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Abstract

Providing models for model-based diagnosis has
always been a challenging task. There has never
been an agreement on an underlying modeling
language, making it almost impossible to share
models within our community. In addition, there
are other domains like formal methods or model-
based testing relying on system models for formal
verification and automated test case generation.
Although, there we face the situation of different
modeling languages as well, the question remains
whether it is possible to re-use these models in
the context of model-based diagnosis. In this pa-
per, we elaborate on this question and show how
models written in LNT can be used for fault local-
ization only requiring simple modification. This
allows re-using formal method’s models for diag-
nosis directly. Besides discussing the underlying
principles, we also present a use case showing the
applicability of the methods.

1 Introduction
Despite the fact that model-based diagnosis offers a lot of
advantages compared to other approaches of diagnosis, its
use in practice, despite running as part of prototype im-
plementations and case studies, is somehow limited. One
reason behind is that modeling in general is a non trivial
task and that there is a lack on commonly agreed modeling
languages that are capable of providing the right means for
modeling for diagnosis. This includes capturing temporal
behavior and also dealing with the right level of abstraction.

In many industrial applications being able to handle time
appropriately as well as models that closely capture phys-
ical properties is essential and for some of those issues a
specialized diagnosis procedure has already been presented,
including diagnosis for communication systems (e.g. [1]
or [2]) or the use of modeling languages like Modelica
for extracting models to be used for model-based diagnosis
(see [3]).

In this paper, we tackle the challenge of providing models
for model-based diagnosis. But instead of relying on mod-
els used for simulation, we elaborate on the use of speci-
fication languages for diagnosis. Formal specification lan-
guages have been developed for modeling systems with the
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primary purpose of validation, which can be done using test-
ing or formal verification. In case of a system model, either
test cases can be automatically extracted from the model
or additional properties can be checked using the system
model. Testing as a task can be seen as a falsification step
for systems whereas formal verification as a proof whether
certain properties are holding generally.

The objective behind this paper is to show on the exam-
ple of LNT [4], that these formal specification languages
can not only be used for verification, but also for diagno-
sis of systems. If formal models in LNT can be effectively
used for diagnosis, first we would be able to re-use these
LNT models in a diagnosis setting, and second we could use
LNT as a general modeling language that can be used for
simulation, verification, and also diagnosis of the same sys-
tem. For this purpose, we introduce a general wrapper com-
ponent that adds diagnosis capabilities to any LNT model
of the same component. Hence, we do not use the original
LNT model for diagnosis but an extended model where each
component that should be considered for diagnosis has to be
replaced with its corresponding wrapper component. Such a
wrapper component cannot only capture the unknown faulty
behavior, which is used in consistency-based diagnosis [5]
but also fault models used in abductive diagnosis [6].

Besides discussing the methodologies behind the appli-
cation of LNT to diagnostic reasoning, we also report on
applying diagnosis to a model of the data encryption stan-
dard where we were able to localize faults using the basic
concept of wrapper components for diagnosis.

This paper is organized as follows: To be self contained,
we first discuss preliminaries including model-based diag-
nosis and the basic concepts behind LNT. Afterwards, we
introduce the methodology behind using LNT models for
diagnosis including the concept of wrapper components and
obtaining diagnosis candidates from them. Furthermore, we
report on the results obtained from a case study based on
the data encryption standard where we manually introduced
faults. Finally, we discuss related research and conclude the
paper.

2 Preliminaries

In this section, we discuss the basic definitions of model-
based diagnosis and formal methods in order to be self-
contained. We mainly focus on formal methods and intro-
duce the modeling language LNT (formerly called LOTOS
New Technology) and CADP (Construction and Analysis of
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Figure 1: The classical d74 circuit.

Distributed Processes) tools available1. For the sake of sim-
plicity, we make use of the classical d74 circuit from Fig-
ure 1 often used in diagnosis literature, e.g., see [7], to ex-
plain both model-based diagnosis and formal methods based
on LNT.

2.1 Consistency-based diagnosis
We briefly discuss the basic definitions behind model-based
diagnosis, and there consistency-based diagnosis in particu-
lar, which are based on Reiter’s seminal work [5]. We start
defining a diagnosis system comprising a model SD and the
set of components COMP . The idea here is to allow only el-
ements of COMP to be working as expected or faulty. In or-
der to make the information regarding a component’s health
state explicit, we introduce a predicate Ab(C) for each com-
ponent C from COMP stating that C behaves abnormally.
The model SD itself covers the structure of a system and
the behavior of each component. In case of consistency-
based diagnosis, only the correct behavior of components
is covered. This can be formalized using rules of the form
¬Ab(C) → behavioral description. When modeling using
implications, we do not restrict the faulty behavior of com-
ponents. In particular, a component may behave correctly
even in case its health state indicates that it is faulty. For a
detailed discussion on fault models we refer to [8].

Definition 2.1 (Diagnosis system). A diagnosis system is a
tuple (SD ,COMP) where SD is a set of logical sentences
describing the structure and behavior of the system, and
COMP the set of system components.

Example 1. For the d74 circuit, we are able to specify the
behavior of the adder and multiplier components as follows:

ADD(C)→
(
¬Ab(C)→ out(C) = in1(C) + in2(C)

)
MULT (C)→

(
¬Ab(C)→ out(C) = in1(C) ∗ in2(C)

)
The structure of the circuit comprises a definition of the

components and their connections. In this particular case
COMP = {M1,M2,M3, A1, A2}.

MULT (M1)∧MULT (M2)∧MULT (M3)∧
ADD(A1)∧ADD(A2)∧

out(M1) = in1(A1)∧ out(M2) = in2(A1)∧
out(M2) = in1(A2)∧ out(M3) = in2(A2)

The model of the d74 circuit comprises all the described
logical rules. �

1http://cadp.inria.fr

From a diagnosis system we immediately come to a diag-
nosis problem, when adding observations.
Definition 2.2 (Diagnosis problem). Given a diagnosis sys-
tem (SD ,COMP) and a logical sentence OBS describing
the given observations. The tuple (SD ,COMP ,OBS ) is a
diagnosis problem.
Example 2. (cont. Ex. 1) For the d74 circuit we may use
the following observation set OBS :

in1(M1) = 2∧ in2(M1) = 3∧
in1(M2) = 2∧ in2(M2) = 3∧
in1(M3) = 3∧ in2(M3) = 2∧
out(A1) = 10∧ out(A2) = 12

Obviously, there is a fault in the circuit, because the out-
put of adder A1 needs to be 12 and not 10 as observed when
assuming all components to work as expected. �

Given a diagnosis problem, a diagnosis should explain
deviations between expected values at any input and out-
put as well as intermediate connection between components,
and given observations. In consistency-based diagnosis a di-
agnosis is defined as a set of components that when assumed
to behave abnormally and all other components are expected
to work correctly, will not contradict any observation when
using the underlying system model. Formally, diagnoses are
defined as follows:
Definition 2.3 (Diagnosis). Given a diagnosis problem
(SD ,COMP ,OBS ). A set of components ∆ ⊆ COMP
is a diagnosis if and only if SD ∪ OBS ∪

{
Ab(C) | C ∈

∆
}
∪
{
¬Ab(C) | C ∈ COMP \∆

}
is satisfiable.

In this definition a diagnosis needs not to be minimal. We
define a minimal diagnosis as a diagnosis where none of its
subsets is itself a diagnosis accordingly to Definition 2.3.
Example 3. (cont. Ex. 2) For the given observations and
the d74 model, the four sets {M1}, {A1}, {M2,M3}, and
{M2, A2} are all minimal diagnoses and there are no other
minimal diagnoses. �

The dual concept of diagnoses are conflicts, i.e., a set
of components that, when assumed to behave correctly, to-
gether with the model SD contradict the given observations
OBS .
Definition 2.4 (Conflict). Given a diagnosis problem
(SD ,COMP ,OBS ). A set of components CO ⊆ COMP
is a conflict, if and only if SD∪OBS∪

{
¬Ab(C) |C ∈ CO

}
is a contradiction.
Example 4. (cont. Ex. 3) For the d74 circuit we
obtain 2 minimal conflicts, i.e.: {M1,M2, A1}, and
{M1,M3, A1, A2}. �

Reiter [5] showed that there is a close relationship be-
tween diagnoses and conflicts. In particular, every minimal
diagnosis is a minimal hitting set of all conflicts. Reiter
also introduced an algorithm computing such hitting sets
where conflicts are computed during computation. Greiner
et al. [9] provided a corrected version of Reiter’s diagno-
sis algorithm. However, there are many other algorithms
available for computing diagnoses. Some are based on con-
flicts whereas the others compute diagnoses directly from
the model and the given observations. Nica et al. [10] in-
troduced an empirical evaluation of the runtime of different
diagnosis algorithms. Note that in this paper, we make use
of algorithms for computing diagnoses directly from mod-
els.



2.2 Formal methods
LNT [11] culminates a 30-year effort [4] aimed at supple-
menting the international standard LOTOS [12] with lan-
guage features borrowed from classical programming lan-
guages in order to enhance its user-friendliness and allow
for a wider industrial dissemination. LNT is firmly rooted in
concurrency theory: its operational semantics is defined as
an LTS (Labeled Transition System) and its composition op-
erators are compatible with behavioral equivalences (bisim-
ulations).

In general, the behavior of an LNT model is defined as the
parallel composition of processes communicating and syn-
chronizing only by multiway rendezvous [13, 14]. Each of
these processes is described with usual programming con-
structs (assignments, if-then-else, loops, etc.) and can ma-
nipulate data values and complex data structures (such as
lists and trees).

LNT is the principal modeling language supported by
the CADP (Construction and Analysis of Distributed Pro-
cesses) toolbox [15], which provides an extensive set of lan-
guages and tools assisting the whole design process: com-
pilation and rapid prototyping, interactive and guided sim-
ulation, LTS generation, equivalence and model checking,
test case generation, and performance evaluation. Among
these tools, the most useful for diagnosis are the LNT com-
pilers, the equivalence checker BISIMULATOR, the model
checker EVALUATOR [16], and the SVL language [17] for
describing verification scenarios. There also exists tools for
(distributed) code generation and test case extraction. A
noteworthy feature of BISIMULATOR and EVALUATOR
is that these tools operate on the fly, i.e., they only explore
the part of the model required to obtain a result.

LNT and CADP have been used for many case studies
in various domains2: avionics, cloud computing, distributed
algorithms, hardware design, human-computer interaction,
industrial systems, etc.

3 Using LNT for diagnosis
To use an LNT model for diagnosis, it must be param-
eterized to enable the selection of the set of components
that should behave according to the considered fault model.
Concretely, this implies

1. to wrap all individual components inside wrapper pro-
cesses with a Boolean parameter to select between nor-
mal and faulty behavior and

2. to add these parameters to the overall system.

3.1 Wrapping individual components
To illustrate the wrapping of a component, consider the fol-
lowing LNT model of an adder, such as A1, A2 in the d74
circuit.

process ADDER [IN1, IN2, SUM: NAT_C] is
var in1, in2, result: Nat in

loop
par

IN1 (?in1)
|| IN2 (?in2)
end par;
result := in1 + in2;
SUM (result)

end loop

2http://cadp.inria.fr/case-studies

end var
end process

It repeatedly (instruction loop ... end loop) waits for
two natural numbers (in1 and in2) on its gates IN1 and
IN2, computes the result as soon as both inputs are avail-
able, and then outputs the result on its gate SUM (in a ren-
dezvous, inputs are described by ?x, where x is a variable
that will be assigned by the rendezvous). The inputs are
read in parallel (instruction par ... end par), i.e., with-
out any constraint on the order. All gates are of channel type
NAT_C, specifying that a natural number is communicated
during a rendezvous.

The process ADDER can be wrapped inside a pro-
cess ADDER_WRAP with a Boolean parameter faulty
(corresponding to the predicate Ab), which, using an
if-then-else, chooses between a call to the original pro-
cess ADDER and a faulty version. The faulty version is
the same as the body of the process ADDER excepting for
the computation of the result, in which the output of a
concrete value is replaced by a nondeterministic assign-
ment (instruction “:=any Nat”), constrained by a pred-
icate “P (in1, in2, result)” returning true if and
only if the wrapped process should allow the output result
for the inputs in1 and in2. For instance, P could be used to
specify that certain bits of the result are forced to a constant.

process ADDER_WRAP [IN1, IN2, SUM: NAT_C]
(faulty: Bool) is

if faulty then
loop

var in1, in2, result: Nat in
par

IN1 (?in1)
|| IN2 (?in2)
end par;
result := any Nat

where P (in1, in2, result);
SUM (result)

end var
end loop

else
ADDER [IN1, IN2, SUM]

end if
end process

To represent the most generic failure model, where predi-
cate P always returns true, i.e., where any output can be
nondeterministically chosen, the wrapper process can be
simplified by removing the local variables, leaving all ren-
dezvous unconstrained (“?any Nat”):

process ADDER_WRAP_ND [IN1, IN2, SUM: NAT_C]
(faulty: Bool) is

if faulty then
loop

par
IN1 (?any Nat)

|| IN2 (?any Nat)
end par;
SUM (?any Nat)

end loop
else

ADDER [IN1, IN2, SUM]
end if

end process

This approach can be generalized to arbitrary processes.
Indeed, it is sufficient to copy the original code and modify



any constraints on the rendezvous according to the chosen
fault model — in the extreme case removing the constraints
completely.

3.2 Analyzing faulty configurations
The behavior of the whole system is obtained by composing
all wrapper processes in parallel and synchronizing them ac-
cording to the system architecture. The LNT MAIN process
describing the d74 circuit from Figure 1 is shown below.
Each of the five components has a synchronization interface
consisting of its input and output gates. The gates corre-
sponding to the interaction of the system with its environ-
ment (e.g., the entries IN1, IN2 of multiplier M1 or the out-
put OUT2 of adder A2) are kept visible, whereas the gates
that connect and synchronize components (e.g., the output
C1 of M1 connected to the first input of A1), are abstracted
away (i.e., hidden by the hide operator) in the final system:
they are not in the list of gate parameters of MAIN.

process MAIN [IN1, IN2, IN3, IN4, IN5,
OUT1, OUT2: NAT_C]

(f1, f2, f3, f4, f5: Bool,
i1, i2, i3, i4, i5: Nat) is

hide C1, C2, C3: NAT_C in
par

IN1, IN2, IN3, IN4, IN5 ->
IN1 (i1); IN2 (i2); IN3 (i3);
IN4 (i4); IN5 (i5); stop

|| IN1, IN3, C1 -> (* M1 *)
MULTI_WRAP [IN1, IN3, C1] (f1)

|| IN2, IN4, C2 -> (* M2 *)
MULTI_WRAP [IN2, IN4, C2] (f2)

|| IN3, IN5, C3 -> (* M3 *)
MULTI_WRAP [IN3, IN5, C3] (f3)

|| C1, C2 -> (* A1 *)
ADDER_WRAP [C1, C2, OUT1] (f4)

|| C2, C3 -> (* A2 *)
ADDER_WRAP [C2, C3, OUT2] (f5)

end par
end hide

end process

The health states of individual components (i.e., the val-
ues of the predicate Ab) are given by the Boolean parame-
ters f1, ..., f5 of the MAIN process, which are used to instan-
tiate the faulty arguments of the wrapper processes. The
values of inputs, injected into the system by the first behav-
ior of the par operator, are given by the i1, ..., i5 param-
eters of MAIN. By varying these parameters of the model,
various faulty configurations of the system can be explored.

In the CADP setting, the consistency-based diagno-
sis approach, i.e., checking whether a set of components
∆ ⊆ COMP is a diagnosis for a diagnosis problem
(SD ,COMP ,OBS ) can be carried out as follows:

1. model the system structure SD and the behavior of in-
dividual components COMP in LNT,

2. instantiate the system, specifying a component C as
faulty (via the corresponding parameter) if and only if
C belongs to ∆,

3. represent the observations OBS as temporal formulas
(in MCL [16]) or sequences of events (i.e., a particular
kind of LTS), and

4. determine the presence of observations in the consid-
ered system configuration using on-the-fly verification
techniques, e.g., model checking (with EVALUATOR)

or checking inclusion modulo equivalence relations
(with BISIMULATOR).

Note that the instantiation (step 2) and the use of on-the-
fly verification techniques (step 4) help in handling models
with a large state space only a small fragment of which is
reachable and necessary to inspect.

Once the LNT model of the system and components is
available, the analysis of various faulty configurations of the
system can be readily performed using SVL [17] scripts in-
voking the appropriate CADP tools. For the d74 circuit,
we can represent the observation set given in Example 2 by
the following event sequence in the SEQ format of CADP
(where each line corresponds to the label of transition):

"IN1 !2"
"IN2 !3"
"IN3 !3"
"IN4 !2"
"IN5 !2"
"OUT1 !10"
"OUT2 !12"

Assuming the observation sequence is stored in a file
"obs.seq", the following SVL statements verify the in-
clusion of the sequence (modulo the preorder of branching
bisimulation) in the models of the healthy system and of the
faulty system with diagnosis {M2,M3} from Example 3:

% I1=2; I2=3; I3=3; I4=2; I5=2
branching comparison

"obs.seq" <= "MAIN(false,false,false,
false,false,$I1,$I2,$I3,$I4,$I5)" ;
branching comparison

"obs.seq" <= "MAIN(false,true,true,
false,false,$I1,$I2,$I3,$I4,$I5)" ;

Note the usage of shell-script instructions (lines starting
with a %) to initialize the shell-script variables I1, ..., I5,
which are subsequently used to feed the input of the MAIN
processes representing the two system configurations. The
health states of the components are set by giving appropriate
values to the Boolean parameters f1, ..., f5 of the MAIN
processes. The results of the two verifications above show
that the observation sequence is absent in the healthy model
and present in the faulty one.

The same verification can be carried out using on-the-fly
model checking, by encoding the existence of the obser-
vation sequence as a weak possibility modality “<< ... >>
true” in MCL [16] and then evaluating it on a given system
configuration. The SVL statement (note the inlined MCL
formula) below performs this check (which yields a positive
verdict, as expected) on the faulty configuration {M1} from
Example 3.

property FAULTY_M1_OBS is
"MAIN(true,false,false,false,false,

$I1,$I2,$I3,$I4,$I5)" |= with evaluator4
<<

"IN1 !2" .
"IN2 !3" .
"IN3 !3" .
"IN4 !2" .
"IN5 !2" .
"OUT1 !10" .
"OUT2 !12"

>> true ;
expected TRUE

end property ;



DATA_PATH KEY_PATH

CONTROLLER

CIPHER

OS1 OS3 OS4 OS5 OS6 OS7 OS8OS2

IS1 IS3 IS4 IS5 IS6 IS7 IS8IS2

OUTPUT_L OUTPUT_R

OUTPUT

ER
CL_XR

CR_CL

CR_FX

FIRST_RFIRST_L

DATA

XR_CR

K

F_K

SK

I_K

KKK

CS

CRYPT

SUBKEY

KEY

FX_XR

S4S3S2S1

XOR_48

S5 S6 S7 S8

IIP

P

CHOOSE_L

E

IP

CHOOSE_R

PC2

DUP_K

SHIFT

CHOOSE_K

PC1

CTRL_MUX_K

CTRL_DMUX_K

CTRL_SHIFT

CTRL_MUX_LR

CTRL_MUX_LR

COUNTER

XOR_32

Figure 2: Architecture of the DES asynchronous circuit

This consistency checking approach can be easily inte-
grated into classical diagnosis algorithms, such as HSDAG
(Hitting Set Directed Acyclic Graph) [5], either by encod-
ing the diagnosis algorithm as an SVL script, or by connect-
ing an existing implementation of it with the CADP tool-
box, by implementing consistency checks by system calls
to CADP’s equivalence and model checkers operating on
the LNT model of the system under diagnosis.

4 Case study: asynchronous DES circuit
To study the feasibility and scalability of the approach, we
experimented with the LNT model of an asynchronous im-
plementation of the DES (Data Encryption Standard) [18].
This model is interesting, because it is publicly available
as a demo example of the CADP toolbox3, because it is
complex (more than twenty processes and a corresponding
LTS with several million states and transitions), and be-
cause cryptographic algorithms should challenge fault lo-
calization, as they aim to hide internal computations.

In a nutshell, the DES is a block-cipher taking three in-
puts: a Boolean indicating whether encryption or decryp-
tion is requested, a 64-bit key, and a 64-bit block of data.
For each triple of inputs, the DES computes the 64-bit (de-
)crypted data, performing sixteen iterations of the same ci-
pher function, each iteration with a different 48-bit sub-key
extracted from the 64-bit key.

3ftp://ftp.inrialpes.fr/pub/vasy/demos/
demo_38

Figure 3: Table specification of the S-box S1

The DES is specified as a data-flow diagram [19], which
translates smoothly to the architecture shown on Figure 2.
Roughly, a CONTROLLER schedules the flow of the key (re-
spectively, the data) through the KEY_PATH (respectively,
DATA_PATH). The main computation is performed by the
cipher function CIPHER in the DATA_PATH.

The principal elements of CIPHER are so-called S-boxes
(noted S1, ..., S8 on Figure 2), which compute for a 6-bit
input vector a 4-bit output vector. Given that each S-box is
specified by a table with four rows and 16 columns (see Fig-
ure 3, taken from [19, Appendix 1], for S1), human errors
in implementing these tables are highly probable. In LNT,
these tables are encoded as two-dimensional arrays (in LNT,
constants are represented by functions without arguments)

function S1 : S_BOX_ARRAY is
return

S_BOX_ARRAY
(ROW (14, 4, 13, 1, 2, 15, 11, 8,

3, 10, 6, 12, 5, 9, 0, 7),
ROW ( 0, 15, 7, 4, 14, 2, 13, 1,

10, 6, 12, 11, 9, 5, 3, 8),
ROW ( 4, 1, 14, 8, 13, 6, 2, 11,



15, 12, 9, 7, 3, 10, 5, 0),
ROW (15, 12, 8, 2, 4, 9, 1, 7,

5, 11, 3, 14, 10, 0, 6, 13))
end function

The LNT model of the DES has been validated in several
ways (see the SVL script of the CADP demo for details). In
particular, several properties expressing the correct ordering
of the sixteen iterations have been expressed as MCL for-
mulae and checked with EVALUATOR. Also, a prototype
implementation was derived from the LNT model and used
to check the correctness by comparing the result to known
results of several reference implementations. These verifi-
cation steps are described in [18] and can be replayed by
executing the SVL script included in the CADP demo.

To obtain an incorrect output, we falsified the model of
the DES by modifying one entry in one of the S-boxes such
that a single bit of output was flipped. Then we studied
whether using wrapper processes (on the original, correct
model of the DES) could identify the S-box responsible for
the incorrect output. For the wrappers, we considered the
most generic fault model: hence, a faulty S-box may return
any 4-bit vector. The wrapper process for the S-Box S1 is:

process S1_WRAPPER [INPUT: C6, OUTPUT: C4]
(faulty: Bool) is

if faulty then
loop

INPUT (?any BIT6);
OUTPUT (?any BIT4)

end loop
else

S1 [INPUT, OUTPUT]
end if

end process

A faulty S-box may produce 16 possible outputs (rather
than a single one), so that, due to the sixteen iterations of
the DES, the complete model would have 1616 = 264 possi-
ble outputs. Because this is clearly too large, we simplified
the model of the DES to perform only a single iteration, so
that the state space becomes manageable. For both, the cor-
rect and incorrect model, the corresponding LTS has 79,416
states4 and 513,940 transitions (64 states and 82 transitions
after reduction with strong bisimulation), and for a model
with a single activated wrapper, the corresponding LTS has
473,316 states and 3,204,445 transitions (1000 states and
2551 transitions after reduction with strong bisimulation).

Checking the inclusion of the incorrect model in each
of the models with a single faulty S-box identifies the S-
box responsible for the incorrect output, because the inclu-
sion holds only for the model where the (incorrect) S-box
is faulty. Thus, there is no need to consider instances with
multiple faulty S-boxes.

We used an SVL script to

1. generate and minimize the correct model, the incorrect
model, and the eight models with one faulty S-box,

2. check that the correct and incorrect model are not
branching bisimilar,

3. check that the correct model is included (modulo the
preorder of branching bisimulation) in each of the
models with a faulty S-box, and

4By construction, all these states are reachable.

4. check whether the incorrect model is included (modulo
the preorder of branching bisimulation) in one of the
models with a faulty S-box.

On a laptop with a Intel Core i5 M560 CPU at 2.67 Ghz and
8 MB of RAM, executing this SVL script takes about eleven
minutes, the bunch of the time being spent in the generation
and minimization step (i.e., step 1); the comparisons with
BISIMULATOR (i.e., steps 2 to 4) only take seconds.

Experiments with other errors in the S-boxes, such as a
copy-paste error (replace the definition of an S-box by the
definition of another one), led to similar results, because in
a single iteration each S-box is called only once so that only
one error is visible.

5 Related Work
Shapiro was one of the first who introduced an automated
software debugging approach in the 80’s. Davis [20] and
Reiter [5] proposed model-based diagnosis approaches to
locate faults in hardware. In the 90’s, Console et al. [21] ap-
plied model-based diagnosis to software, in particular logic
programs. Bond [22] improved the work of Console et al..
In the late 90’s, several researchers used the principles of
model-based diagnosis to locate faults in programs written
using sequential, concurrent, and functional programming
languages [23–25]. We refer the interested reader to Wong
et al.’s overview paper on software fault localization [26].

Pill and Quaritsch [27] proposed a scenario-based ap-
proach for diagnosing faults in formal LTL specifications.
In contrast to our work, they support weak and strong fault
models. Peischl et al. [28] proposed to use Modelica mod-
els to describe cyber-physical systems and to derive fault
models from these models.

Another way of diagnosing faults in component-based
systems is blaming, introduced by Goessler and Aste-
fanoaiei [29] to determine the components responsible for
errors in safety-critical, real-time systems. Starting from an
execution trace violating a given safety property, counterfac-
tual reasoning is used to distinguish component failures that
actually contributed to the outcome from failures that had
no impact on the violation of the property. Blaming was im-
plemented in [29] through a reduction to a model checking
problem for timed automata.

Debugging of LNT descriptions was also considered,
in addition to the classical verification features of CADP.
Salaün and Ye [30] devised a coverage analysis based on in-
serting probes (special actions) at suitable places in an LNT
description without disturbing its behavior (i.e., the inserted
probes, if considered as internal actions, yield a behavior
branching bisimilar to the original one). The probes enable
to track the execution of decisions and statement blocks in
the underlying LTS model, and thus to detect lacks in cov-
erage and/or anomalies in the LNT description.

Barbon et al. [31] proposed an approach to facilitate
the analysis of (sequence) counterexamples produced by a
model checker when evaluating a temporal property on an
LNT description. This is achieved by spotting, in a given
counterexample, the actions triggering a switch of the sys-
tem execution from incorrect to correct behavior. These
actions indicate possible causes of errors, being especially
useful for large and intricate counterexamples. Both ap-
proaches [30, 31] have been automated in connection with
CADP, but are generally applicable to formal languages
with action-based, interleaving semantics.



6 Conclusion
In this paper, we introduced a method that allows to use
models written in LNT for fault localization. The underly-
ing methodology is based on the concept of wrapper compo-
nents that are themselves written in LNT. There the idea is to
introduce a variable representing the health state of the com-
ponent and to distinguish the correct behavior implemented
in the original LNT model from the faulty behavior where
a simulator can use all domain values for the component’s
parameters. The approach is not limited to capture the un-
known faulty behavior but also to introduce failure modes
together with their corresponding models, e.g., in order to
introduce stuck-at faults. The models are used together with
a script to find all single faults of a system via setting one
health variable for a component to faulty after the other and
stating the rest of the components as working as expected.

Besides the underlying foundations, we also present a
case study using the well-known data encryption standard
(DES) were we are able to determine all the manually in-
troduced faults using the proposed model. For model-based
diagnosis the advantages are (1) to be able to make use of
a modeling language that was developed for system verifi-
cation for diagnosis, and (2) to obtain a rich set of already
developed models and tools, which can now be further re-
used for fault localization.

Future research will include further improving diagnosis
via more closely integrating the LNT tools with available di-
agnosis algorithms and further experiments to assess the po-
tential and scalability of the approach. In particular, we plan
to experiment with different failure models in LNT, multiple
faults, and more available LNT models of other case studies.
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