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Abstract— Autonomous driving technology is rapidly advanc-
ing towards level 5 autonomy along with claims of increasing
safety on roads. However, a proper validation of such safety-
critical, complex systems and of their reliability still needs to be
addressed adequately. To this end, standard exhaustive methods
are inappropriate to validate the probabilistic algorithms widely
used in this field and new solutions need to be adopted. In this
work, we present a new approach where formal verification
is employed to validate systems with probabilistic predictions.
In particular, we focus on the risk assessment generated by a
probabilistic perception system, the Conditional Monte Carlo
Dense Occupancy Tracker (CMCDOT). This framework provides
an environment representation through Bayesian probabilistic
occupancy grids and estimates Time-to-Collision probabilities
for every static and dynamic part of the grid in near future.
Focusing on the validation of the probabilistic collision risk
estimation, we adopt the CARLA simulator to generate a large
number of realistic intersection crossing scenarios with two
vehicles. The formal verification is then performed using the
XTL model checker of the CADP toolbox, based on the definition
of appropriate Key Performance Indicators (KPIs). Finally, a
quantitative analysis that goes beyond classical temporal logic
verification is provided.

I. INTRODUCTION

The use of formal methods for verification and certification
of algorithms and mathematical logic of software is a long
standing research [1]. While our software are continuously
evolving, becoming more capable and complex, the methods
to verify software need to evolve simultaneously. Physical
and software components are getting deeply intertwined, each
operating on different spatial and temporal scales. Verification
of such automated cyber-physical systems (ACPS) is still an
open research challenge.

Autonomous vehicles represent a critical ACPS that re-
quire meticulous attention in validation. Moreover, there are
increasing demands on regulating and validating intelligent
vehicle systems to build public trust in their use. Formal
methods have already had several successful deployments in
fields like aerospace and railways [2], but autonomous driving
remains a challenging field because of the complexity of
its key components, such as: perception of the environment,
scene interpretation, decision making and undertaking actions.
Considering the fact that intelligent vehicles are supposed to
be driven on existing roads, along with other vehicles with
human drivers, a higher level of uncertainties need to be taken
into account [3]. In these scenarios, the use of probabilistic
approaches for perception and prediction become essential to
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accurately confront the uncertainties in the environment [4].
The stochasticity of these algorithms, involving multiple states
and complex transitions between them, makes the validation
through standard approaches often unviable.

Most of the existing literature revolves around the for-
mal verification of decision algorithms [5], [6]. Researchers
are exploring formal verification techniques for Probabilistic
Model Checking [7]. Compared to conventional systems (e.g.,
discrete-time Markov models), where the formal model accu-
rately reflects the actual behaviour of the real-world system
[8], verification through formal model is fairly accurate but
it becomes more challenging for autonomous systems in
dynamic environments. In the context of intelligent vehicle
systems, where states (e.g., estimation of collisions) change
and evolve at every time step, exhaustively checking such
properties is usually not affordable in many scenarios because
of time, complexity and costs constraints.

The main contribution of this paper is a methodology
to validate perception systems based on a combination of
simulation, formal verification, and statistical analysis. The
simulation framework must comprise a realistic description
of the dynamic physical environment (e.g., urban landscape
and vehicles), the perception system under study, and a set of
relevant scenarios (e.g., leading to collisions). We consider
here the validation of the Conditional Monte Carlo Dense
Occupancy Tracker (CMCDOT) [9], in particular its collision
risk estimation functionality. Executing the simulation scenar-
ios yields traces of events containing the suitable data for
validation (timestamp, estimated probabilities of collision, po-
sition and velocities of the vehicles, etc.). Then, on each trace
obtained, a number of typical temporal properties (invariants,
safety, liveness) are verified using the XTL [10] model checker
of the CADP toolbox [11], producing quantitative verdicts
(sets of events violating the properties, with their diagnostic
information). Finally, a statistical analysis of the verdicts
is carried out, by defining an appropriate Key Performance
Indicator (KPI) for each property, using it to compute a grade
for each trace, and aggregating the results in analysis reports
using R-studio. The whole methodology has been automated
and can be instantiated in other contexts as well.

The rest of the paper is organized as follows. Section II
briefly introduces the main properties of CMCDOT, with a
particular focus on the collision risk estimation. Section III
discusses the principles of formal validation and how it is
employed on the considering problem. In Section IV the
results obtained with the analysis of intersection crossing
scenarios are finally presented and discussed.



Fig. 1: (Top) Real environment around the car and as observed
using a 64 layered lidar. (Bottom) Representation of the
environment as dense probabilistic occupancy grid output from
CMCDOT framework. Colors represents different state of each
cell in the grid: occupied static (blue), occupied dynamic
(green), empty (black), unknown area (red).

Fig. 2: The CMCDOT represents the environment as a grid,
to whose cells are associated static, dynamic, empty and
unknown coefficients. Weighted particles, which sample the
velocity space, are then associated to the dynamic part.

II. COLLISION RISK ESTIMATION

The CMCDOT framework [9] is a perception system which
provides a dense and generic representation of the environment
[12], [13] as a probabilistic occupancy grid (see Fig. 1), based
on Bayesian fusion, filtering of sensor data and Bayesian infer-
ence [14]. By exploiting specific sensor models, the gathered
data are converted in probabilistic estimations which represent
the environments as static and dynamic occupied regions, free
spaces and unknown areas (Fig. 2). This differentiation enables
the use of state-specific models, such as classic occupancy
grids for static components and sets of moving particles for
dynamic occupancy, as well as confidence estimation and
management of areas with no information.

The resulting approach is particularly suitable in situations
where incomplete or even contradictory data come from
different sensors (camera, lidars, radars, etc.). The estimation

Fig. 3: Collision risk estimation of a specific cell. Both
the future cell and the ego-vehicle positions are predicted
according to their estimated velocity. The risk of every cell
is used to integrate over time the total collision risk.

for each cell over time can be obtained from various sensors
data, whose specific uncertainty (noise, measurement errors)
is taken into consideration. Filtered cell estimations are thus
much more robust, leading to a more reliable global occupancy
of the environment, reducing false detection.

Additionally, an important feature of the CMCDOT, and the
main subject of study of this paper, is the estimation of the
collision risk for each cell of the grid. Most of the existing risk
estimation methods consist in detecting and tracking dynamic
objects in the scene [15], [16]. The simplest solution is then
to estimate a Time to Collision (TTC) by projecting the ego-
vehicle and the trajectories of other moving object in the future
[17]. Detection of moving objects requires to pre-define shape
of objects and involves fitting of object models in pointcloud to
find the location of objects in environment. As the number and
types of objects increase, the detection and tracking becomes
difficult and costly problem to solve.

The grid-based approach used in the CMCDOT framework,
instead of detecting objects, directly computes estimations
of the position of every static and dynamic cell of the grid
by linearly projecting them in near future based upon their
estimated velocity as well as the trajectory of the ego-vehicle.
These estimations are iteratively computed over short-time
periods, until a potential collision is detected. In this case a
TTC is associated to the cell from which the colliding element
came from (Fig. 3). The probabilistic estimation for different
TTCs (e.g, 1, 2 and 3 seconds) are then associated to every
cell to obtain a collision risk profile. This strategy, originally
presented in [18], presents the advantage of being model free,
avoids solving the complex problem of multi-object detection
and tracking, while integrating the totality of the available
information and providing a probabilistic estimation of the
risk associated to each part of the scene. The result of this
estimation can then be used as the starting point for any control
and decision-making system.

A. Simulation for perception

In this work, the simulation relies on the use of two
frameworks: CARLA, an open urban driving simulator [19],
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