
Guided Evolution of IEC 61499 Applications
Irman Faqrizal, Gwen Salaün, Yliès Falcone

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
Email: {irman.faqrizal, gwen.salaun}@inria.fr, ylies.falcone@univ-grenoble-alpes.fr

Abstract—IEC 61499 is a standard for developing industrial
automation systems. It is known for its reusability, reconfigurabil-
ity, interoperability, and portability. However, during their life cy-
cle, industrial systems need to evolve according to requirements,
and modifying the applications to satisfy these requirements can
be complex and error-prone. This paper proposes techniques to
guide the evolution of IEC 61499 applications. Given an initial ap-
plication and the evolution requirements, we generate guidelines
for modifying the application to satisfy the requirements. The
application is first translated into a behavioural model describing
all possible sequences of events the application can trigger. We
then apply algorithms to extract relevant submodels of the
application and modify them according to the requirements.
Finally, the submodels are analysed to generate guidelines for
modifying the application. These guidelines can bridge the gap
between the requirements and the target application. Instead
of only considering the requirements when exploring possible
modifications, the developers can use the guidelines to make
necessary changes to the application. A mixing tank system is
used as a running example to illustrate the approach. In addition,
a prototype to automate the evolution techniques is developed.

Index Terms—Industrial automation systems, IEC 61499, soft-
ware evolution

I. INTRODUCTION

Software evolution is the process of modifying software due
to various reasons, such as corrections, adaptations, improve-
ments, and preventions [1]. As software evolves to satisfy the
requirements [2], its size and complexity increase [3]. It is
important to define a systematic software evolution method
that guarantees the satisfaction of the requirements without
introducing bugs or adding unnecessary complexity.

IEC 61499 [4] is a promising industrial automation standard.
It supports reusability, reconfigurability, interoperability, and
portability [5]. The standard defines the behaviour of a system
using interconnected Function Blocks (FBs). During the life
cycle of a system, this network of FBs may need to be
modified to satisfy certain requirements. There are various
ways to satisfy these requirements, such as modifying the
FBs’ internal functionalities and creating new connections
between FBs. Manual modifications may result in unsatisfied
requirements, unexpected behaviours, and extra complexity.

Most existing works, e.g., [6]–[11], focus on the dynamic
reconfiguration of IEC 61499 applications. They propose
methods to evolve an initial application into a target appli-
cation without stopping the execution. In these works, there
is no notion of requirement, and the target application is the
user’s input. To the best of our knowledge, techniques for
computing the target application have not been proposed.

This work aims to guide the evolution of IEC 61499 appli-
cations according to requirements. Our approach is illustrated

Fig. 1: Guided evolution of an IEC 61499 application

in Fig 1. It takes as input (1) an initial IEC 61499 application
and (2) the evolution requirements. It generates as output (3)
the guidelines to obtain (4) an evolved IEC 61499 application
satisfying the requirements. We focus on applications that
define the behaviours of industrial systems using interactions
between the sensors and actuators [12]. Such applications are
characterised by the presence of service interface FBs (SIFBs)
that are associated with the sensors (i.e., sensor SIFBs) and
the actuators (i.e., actuator SIFBs). Requirements are specified
based on the expected interactions between the sensors and
the actuators. The generated guidelines inform the developers
about FBs and connections that need modification.

This paper’s contribution consists of three modules. The first
module translates the application into a behavioural model and
interprets requirements as a specification. The second module
identifies relevant submodels of the application and modifies
them according to the specification. The last module analyses
these submodels to generate the evolution guidelines. We apply
our approach to a mixing tank system. In addition, a prototype
to automate our method has been implemented. The method
for generating application models in the first module is adapted
from the work in [13]. This method has been applied to a
manufacturing case study in [14].

This paper is structured as follows. Section II introduces
background notions. Section III presents the running example.
Section IV explains the guided evolution techniques. Section V
describes the implementation of the approach. Section VI
surveys related work. Section VII concludes.



Fig. 2: Example of IEC 61499 application

Fig. 3: The ECC of ED1

Fig. 4: Model of the IEC application in Fig. 2

II. BACKGROUND

A. IEC 61499

IEC 61499 [4] is an international standard for developing
industrial automation systems. It is the successor of IEC
61131-3 [15]. Unlike its predecessor, which uses a cyclic
execution model, IEC 61499 adopts an event-driven execution
model. The standard defines the notion of Function Block
(FB). Each FB encapsulates an internal behaviour and can be
connected to other FBs via its event and data interfaces. The
internal behaviour of an FB is activated every time it receives
an event. A set of interconnected FBs describes the behaviour
of a system. IEC 61499 applications presented in this paper
are designed using 4diac IDE [16].

There are three types of FB: basic, service interface, and
composite. A basic FB encapsulates a state machine called
the Execution Control Chart (ECC). A Service Interface FB
(SIFB) provides access to the control device functionality,
such as reading inputs from the sensors (i.e., sensor SIFB)
or sending outputs to the actuators (i.e., actuator SIFB). A
composite FB consists of a network of FBs.

An example of an IEC 61499 application is shown in Fig. 2.
CY1 is an FB that generates events periodically. S1 and A1
are sensor and actuator SIFBs. ED1 is a basic FB with an
ECC shown in Fig. 3. This ECC regulates the flow of events
in the application to make the actuator SIFB only receive an
event whenever the sensor SIFB’s data value changes.

B. Model

In this work, the behaviour of an IEC 61499 application is
modelled as a Labelled Transition System (LTS) [17]. A model
consists of states and transitions labelled by events. An event
is composed of an output and a set of inputs. The model of

Fig. 5: Mixing tank system

an application describes all possible sequences of events that
the application can trigger. We rely on the translation patterns
proposed in [13] to generate behavioural models from IEC
61499 applications. These patterns have been used to model
real-world applications, such as a drilling station [14].

Definition II.1 (Event). An event is a tuple (o, I ), where:
• o = (fbo , eo,DO) is an output consisting of a source FB
fbo , an event interface eo, and a set of data DO ,

• I = {(fbi1 , ei1 ,DI1 ), (fb
i
2 , ei2 ,DI2 ), ..., (fb

i
n , ein ,DIn)}

is a set of inputs, each input consists of a target FB fbi ,
an event interface ei , and a set of data DI .

Definition II.2 (Model). The behaviour of an application is
modelled as an LTS (S , s0 ,E ,T ), where:

• S is a set of states, and s0 ∈ S is the initial state,
• E is a set of events,
• T ⊆ S × E × S is a set of transitions.

Let us use the example in Fig. 2 to illustrate the notions
of event and model. Suppose S1 triggers an event from
CNF with IN = true . Therefore, we can write this event as
((S1 ,CNF , {IN = true}), {(ED1 ,CLK , {DI = true})}).
Fig. 4 shows the model generated from the application in
Fig. 2. The highlighted texts are the outputs (green) and inputs
(blue) of the sensor and actuator SIFBs. The model shows
the application’s behaviour explained in Section II-A. For
instance, in transition 2 to 3, the actuator SIFB A1 receives
an input on REQ with OUT = false after the sensor SIFB
S1 sent two outputs sequentially from CNF with IN = true
(transition 0 to 1) then IN = false (transition 1 to 2).

III. RUNNING EXAMPLE

A mixing tank system [18] in Fig. 5 is used in this paper as
a running example to explain the guided evolution techniques.
The system aims to mix two types of liquid coming from two
different sources. S1, S2, and S3 are the sensors that detect
the amount of liquid in the tank. P1, P2, M, and D are the
actuators associated with two pumps, a mixer, and a drain.

The initial behaviour of the mixing tank is described in
Table I (Behaviour 1). This behaviour is a standard mixing
process in which both pumps start and stop pumping when the
tank is empty and full. The liquid is drained when the tank is
full, and the mixer is on when there is enough liquid. The other
two behaviours in the table are the target behaviours of the



TABLE I: The initial and target behaviours of the mixing tank

Behaviour 1 (initial behaviour)

1) When the liquid moves below S1, (i) P1 and P2 start pumping, and (ii) D stops draining.
2) When the liquid moves above S2, M starts mixing.
3) When the liquid moves above S3, (i) P1 and P2 stop pumping, and (ii) D starts draining.
4) When the liquid moves below S2, M stops mixing.

Behaviour A Behaviour B

1) When the liquid moves below S1, (i) P1 starts pumping, and
(ii) D stops draining.

2) When the liquid moves above S2, (i) P2 starts pumping, and
(ii) M starts mixing.

3) When the liquid moves above S3, (i) P1 and P2 stop pumping, and
(ii) D starts draining.

4) When the liquid moves below S2, M stops mixing.

1) When the liquid moves below S1, (i) P1 and P2 start pumping,
and (ii) D stops draining.

2) When the liquid moves above S3, (i) P1 and P2 stop pumping,
(ii) D starts draining, and (iii) M starts mixing.

3) When the liquid moves below S2, M stops mixing.

Fig. 6: Initial IEC 61499 application of the mixing tank system

evolved applications. The bold texts highlight the differences
between the target and initial behaviours. In Behaviour A,
we assume that the liquid supply from P2 is almost fully
consumed. Therefore, P2 only starts pumping when the tank
is half full. As for Behaviour B, M only starts mixing when
the tank is full to reduce energy consumption.

TABLE II: Descriptions of the sensor and actuator SIFBs

Input and Output Description

(Pi ,REQ , {OUT = true}) Pi starts pumping.
(Pi ,REQ , {OUT = false}) Pi stops pumping.
(D ,REQ , {OUT = true}) D starts draining.
(D ,REQ , {OUT = false}) D stops mixing.
(M ,REQ , {OUT = true}) M starts draining.
(M ,REQ , {OUT = false}) M stops mixing.
(Si ,CNF , {IN = true}) The liquid is above Si .
(Si ,CNF , {IN = false}) The liquid is below Si .

The IEC 61499 application describing the initial behaviour
of the mixing tank is depicted in Fig. 6. S1 , S2 , and S3
are the sensor SIFBs. D , P1 , P2 , and M are the actuator
SIFBs. The inputs and outputs of these SIFBs are described in
Table II. The other FBs (e.g., ED1 , ES1 , and TFD) regulate
the interactions between the sensor and actuator SIFBs such

that the mixing tank operates according to Behaviour 1.
The following section shows how to generate guidelines to

evolve the application in Fig. 6 into applications that execute
according to Behaviour A and Behaviour B.

IV. GUIDED EVOLUTION TECHNIQUES

This work aims to guide the evolution of IEC 61499 appli-
cations to satisfy the requirements. Our approach relies on the
generated behavioural model of the application. We propose
algorithms and analysis techniques to infer the modifications
in the application using the model and the requirements.

The overview of the approach, which consists of three
modules, is presented in Fig. 7. In the Preliminary module,
the application is translated into a model (Definition II.2),
and the requirements are interpreted as a specification. The
Model evolution module first analyses the generated model
and the specification to identify relevant submodels (Model
analysis). Afterwards, the submodels are modified according
to the specification (Submodels modification). The last module,
Guidelines generation, compares the identified and modified
submodels to generate guidelines for evolving the application.

A. Preliminary

Our approach takes as input an IEC 61499 application and
requirements to be satisfied. The Preliminary module prepro-
cesses these inputs before using them to generate the evolution
guidelines. The application is translated into a model given in
Definition II.2, whereas the requirements are interpreted as a
specification explained in this section.

Modelling. The translation techniques to obtain behavioural
models of IEC 61499 applications have been proposed in [13].
They are not part of the contribution of this work. Therefore,
the details of these techniques are not given in this paper.
We use the translation techniques in [13] on the application
in Fig. 6 to obtain a model consisting of 49392 states and
340956 transitions. To illustrate, we present a fragment of this
model in Fig. 8. It consists of three states and their outgoing
transitions. The model shows that the initial state can trigger
six possible events. These are events that are triggered by the
sensor SIFBs. Furthermore, in state 2, ED1 can trigger EO
with Q = false after the value of IN in S1 changes from true
(transition 0 to 1) to false (transition 1 to 2).



Fig. 7: Overview of the guided evolution techniques

Fig. 8: Fragment of the initial application model

Requirements. In this work, the description of the appli-
cation behaviour is represented as interactions. An interaction
consists of a sequence of outputs triggered by the sensor SIFBs
and a set of inputs received by the actuator SIFBs.

Definition IV.1 (Interaction). An interaction is a tuple
(Sen,Act), where Sen = o1 , o2 , ..., on is a sequence of out-
puts triggered by the sensor SIFBs, and Act = {i1 , i2 , ..., in}
is a set of inputs received by the actuator SIFBs.

The behaviours in Table I can be represented
as interactions using the descriptions in Table II.
As an example, the first statement of the initial
behaviour can be represented as (Sen,Act), where
Sen = (S1 ,CNF , {IN = true}), (S1 ,CNF , {IN = false})
and Act = {(P1 ,REQ , {OUT = true}), (P2 ,REQ , {OUT
= true}), (D ,REQ , {OUT = false})}.

The evolution requirements describe the new behaviour of
the application. Therefore, these requirements can be repre-
sented as a set of new interactions that do not belong to the
application’s initial behaviour. This set is called a specification.

Definition IV.2 (Specification). A specification is a set of
interactions {(Sen1 ,Act1 ), (Sen2 ,Act2 ), ..., (Senn ,Actn)}.

A specification r is obtained by first specifying the evolution
requirements. In our example, these are the bold texts in
Table I. Afterwards, we use the description of the sensor and

actuator SIFBs in Table II to interpret the requirements into a
specification.

Table III presents the specifications of Behaviour A and
Behaviour B as Specification A and Specification B. Each
specification describes the behaviours of the target appli-
cation that differ from the initial application. For instance,
the first point of Behaviour A differs from Behaviour 1
because P2 does not start pumping when the liquid moves
below S1. This difference is represented as an interaction
(Sen1 ,Act1 ) in Specification A. Sen1 contains a sequence
of outputs corresponding to the movement of the liquid
from above S1 (i.e., (S1 ,CNF , {IN = true})) to below S1
(i.e., (S1 ,CNF , {IN = false})). Act1 contains two inputs
received by the actuators P1 and D. Here, P1 should start
pumping (i.e., (P1 ,REQ , {OUT = true})), and D should
stop draining (i.e., (D ,REQ , {OUT = false})). Notice that
(P2 ,REQ , {OUT = true}) /∈ Act1 because P2 should not
start pumping when the liquid moves below S1.

B. Model evolution

The Model evolution module generates submodels that can
guide the application’s evolution. The initial model describes
all possible sequences of events that the application can trigger.
Some of these sequences are unrelated to the specification. The
first step in this module, Model analysis, identifies sequences
in the model that are relevant to the specification. This allows
us to focus on the part of the model that needs to be
modified. The second step, Submodels modification, modifies
the identified submodels according to the specification.

Model analysis. Algorithm 1 describes how relevant sub-
models are identified. It takes the initial application model
minit and the specification r as input to return a set of
identified submodels Mident . A submodel consists of event
sequences that begin with the events triggered by the sensor
SIFBs and end with the events received by the actuator SIFBs.
Function isNext checks if an event output is the next one in



TABLE III: Specifications of the mixing tank system according to Behaviour A and Behaviour B

Specification A Specification B

• (Sen1 ,Act1 )
Sen1 = (S1 ,CNF , {IN = true}), (S1 ,CNF , {IN = false})
Act1 = {(P1 ,REQ , {OUT = true}), (D ,REQ , {OUT = false})}
• (Sen2 ,Act2 )
Sen2 = (S2 ,CNF , {IN = false}), (S2 ,CNF , {IN = true})
Act2 = {(P2 ,REQ , {OUT = true}), (M ,REQ , {OUT = true})}

• (Sen1 ,Act1 )
Sen1 = (S2 ,CNF , {IN = false}), (S2 ,CNF , {IN = true})
Act1 = ∅
• (Sen2 ,Act2 )
Sen2 = (S3 ,CNF , {IN = false}), (S3 ,CNF , {IN = true})
Act2 = {(P1 ,REQ , {OUT = false}), (P2 ,REQ , {OUT = false}),
(D ,REQ , {OUT = true}), (M ,REQ , {OUT = true})}

(a) The first identified submodel according to Requirement A (Submodel A1)

(b) The second identified submodel according to Requirement A (Submodel A2)

(c) The first identified submodel according to Requirement B (Submodel B1)

(d) The second identified submodel according to Requirement B (Submodel B2)

Fig. 9: Identified submodels

Algorithm 1: Model analysis
input : minit = (S , s0 ,E ,T ), r = {(Sen1 ,Act1 ),

(Sen2 ,Act2 ), ..., (Senn ,Actn)}
output: Mident = {m1 ,m2 , ...,mn}

1 foreach (Sen,Act) ∈ r do
2 m ′ := (∅, s0 ,∅,∅)
3 identify (s0 ,minit ,m

′,Sen, ϵ)
4 Mident := Mident ∪m ′

5 identify (sc ,m,m ′,Sen, ep)
6 let Tc be the set of transitions outgoing from sc in
7 foreach t = (s, e, s ′) ∈ Tc , do
8 if isNext (e,Sen) ∨ isTrig (e, ep) then
9 addToModel (m ′, t)

10 identify (s ′,m,m ′,Sen, e)

the sequence, whereas function isTrig checks if an event is
triggered by the FB to which the previous event was sent.
Function addToModel adds a transition into a submodel. The
algorithm iterates through the set of interactions (lines 1 to 4).

In each iteration, a submodel is built by traversing the initial
model. A transition is added into the model if its event output
is the next one in Sen or triggered by the FB to which the
previous event was sent (lines 8 and 9).

We apply Algorithm 1 on the initial model of the application
to obtain submodels shown in Fig. 9. There are two submodels
for each specification because both Specification A and Spec-
ification B contain two interactions. Each submodel describes
the sequences of events that can be triggered according to
the sequence of outputs in an interaction. For instance, in
submodel A1 (Fig. 9a), the first two transitions correspond to
the sequence of outputs in Sen1 (see Table III, Specification
A). This submodel describes the sequences of events that
can be triggered after the value of IN in S1 changes from
true to false . It informs us about the sequences leading
to the inputs received by the actuators. One of the inputs
is (P2 ,REQ , {OUT = true}) (in transitions 4 to 5 and 6
to 0). This input is not in the set of expected inputs (i.e.,
Act1 ) and must be removed by modifying the submodel. This
modification is computed in the second step of this module.

Submodels modification. Algorithm 2 describes how the
identified submodels are modified according to the specifica-
tion. It takes the set of identified submodels Mident and the



Algorithm 2: Submodels modification
input : Mident = {m1 ,m2 , ...,mn}, r = {(Sen1 ,Act1 ),

(Sen2 ,Act2 ), ..., (Senn ,Actn)}
output: Mmodif = {m ′

1 ,m
′
2 , ...,m

′
n}

1 let P be the set of pairs {(m1 , (Sen1 ,Act1 )),
(m2 , (Sen2 ,Act2 )), ..., (mn , (Senn ,Actn))} such
that mi ∈ Mident and (Seni ,Acti) ∈ r in

2 foreach (m = (S , s0 ,E ,T ), (Sen,Act)) ∈ P , do
3 Irem := getInputs(m) \Act
4 Iadd := Act \ getInputs(m)
5 remInputs (s0 ,m, Irem)
6 addInputs (s0 ,m, Iadd)
7 Mmodif := Mmodif ∪m

8 remInputs (sc ,m, Irem)
9 let Tc be the set of transitions outgoing from sc in

10 foreach t = (s, e, s ′) ∈ Tc , do
11 Itmp := e.I ∩ Irem
12 if checkRem(Itmp ,m) then

removeTrans (t ,m)
13 else modifyTrans (Itmp , t ,m)
14 remInputs (s ′,m, Irem)

15 addInputs (sc ,m, Iadd)
16 let Tc be the set of transitions outgoing from sc in
17 foreach t = (s, e, s ′) ∈ Tc , do
18 if checkAdd(t) then interleave (Iadd , t ,m)
19 addInputs (s ′,m, Irem)

specification r as input. The algorithm returns a set of modified
submodels Mmodif . P is a set of pairs. Each pair contains
a submodel and its corresponding interaction (e.g., submodel
A1 is paired with interaction (Sen1 ,Act1 ) in Specification
A). Function getInputs returns a set of inputs received by
the actuators of a given submodel. For instance, applying this
function to submodel A2 returns (M ,REQ , {OUT = true}).

The algorithm iterates through the set of pairs to modify
the identified submodels (lines 2 to 7). In each iteration, it
initiates the sets of inputs to be removed and inputs to be added
(lines 2 and 3). Function remInputs traverses a submodel
to find transitions labelled with events containing inputs that
need removal (lines 8 to 16). If the event contains another
input corresponding to the same connection, the transition is
modified by removing only the input in the set Itmp (line
15); otherwise, the transition is removed completely (line 13).
Function addInputs traverses the submodel for the second
time (lines 17 to 22) to integrate the set of inputs Iadd to
the submodel by building interleaving transitions with other
transitions containing inputs that the sensor receives (line 21).

Fig. 10 shows the modified submodels obtained using
Algorithm 2. Each submodel now contains sequences of
events that satisfy the specification. For instance, the input

(P2 ,REQ , {OUT = true}) is removed in the modified sub-
model A1 (Fig. 10a) because it is not one of the expected
inputs in the corresponding interaction (i.e., Act1 in Specifica-
tion A). However, this input is added to the modified submodel
A2 (transitions 4 to 6 and 5 to 0 in Fig. 10b) because it is one
of the expected inputs in Act2 .

TABLE IV: Modification patterns

Comparison Modification

(1) An input is missing from the set
of inputs in the transition.

Remove the connection between
the output and the missing input

(2) An input is added to the set of
inputs in the transition.

Create a connection between the
output and the new input

(3) A transition is added or re-
moved.

Modify the ECC of the corre-
sponding FB

C. Guidelines generation

The Guidelines generation module analyses the initial and
modified submodels to generate evolution guidelines. We
propose modification patterns in Table IV to help this analysis.
Every identified submodel (e.g., Fig. 9a) and its modified
version (e.g., Fig. 10a) are compared to find their differences.
Then, the modification patterns are used to find suitable
modifications that must be applied to the application according
to the comparison.

TABLE V: Evolution guidelines

Guidelines A

(i) remove (ES1 ,EO0 ) - (TFP ,T ), (TFP ,EO) - (P1 ,REQ),
and (TFP ,EO) - (P2 ,REQ)

(ii) create (ES1 ,EO0 ) - (TFP ,T1 ), (ES2 ,EO1 ) - (TFP ,T2 ),
(ES3 ,EO1 ) - (TFP ,F1 ), (TFP ,EO1 ) - (P1 ,REQ), and
(TFP ,EO2 ) - (P2 ,REQ)

(iii) modify TFP

Guidelines B

(i) remove (ES2 ,EO1 ) - (TFM ,T )
(ii) create (ES3 ,EO1 ) - (TFM ,T )

The evolution guidelines to obtain applications with Be-
haviour A and Behaviour B are presented in Table V as Guide-
lines A and Guidelines B. Here, (Source FB , Interface) -
(Target FB , Interface) denotes a connection between two
FBs. The guidelines are generated according to the compar-
ison between submodels in Figs 9 and 10. For instance, in
Guidelines B (i), the connection between EO1 in ES2 and T
in TFM must be removed because the input (TFM ,T ,∅) is
removed in the modified submodel B1. On the other hand, the
connection between EO1 in ES3 and T in TFM (i.e., Guide-
lines B (ii)) must be created because the input (TFM ,T ,∅)
is added in the modified submodel B2 (transition 3 to 4).
The fragments of the evolved applications according to the
guidelines are shown in Fig 11.

V. IMPLEMENTATION

We have developed a prototype to automate the Model
evolution module. It is written in Java and takes two text
files as input. The first file is the textual representation of the



(a) Modified A1

(b) Modified A2

(c) Modified B1

(d) Modified B2

Fig. 10: Modified submodels

(a) According to Guidelines A (b) According to Guidelines B

Fig. 11: Fragments of the evolved applications

application model. The second one is the specification with
the same format as in Table. III. It generates the identified
and modified submodels in textual format as output.

Fig. 12 shows an excerpt of the prototype’s outputs. This
prototype considers only one data interface associated with
an event interface. Thus, only the value of the data is shown
(e.g., !FALSE instead of {IN = false}). The excerpt shows
the identified and modified submodels corresponding to the
first interaction of Requirement B (see Figs. 9c and 10c).

Every module in our approach can be automated. However,
associating the input and output SIFBs with physical activities
requires manual intervention (e.g., Table II). Nevertheless,

Fig. 12: Excerpt of the prototype’s outputs

this is not an issue because SIFBs include documentation
explaining their interfaces. Furthermore, our approach should
scale well for large applications because the modification
algorithm is applied to submodels with much smaller sizes
(e.g., seven states in Submodel A1) than the initial model (e.g.,
49392 states in the running example model).



VI. RELATED WORK

A featured-oriented evolution method for automation sys-
tems is proposed in [19]. It relies on the mapping between
features and codes. The evolution is simplified by automat-
ically updating the code when a new feature is introduced
(e.g., a second drill). Compared with our work, this approach
is useful for adding and removing features, while ours helps
to modify existing features according to the requirements.

The authors in [6] propose a downtimeless evolution method
for IEC 61499 applications. The method relies on a new type
of FB called EvoFB, which encapsulates three sequences:
initiations (RINIT), reconfiguration (RECONF), and termi-
nation (RDINIT). The follow-up works in [7], [8] propose
verification techniques to evaluate the correctness of the re-
configuration process. Their method is extended in [9] for
distributed applications. The work in [10] generates the correct
order of the reconfiguration operations (i.e., RECONF) using
dependency graphs. This approach is refined in [11] to support
real-time systems by considering the timing constraints and
applying the priority ceiling protocol. This collection of works
(i.e., [6]–[11]) facilitates the seamless evolution of IEC 61499
applications without stopping their executions. In comparison,
our approach focuses on finding the target application for
a given initial application and evolution requirements. The
method proposed in this paper can be integrated into the
aforementioned downtimeless evolution techniques to build an
end-to-end framework for evolving IEC 61499 applications.

The work in [20] proposes an approach to automatically re-
configure the mappings of FBs in IEC 61499 applications into
the control devices according to requirements. Applications
are represented as algebraic models describing the mappings
between the FBs and the control devices. Requirements are
expressed using quantifier-free first-order formulae. A config-
uration engine based on SMT constraint resolution computes
the system’s satisfactory configuration. Both this work and
ours aim to support the evolution of IEC 61499 applications.
However, they focus on the application’s structural aspect
when specifying the target evolution. In contrast, we deal with
the behavioural aspect of the application.

Runtime enforcement for IEC 61499 applications is pro-
posed in [21]. This work integrates an enforcer FB into the
application to modify its runtime behaviour. Properties are
expressed as state machines. Transitions can be specified to
forward, discard, and replace events. For instance, an event to
start the mixing process can be replaced with another event
that starts the draining process. This work can also be used
to evolve IEC 61499 applications according to requirements.
However, every evolution involves the addition of an enforcer
FB. In comparison, our approach does not add new FBs to the
application, which avoids adding complexity.

VII. CONCLUSION

This work proposes a set of techniques to guide the
evolution of IEC 61499 applications according to some re-
quirements. These techniques make use of various algorithms
and analysis techniques on the behavioural model of the

application to generate evolution guidelines. These guidelines
help to make the necessary modifications without adding extra
complexity or creating erroneous behaviour. For future work,
we plan to integrate our approach with existing tools and
frameworks that can evolve IEC 61499 applications without
stopping their executions.

Acknowledgements. This work is supported by the French
National Research Agency in the framework of the « France
2030 » program (ANR-15-IDEX-0002) and by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01).

REFERENCES

[1] G. Taentzer, M. Goedicke, B. Paech, K. Schneider, A. Schürr, and
B. Vogel-Heuser, “The nature of software evolution,” in Managed
Software Evolution. Springer, 2019, pp. 9–20.

[2] V. E. S. Souza, A. Lapouchnian, K. Angelopoulos, and J. Mylopou-
los, “Requirements-driven software evolution,” Comput. Sci. Res. Dev.,
vol. 28, no. 4, pp. 311–329, 2013.

[3] M. M. Lehman, “Laws of software evolution revisited,” in Proc. of
EWSPT’96, ser. LNCS, vol. 1149. Springer, 1996, pp. 108–124.

[4] “International Electrotechnical Commission, Functional blocks - Part 1:
Architecture, 2nd edn, IEC 61499-1,” IEC Geneva, 2012.

[5] V. Vyatkin, “IEC 61499 as enabler of distributed and intelligent automa-
tion: State-of-the-art review,” IEEE Trans. Ind. Informatics, vol. 7, no. 4,
pp. 768–781, 2011.

[6] O. Hummer, C. Sünder, A. Zoitl, T. I. Strasser, M. N. Rooker, and
G. Ebenhofer, “Towards zero-downtime evolution of distributed control
applications via evolution control based on IEC 61499,” in Proc. of
ETFA’06. IEEE, 2006, pp. 1285–1292.

[7] C. Sünder, B. Favre-Bulle, and V. Vyatkin, “Towards an approach for
the verification of downtimeless system evolution,” in Proc. of ETFA’06.
IEEE, 2006, pp. 1133–1136.

[8] C. Sünder, V. Vyatkin, and A. Zoitl, “Formal verification of downtime-
less system evolution in embedded automation controllers,” ACM Trans.
Embed. Comput. Syst., vol. 12, no. 1, pp. 17:1–17:17, 2013.

[9] A. Schimmel and A. Zoitl, “Distributed online change for IEC 61499,”
in Proc. of ETFA’11. IEEE, 2011, pp. 1–7.

[10] L. Prenzel and S. Steinhorst, “Automated dependency resolution for
dynamic reconfiguration of IEC 61499,” in Proc. of ETFA’21. IEEE,
2021, pp. 1–8.

[11] L. Prenzel, S. Hofmann, and S. Steinhorst, “Real-time dynamic recon-
figuration for IEC 61499,” in Proc. of ICPS’22. IEEE, 2022, pp. 1–6.

[12] A. Zoitl and R. Lewis, Modelling control systems using IEC 61499. 2nd
Edition. Institution of Engineering and Technology, 2014.

[13] Y. Falcone, I. Faqrizal, and G. Salaün, “Probabilistic analysis of indus-
trial IoT applications,” in Proc. of IoT’22. ACM, 2022, pp. 41–48.

[14] I. Faqrizal, T. Liakh, M. Xavier, G. Salaün, and V. Vyatkin, “Proba-
bilistic model checking for IEC 61499: A manufacturing application,”
in Proc. of ICIT’24. IEEE, 2024, pp. 1–6.

[15] “Programmable controllers-part 3: Programming languages,” IEC
61131-3 (Ed. 2.0), 2002.

[16] T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl, C. Sunder, A. Valentini,
and A. Martel, “Framework for distributed industrial automation and
control (4diac),” in Proc. of INDIN’08, 2008, pp. 283–288.

[17] R. M. Keller, “Formal verification of parallel programs,” Commun. ACM,
vol. 19, no. 7, pp. 371–384, 1976.

[18] T. Chen and C. Cheng, “Modelling and verification of an automatic
controller for a water treatment mixing tank,” Desalination and Water
Treatment, vol. 159, pp. 318–326, 2019.

[19] D. Hinterreiter, H. Prähofer, L. Linsbauer, P. Grünbacher, F. Reisinger,
and A. Egyed, “Feature-oriented evolution of automation software
systems in industrial software ecosystems,” in Proc. of ETFA’18. IEEE,
2018, pp. 107–114.

[20] R. Sinha, K. Johnson, and R. Calinescu, “A scalable approach for re-
configuring evolving industrial control systems,” in Proc. of ETFA’14.
IEEE, 2014, pp. 1–8.

[21] Y. Falcone, I. Faqrizal, and G. Salaün, “Runtime enforcement for IEC
61499 applications,” in Proc. of SEFM’22, ser. LNCS, vol. 13550.
Springer, 2022, pp. 352–368.


