin. Note that this node has
the same inputs as C and an additional input variable s corresponding to the current state
of CTGC , initialized to the initial state.

(∗
∗ Lutin node ”environment” expressing a scenario constraining the three
∗ inputs of the synchronous block under test
∗ in addition to the inputs of the radar, the node also handles the updates
∗ of the state of the complete test graph or test case
∗)
--

def print info (p1, p3, p5:raw, p2, p4, p6: natural)
: action =

printf (" and ") fby
print (p1) fby printf (" = ") fby print (p2) fby
printf (" and ") fby
print (p3) fby printf (" = ") fby print (p4) fby
printf (" and ") fby

183

184 Chapter C. XTL Scripts Extracting Synchronous Test Scenarios

print (p5) fby printf (" = ") fby print (p6)

end def
--

(∗ extraction of the names of the three inputs ∗)
let (iv1, iv2, iv3: raw) =

for in e: edge where in e −> [INPUTS ?iv1:raw ?iv2:raw ?iv3:raw]

apply (replace, replace, replace)
from (null, null, null)
to (iv1, iv2, iv3)

end for
in
(∗ extraction of the initial values ∗)
let (in1, in2, in3: natural) =

for init e: edge
where init e −> [INITIAL VALUES ?in1:natural ?in2:natural ?in3:natural]

apply (replace, replace, replace)
from (0, 0, 0)

to (in1, in2, in3)

end for
in
--

printf ("node input constraints () returns (s, ") fby
print (iv1) fby printf (", ") fby
print (iv2) fby printf (", ") fby
print (iv3) fby printf (": int) =\n") fby

(∗ initialisation ∗)
print (iv1) fby printf (" = ") fby print (in1) fby printf (" and ") fby
print (iv2) fby printf (" = ") fby print (in2) fby printf (" and ") fby
print (iv3) fby printf (" = ") fby print (in3) fby
printf (" and s = 0 fby\n") fby

(∗ main reactive loop ∗)
printf ("loop {\n") fby
printf (" | pre s = -1 and ") fby
print (iv1) fby printf (" = ") fby print (in1) fby printf (" and ") fby
print (iv2) fby printf (" = ") fby print (in2) fby printf (" and ") fby
print (iv3) fby printf (" = ") fby print (in3) fby
printf (" and s = 0\n") fby
<| fby on e:edge |> (

printf (" | pre s = ") fby
print (source (e)) fby
if (e −> [INPUTS ?p1:raw ?p2:natural ?p3:raw

?p4:natural ?p5:raw ?p6: natural]) then
(∗ car movement; obstacles do not move ∗)

C.2. The Generation of Oracles (extract oracle) 185

print info (p1, p3, p5, p2, p4, p6)

else
(∗ output or verdict transition: keep inputs unchanged ∗)
printf (" and ") fby
print (iv1) fby printf (" = pre ") fby print (iv1) fby
printf (" and ") fby
print (iv2) fby printf (" = pre ") fby print (iv2) fby
printf (" and ") fby
print (iv3) fby printf (" = pre ") fby print (iv3)

end if fby
(∗ change s to the target state ∗)
printf (" and s = ") fby
if e −> [INCONCLUSIVE] or e −> [PASS] then
printf ("-1")

else
print (target (e))

end if fby
printf ("\n")

) fby
printf ("}\n")

end let
end let

C.2 The Generation of Oracles (extract oracle)

We define here the XTL script extract oracle generating the oracles, by encoding CTGC

as a deterministic node in Lustre, which, to each corner state and its set of inputs/outputs,
associates a Boolean verdict, indicating whether the outputs are the expected ones and also
defined for the verdict states coverage of CTGC .

--

(∗ a corner state is the target of an input transition and the source of an
∗ output transition ∗)

def corner state (s: state): boolean =

exists e:edge among in (s) in e −> [INPUTS ...] end exists and
exists e:edge among out (s) in e −> [OUTPUTS ...] end exists

end def
--

def print corner (soutput: state,
iv1, iv2, iv3, ov1, ov2: raw,

p1, p2, p3, o1, o2: natural): action =

printf (" (s = ") fby
print (soutput) fby printf (" and\n ") fby

186 Chapter C. XTL Scripts Extracting Synchronous Test Scenarios

print (iv1) fby printf (" = ") fby print (p1) fby printf (" and ") fby
print (iv2) fby printf (" = ") fby print (p2) fby printf (" and ") fby
print (iv3) fby printf (" = ") fby print (p3) fby printf (" and ") fby
print (ov1) fby printf (" = ") fby print (o1) fby printf (" and ") fby
print (ov2) fby printf (" = ") fby print (o2) fby printf (")\n or")

end def
--

macro verdict edge (e) =

(((e) −> [INCONCLUSIVE]) or ((e) −> [PASS]))

end macro

def verdict state (s: state): boolean =

exists e:edge among out (s) in verdict edge (e) end exists and
forall e:edge among out (s) in verdict edge (e) end forall

end def

def nb verdicts (s: state): natural =

<| + on e: edge among out (s) where verdict edge (e) |> 1

end def
--

def print inconclusive (n: natural, iv1, iv2, iv3: raw): action =

if n > 1 then
printf (" or\n")

else
nop

end if fby
printf (" ") fby
print (iv1) fby printf (" = pre ") fby print (iv1) fby printf (" and ") fby
print (iv2) fby printf (" = pre ") fby print (iv2) fby printf (" and ") fby
print (iv3) fby printf (" = pre ") fby print (iv3)

end def

def print pass (n: natural): action =

if n > 1 then
printf (" or\n")

else
nop

end if fby
printf (" true")

end def
--

(∗ extraction of the names of the three inputs ∗)
let (iv1, iv2, iv3: raw) =

for in e: edge where in e −> [INPUTS ?iv1:raw ?iv2:raw ?iv3:raw]

apply (replace, replace, replace)

C.2. The Generation of Oracles (extract oracle) 187

from (null, null, null)
to (iv1, iv2, iv3)

end for
in
(∗ extraction of the names of the two outputs ∗)
let (ov1, ov2: raw) =

for out e: edge where out e −> [OUTPUTS ?ov1:raw ?ov2:raw]

apply (replace, replace)
from (null, null)
to (ov1, ov2)

end for
in
(∗ extraction of the initial values ∗)
let (in1, in2, in3: natural) =

for init e: edge
where init e −> [INITIAL VALUES ?in1:natural ?in2:natural ?in3:natural]

apply (replace, replace, replace)
from (0, 0, 0)

to (in1, in2, in3)

end for
in
(∗ extraction of the already sent values ∗)
let (already1, already2: natural) =

for init e: edge
where init e −> [ALREADY SENT ?already1:natural ?already2:natural]

apply (replace, replace)
from (0, 0)

to (already1, already2)

end for
in
--

printf ("node oracle (s, ") fby
print (iv1) fby printf (", ") fby
print (iv2) fby printf (", ") fby
print (iv3) fby printf (", ") fby
print (ov1) fby printf (", ") fby
print (ov2) fby printf (": int)\n") fby
printf ("returns (res, pass, inconclusive") fby
(∗ output profile containing all states ∗)
<| fby on s:state |> (

if ((mod (number (s), 9) = 0) and (number (s) > 0)) then
printf (",\n s")

else printf (", s")

end if fby
print (s)

188 Chapter C. XTL Scripts Extracting Synchronous Test Scenarios

) fby
printf (", states covered: bool);\n") fby

(∗ comment containing the list of corner states ∗)
printf (" (* corner states:") fby
<| fby on s:state where corner state (s) |> (

printf (" ") fby
print (s)

) fby
printf (" *)\n") fby

(∗ comment containing the list of verdict states ∗)
printf (" (* verdict states:") fby
<| fby on s:state where verdict state (s) |> (

printf (" ") fby
print (s)

) fby
printf (" *)\n") fby
printf ("let\n res = true −> (\n ") fby

(∗ rules for corner states ∗)
<| fby on s:state where corner state (s) |>
(∗ for each corner state s, iterate over pairs of an input and the output ∗)
(∗ transition ∗)
let (a: action, i1, i2, i3: natural) =

for in e: edge among in (s), out e: edge among out (s)

in (a: action, a i1, a i2, a i3: natural)
where in e −> [INPUTS ...] and out e −> [OUTPUTS ...]
apply (fby, replace, replace, replace)
from (nop, 0, 0, 0)

to
if in e −> [INPUTS ?i1:natural ?i2:natural ?i3:natural] then
if (i1 = a i1) and (i2 = a i2) and (i3 = a i3) then
(∗ already handled combination of inputs : skip ∗)
(nop, i1, i2, i3)

else if out e −> [OUTPUTS ?o1:natural ?o2:natural] then
(print corner (s, iv1, iv2, iv3, ov1, ov2, i1, i2, i3, o1, o2),

i1, i2, i3)

else (∗ never reached ∗)
(nop, a i1, a i2, a i3)

end if
else (∗ never reached ∗)
(nop, a i1, a i2, a i3)

end if
end for

C.2. The Generation of Oracles (extract oracle) 189

in
use i1, i2, i3 in
a

end use
end let fby

(∗ rules for verdict states ∗)
<| fby on s:state where verdict state (s) |> (

printf (" (s = ") fby
print (s) fby
printf (" and \n") fby
let (a: action, n: natural) =

for e: edge among out (s) in (a: action, n: natural) where verdict edge (e)

apply (fby, +) from (nop, 0) to
(

if e −> [INCONCLUSIVE] then
print inconclusive (n, iv1, iv2, iv3)

else (∗ e −> [PASS] ∗)
print pass (n)

end if,
nb verdicts (s)

)

end for
in
use n in
a

end use
end let fby
printf (")\n or")

) fby

(∗ initial state ∗)
printf (" (s = 0 and") fby printf ("\n ") fby
print (iv1) fby printf (" = ") fby print (in1) fby printf (" and ") fby
print (iv2) fby printf (" = ") fby print (in2) fby printf (" and ") fby
print (iv3) fby printf (" = ") fby print (in3) fby printf (")\n or") fby

(∗ default case: no change ∗)
printf ("\n (") fby
print (iv1) fby printf (" = pre ") fby print (iv1) fby printf (" and ") fby
print (iv2) fby printf (" = pre ") fby print (iv2) fby printf (" and ") fby
print (iv3) fby printf (" = pre ") fby print (iv3) fby printf (" and ") fby
print (ov1) fby printf (" = ") fby print (already1) fby printf (" and ") fby
print (ov2) fby printf (" = ") fby print (already2) fby printf (")\n") fby
printf (");\n") fby

190 Chapter C. XTL Scripts Extracting Synchronous Test Scenarios

(∗ pass verdict coverage ∗)
printf (" pass = false −>\n") fby
<| fby on s:state where

exists e:edge among out (s) in
(e −> [PASS]) and (target (e) = s)

end exists
|> (

printf (" if s = ") fby
print (s) fby
printf (" then\n") fby
printf (" true\n") fby
printf (" else\n") fby
printf (" pre pass;\n")

) fby

(∗ inconclusive verdict coverage ∗)
printf (" inconclusive = false −>\n") fby
<| fby on s:state where

exists e:edge among out (s) in
(e −> [INCONCLUSIVE]) and (target (e) = s)

end exists
|> (

printf (" if s = ") fby
print (s) fby
printf (" then\n") fby
printf (" true\n") fby
printf (" else\n") fby
printf (" pre inconclusive;\n")

) fby

(∗ all states coverage ∗)
<| fby on s:state |> (

printf (" s") fby
print (s) fby
printf (" = false −> if s = ") fby
print (s) fby
printf (" then true else pre s") fby
print (s) fby
printf (";\n")

) fby
printf (" states covered = false −> ") fby
<| fby on s:state |> (

if ((mod (number (s), 6) = 0) and (number (s) > 0)) then
printf ("\n s")

C.2. The Generation of Oracles (extract oracle) 191

else printf ("s")

end if fby
print (s) fby
printf (" and ")

) fby
printf ("true;\n") fby

printf ("tel\n")

end let
end let
end let
end let

192 Chapter C. XTL Scripts Extracting Synchronous Test Scenarios

Bibliography

[AFV01] Luca Aceto, Wan Fokkink, and Chris Verhoef. Structural operational se-
mantics. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of
Process Algebra, chapter 3, pages 197–292. North-Holland, 2001.

[AQR+04] Tony Andrews, Shaz Qadeer, Sriram K. Rajamani, Jakob Rehof, and Yichen
Xie. Zing: A model checker for concurrent software. In Rajeev Alur and
Doron A. Peled, editors, Proceedings of the 16th Conference on Computer-
Aided Verification (CAV’04), Boston, MA, USA, volume 3114 of Lecture
Notes in Computer Science, pages 484–487. Springer, July 2004.

[BB88] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO Specifica-
tion Language LOTOS. Computer Networks and ISDN Systems, 14(1):25–59,
January 1988.

[BDJM05] Damien Bergamini, Nicolas Descoubes, Christophe Joubert, and Radu Ma-
teescu. Bisimulator: A modular tool for on-the-fly equivalence checking. In
Nicolas Halbwachs and Lenore Zuck, editors, Proceedings of the 11th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’05), Edinburgh, Scotland, UK, volume 3440 of Lecture
Notes in Computer Science, pages 581–585. Springer, April 2005.

[BDL+01] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, Oliver Möller,
Paul Pettersson, and Wang Yi. Uppaal: Present and Future. In Proceed-
ings of the 40th IEEE Conference on Decision and Control. IEEE Computer
Society Press, 2001.

[Bel10] Axel Belinfante. JTorX: A Tool for On-line Model-driven Test Derivation and
Execution. In Javier Esparza and Rupak Majumdar, editors, Proceedings of
the 16th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’10), Paphos, Cyprus, volume 6015 of
Lecture Notes in Computer Science, pages 266–270. Springer, 2010.

[Bel14] Axel Belinfante. JTorX: Exploring Model-Based Testing. PhD thesis, Univer-
sity of Twente, September 2014.

193

194 BIBLIOGRAPHY

[Ber89] Gérard Berry. Real time programming: Special purpose or general purpose
languages. In IFIP Congress, pages 11–17, January 1989.

[Ber07] Gérard Berry. SCADE: Synchronous design and validation of embedded con-
trol software. In Next Generation Design and Verification Methodologies for
Distributed Embedded Control Systems, pages 19–33. Springer, 2007.

[BFS05] Axel Belinfante, Lars Frantzen, and Christian Schallhart. 14 Tools for Test
Case Generation. In Broy et al. [BJK+05], pages 391–438.

[BG92] Gérard Berry and Georges Gonthier. The esterel synchronous programming
language: Design, semantics, implementation. Sci. Comput. Program., 19:87–
152, 1992.

[BGJ91] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Synchronous
programming with events and relations: the SIGNAL language and its se-
mantics. Sci. Comput. Program., 16(2):103–149, 1991.

[BGM91] Gilles Bernot, Marie-Claude Gaudel, and Bruno Marre. Software testing based
on formal specifications: a theory and a tool. Software Engineering Journal,
6(6):87–405, November 1991.

[Bha14] Puneet Bhateja. A TGV-like Approach for Asynchronous Testing. In Proceed-
ings of the 7th India Software Engineering Conference (ISEC’14), Chennai,
India, pages 13:1–13:6. ACM, February 2014.

[Bha17] Puneet Bhateja. Asynchronous testing of real-time systems. In Mohamed
Mosbah and Michaël Rusinowitch, editors, Proceedings of the 8th Interna-
tional Symposium on Symbolic Computation in Software Science (SCSS 2017),
Gammarth, Tunisia, volume 45 of EPiC Series in Computing, pages 42–48.
EasyChair, April 2017.

[BHH+06] Eckard Böde, Marc Herbstritt, Holger Hermanns, Sven Johr, Thomas
Peikenkamp, Reza Pulungan, Ralf Wimmer, and Bernd Becker. Compo-
sitional Performability Evaluation for Statemate. In Proceedings of the
3rd International Conference on the Quantitative Evaluation of Systems
(QUEST’06), Riverside, California, USA, pages 167–178. IEEE Computer
Society Press, September 2006.

[BHR84] Stephen D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A Theory of Com-
municating Sequential Processes. Journal of the ACM, 31(3):560–599, July
1984.

[BJK+05] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and
Alexander Pretschner, editors. Model-Based Testing of Reactive Systems, vol-
ume 3472 of Lecture Notes in Computer Science. Springer, 2005.

BIBLIOGRAPHY 195

[BK85] Jan A. Bergstra and Jan Willem Klop. Algebra of communicating processes
with abstractions. Theor. Comput. Sci., 37:77–121, 1985.

[BK11] Dirk Beyer and M. Erkan Keremoglu. Cpachecker: A tool for configurable
software verification. In Ganesh Gopalakrishnan and Shaz Qadeer, editors,
Proceedings of the 23rd International Conference on Computer Aided Ver-
ification (CAV’11), Snowbird, UT, USA, volume 6806 of Lecture Notes in
Computer Science, pages 184–190. Springer, July 2011.

[BLL+95] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson,
and Wang Yi. UPPAAL - a tool suite for automatic verification of real-time
systems. In Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag,
editors, Proceedings of the DIMACS/SYCON Workshop on Verification and
Control of Hybrid Systems, New Brunswick, NJ, USA, volume 1066 of Lecture
Notes in Computer Science, pages 232–243. Springer, oct 1995.

[BMMW18] Josip Bozic, Lina Marsso, Radu Mateescu, and Franz Wotawa. A formal
TLS handshake model in LNT. In Holger Hermanns and Peter Höfner, edi-
tors, Proceedings of the 3nd Workshop on Models for Formal Analysis of Real
Systems (MARS’18), Thessaloniki, Greece, volume 268, April 2018.

[Bou98] Amar Bouali. Xeve, an ESTEREL verification environment. In Alan J. Hu
and Moshe Y. Vardi, editors, Proceedings of the 10th International Conference
on Computer Aided Verification (CAV’98), Vancouver, BC, Canada, volume
1427 of lncs, pages 500–504. Springer, July 1998.

[BR01] Thomas Ball and Sriram K. Rajamani. The SLAM toolkit. In Gérard Berry,
Hubert Comon, and Alain Finkel, editors, Proceedings of the 13th Conference
on Computer-Aided Verification (CAV’01), Paris, France, volume 2102 of
Lecture Notes in Computer Science, pages 260–264. Springer, July 2001.

[BSY17] Frank P. Burns, Danil Sokolov, and Alex Yakovlev. A Structured Visual
Approach to GALS Modeling and Verification of Communication Circuits.
IEEE Trans. on CAD of Integrated Circuits and Systems, 36(6):938–951, June
2017.

[CCG+19] David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte, Chris-
tine McKinty, Vincent Powazny, Frédéric Lang, Wendelin Serwe, and Gideon
Smeding. Reference Manual of the LNT to LOTOS Translator (Version 6.8).
INRIA, Grenoble, France, January 2019.

[CGK+12] Sylvain Conchon, Amit Goel, Sava Krstic, Alain Mebsout, and Fatiha Zäıdi.
Cubicle: A parallel smt-based model checker for parameterized systems - tool
paper. In P. Madhusudan and Sanjit A. Seshia, editors, Proceedings of the 24th
International Conference on Computer Aided Verification (CAV’12), Berke-
ley, CA, USA, volume 7358 of lncs, pages 718–724. Springer, July 2012.

196 BIBLIOGRAPHY

[CGK+13] Sjoerd Cranen, Jan Friso Groote, Jeroen J. A. Keiren, Frank P. M. Stappers,
Erik P. de Vink, Wieger Wesselink, and Tim A. C. Willemse. An Overview of
the mCRL2 Toolset and Its Recent Advances. In Nir Piterman and Scott A.
Smolka, editors, Proceedings of the 19th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’13),
Rome, Italy, volume 7795 of Lecture Notes in Computer Science, pages 199–
213. Springer, 2013.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking.
MIT Press, 2001.

[Cha84] Daniel Marcos Chapiro. Globally-Asynchronous Locally-Synchronous Systems.
Doctoral thesis, Stanford University, Department of Computer Science, Oc-
tober 1984.

[CJRZ02] Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. STG: A
symbolic test generation tool. In Joost-Pieter Katoen and Perdita Stevens,
editors, Proceedings of the 8th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’02), Grenoble,
France, volume 2280 of Lecture Notes in Computer Science, pages 470–475.
Springer, April 2002.

[CMST16] Adrien Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli.
The kind 2 model checker. In Swarat Chaudhuri and Azadeh Farzan, editors,
Proceedings of the 28th International Conference on Computer Aided Verifi-
cation (CAV’16), Toronto, ON, Canada, volume 9780 of lncs, pages 510–517.
Springer, July 2016.

[CPS89] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The Concurrency
Workbench. In Joseph Sifakis, editor, Proceedings of the 1st Workshop on
Automatic Verification Methods for Finite State Systems, Grenoble, France,
volume 407 of Lecture Notes in Computer Science, pages 24–37. Springer,
June 1989.

[CPS93] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The Concurrency
Workbench: A Semantics-Based Tool for the Verification of Concurrent Sys-
tems. ACM Transactions on Programming Languages and Systems, 15(1):36–
72, 1993.

[Dav85] Donald W. Davies. A Message Authenticator Algorithm Suitable for a Main-
frame Computer. In G. R. Blakley and David Chaum, editors, Advances in
Cryptology – Proceedings of the Workshop on the Theory and Application of
Cryptographic Techniques (CRYPTO’84), Santa Barbara, CA, USA, volume
196 of Lecture Notes in Computer Science, pages 393–400. Springer, August
1985.

BIBLIOGRAPHY 197

[dBORZ99] Lydie du Bousquet, Farid Ouabdesselam, Jean-Luc Richier, and Nicolas
Zuanon. Lutess: A Specification-Driven Testing Environment for Synchronous
Software. In Proceedings of the 1999 International Conference on Software
Engineering (ICSE’99) Los Angeles, CA, USA, pages 267–276. ACM, May
1999.

[DC88] Donald W. Davies and David O. Clayden. The Message Authenticator Algo-
rithm (MAA) and its Implementation. NPL Report DITC 109/88, National
Physical Laboratory, Teddington, Middlesex, UK, February 1988.

[DMK+06] Frederic Doucet, Massimiliano Menarini, Ingolf H. Krüger, Rajesh K. Gupta,
and Jean-Pierre Talpin. A Verification Approach for GALS Integration of
Synchronous Components. Electronic Notes in Theoretical Computer Science,
146(2):105–131, 2006.

[dMOR+04] Leonardo Mendonça de Moura, Sam Owre, Harald Rueß, John M. Rushby,
Natarajan Shankar, Maria Sorea, and Ashish Tiwari. SAL 2. In Rajeev Alur
and Doron A. Peled, editors, Proceedings of the 16th International Conference
on Computer Aided Verification (CAV’04), Boston, MA, USA, volume 3114
of lncs, pages 496–500. Springer, July 2004.

[DR06] Tim Dierks and Eric Rescorla. The transport layer security (TLS) protocol
version 1.1. RFC, 4346:1–87, 2006.

[DRB+09] Francisco Durán, Manuel Roldán, Emilie Balland, Mark van den Brand,
Steven Eker, Karl Trygve Kalleberg, Lennart C. L. Kats, Pierre-Etienne
Moreau, Ruslan Schevchenko, and Eelco Visser. The Second Rewrite Engines
Competition. Electronic Notes in Theoretical Computer Science, 238(3):281–
291, 2009.

[DRB+10] Francisco Durán, Manuel Roldán, Jean-Christophe Bach, Emilie Balland,
Mark van den Brand, James R. Cordy, Steven Eker, Luc Engelen, Maartje
de Jonge, Karl Trygve Kalleberg, Lennart C. L. Kats, Pierre-Etienne Moreau,
and Eelco Visser. The Third Rewrite Engines Competition. In Peter Csaba
Ölveczky, editor, Proceedings of the 8th International Workshop on Rewrit-
ing Logic and Its Applications (WRLA’10), Paphos, Cyprus, volume 6381 of
Lecture Notes in Computer Science, pages 243–261. Springer, 2010.

[dT01] René G. de Vries and Jan Tretmans. Towards formal test purposes. In Formal
Approaches to Testing of Software (FATES’01), pages 61–76. BRICS Notes
Series, 2001.

[Eco18] Why uber’s self-driving car killed a pedestrian. The Economist, May 2018.

[FFJ+12] Yliès Falcone, Jean-Claude Fernandez, Thierry Jéron, Hervé Marchand, and
Laurent Mounier. More testable properties. International Journal on Software
Tools for Technology Transfer (STTT), 14(4):407–437, August 2012.

198 BIBLIOGRAPHY

[FGK+96] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu,
Laurent Mounier, and Mihaela Sighireanu. CADP (CÆSAR/ALDEBARAN
Development Package): A Protocol Validation and Verification Toolbox. In
Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of the 8th Con-
ference on Computer-Aided Verification (CAV’96), New Brunswick, New Jer-
sey, USA, volume 1102 of Lecture Notes in Computer Science, pages 437–440.
Springer, August 1996.

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of
regular programs. Journal of Computer and System Sciences, 18(2):194–211,
September 1979.

[FM91] Jean-Claude Fernandez and Laurent Mounier. “On the Fly” Verification of Be-
havioural Equivalences and Preorders. In Kim G. Larsen and A. Skou, editors,
Proceedings of the 3rd Workshop on Computer-Aided Verification (CAV’91),
Aalborg, Denmark, volume 575 of Lecture Notes in Computer Science, pages
181–191. Springer, July 1991.

[FW88] Phyllis G. Frankl and Elaine J. Weyuker. An applicable family of data flow
testing criteria. IEEE Trans. Software Eng., 14(10):1483–1498, 1988.

[GABR14] Thomas Gibson-Robinson, Philip J. Armstrong, Alexandre Boulgakov, and
A. W. Roscoe. FDR3 – A Modern Refinement Checker for CSP. In Erika
Ábrahám and Klaus Havelund, editors, Proceedings of the 20th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’14), Grenoble, France, volume 8413 of Lecture Notes in
Computer Science, pages 187–201. Springer, 2014.

[Gar89] Hubert Garavel. Compilation of LOTOS Abstract Data Types. In Son T.
Vuong, editor, Proceedings of the 2nd International Conference on Formal
Description Techniques FORTE’89 (Vancouver B.C., Canada), pages 147–
162. North-Holland, December 1989.

[Gar91] Hubert Garavel. Binary coded graphs: Definition of the bcg format. Rap-
port SPECTRE C28, Laboratoire de Génie Informatique – Institut IMAG,
Grenoble, January 1991.

[Gar98] Hubert Garavel. OPEN/CÆSAR: An Open Software Architecture for Verifi-
cation, Simulation, and Testing. In Bernhard Steffen, editor, Proceedings of
the 4th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’98), Lisbon, Portugal, volume 1384 of
Lecture Notes in Computer Science, pages 68–84. Springer, March 1998. Full
version available as INRIA Research Report RR-3352.

[Gar15] Hubert Garavel. Revisiting Sequential Composition in Process Calculi. Jour-
nal of Logical and Algebraic Methods in Programming, 84(6):742–762, Novem-
ber 2015.

BIBLIOGRAPHY 199

[Gau95] Marie-Claude Gaudel. Testing can be formal, too. In Peter D. Mosses, Mo-
gens Nielsen, and Michael I. Schwartzbach, editors, Proceedings of the 6th
join International Conference Joint Conference CAAP/FASE on Theory and
Practice of Software Development (TAPSOFT’95), Aarhus, Denmark, volume
915 of Lecture Notes in Computer Science, pages 82–96. Springer, May 1995.

[GBHG14] Alexander Graf-Brill, Holger Hermanns, and Hubert Garavel. A Model-based
Certification Framework for the EnergyBus Standard. In Erika Abraham
and Catuscia Palamidessi, editors, Proceedings of the 34th IFIP International
Conference on Formal Techniques for Distributed Objects, Components and
Systems (FORTE’15), Berlin, Germany, volume 8461 of Lecture Notes in
Computer Science, pages 84–99. Springer, June 2014.

[GG13] Hubert Garavel and Susanne Graf. Formal Methods for Safe and Secure
Computers Systems. BSI Study 875, Bundesamt für Sicherheit in der Infor-
mationstechnik, Bonn, Germany, December 2013.

[GH17] Alexander Graf-Brill and Holger Hermanns. Model-Based Testing for Asyn-
chronous Systems. In Laure Petrucci, Cristina Seceleanu, and Ana Caval-
canti, editors, Critical Systems: Formal Methods and Automated Verification
— Proceedings of the Joint 22nd International Workshop on Formal Methods
for Industrial Critical Systems and the 17th International Workshop on Au-
tomated Verification of Critical Systems (FMICS-AVoCS 2017), Turin, Italy,
volume 10471 of Lecture Notes in Computer Science, pages 66–82. Springer,
September 2017.

[GL88] Renaud Guillemot and Luigi Logrippo. Derivation of useful execution trees
from lotos specifications by using an interpreter. In Kenneth J. Turner, ed-
itor, Proceedings of the 1st International Conference on Formal Description
Techniques FORTE’88 (Stirling, Scotland), pages 311–327. North-Holland,
September 1988.

[GL01] Hubert Garavel and Frédéric Lang. SVL: a Scripting Language for Composi-
tional Verification. In Myungchul Kim, Byoungmoon Chin, Sungwon Kang,
and Danhyung Lee, editors, Proceedings of the 21st IFIP WG 6.1 Interna-
tional Conference on Formal Techniques for Networked and Distributed Sys-
tems (FORTE’01), Cheju Island, Korea, pages 377–392. Kluwer Academic
Publishers, August 2001. Full version available as INRIA Research Re-
port RR-4223.

[GLMS13] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP
2011: A Toolbox for the Construction and Analysis of Distributed Processes.
Springer International Journal on Software Tools for Technology Transfer
(STTT), 15(2):89–107, April 2013.

200 BIBLIOGRAPHY

[GLS17] Hubert Garavel, Frédéric Lang, and Wendelin Serwe. From LOTOS to LNT.
In Joost-Pieter Katoen, Rom Langerak, and Arend Rensink, editors,ModelEd,
TestEd, TrustEd – Essays Dedicated to Ed Brinksma on the Occasion of His
60th Birthday, volume 10500 of Lecture Notes in Computer Science, pages
3–26. Springer, October 2017.

[GM17] Hubert Garavel and Lina Marsso. A Large Term Rewrite System Modelling a
Pioneering Cryptographic Algorithm. In Holger Hermanns and Peter Höfner,
editors, Proceedings of the 2nd Workshop on Models for Formal Analysis of
Real Systems (MARS’17), Uppsala, Sweden, volume 244 of Electronic Pro-
ceedings in Theoretical Computer Science, pages 129–183, April 2017.

[GM18] Hubert Garavel and Lina Marsso. Comparative Study of Eight Formal Spec-
ifications of the Message Authenticator Algorithm. In Holger Hermanns and
Peter Höfner, editors, Proceedings of the 3nd Workshop on Models for For-
mal Analysis of Real Systems (MARS’18), Thessaloniki, Greece, volume 268,
April 2018.

[GMM12] Henning Günther, Stefan Milius, and Oliver Möller. On the formal verifica-
tion of systems of synchronous software components. In Proceedings of the
31st International Conference on Computer Safety, Reliability, and Security
(SAFECOMP’12), Magdeburg, Germany, volume 7612 of Lecture Notes in
Computer Science, pages 291–304. Springer, September 2012.

[GMR+06] Jan Friso Groote, Aad Mathijssen, Michel A. Reniers, Yaroslav S. Usenko,
and Muck van Weerdenburg. The Formal Specification Language mCRL2.
In Ed Brinksma, David Harel, Angelika Mader, Perdita Stevens, and Roel
Wieringa, editors, Methods for Modelling Software Systems, volume 06351 of
Dagstuhl Seminar Proceedings. Schloss Dagstuhl, Germany, 2006.

[Gol88] Ursula Goltz. On Representing CCS Programs by Finite Petri Nets. In Michal
Chytil, Ladislav Janiga, and Václav Koubek, editors, Proceedings of the 13th
Symposium on Mathematical Foundations of Computer Science (MFCS’88),
Carlsbad, Czechoslovakia, volume 324 of Lecture Notes in Computer Science,
pages 339–350. Springer, 1988.

[GR84] Ursula Goltz and Wolfgang Reisig. CSP-Programs with Individual Tokens.
In Grzegorz Rozenberg, Hartmann J. Genrich, and Gérard Roucairol, editors,
Proceedings of the 1983 and 1984 European Workshop on Applications and
Theory in Petri Nets (APN’84), Toulouse, France and Aarhus, Denmark,
volume 188 of Lecture Notes in Computer Science, pages 169–196. Springer,
1984.

[GS17] Hubert Garavel and Wendelin Serwe. The Unheralded Value of the Multiway
Rendezvous: Illustration with the Production Cell Benchmark. In Holger
Hermanns and Peter Höfner, editors, Proceedings of the 2nd Workshop on

BIBLIOGRAPHY 201

Models for Formal Analysis of Real Systems (MARS’17), Uppsala, Sweden,
volume 244 of Electronic Proceedings in Theoretical Computer Science, pages
230–270, April 2017.

[GT09] Hubert Garavel and Damien Thivolle. Verification of GALS Systems by Com-
bining Synchronous Languages and Process Calculi. In Corina Pasareanu, edi-
tor, Proceedings of the 16th International SPIN Workshop on Model Checking
of Software (SPIN’09), Grenoble, France, volume 5578 of Lecture Notes in
Computer Science, pages 241–260. Springer, June 2009.

[GTL03] Paul Le Guernic, Jean-Pierre Talpin, and Jean-Christophe Le Lann. POLY-
CHRONY for system design. Journal of Circuits, Systems, and Computers,
12(3):261–304, 2003.

[GVZ00] Hubert Garavel, César Viho, and Massimo Zendri. System design of a cc-numa
multiprocessor architecture using formal specification, model-checking, co-
simulation, and test generation. Research Report RR-4041, INRIA, November
2000.

[Hal93] Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Kluwer
Academic Publishers, 1993.

[Hal98] Nicolas Halbwachs. Synchronous programming of reactive systems. In Alan J.
Hu and Moshe Y. Vardi, editors, Proceedings of the 10th International Con-
ference on Computer Aided Verification (CAV’98), Vancouver, BC, Canada,
volume 1427 of Lecture Notes in Computer Science, pages 1–16. Springer, July
1998.

[HB02] Nicolas Halbwachs and Siwar Baghdadi. Synchronous Modelling of Asyn-
chronous Systems. In Proceedings of the 2nd International Conference on
Embedded Software (EMSOFT’02), Grenoble, France, volume 2491, pages
240–251. Springer, October 2002.

[HCRP91] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The
synchronous dataflow programming language Lustre. Proceedings of the
IEEE, 79(9):1305–1320, September 1991.

[HKNP06] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. Prism: A tool for
automatic verification of probabilistic systems. In H. Hermanns and J. Pals-
berg, editors, 12th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’06), volume 3920 of Lecture
Notes in Computer Science, pages 441–444. Springer, March 2006.

[HM06] Nicolas Halbwachs and Louis Mandel. Simulation and verification of asyn-
chronous systems by means of a synchronous model. In Proceedings of the 6st
International Conference on Application of Concurrency to System Design
(ACSD’06), Turku, Finland, pages 3–14. IEEE Computer Society, June 2006.

202 BIBLIOGRAPHY

[HN04] Alan Hartman and Kenneth Nagin. The AGEDIS tools for model based test-
ing. In George S. Avrunin and Gregg Rothermel, editors, Proceedings of the
6st InternationalSymposium on Software Testing and Analysis (ISSTA’04),
Boston, Massachusetts, USA, pages 129–132. ACM, July 2004.

[Hoa78] C. A. R. Hoare. Communicating Sequential Processes. Communications of
the ACM, 21(8):666–677, August 1978.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Hol97] Gerard J. Holzmann. State compression in spin: Recursive indexing and
compression training runs. In Proceedings of SPIN97 the 3rd SPIN Workshop
(Twente University, Enschede, The Netherlands), April 1997.

[Hol03] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Man-
ual. Addison-Wesley, 2003.

[HP06] Anders Hessel and Paul Pettersson. Model-Based Testing of a WAP Gate-
way: An Industrial Case-Study. In Lubos Brim, Boudewijn R. Haverkort,
Martin Leucker, and Jaco van de Pol, editors, Formal Methods: Applications
and Technology, Revised Selected Papers of the 11th International Workshop
on Formal Methods for Industrial Critical Systems (FMICS) and the 5th In-
ternational Workshop on Parallel and Distributed Model Checking (PDMC),
Bonn, Germany, volume 4346 of Lecture Notes in Computer Science, pages
116–131. Springer, August 2006.

[IET18] IETF. The transport layer security (tls) protocol version 1.4 draft-ietf-tls-
tls13-24, February 2018.

[ISO86] ISO. Requirements for Message Authentication (Wholesale). International
Standard 8730, International Organization for Standardization – Banking,
Geneva, November 1986.

[ISO87] ISO. Approved Algorithms for Message Authentication – Part 1: Data En-
cryption Algorithm (DEA). International Standard 8731-1, International Or-
ganization for Standardization – Banking, Geneva, May 1987.

[ISO89] ISO/IEC. LOTOS – A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, Interna-
tional Organization for Standardization – Information Processing Systems –
Open Systems Interconnection, Geneva, September 1989.

[ISO90] ISO. Requirements for Message Authentication (Wholesale). International
Standard 8730, International Organization for Standardization – Banking,
Geneva, May 1990.

BIBLIOGRAPHY 203

[ISO92] ISO. Approved Algorithms for Message Authentication – Part 2: Message
Authenticator Algorithm. International Standard 8731-2, International Or-
ganization for Standardization – Banking, Geneva, September 1992.

[Jeb16] Fatma Jebali. Formal Framework for Modelling and Verifying Globally Asyn-
chronous Locally Synchronous Systems. PhD thesis, Grenoble Alpes Univer-
sity, France, September 2016.

[JHR13] Erwan Jahier, Nicolas Halbwachs, and Pascal Raymond. Engineering func-
tional requirements of reactive systems using synchronous languages. 8th
IEEE International Symposium on Industrial Embedded Systems, 8:140–149,
2013.

[JJ05] Claude Jard and Thierry Jéron. Tgv: Theory, principles and algorithms
– a tool for the automatic synthesis of conformance test cases for non-
deterministic reactive systems. Springer International Journal on Software
Tools for Technology Transfer (STTT), 7(4):297–315, August 2005.

[JLM16] Fatma Jebali, Frédéric Lang, and Radu Mateescu. Formal Modelling and
Verification of GALS systems using GRL and CADP. Formal Aspects of
Computing, 28(5):767–804, 2016.

[JRB06] Erwan Jahier, Pascal Raymond, and Philippe Baufreton. Case studies with
Lurette V2. International Journal on Software Tools for Technology Transfer,
8(6):517–530, September 2006.

[JRH19] Erwan Jahier, Pascal Raymond, and Nicolas Halbwachs. Reference Manual
of the Lustre Manual (Version 6.101). Lustre manual, August 2019.

[KLN+15] Jin Hyun Kim, Kim G. Larsen, Brian Nielsen, Marius Mikucionis, and Petur
Olsen. Formal Analysis and Testing of Real-Time Automotive Systems Using
UPPAAL Tools. In Manuel Núñez and Matthias Güdemann, editors, Pro-
ceedings of the 20th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS 2015), Oslo, Norway, volume 9128 of Lecture Notes
in Computer Science, pages 47–61. Springer, June 2015.

[Koz83] Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput.
Sci., 27:333–354, 1983.

[KS15] Abderahman Kriouile and Wendelin Serwe. Using a Formal Model to Improve
Verification of a Cache-Coherent System-on-Chip. In Christel Baier and Ce-
sare Tinelli, editors, Proceedings of the 21st International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’15),
London, United Kingdom, volume 9035 of Lecture Notes in Computer Science,
pages 708–722. Springer, 2015.

[KTK09] Masaya Kadono, Tatsuhiro Tsuchiya, and Tohru Kikuno. Using the nusmv
model checker for test generation from statecharts. In Proceedings of the

204 BIBLIOGRAPHY

15th International Symposium Dependable Computing (PRDC’09), BShang-
hai, China, pages 37–42. IEEE Computer Society, November 2009.

[Lai91] M. K. F. Lai. A Formal Interpretation of the MAA Standard in Z. NPL
Report DITC 184/91, National Physical Laboratory, Teddington, Middlesex,
UK, June 1991.

[Lak06] Abdesselam Lakehal. Critères de couverture structurelle pour les programmes
Lustre. (Strurtural coverage criteria for Lustre programs). Thèse de Doctorat,
Joseph Fourier University, Grenoble, France, 2006.

[Lam93] L. Lamport. The temporal logic of actions. ACM Transactions on Program-
ming Languages and Systems, November 1993.

[LMNS05] Kim G. Larsen, Marius Mikucionis, Brian Nielsen, and Arne Skou. Testing
Real-time Embedded Software Using UPPAAL-TRON: An Industrial Case
Study. In Proceedings of the 5th ACM International Conference on Embedded
Software (EMSOFT’05), Jersey City, NJ, USA, pages 299–306. ACM, 2005.

[LP05] Abdesselam Lakehal and Ioannis Parissis. Lustructu: A tool for the automatic
coverage assessment of lustre programs. In Proceedings of the 16th Interna-
tional Symposium on Software Reliability Engineering (ISSRE’05), Chicago,
IL, USA, pages 301–310. IEEE Computer Society, 2005.

[MA00] Bruno Marre and Agnès Arnould. Test Sequences Generation from LUSTRE
Descriptions: GATeL. In Proceedings of the 15th IEEE International Confer-
ence on Automated Software Engineering (ASE), Grenoble, France, page 229.
IEEE Computer Society, September 2000.

[Mat98] Radu Mateescu. Vérification des propriétés temporelles des programmes par-
allèles. Thèse de Doctorat, Institut National Polytechnique de Grenoble, April
1998.

[Mat00] Radu Mateescu. Efficient diagnostic generation for boolean equation sys-
tems. In Susanne Graf and Michael Schwartzbach, editors, Proceedings of
6th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’00), Berlin, Germany, volume 1785 of Lec-
ture Notes in Computer Science, pages 251–265. Springer, March 2000. Full
version available as INRIA Research Report RR-3861.

[Mat05] Radu Mateescu. On-the-fly State Space Reductions for Weak Equivalences.
In Tiziana Margaria and Mieke Massink, editors, Proceedings of the 10th
International Workshop on Formal Methods for Industrial Critical Systems
(FMICS’05), Lisbon, Portugal, pages 80–89. ERCIM, ACM Computer Soci-
ety Press, September 2005.

[Mat06] Radu Mateescu. CAESAR SOLVE: A Generic Library for On-the-Fly Res-
olution of Alternation-Free Boolean Equation Systems. Springer Interna-

BIBLIOGRAPHY 205

tional Journal on Software Tools for Technology Transfer (STTT), 8(1):37–
56, February 2006. Full version available as INRIA Research Report RR-5948,
July 2006.

[MDP14] Mouna Tka Mnad, Christophe Deleuze, and Ioannis Parissis. Synchronous
programs testing language (SPTL). In Beniamino Murgante, Sanjay Misra,
Ana Maria A. C. Rocha, Carmelo Maria Torre, Jorge Gustavo Rocha,
Maria Irene Falcão, David Taniar, Bernady O. Apduhan, and Osvaldo Ger-
vasi, editors, Proceedings of the 14th International Conference on On Com-
putational Science and Its Applications (ICCSA’14), Guimarães, Portugal,
volume 8579, pages 683–695. Springer, June 2014.

[MDP+16] Mouna Tka Mnad, Christophe Deleuze, Ioannis Parissis, Jackie Launay, and
Jean Baptiste Gning. Automated test generation for synchronous controllers.
In Christof J. Budnik, Gordon Fraser, and Francesca Lonetti, editors, Proceed-
ings of the 11th Workshop on Automation of Software Test (AST@ICSE’16),
Austin, Texas, USA, volume 28, pages 1–7. ACM, May 2016.

[MG98] Radu Mateescu and Hubert Garavel. XTL: A Meta-Language and Tool for
Temporal Logic Model-Checking. In Tiziana Margaria, editor, Proceedings
of the International Workshop on Software Tools for Technology Transfer
(STTT’98), Aalborg, Denmark, pages 33–42. BRICS, July 1998.

[MGS12] Avinash Malik, Alain Girault, and Zoran Salcic. Formal semantics, compi-
lation and execution of the GALS programming language dsystemj. IEEE
Trans. Parallel Distrib. Syst., 23(7):1240–1254, 2012.

[MGT+04] Mohammad Reza Mousavi, Paul Le Guernic, Jean-Pierre Talpin, Sandeep K.
Shukla, and Twan Basten. Modeling and Validating Globally Asynchronous
Design in Synchronous Frameworks. In Proceedings of European Conference
on Design, Automation and Test (DATE’04), Paris, France, pages 384–389.
IEEE Computer Society, February 2004.

[Mil83] Robin Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer
Science, 25:267–310, 1983.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MLD+13] Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels, and Ben-
jamin Monate. Testing or Formal Verification: DO-178C Alternatives and
Industrial Experience. IEEE Software, 30(3):50–57, 2013.

[MLN04] Marius Mikucionis, Kim Guldstrand Larsen, and Brian Nielsen. T-UPPAAL:
online model-based testing of real-time systems. In Proceedings of the 19th
IEEE International Conference on Automated Software Engineering (ASE),
Linz, Austria, pages 396–397. IEEE Computer Society, September 2004.

206 BIBLIOGRAPHY

[MMPS19] Lina Marsso, Radu Mateescu, Ioannis Parissis, and Wendelin Serwe. Asyn-
chronous testing of synchronous components in GALS systems. In Wolfgang
Ahrendt and Silvia Lizeth Tapia Tarifa, editors, Proceedings of the 15th Inter-
national Conference on Integrated Formal Methods (IFM’19), Bergen, Nor-
way, pages 360–378. Springer, December 2019.

[MMS18] Lina Marsso, Radu Mateescu, and Wendelin Serwe. TESTOR: A modular tool
for on-the-fly conformance test case generation. In Dirk Beyer and Marieke
Huisman, editors, Proceedings of the 24th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’18),
Thessaloniki, Greece, pages 211–228. Springer, April 2018.

[MO08] Radu Mateescu and Emilie Oudot. Bisimulator 2.0: An On-the-Fly Equiv-
alence Checker based on Boolean Equation Systems. In Proceedings of the
6th ACM-IEEE International Conference on Formal Methods and Models for
Codesign (MEMOCODE’08), Anaheim, CA, USA, pages 73–74. IEEE Com-
puter Society Press, June 2008.

[MPS+09] Wojciech Mostowski, Erik Poll, Julien Schmaltz, Jan Tretmans, and
Ronny Wichers Schreur. Model-based testing of electronic passports. In Maŕıa
Alpuente, Byron Cook, and Christophe Joubert, editors, Proceedings of the
14th International Workshop on Formal Methods for Industrial Critical Sys-
tems (FMICS’09), Eindhoven, The Netherlands, volume 5825 of lncs, pages
207–209. Springer, November 2009.

[MT08] Radu Mateescu and Damien Thivolle. A Model Checking Language for Con-
current Value-Passing Systems. In Jorge Cuellar, Tom Maibaum, and Kaisa
Sere, editors, Proceedings of the 15th International Symposium on Formal
Methods (FM’08), Turku, Finland, volume 5014 of Lecture Notes in Com-
puter Science, pages 148–164. Springer, May 2008.

[Mun91a] Harold B. Munster. Comments on the LOTOS Standard. NPL Technical
Memorandum DITC 52/91, National Physical Laboratory, Teddington, Mid-
dlesex, UK, September 1991.

[Mun91b] Harold B. Munster. LOTOS Specification of the MAA Standard, with an
Evaluation of LOTOS. NPL Report DITC 191/91, National Physical Lab-
oratory, Teddington, Middlesex, UK, September 1991. Available at ftp://

ftp.inrialpes.fr/pub/vasy/publications/others/Munster-91-a.pdf.

[MvOV96] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, 1996. Available from http://cacr.

uwaterloo.ca/hac.

[PCdVA12] Jose Proenca, Dave Clarke, Erik de Vink, and Farhad Arbab. Dreams: A
Framework for Distributed Synchronous Coordination. In Proceedings of the

BIBLIOGRAPHY 207

27th Symposium On Applied Computing (SAC’12), Riva del Garda, Italy.
ACM, 2012.

[PEB07] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry. Compiling
Esterel. Springer, 2007.

[PO90] Graeme I. Parkin and G. O’Neill. Specification of the MAA Standard in
VDM. NPL Report DITC 160/90, National Physical Laboratory, Teddington,
Middlesex, UK, February 1990.

[PO91] Graeme I. Parkin and G. O’Neill. Specification of the MAA Standard in VDM.
In Søren Prehn and W. J. Toetenel, editors, Formal Software Development –
Proceedings (Volume 1) of the 4th International Symposium of VDM Europe
(VDM’91), Noordwijkerhout, The Netherlands, volume 551 of Lecture Notes
in Computer Science, pages 526–544. Springer, October 1991.

[Pre11] Bart Preneel. MAA. In Henk C. A. van Tilborg and Sushil Jajodia, edi-
tors, Encyclopedia of Cryptography and Security (2nd Edition), pages 741–
742. Springer, 2011.

[PRvO97] Bart Preneel, Vincent Rumen, and Paul C. van Oorschot. Security Analysis
of the Message Authenticator Algorithm (MAA). European Transactions on
Telecommunications, 8(5):455–470, 1997.

[PvO96] Bart Preneel and Paul C. van Oorschot. On the Security of Two MAC Al-
gorithms. In Ueli M. Maurer, editor, Advances in Cryptology – Proceedings
of the International Conference on the Theory and Application of Crypto-
graphic Techniques (EUROCRYPT’96), Saragossa, Spain, volume 1070 of
Lecture Notes in Computer Science, pages 19–32. Springer, May 1996.

[PvO99] Bart Preneel and Paul C. van Oorschot. On the Security of Iterated Message
Authentication Codes. IEEE Transactions on Information Theory, 45(1):188–
199, 1999.

[RPD96] Vincent Rijmen, Bart Preneel, and Erik De Win. Key Recovery and Collision
Clusters for MAA. In Proceedings of the 1st International Conference on
Security in Communication Networks (SCN’96), 1996.

[RRJ08] Pascal Raymond, Yvan Roux, and Erwan Jahier. Lutin: a language for spec-
ifying and executing reactive scenarios. EURASIP Journal on Embedded Sys-
tems, 2008, 2008.

[RSD+04] S. Ramesh, Sampada Sonalkar, Vijay D’Silva, , Naveen Chandra, and B. Vi-
jayalakshmi. A Toolset for Modelling and Verification of GALS Systems. In
Rajeev Alur and Doron A. Peled, editors, Proceedings of the 16th Interna-
tional Conference on Computer Aided Verification (CAV’04), Boston, USA,
volume 3114 of Lecture Notes in Computer Science, pages 506–509. Springer,
July 2004.

208 BIBLIOGRAPHY

[Ser15] Wendelin Serwe. Formal Specification and Verification of Fully Asynchronous
Implementations of the Data Encryption Standard. In Rob van Glabbeek,
Jan Friso Groote, and Peter Höfner, editors, Proceedings of the International
Workshop on Models for Formal Analysis of Real Systems (MARS’15), Suva,
Fiji, volume 196 of Electronic Proceedings in Theoretical Computer Science,
2015.

[SP07] Besnik Seljimi and Ioannis Parissis. Automatic generation of test data gener-
ators for synchronous programs: Lutess V2. In Proceedings of the Workshop
on Domain Specific Approaches to Software Test Automation (DOSTA’07)
Dubrovnik, Croatia, pages 8–12. ACM, September 2007.

[SSC+04] Norman Scaife, Christos Sofronis, Paul Caspi, Stavros Tripakis, and Florence
Maraninchi. Defining and translating a ”safe” subset of simulink/stateflow
into lustre. In Giorgio C. Buttazzo, editor, Proceedings of the fourth Inter-
national Conference on On Embedded Software (EMSOFT’04), Pisa, Italy,
pages 259–268. ACM, 2004.

[Str82] Robert S. Streett. Propositional dynamic logic of looping and converse is
elementarily decidable. Information and Control, 54:121–141, 1982.

[TB03] Jan Tretmans and Hendrik Brinksma. TorX: Automated Model-Based Test-
ing. In A. Hartman and K. Dussa-Ziegler, editors, Proceedings of the First
European Conference on Model-Driven Software Engineering, Zurich, Switzer-
land, pages 32–43, December 2003.

[TLK92] Richard N. Taylor, David L. Levine, and Cheryl D. Kelly. Structural testing
of concurrent programs. IEEE Trans. Software Eng., 18(3):206–215, 1992.

[Tre92] Jan Tretmans. A Formal Approach to Conformance Testing. Twente Univer-
sity Press, 1992.

[Tre96] Jan Tretmans. Conformance Testing with Labelled Transition Systems: Im-
plementation Relations and Test Generation. Computer networks and ISDN
systems, 29(1):49–79, December 1996.

[Tre99] Jan Tretmans. Testing Concurrent Systems: A Formal Approach. In Jos
C. M. Baeten and Sjouke Mauw, editors, Proceedings of the 10th Interna-
tional Conference on Concurrency Theory (CONCUR’99), Eindhoven, The
Netherlands, volume 1664 of Lecture Notes in Computer Science, pages 46–
65. Springer, August 1999.

[Tre08] Jan Tretmans. Model Based Testing with Labelled Transition Systems. In
Robert M. Hierons, Jonathan P. Bowen, and Mark Harman, editors, Formal
Methods and Testing: An Outcome of the FORTEST Network, Revised Se-
lected Papers, volume 4949 of Lecture Notes in Computer Science, pages 1–38.
Springer, 2008.

BIBLIOGRAPHY 209

[Tre17] Jan Tretmans. On the existence of practical testers. In Joost-Pieter Katoen,
Rom Langerak, and Arend Rensink, editors, ModelEd, TestEd, TrustEd - Es-
says Dedicated to Ed Brinksma on the Occasion of His 60th Birthday, volume
10500 of Lecture Notes in Computer Science, pages 87–106. Springer, 2017.

[UPL12] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of
model-based testing approaches. Software Testing, Verification and Reliabil-
ity, 22(5):297–312, August 2012.

[Utt05] Mark Utting. The role of model-based testing. In B. Meyer and J. Woodcock,
editors, Proceedings of the First European Conference on Verified Software:
Theories, Tools, Experiments (VSTTE’05), Möhrendorf, Germany, volume
4171, pages 510–517. Springer, October 2005.

[Vas04] Vasy. Reductor manual page. https://cadp.inria.fr/man/reductor.html,
2004.

[Vas10] Vasy. Bcg cmp manual page. https://cadp.inria.fr/man/bcg_cmp.html,
2010.

[vGW89] R. J. van Glabbeek and W. Peter Weijland. Branching-Time and Abstraction
in Bisimulation Semantics (extended abstract). CS R8911, Centrum voor
Wiskunde en Informatica, Amsterdam, 1989. Also in proc. IFIP 11th World
Computer Congress, San Francisco, 1989.

[VHBP00] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In
Yves Ledru, editor, Proceedings of the 15th IEEE International Conference
on Automated Software Engineering (ASE’00), Grenoble, France, pages 3–12,
September 2000.

[Wea06] Alfred C. Weaver. Secure sockets layer. IEEE Computer, 39(4):88–90, 2006.

[WTK00] Tim Willemse, Jan Tretmans, and Arjen Klomp. A case study in formal
methods: Specification and validation of the om/rr protocol. In Stefania
Gnesi, Ina Schieferdecker, and Axel Rennoch, editors, Proceedings of the 5th
International Workshop on Formal Methods for Industrial Critical Systems
(FMICS’2000), Berlin, Germany, GMD Report 91, pages 331–344, Berlin,
April 2000.

[WW09] Martin Weiglhofer and Franz Wotawa. Asynchronous Input-Output Con-
formance Testing. In Sheikh Iqbal Ahamed, Elisa Bertino, Carl K. Chang,
Vladimir Getov, Lin Liu, Hua Ming, and Rajesh Subramanyan, editors, Pro-
ceedings of the 33rd Annual IEEE International Computer Software and Ap-
plications Conference (COMPSAC 2009), Seattle, Washington, USA, pages
154–159. IEEE Computer Society, July 2009.

