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ABSTRACT
Designing and developing distributed software has always been
a tedious and error-prone task, and the ever increasing software
complexity is making matters even worse. Model checking auto-
matically verifies that a model, e.g., a Labelled Transition System
(LTS), obtained from higher-level specification languages satisfies a
given temporal property. When the model violates the property, the
model checker returns a counterexample, but this counterexample
does not precisely identify the source of the bug. In this work, we
propose some techniques for simplifying the debugging of these
models. These techniques first extract from the whole behavioural
model the part which does not satisfy the given property. In that
model, we then detect specific states (called faulty states) where a
choice is possible between executing a correct behaviour or falling
into an erroneous part of the model. By using this model, we pro-
pose in this paper some techniques to count the number of bugs
in the original specification. The core idea of the approach is to
change the specification for some specific actions that may cause
the property violation, and compare the model before and after
modification to detect whether this potential bug is one real bug
or not. Beyond introducing in details the solution, this paper also
presents tool support and experiments.
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1 INTRODUCTION
Designing and developing distributed software has always been
a tedious and error-prone task, and the ever increasing software
complexity is making matters even worse. Model checking [1] is
an established technique for automatically verifying that a model,
e.g., a Labelled Transition System (LTS), obtained from higher-level
specification languages such as process algebra satisfies a given
temporal property, e.g., the absence of deadlocks. When the model
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violates the property, the model checker returns a counterexam-
ple, which is a sequence of actions leading to a state where the
property is not satisfied. Understanding this counterexample for de-
bugging the specification is a complicated task for several reasons:
(i) the counterexample can contain hundreds (even thousands) of
actions, (ii) the debugging task is mostly achieved manually, (iii) the
counterexample does not explicitly highlight the source of the bug
that is hidden in the model, (iv) the counterexample describes only
one occurrence of the bug and does not give a global view of the
problem with all its occurrences.

In this work, we rely on some debugging techniques proposed
in [4]. These techniques aim at extracting the part of the whole
behavioural model which does not satisfy the given property. This
model is called a counterexample LTS. In that LTS, some specific
states are identified fromwhich the specification can reach a correct
part of the model or an incorrect one. These faulty states correspond
to decision points or choices that are particularly interesting be-
cause they usually point out a part of the model that may identify
the source of the bug. Once all the faulty states have been identified,
visualization techniques are used to graphically observe the whole
model and see how those states are distributed over that model.

One limit of this approach is that it does not give any clue on
how much erroneous is the specification and corresponding model.
We do not know if there is one bug in the application or several
ones. This information is important to quantify the faulty part of
the model and thus to measure the effort for debugging the program.
Moreover, bugs are usually considered to be all identical in terms
of importance. However, this is not the case in practice, and some
of them are more critical than others. As an example, a bug can
only occur in a very specific situation whereas another one can
systematically occur and thus make the whole program erroneous.

In this paper, we propose some techniques to count the number
of bugs in a given specification. This approach relies on the idea
of modifying the specification and of analyzing the changes in the
corresponding model. As a result, we provide as output the number
of bugs in the specification with some information regarding the
kind of bugs. This information serves to quantify the degree of
faultiness of the specification and can be used as a measure to
evaluate the effort necessary to correct the specification. In this
work, we focus on safety properties, which state that something
wrong must not happen. These properties are widely used in the
verification of real-world systems. The violation of a safety property
occurs when the specification contains certain sequences of actions
invalidating the property. We will show in this work how we take
advantage of the last actions in these sequences to identify and
count the number of bugs.
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More precisely, our approach takes as input a specification that
can be compiled into an LTS (or directly an LTS) and a safety prop-
erty written using a temporal logic. In this work, we use LNT [9]
and MCL [21], respectively, as specification language and temporal
logic. We first apply some successive changes to the specification
to highlight some actions (known as last actions in the property)
that may be the cause of bugs. Then, every time the specification
is modified, we generate the corresponding counterexample LTS.
By comparing the successive versions of the counterexample LTS,
we are able to detect whether each potential bug is really a bug or
not. At the end, we can return the number of bugs and for each bug
we indicate whether it is inevitable or avoidable. This approach is
fully automated by a tool we implemented and applied on several
examples for validation purposes.

The rest of this paper is organized as follows. Section 2 introduces
some preliminary notions on behavioural models and faulty states.
Section 3 presents the details of our approach for bug counting.
Section 4 introduces the tool support and some experiments we
carried out for validating our approach. Section 5 surveys related
work and Section 6 concludes the paper.

2 BACKGROUND
In this work, we adopt Labelled Transition System (LTS) as be-
havioural model of concurrent programs. An LTS consists of states
and labelled transitions connecting these states.

Definition 2.1. (LTS) An LTS is a tuple𝑀 = (𝑆, 𝑠0, Σ,𝑇 ) where 𝑆
is a finite set of states, 𝑠0 ∈ 𝑆 is the initial state, Σ is a finite set of
labels, and 𝑇 ⊆ 𝑆 × Σ × 𝑆 is a finite set of transitions. A transition
is represented as 𝑠

𝑙−→ 𝑠′ ∈ 𝑇 , where 𝑙 ∈ Σ.

An LTS is produced from a higher-level specification of the sys-
tem described with a process algebra for instance. Specifications can
be compiled into an LTS using specific compilers. In this work, we
use LNT as specification language [9] and compilers from the CADP
toolbox [15] for obtaining LTSs from LNT specifications. However,
the approach presented in this section is generic in the sense that
it applies on LTSs produced from any specification language and
any compiler/verification tool.

LNT is an extension of LOTOS [17], an ISO standardized pro-
cess algebra, which allows the definition of data types, functions,
and processes. Table 1 provides an excerpt of the behavioural frag-
ment of LNT syntax. 𝐵 stands for a LNT term, 𝐴 for an action,
𝐸 for a Boolean expression, 𝑥 for a variable, 𝑇 for a type, and 𝑃

for a process name. The syntax fragment presented in this table
contains the termination construct (stop) and the occurrence of
actions (𝐴) that may come with offers (send an expression 𝐸 or
receive in a variable 𝑥 ). LNT processes are then built using several
operators: sequential composition (;), conditional statement (if),
non-deterministic choice (select), parallel composition (par) where
the communication between the involved processes is carried out
by rendezvous on a list of synchronized actions, looping behaviours
described using process calls or explicit operators (while), and as-
signment (:=) where the variable should be defined beforehand
(var). LNT is formally defined using operational semantics based
on LTSs.

𝐵 ::= stop
| 𝐴 (!𝐸, ?𝑥)
| 𝐵1;𝐵2
| if 𝐸 then 𝐵1 else 𝐵2 end if
| select 𝐵1[]...[]𝐵𝑛 end select
| par 𝐴1, ..., 𝐴𝑚 in 𝐵1 | |...| |𝐵𝑛 end par
| 𝑃 [𝐴1, ..., 𝐴𝑚] (𝐸1, ..., 𝐸𝑛)
| while 𝐸 loop 𝐵 end loop
| var 𝑥 :𝑇 in 𝑥 := 𝐸;𝐵 end var

Table 1: Excerpt of LNT Syntax (Behaviour Part)

An LTS can be viewed as all possible executions of a system. One
specific execution is called a trace.

Definition 2.2. (Trace) Given an LTS 𝑀 = (𝑆, 𝑠0, Σ,𝑇 ), a trace
of size 𝑛 ∈ N is a sequence of labels 𝑙1, 𝑙2, . . . , 𝑙𝑛 ∈ Σ such that

𝑠0
𝑙1−→ 𝑠1 ∈ 𝑇, 𝑠1

𝑙2−→ 𝑠2 ∈ 𝑇, . . . , 𝑠𝑛−1
𝑙𝑛−−→ 𝑠𝑛 ∈ 𝑇 . The set of all

traces of𝑀 is written as 𝑡 (𝑀).

Model checking consists in verifying that an LTS model satisfies
a given temporal property 𝑃 , which specifies some expected require-
ment of the system. Temporal properties are usually divided into
two main families: safety and liveness properties [1]. In this work,
we focus on safety properties, which are widely used in the verifica-
tion of real-world systems. Safety properties state that “something
bad never happens”. A safety property is usually formalized using a
temporal logic. We use MCL (Model Checking Language) [21] in
this work, which is an action-based, branching-time temporal logic
suitable for expressing properties of concurrent systems. MCL is an
extension of alternation-free 𝜇-calculus with regular expressions,
data-based constructs, and fairness operators. A safety property
can be semantically characterized by an infinite set of traces 𝑡𝑃 ,
corresponding to the traces that violate the property 𝑃 in an LTS.
If the LTS model does not satisfy the property, the model checker
returns a counterexample, which is one of the traces characterized
by 𝑡𝑃 .

Definition 2.3. (Counterexample) Given an LTS𝑀 = (𝑆, 𝑠0, Σ,𝑇 )
and a property 𝑃 , a counterexample is any trace which belongs to
𝑡 (𝑀) ∩ 𝑡𝑃 .

The new contributions of this paper rely on existing results pre-
sented in [4]. This approach takes as input a specification and a
temporal property, and identifies decision points where the specifi-
cation (and the corresponding LTS model) goes from a (potentially)
correct behaviour to an incorrect one. These choices turn out to
be very useful to understand the source of the bug. These decision
points are called faulty states in the LTS model.

In order to detect these faulty states, the transitions in the model
first need to be categorized into different types. The type of a tran-
sition indicates whether that transition belongs to traces satisfying
the property or not. More precisely, transitions in the LTS can be
categorized into three types:

• A correct transition belongs to traces of the LTS for which
the property is satisfied.

• An incorrect transition belongs to traces of the LTS for which
the property is violated.
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• A neutral transition is a transition where the validity of the
property is not yet determined.

The information concerning the transition type (correct, incor-
rect and neutral transitions) is added to the LTS in the form of tags.
The set of transition tags is defined as Γ = {𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡,
𝑛𝑒𝑢𝑡𝑟𝑎𝑙}. Given an LTS𝑀 = (𝑆, 𝑠0, Σ,𝑇 ), a tagged transition is rep-

resented as 𝑠
(𝑙,𝛾 )
−−−−→ 𝑠′, where 𝑠, 𝑠′ ∈ 𝑆 , 𝑙 ∈ Σ and 𝛾 ∈ Γ. Thus, an

LTS in which each transition has been tagged with a type is called
tagged LTS.

Definition 2.4. (Tagged LTS) Given an LTS 𝑀 = (𝑆, 𝑠0, Σ,𝑇 ),
and the set of transition tags Γ, the tagged LTS is a tuple 𝑀𝑇 =

(𝑆𝑇 , 𝑠0𝑇 , Σ𝑇 ,𝑇𝑇 ) where 𝑆𝑇 = 𝑆 , 𝑠0
𝑇
= 𝑠0, Σ𝑇 = Σ, and𝑇𝑇 ⊆ 𝑆𝑇 ×Σ𝑇 ×

Γ × 𝑆𝑇 .

It is worth noting that a specific action appearing just once in
the LNT specification can appear several times in the correspond-
ing tagged LTS possibly with a different type. This is the case for
instance when we have a choice between A and B, both followed by
C (select A [] B end select ; C in LNT), and the property states that
we do not want A and C in sequence. In that case, the sequence
A followed by C corresponds to two incorrect transitions in the
tagged LTS whereas the sequence B followed by C corresponds to
two correct transitions.

The tagged LTS where transitions have been typed allows us
to identify faulty states in which an incoming neutral transition is
followed by a choice between at least two transitions with different
types (correct, incorrect, neutral). Such a faulty state consists of all
the neutral incoming transitions and all the outgoing transitions.

Definition 2.5. (Faulty State) Given a tagged LTS𝑀𝑇 = (𝑆𝑇 , 𝑠0𝑇 ,

Σ𝑇 ,𝑇𝑇 ), a state 𝑠 ∈ 𝑆𝑇 is a faulty state if ∃𝑡 = 𝑠′
(𝑙,𝛾 )
−−−−→ 𝑠 ∈ 𝑇𝑇

where 𝑡 is a neutral transition, and ∃𝑡1 = 𝑠
(𝑙1,𝛾1 )−−−−−→ 𝑠1 ∈ 𝑇𝑇 and

∃𝑡2 = 𝑠
(𝑙2,𝛾2 )−−−−−→ 𝑠2 ∈ 𝑇𝑇 where 𝑡1 and 𝑡2 are neutral, correct or

incorrect transition, with different tags (𝛾1 ≠ 𝛾2). In that case, the
faulty state 𝑠 consists of the set of transitions𝑇nb ⊆ 𝑇𝑇 such that for

each 𝑡 ′ ∈ 𝑇nb , either 𝑡 ′ = 𝑠′
(𝑙,𝛾 )
−−−−→ 𝑠 ∈ 𝑇𝑇 or 𝑡 ′ = 𝑠

(𝑙,𝛾 )
−−−−→ 𝑠′′ ∈ 𝑇𝑇 .

By looking at outgoing transitions of a faulty state, four kinds
of faulty states can be identified (Figure 1 (c)):

(1) with at least one correct transition and one neutral transition
(no incorrect transition),

(2) with at least one incorrect transition and one neutral transi-
tion (no correct transition),

(3) with at least one correct and one incorrect transition (no
neutral transition), and

(4) with at least one correct, one incorrect, and one neutral
transition.

Finally, the notion of counterexample LTS is defined and will be
used in the rest of this paper.

Definition 2.6. (Counterexample LTS) Given a tagged LTS𝑀𝑇 =

(𝑆𝑇 , 𝑠0𝑇 , Σ𝑇 ,𝑇𝑇 ) and the set of faulty states 𝐹 computed on this
tagged LTS, the corresponding counterexample LTS is the tuple
𝐶 = (𝑀𝑇 , 𝐹 ).

The reader interested in more details regarding the algorithms
for computing tagged and counterexample LTSs can refer to [4].

Figure 1: Legend for Transitions, Faulty States, and States

Counterexample LTSs can be visualized to give to the developer
a graphical representation of these LTS models where correct/in-
correct/neutral transitions and faulty states are highlighted. These
visualization techniques make use of different styles and colours
to distinguish the different types of transitions and states, as de-
fined in Figure 1. There are three types of transitions (Figure 1
(a)): neutral transitions are represented using (black) dotted lines,
correct transitions are represented using (green) solid lines, and
incorrect transitions are represented using (red) dashed lines. As
for states (Figure 1 (b)), white is used for regular states, (red) solid
color with -2 as the state’s identifier is used for incorrect sink states,
and (green) solid color with -1 as the state’s identifier is used for
correct sink states. When a state is green or red, this is a sink state
because from here the remaining states will be of the same color,
so it is not necessary to keep that part of the LTS. Faulty states are
represented with different shades of yellow depending on the type
of the outgoing transitions (as shown in Figure 1 (c)).

Example. An example of LNT specification is presented in List-
ing 1. Suppose the property to be respected by this specification
states that B should not be executed before A. This is formalized in
MCL as follows:

[ (𝑛𝑜𝑡 𝐴) ∗ . 𝐵 ] 𝑓 𝑎𝑙𝑠𝑒 (1)

1 p r o c e s s main [ INIT1 , INIT2 , EXEC1 ,
2 EXEC2 , EXEC3 , A , B : any ] i s
3 INIT1 ;
4 s e l e c t B ; A [ ] EXEC1 end s e l e c t ;
5 s e l e c t
6 A
7 [ ]
8 INIT2 ;
9 s e l e c t
10 par EXEC2 ; A | | B end par
11 [ ]
12 EXEC3
13 end s e l e c t
14 end s e l e c t
15 end p r o c e s s

Listing 1: Example of LNT Specification

By looking at the specification, we can see that the property can
be violated in several ways. For instance, in the parallel statement
at line 10, there is a possibility to execute B followed by EXEC2
then A, or EXEC2 followed by B then A. Both sequences violate the
property because B is executed before A.
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The counterexample LTS generated from this specification and
property is given in Figure 2. The counterexample LTS is an LTS
composed of all possible counterexamples. For instance, in the case
of the property’s violation at line 10, one of the corresponding coun-
terexamples is: INIT1 (from state 0), EXEC1 (from state 1), INIT2
(from state 2), EXEC2 (from state 3), B (from state 4). This counterex-
ample LTS exhibits all types of faulty states. As an example, the
faulty state identified by 3 is a faulty state with neutral, correct, and
incorrect transitions. From this state, the property’s violation can
be temporarily avoided by executing EXEC2 (neutral transition),
can be definitely avoided by executing EXEC3 (correct transition),
or can be violated by executing B (incorrect transition). Some states
and transitions are hidden in the counterexample LTS because they
are replaced by the (correct or incorrect) sink states. For example,
in state 1 by executing B, the transition goes to an incorrect sink
state (state -2). In that case, since the property becomes false, it is
not useful to show any of the following states and transitions.

Figure 2: Example of Counterexample LTS

3 COUNTING BUGS
Given a specification (written in LNT) and a temporal property
(written in MCL), we propose a method for counting the number
of bugs. These techniques rely on several notions we will succes-
sively present in this section. First, we define the notion of last
actions in property, which are the actions executed just before the
property becomes false. We also define two different types of bugs
called inevitable and avoidable bugs. When a bug is detected, the
solution presented in this section is also able to indicate whether
the bug is inevitable or avoidable. The techniques for counting
bugs rely on the notion of dummy choice, which aims at replacing
in the specification an occurrence of a last action in property by
a choice between this action and a dummy action. This dummy
choice is crucial to identify whether this action corresponds to a
part of the specification where the property is violated or not. By
relying on this notion of dummy choice, we present an algorithm,
which computes the number of bugs and indicates for each bug
whether it is inevitable or avoidable. This section ends with the
generation of more precise counterexamples, by taking advantage
of the information computed when counting the number of bugs.

3.1 Last Actions in Property
In this paper, we focus on safety properties. The main idea is that
the last actions in the property are the actions executed just before
the property becomes false. Therefore, these actions play a central
role in the computation of the truth value of the property. In this
work, these properties are written in MCL and have the following
form: [ 𝑅 ] 𝑓 𝑎𝑙𝑠𝑒 , where 𝑅 is a regular expression. The syntax of

regular expressions is given by:

𝑅 ::= 𝑡𝑟𝑢𝑒 | 𝑎 | ¬𝑎 | 𝑎1 ∨ 𝑎2 | 𝑅1.𝑅2 | 𝑅1|𝑅2 | 𝑅1∗

where 𝑎 ∈ Σ for a given LTS𝑀 = (𝑆, 𝑠0, Σ,𝑇 ). We assume that the
regular expression is not empty, therefore the set of last actions in
property is not empty either and is computed by a function called
𝑙𝑎𝑠𝑡 . Note that ∨ and | are slightly different because ∨ applies on
actions whereas | applies on formulas. There is no ∧ operator in
the syntax because this predicate results in a property that always
evaluates to true 1.

Definition 3.1. (Last Actions in Property) Given a safety property
[ 𝑅 ] 𝑓 𝑎𝑙𝑠𝑒 , function 𝑙𝑎𝑠𝑡 takes 𝑅 and Σ as inputs and returns the set
of last actions in this property. Function 𝑙𝑎𝑠𝑡 is defined as follows:

𝑙𝑎𝑠𝑡 (𝑡𝑟𝑢𝑒, Σ) = Σ

𝑙𝑎𝑠𝑡 (𝑎, Σ) = {𝑎}
𝑙𝑎𝑠𝑡 (¬𝑎, Σ) = Σ \{𝑎}
𝑙𝑎𝑠𝑡 ( 𝑎1 ∨ 𝑎2, Σ) = {𝑎1, 𝑎2}
𝑙𝑎𝑠𝑡 (𝑅1.𝑅2, Σ) = 𝑖 𝑓 𝑒𝑚𝑝𝑡𝑦 (𝑅2) 𝑡ℎ𝑒𝑛 𝑙𝑎𝑠𝑡 (𝑅1, Σ) 𝑒𝑙𝑠𝑒

𝑙𝑎𝑠𝑡 (𝑅2, Σ) 𝑒𝑛𝑑 𝑖 𝑓

𝑙𝑎𝑠𝑡 (𝑅1|𝑅2, Σ) = 𝑙𝑎𝑠𝑡 (𝑅1, Σ) ∪ 𝑙𝑎𝑠𝑡 (𝑅2, Σ)
𝑙𝑎𝑠𝑡 (𝑅1∗, Σ) = ∅

where function 𝑒𝑚𝑝𝑡𝑦 takes as input a regular expression and re-
turns 𝑡𝑟𝑢𝑒 if this expression is the empty word and 𝑓 𝑎𝑙𝑠𝑒 otherwise.

Example. We illustrate the computation of last actions in a prop-
erty with several properties. First, consider the following property,
stating that action CLOSE should not be executed after action EXEC.
This property is written in MCL as follows:

[𝑡𝑟𝑢𝑒 ∗ . 𝐸𝑋𝐸𝐶 . 𝑡𝑟𝑢𝑒 ∗ . 𝐶𝐿𝑂𝑆𝐸] 𝑓 𝑎𝑙𝑠𝑒 (2)

In this property, action CLOSE is the last action in property
because it is the only action which is executed just before the
property becomes false. Consider now a property stating that when
EXEC is executed then CLOSE must not be executed right after it:

[𝑡𝑟𝑢𝑒 ∗ . 𝐸𝑋𝐸𝐶 . ¬ 𝐶𝐿𝑂𝑆𝐸] 𝑓 𝑎𝑙𝑠𝑒 (3)

In this case, the last actions in property is the set of all actions in
the alphabet of the LTS model except CLOSE, that is, Σ \{𝐶𝐿𝑂𝑆𝐸}.
This example shows that the last action in property is not always
the rightmost action written in the property. Let us assume finally
that we do not want the execution of a sequence of OPEN or CLOSE
actions, which is written in MCL as follows:

[𝑡𝑟𝑢𝑒 ∗ . (𝑂𝑃𝐸𝑁 . 𝑂𝑃𝐸𝑁 ) | 𝑡𝑟𝑢𝑒 ∗ . (𝐶𝐿𝑂𝑆𝐸 . 𝐶𝐿𝑂𝑆𝐸)] 𝑓 𝑎𝑙𝑠𝑒 (4)

The resulting set of last actions consists of two actions { OPEN,
CLOSE }. In the rest of this paper, we will assume that the property
has a unique last action for simplifying the presentation, but a
property can have several last actions as illustrated previously.

1Assume a property defined as follows: [𝐴. (𝐵 ∧ 𝐶 ) ] 𝑓 𝑎𝑙𝑠𝑒 . This property is true
on all LTS models. This comes from the 𝐵 ∧ 𝐶 predicate, which is always false since
𝐵 and𝐶 are different actions names (i.e., no label of an LTS can satisfy 𝐵 and𝐶). Since
the predicate 𝐵 ∧ 𝐶 is false, the regular formula𝐴. (𝐵 ∧ 𝐶 ) does not match any
transition sequence in any LTS, so the modality (which expresses the absence of such
sequences) always evaluates to true.
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3.2 Inevitable and Avoidable Bugs
A bug is called an inevitable bug when the property’s violation can
not be avoided from the initial state of the LTS model. In that case,
there is no trace in the model satisfying the property. In contrast,
an avoidable bug is a bug where the violation of the property can
be avoided. This means that there exists at least a trace in the LTS
model for which the property is not violated.

Definition 3.2. (Inevitable Bug) Given an LTS 𝑀 = (𝑆, 𝑠0, Σ,𝑇 )
and a property 𝑃 , there is an inevitable bug in𝑀 if � 𝑡 ∈ 𝑡 (𝑀) such
that 𝑡 |= 𝑃 .

Definition 3.3. (Avoidable Bug) Given an LTS 𝑀 = (𝑆, 𝑠0, Σ,𝑇 )
and a property 𝑃 , there is an avoidable bug in 𝑀 if ∃ 𝑡, 𝑡 ′ ∈ 𝑡 (𝑀)
such that 𝑡 |= 𝑃 and 𝑡 ′ ̸ |= 𝑃 .

Example. We illustrate this with the LNT specifications given in
Listings 2 and 3. The property we want to verify on these specifica-
tions was introduced in Section 3.1 and states that action CLOSE
should not be executed after action EXEC. In Listing 2, there is an
inevitable bug because CLOSE (line 10) is always executed after
EXEC (line 4). In Listing 3, there is a possibility to execute CLOSE
(line 9) after EXEC (line 4) is executed. However, it is also possible
to execute the first part of the select statement (line 6) and thus
avoid the property violation. This means that the bug is avoidable.

1 p r o c e s s Main [ INIT , EXEC ,
2 CLOSE , AA, BB , CC : any ] i s
3 INIT ;
4 EXEC ;
5 s e l e c t
6 AA; BB
7 [ ]
8 CC
9 end s e l e c t ;
10 CLOSE
11 end p r o c e s s

Listing 2: Inevitable Bug

1 p r o c e s s Main [ INIT , EXEC ,
2 CLOSE , AA, BB , CC : any ] i s
3 INIT ;
4 EXEC ;
5 s e l e c t
6 AA; BB
7 [ ]
8 CC ;
9 CLOSE
10 end s e l e c t
11 end p r o c e s s

Listing 3: Avoidable Bug

The counterexample LTS corresponding to the LNT specification
given in Listing 2 is shown in Figure 3 (a). It has all incorrect (red)
transitions because the property violation is inevitable from the ini-
tial state. In contrast, the counterexample LTS for Listing 3 (Figure 3
(b)) exhibits one faulty state (state 2): if AA is executed, the bug is
avoided, whereas if CC is executed, the property is violated. Note
that in this second counterexample LTS, all states and transitions
after AA are hidden and replaced by a correct sink state (i.e., BB is
missing) because it is not possible to violate the property after AA
is executed.

3.3 Dummy Choices
The techniques for counting bugs rely on the notion of dummy
choice. Given an action, the main idea is to replace the occurrence
of this action by a choice in the specification between executing
this action and executing a fresh action called dummy action.

Definition 3.4. (Dummy Choice) Given a specification 𝐿 and an
action 𝐴 appearing in 𝐿, the addition of a dummy choice trans-
forms 𝐴 into a choice statement (select construct in LNT) with two
clauses: the first clause contains the action 𝐴 and the second clause
contains a new action 𝐷𝑈𝑀𝑀𝑌 which is not used anywhere in the
specification 𝐿.

(a)

(b)

Figure 3: Counterexample LTSs for Specifications in List-
ings 2 (a) and 3 (b)

For debugging purposes, the action replaced by a dummy choice
corresponds to the last action in property. Indeed, the property
violation occurs when the last action in property is executed. Our
method aims at adding a new choice in the specification in order to
avoid this execution. This dummy choice helps to identify whether
this specific occurrence of the last action may cause the violation of
the property (real bug) or not. To do so, we need two versions of the
specification: a version where the dummy choice has been added
and the version where that dummy choice has been removed. For
each version of the LNT specification, we generate the correspond-
ing counterexample LTS. As a result, we have two counterexample
LTSs and we compare them in order to decide whether this occur-
rence of the last action in property corresponds to a real bug or not.
More precisely, this comparison has three possible outcomes:

(1) Transition(s) labelled with dummy action(s) are missing from
non-faulty state(s) in the second counterexample LTS. In this
case, the occurrence of the last action in property does not
correspond to a bug.

(2) At least one transition labelled with a dummy action is miss-
ing from a faulty state in the second counterexample LTS.
This means that the occurrence of the last action in property
corresponds to an avoidable bug.

(3) The counterexample LTS changed to a counterexample LTS
with all incorrect transitions. This means that the occurrence
of the last action in property corresponds to an inevitable
bug.

These three cases are written more formally in the following
definition.

Definition 3.5. (Counterexample LTS Comparison) Given two
counterexample LTSs 𝐶 = ((𝑆𝑇 , 𝑠0𝑇 , Σ𝑇 ,𝑇𝑇 ), 𝐹 ) and 𝐶

′ = ((𝑆 ′
𝑇
, 𝑠′0
𝑇
,

Σ′
𝑇
,𝑇 ′
𝑇
), 𝐹 ′) generated from two specifications 𝐿 (with a dummy

choice) and 𝐿′ (without that dummy choice), the three possible
outcomes obtained by comparing 𝐶 and 𝐶′ are as follows:

(1) No bug: ∀𝑡 = 𝑠
(𝐷𝑈𝑀𝑀𝑌,𝛾 )
−−−−−−−−−−−→ 𝑠′ ∈ 𝑇, 𝑠 ∉ 𝐹, 𝑎𝑛𝑑 𝑡 ∉ 𝑇 ′

(2) Avoidable bug: ∃𝑡 = 𝑠
(𝐷𝑈𝑀𝑀𝑌,𝛾 )
−−−−−−−−−−−→ 𝑠′ ∈ 𝑇, 𝑠 ∈ 𝐹, 𝑎𝑛𝑑

𝑡 ∉ 𝑇 ′

(3) Inevitable bug: ∃𝑠
(𝐴,𝑐𝑜𝑟𝑟𝑒𝑐𝑡 )
−−−−−−−−−−→ 𝑠′ ∈ 𝑇, 𝑎𝑛𝑑

∀𝑠′′
(𝐴′,𝛾 ′ )
−−−−−−→ 𝑠′′′ ∈ 𝑇 ′, 𝛾 ′ = 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
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Note that these three cases are exclusive and cover all possible
cases. By removing a dummy choice, the counterexample LTS en-
tirely change (case (3), this is an inevitable bug) or not. If this is
not an inevitable bug, there are only two cases: (i) removing the
dummy choice has no real impact in the sense that there is just one
less transition (case (1)), or (ii) removing the dummy choice has an
impact, which results in the presence of a new faulty state in the
corresponding counterexample LTS.

Example. Consider the LNT specifications given in Listings 2
and 3. The last action in property consists of the action CLOSE.
Therefore, for both examples, our technique replaces the actions
CLOSE at line 10 in Listing 2 and line 9 in Listing 3 by the following
select statement:

𝑠𝑒𝑙𝑒𝑐𝑡 𝐶𝐿𝑂𝑆𝐸 [] 𝐷𝑈𝑀𝑀𝑌 𝑒𝑛𝑑 𝑠𝑒𝑙𝑒𝑐𝑡

The corresponding counterexample LTSs are given in Figure 4
(a) and (b). In the first counterexample LTS (Figure 4 (a)), there is a
faulty state that has an outgoing transition with a dummy action.
If this dummy choice is removed and the counterexample LTS
generated, the resulting counterexample LTS consists of incorrect
transitions only (Figure 3 (a)). As a result, we can conclude that this
occurrence of last action in property corresponds to an inevitable
bug (case 3). In the second counterexample LTS (Figure 4 (b)), if the
dummy choice is removed in the specification, a dummy action is
missing from a faulty state in the generated counterexample LTS
(Figure 3 (b)). This means that the corresponding bug is classified
as an avoidable bug (case 2).

(a)

(b)

Figure 4: Counterexample LTSs with Dummy Choices

3.4 Algorithm
Before presenting the algorithm computing the number of bugs,
we would like to clarify what we mean by one bug and how we
count them. Indeed, when the specification does not satisfy a given
property, there might be several ways to correct the bug(s) in the
corresponding specification. One solution, which induces minimum
changes, is to correct the last action in property. In this work, we
assume that one bug can be fixed by making a correction where
the last action in property is located in the specification, by remov-
ing this action for instance. Therefore, the number of bugs in our
approach coincides with the number of times one needs to correct
the occurrences of the last action in property corresponding to real
bugs.

Algorithm 1: Algorithm for Counting Bugs
Inputs : 𝐿 (LNT specification), 𝑃 (MCL property)
Outputs : 𝑛𝑎𝑣𝑑 , 𝑛𝑖𝑛𝑣 ∈ N

1 — Step 1: addition of dummy choices —
2 (𝑆, 𝑠0, Σ,𝑇 ) := 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐿𝑇𝑆 (𝐿);
3 𝑅 := 𝑔𝑒𝑡𝑅𝑒𝑔𝐸𝑥𝑝𝑟 (𝑃);
4 𝐴 := 𝑙𝑎𝑠𝑡 (𝑅, Σ);
5 𝐷 := ∅;
6 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 := 1;
7 foreach 𝑎𝑐𝑡𝑖𝑜𝑛 in 𝑔𝑒𝑡𝐴𝑐𝑡𝑖𝑜𝑛𝑠 (𝐿) do
8 if action ∈ A then
9 𝑑𝑢𝑚𝑚𝑦 := ”𝑑𝑢𝑚𝑚𝑦” + 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ;

10 𝐿 := 𝑎𝑑𝑑𝐷𝑢𝑚𝑚𝑦𝐶ℎ𝑜𝑖𝑐𝑒 (𝑎𝑐𝑡𝑖𝑜𝑛, 𝑑𝑢𝑚𝑚𝑦, 𝐿);
11 𝐷 := 𝐷 ∪ {𝑑𝑢𝑚𝑚𝑦};
12 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 := 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1;
13 end
14 (𝑀𝑇 , 𝐹 ) := 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝐿𝑇𝑆 (𝐿, 𝑃);
15 — Step 2: identification of dummy choices corresponding to

real bugs —
16 𝐷′ := ∅;
17 foreach 𝑠 in 𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒𝑠 (𝑀𝑇 ) do

18 if (∃𝑡 = 𝑠
(𝑙,𝛾 )
−−−−→ 𝑠′ ∈ 𝑔𝑒𝑡𝑇𝑟𝑎𝑛𝑠 (𝑀𝑇 ) s.t. 𝑙 ∈ 𝐷) and

(𝑠 ∈ 𝐹 ) then
19 𝐷′ := 𝐷′ ∪ {𝑔𝑒𝑡𝐷𝑢𝑚𝑚𝑦𝐴𝑐𝑡𝑖𝑜𝑛(𝑠)};
20 end

21 — Step 3: bug counting for each kind of bug —
22 𝑛𝑎𝑣𝑑 := 0;
23 𝑛𝑖𝑛𝑣 := 0;
24 foreach 𝑑𝑢𝑚𝑚𝑦 in 𝐷′ do
25 𝐿′ := 𝐿;
26 𝐿′ := 𝑟𝑒𝑚𝑜𝑣𝑒𝐷𝑢𝑚𝑚𝑦𝐶ℎ𝑜𝑖𝑐𝑒 (𝑑𝑢𝑚𝑚𝑦, 𝐿′);
27 (𝑀′

𝑇
, 𝐹 ′) := 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝐿𝑇𝑆 (𝐿′, 𝑃);

28 if 𝐹 ′ ≠ ∅ then
29 𝑛𝑎𝑣𝑑 := 𝑛𝑎𝑣𝑑 + 1;
30 if 𝐹 ′ = ∅ then
31 𝑛𝑖𝑛𝑣 := 𝑛𝑖𝑛𝑣 + 1;
32 end
33 return 𝑛𝑎𝑣𝑑 , 𝑛𝑖𝑛𝑣 ;

We now present Algorithm 1, which takes as input an LNT
specification and an MCL property, and returns the number of
inevitable and avoidable bugs. The main idea of this algorithm is
that we first replace all occurrences of the last action in property by
dummy choices. In the next step, by removing the dummy choices
one by one and comparing the resulting counterexample LTSs
(before and after removal of each dummy choice), we can deduce
whether this specific occurrence of last action corresponds to a bug,
and if this is the case to which kind of bug.

More precisely, in step 1, the algorithm adds the dummy choices
to all occurrences of the last action in property (lines 7 to 13). The
corresponding counterexample LTS is then generated (line 14). In
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step 2, the algorithm loops over all the states in the counterexam-
ple LTS. When it finds a dummy action belonging to a transition
outgoing from a faulty state, then that dummy action is added to
the set of dummy actions 𝐷′ (lines 17 to 20). This second step is
useful to find all occurrences of the last action in property which
correspond to real bugs (case 2 and 3 in Section 3.3).

In the last step, the algorithm loops over the set of remaining
dummy actions (line 24). In each iteration, a dummy choice (corre-
sponding to a dummy action in the set) is removed from a copy of
the LNT specification, then the counterexample LTS is generated
from it (lines 25 to 27). If the counterexample does not have any
faulty state, then the number of inevitable bugs is incremented.
Otherwise, the number of avoidable bugs is incremented (lines 28
to 31).

As far as the complexity of the algorithm is concerned, the most
costly step is to generate counterexample LTSs, which is computed a
first time (line 14) and then𝑛 times where𝑛 is the number of dummy
actions in the set of dummy actions 𝐷′. The counterexample LTS is
obtained by first compiling the LNT specification to LTS, and then
by computing a product between this LTS and the LTS obtained
from the MCL formula. The compilation of LNT to LTS relies on
a transformation to Petri nets, whose complexity (exponential) is
the same as computing the corresponding marking graph [12]. In
practice, it is less expensive as parts of the net are 1-bounded. As for
the product, the complexity is 𝑂 (𝑆 ∗ 𝑆𝐹 ) where 𝑆 is the number of
states of the initial LTS and 𝑆𝐹 is the number of states of the formula
LTS. As a result, the overall complexity resides in the repetition 𝑛+1
times of the execution of an exponential algorithm for computing
a counterexample LTS.

Last but not least, to go further and actually debug the original
specification, we rely on the inevitable bugs to compute what we
call the final counterexample LTS. In this LTS, we remove dummy
choices for actions that are not bugs or avoidable bugs, but we
keep dummy choices for inevitable bugs. This allows us to generate
a counterexample with faulty states for all bugs (inevitable and
avoidable). We will detail in Section 3.5 how we can take advan-
tage of this final counterexample LTS to compute more precise
counterexamples for debugging purposes.

1 p r o c e s s Main [ INIT , EXEC , CLOSE , AA, BB , CC : any ] i s
2 INIT ;
3 s e l e c t
4 AA; EXEC ; BB ; CLOSE ( ∗ 1 s t ( a v o i d a b l e ) bug ∗ )
5 [ ]
6 CLOSE ; CC ( ∗ Not a bug ∗ )
7 [ ]
8 par
9 CLOSE ( ∗ 2nd ( a v o i d a b l e ) bug ∗ )
10 | |
11 EXEC
12 end par
13 end s e l e c t ;
14 EXEC ; CLOSE ( ∗ 3 rd ( i n e v i t a b l e ) bug ∗ )
15 end p r o c e s s

Listing 4: LNT Specification with Several Bugs

Example. Listing 4 gives an example of LNT specification on
whichwewant to check the property introduced beforehand:CLOSE
must not be executed after EXEC. There are three bugs in this ex-
ample. The first one occurs if we execute the first part of the select
statement (line 4). The second one occurs when we execute the

third part of the select statement (lines 8 to 12). The last one is an
inevitable bug and appears at the end of the specification (line 14).

Figure 5: Counterexample LTS before (a) and after (b) Addi-
tion of Dummy Choices

The first step of the algorithm is to add dummy choices to all
occurrences of the last action in property in the LNT specification.
Note that since we increment the dummy action suffix for each
addition of a dummy choice, each new dummy action is unique
(e.g., in Listing 4, the dummy action in the first dummy select at
line 4 is DUMMY1, it is DUMMY2 at line 6, etc.). Figure 5 (a) shows
the counterexample LTS generated from the original specification.
In that counterexample LTS, all transitions are incorrect because
there is one inevitable bug. Figure 5 (b) shows the counterexample
LTS corresponding to the specification where each occurrence of
the last action in property has been replaced with a dummy choice.

In the next step of Algorithm 1, the counterexample LTS is tra-
versed (Figure 5 (b)) to check if there is any dummy action be-
longing to transitions outgoing from faulty states. There are three
faulty states (states 6, 8, and 10), and each of them has an outgoing
transition with a dummy action. Therefore, these dummy actions
correspond to real bugs and we add them to the set of dummy
actions ({𝐷𝑈𝑀𝑀𝑌1, 𝐷𝑈𝑀𝑀𝑌3, 𝐷𝑈𝑀𝑀𝑌4}).

The last step loops over the set of dummy actions. In each it-
eration, we remove a dummy choice (from the LNT specification)
corresponding to a dummy action in the set, and generate the coun-
terexample LTS. Figure 6 shows the corresponding counterexample
LTSs. The counterexample LTS (a) and (b) are the counterexample
LTSs generated after the first and second iterations (i.e., removal
of the DUMMY1 and DUMMY3 actions). In these two iterations,
both generated counterexample LTSs still have faulty states. This
implies that these occurrences of the last action in property cor-
respond to avoidable bugs. As for the last iteration, the resulting
counterexample LTS (c) is entirely incorrect and thus has no faulty
states. This means that this particular occurrence of the last action
in property corresponds to an inevitable bug. The algorithm finally
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Figure 6: Iterations in the Final Step of the Bug Quantification Algorithm

returns that this LNT specification exhibits two avoidable bugs and
one inevitable bug.

3.5 Counterexamples
In this final part of the section, we show how we can generate coun-
terexamples from a counterexample LTS. This makes particulary
sense from the final counterexample LTS introduced in Section 3.4.
Counterexamples are a classic and simple way to represent a single
execution leading to a state where the property is violated. Here,
we generate more precise counterexamples because these traces
also contain colored transitions and faulty states. Since a counterex-
ample LTS is composed of all possible counterexamples, there are
several options for generating counterexamples from such models.
Therefore, we propose a set of eleven strategies for generating these
counterexamples categorized in four groups: (i) classic counterex-
amples (e.g., random or shortest counterexample), (ii) counterexam-
ples based on faulty states (e.g., shortest path to a faulty state then
shortest counterexample or counterexample with the fewest num-
ber of faulty states), (iii) probability-based counterexamples (e.g.,
the counterexample with the highest probability2), (iv) counterex-
amples based on the distance to the bug (e.g., the counterexample
including the faulty state closest to the incorrect sink state, possibly
with the fewest number of faulty states).

For the sake of space, we cannot precisely present all these strate-
gies, but we will present some of them on concrete examples in the
rest of this section. The reader can find more details for each strat-
egy in [13] as well as guidelines explaining how to choose which
strategy to use. It is worth emphasizing that the counterexamples
generated here are not classic traces but they also include colors for
transitions and (faulty) states as well as all outgoing transitions for
faulty states. This information is particularly helpful for debugging
purposes.

Example. Consider the counterexample LTS presented in Fig-
ure 7, which is the final counterexample LTS after application of
Algorithm 1 on the LNT specification given in Listing 4. This is the
final counterexample LTS where a single dummy action (DUMMY4)
corresponding to the inevitable bug is preserved in this model.

Figure 8 shows a first example of counterexample generated us-
ing a classic strategy (shortest counterexample). These counterex-
amples are usually convenient because they exhibit the shortest
trace causing the property’s violation. In this case, the sequence of
actions is INIT, EXEC, CLOSE. We can deduce from the generated

2We assume by default that all transitions have equiprobable probabilities.

Figure 7: Final Counterexample LTS

counterexample that after we execute EXEC (second action) the bug
becomes inevitable. Moreover, by focusing on the faulty state 2, we
can see that there is a possibility to avoid the property’s violation
by executing CLOSE.

Figure 8: Shortest Counterexample

Figure 10 shows another example of counterexample, which was
computed in that case using a strategy based on the distance to
the bug, namely, the shortest counterexample with a faulty state
closest to the incorrect sink state. This counterexample exhibits
more faulty states than the former one. The first faulty state shows
that CLOSE is the only option to avoid the bug. The second faulty
state includes a dummy action, showing that this bug is inevitable,
and the execution of action CLOSE leads to the property’s violation.

4 TOOL SUPPORT
In this section, we present the tool support and some experiments
we carried out for validating our approach.

4.1 Implementation
We have developed a tool in Java which implements the techniques
presented in this paper to count the number of bugs. This tool relies
on the CLEAR tool [3] for computing counterexample LTSs. Figure 9
gives an overview of the tool support. First of all, the last actions in
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Figure 9: Tool Support

Figure 10: Shortest Counterexample with a Faulty State Clos-
est to the Incorrect Sink State

property are computed, followed by the addition of dummy choices
to the LNT specification. The tool then locates in the corresponding
counterexample LTS the dummy actions which correspond to the
property violation. For each dummy action, it identifies the type of
bugs (i.e., inevitable or avoidable) by comparing the counterexample
LTSs before and after removal of that specific dummy choice. As
a result, the tool returns the number of inevitable and avoidable
bugs. Finally, the user can generate some specific counterexamples
using one of the proposed strategies.

4.2 Experiments
In this section, we present some of the experiments we carried out
for validating our approach. The goal of these experiments was to
evaluate: (i) the accuracy of the results computed by our debugging
techniques and (ii) the time it takes to compute these results. Table 2
summarizes some of these experiments on ten realistic case studies.
The first three columns characterize the example by giving a name,
the reference (when available), the number of lines in LNT, and the
size of the corresponding LTS generated from the LNT specifica-
tion using CADP compilers (S, T, and L, stand for the number of
states, transitions, and labels, respectively). As far as outputs are
concerned, the three following columns give the size of the final
counterexample LTS (S, T, L, and the number of faulty states, FS),
the number of inevitable and avoidable bugs, and the time it takes
(in seconds) to apply all the steps of our algorithm to compute the
expected result.

These experiments allowed us to check whether our results
were accurate in terms of number of bugs. To evaluate this goal,
we first identify the actual number of inevitable and avoidable
bugs by analysis of the program by an independent expert (using
classic model checking combined with manual inspection). Then,
we compare this result with the output of the tool support (fifth

column in Table 2). As a result, both results coincided for all the
examples on which these experiments were carried out.

Regarding performance, the objective was to show that it is
possible to compute the number of bugs within a reasonable time.
Consider for instance the example that takes the longest time to
complete in the table, which is the Consumer-Producer example
with 10 bugs (fourth row). It requires about three minutes to com-
pute the result. This time mainly comes from the successive gen-
eration of the counterexample LTS (for each occurrence of last
action in property), which requires the enumeration of all possible
execution paths in the input specification. This time increases with
the size of the LTS model and with the number of last action oc-
currences. It is worth mentioning that we do not aim in this paper
at solving the state space explosion problem existing for model
checking techniques. If we focus on a smaller example (trains sta-
tions, last row), it takes less than 30 seconds to compute the result
because the LTS is smaller and there are fewer potential bugs in the
original specification. Since the verification techniques proposed in
this paper are applied at design time, these analysis times are not
short but remain reasonable.

5 RELATEDWORK
There are several works which focus on counterexample inter-
pretation and comprehension, see, e.g. [2, 6, 16, 18, 19, 22]. In [6],
sequential pattern mining is applied to execution traces for reveal-
ing unforeseen interleavings that may be a source of error, through
the adoption of the well-known mining algorithm CloSpan [24].
CloSpan is also adopted in [19], where the authors apply sequential
pattern mining to traces of counterexamples to reveal unforeseen
interleavings that may be a source of error. However, reasoning on
traces as achieved in [6, 19] induces several issues. The handling of
looping behaviours is non-trivial and may result in the generation
of infinite traces or of an infinite number of traces. Coverage is
another problem, since a high number of traces does not guarantee
to produce all the relevant behaviours for analysis purposes. As a
result, we decided to work on the debugging of LTS models, which
represent in a finite way all possible behaviours of the system.

In [18], the authors propose a method to interpret counterexam-
ples generated for liveness properties by dividing them into fated
and free segments. Fated segments represent inevitability w.r.t. the
failure, pointing out progress towards the bug, while free segments
highlight the possibility to avoid the bug. The proposed approach
classifies states in a state-based model in different layers (which
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Example LNT
(LOC)

LTS
(S/T/L)

Final CLTS
(S/T/L/FS)

Nb of bugs
(Inev/Avoid) Time (s)

1. Work Stations 113 810 / 3771 / 25 483 / 1817 / 25 / 220 0 / 4 167
2. Consumer-Producer [5] 125 273 / 830 / 23 478 / 1381 / 20 / 62 1 / 3 78
3. Consumer-Producer (7 bugs) 128 327 / 1034 / 23 555 / 1574 / 22 / 116 2 / 5 162
4. Consumer-Producer (10 bugs) 131 381 / 1238 / 23 628 / 1832 / 23 / 170 3 / 7 196
5. Business Trip [20] 156 424 / 1232 / 13 25 / 63 / 12 / 6 0 / 1 61
6. RCC Mutex 204 48 / 66 / 15 20 / 29 / 15 / 16 0 / 1 24
7. IFTTT [14] 212 195 / 561 /23 316 / 851 / 21 / 19 1 / 2 60
8. Mutex [7] 284 783 / 1958 / 19 1553 / 3433 / 20 / 167 1 / 2 88
9. Mutex (8 bugs) 289 1437 / 4158 / 19 2775 / 6579 / 23 / 333 3 / 5 184
10. Train Stations [23] 357 59 / 98 / 18 34 / 57 / 16 / 8 0 / 1 25

Table 2: Experiments on Realistic Examples

represent distances from the bug) and produces a counterexample
annotated with segments by exploring the model. Our method fo-
cuses on locating branching behaviours that affect the property
satisfaction whereas their approach produces an enhanced coun-
terexample where inevitable events (w.r.t. the bug) are highlighted.
Moreover our approach has a specific focus on safety properties,
while they focus on liveness properties.

In [16], the authors propose automated methods for the analysis
of variations of a counterexample, in order to identify portions
of the source code crucial to distinguishing failing and successful
runs. These variations can be distinguished between executions that
produce an error (negatives) and executions that do not produce it
(positives). By relying on a notion of control location, their method
tries to make sure that such variations are for one bug to avoid
multi-bug confusions. The authors then propose various methods
to extract common features and differences between the two sets
in order to provide feedbacks to the user. Similarly to our work, the
work in [16] also wants to explain the counterexample with a focus
on safety properties. In our work, we focus on a model containing
all counterexamples, and we take advantage of that model to count
the number of bugs. In contrast, their method relies on the analysis
of a single counterexample and its variations, making sure that
negative variations are from the same bug.

Delta debugging [25] is a well-known line of work on fault lo-
calization using testing techniques. The aim of delta debugging
consists in understanding the minimal differences (deltas) between
a successful and a failing program execution. There have been nu-
merous published papers which rely on delta debugging, but, to
the best of our knowledge, none of them allows the bug counting.

Several works aim at providing multiple counterexamples for
facilitating debugging. Copty et al. [10] propose a counterexample
wizard to help users when debugging applications using coun-
terexamples. This wizard can retrieve multiple counterexamples,
which can be used to understand and fix all reported errors for the
given specification. In [8], the authors present a 𝜇-calculus model
checker that produces complete and complex counterexamples for
branching logics like Computation Tree Logic. This framework
also supports additional functionalities to translate these rich ex-
planations back to the original logic. In [11], the authors present
an approach relying on LTL model checking, which produces mul-
tiple counterexamples and which is able to reduce the number of
counterexamples by detecting whether two counterexamples are

equivalent. These approaches share similarities with our work be-
cause they focus on the generation of multiple counterexamples.
Nevertheless, they do not exploit this result as we did for providing
additional relevant information to developers such as the number
of bugs or more precise counterexamples.

6 CONCLUDING REMARKS
In this paper, we have presented a solution for counting the num-
ber of bugs when analyzing a specification using model checking
techniques. To do so, we focus on specific decision points in the
specification, that make the corresponding model go to a correct
or an incorrect portion of the model. These faulty choices are par-
ticularly helpful during the debugging task because they highlight
the cause of the violation of a property. The approach relies on
the counterexample LTS, which is an LTS consisting of all possible
counterexamples. More specifically, we have proposed an algorithm
to compute the number of bugs in the specification, which allows
one to quantify how buggy is the specification and thus the effort
required in the debugging phase. The main idea of this algorithm
is to use some specific actions in the property to emphasize some
parts of the specification that may cause its violation. Then, by com-
paring successive versions of the counterexample LTS, we manage
to identify whether these suspicious pieces of the specification are
actual bugs or not. Finally, the generation of counterexamples is pos-
sible from the final counterexample LTS. These counterexamples
differ from regular ones because they include colored transitions
and faulty states, and can be obtained using different strategies.
The whole approach is fully automated by a tool we implemented
and validated on several examples for validation purposes.

The main perspective of this work is to support liveness proper-
ties. In this case, counterexample LTSs and counterexamples have
different shapes (lassos), and the approach thus deserves to be
revisited, in particular the part comparing counterexamples LTSs.
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