
THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : Laboratoire d'Informatique de Grenoble

Techniques de vérification quantitative et d'exécution pour les
systèmes d'automatisation industrielle

Quantitative verification and runtime techniques for industrial
automation systems

Présentée par :

Irman FAQRIZAL
Direction de thèse :

Gwen SALAUN
PROFESSEUR DES UNIVERSITES, Université Grenoble Alpes

Directeur de thèse

Yliès FALCONE
MAITRE DE CONFERENCES, Université Grenoble Alpes

Co-encadrant de thèse

Rapporteurs :

CHRISTIAN ATTIOGBE
PROFESSEUR DES UNIVERSITES, UNIVERSITE DE NANTES
ANTOINE ROLLET
MAITRE DE CONFERENCES HDR, UNIVERSITE DE BORDEAUX

Thèse soutenue publiquement le 5 décembre 2024, devant le jury composé de :

FABIENNE BOYER,
PROFESSEURE DES UNIVERSITES, UNIVERSITE GRENOBLE ALPES

Présidente

GWEN SALAUN,
PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE ALPES

Directeur de thèse

CHRISTIAN ATTIOGBE,
PROFESSEUR DES UNIVERSITES, UNIVERSITE DE NANTES

Rapporteur

ANTOINE ROLLET,
MAITRE DE CONFERENCES HDR, UNIVERSITE DE BORDEAUX

Rapporteur

FAROUK TOUMANI,
PROFESSEUR DES UNIVERSITES, UNIVERSITE CLERMONT
AUVERGNE

Examinateur

Invités :

YLIES FALCONE
MAITRE DE CONFERENCES, UNIVERSITE GRENOBLE ALPES

Abstract

The rapid advancement in information technology opens up promising opportunities
for industrial automation systems. By minimising human intervention, the industry
can significantly reduce costs and enhance the system’s overall quality. Nevertheless,
industrial automation systems are facing many challenges. One of them is how
to verify and analyse the quantitative aspects of the system in the presence of an
unpredictable environment. Formal methods have been employed recently to verify
the system’s correctness. However, conventional methods are often applied only
at design time, neglecting the runtime execution impacted by the environment.
The second major challenge in industrial automation is the need for techniques
to support long-running and evolving systems. Manual modification involving
human intervention defeats the purpose of automation while also being costly,
time-consuming, and erroneous. An automation system must be able to evolve
automatically according to requirements.

The main contributions of this thesis are twofold. First, probabilistic model checking
is applied to verify and analyse the quantitative aspects of the system originating
from the environment. This method consists of formal modelling, monitoring, and
probabilistic model computation. The results can be used to observe the impact of the
environment and to suggest improvements associated with the system’s quantitative
features, such as productivity. The second contribution consists of two approaches for
evolving automation systems. In the first approach, runtime enforcement techniques
are applied to make the application adapt to the requirements. This is done by
automatically synthesising and integrating new logical components called enforcers
to modify the system’s executions according to the requirements. The second
proposal incorporates various algorithms applied to the behavioural models of
the applications for generating evolution guidelines. These guidelines contain
modifications to be applied to make the application satisfy the given requirements.
Both solutions allow developers to avoid errors and unnecessary modifications when
evolving industrial automation systems. The contributions are aimed at automation
systems designed with IEC 61499, a promising industrial standard with numerous
positive characteristics. Existing and new software tools are used and developed to
conduct case studies and experiments validating the proposed methods.

iii

Contents

1 Introduction 1

1.1 Context . 2

1.2 Motivations . 3

1.3 Approach . 4

1.4 Contribution . 5

1.5 List of publications . 7

1.6 Outline . 7

2 Preliminaries 9

2.1 Notations . 9

2.2 IEC 61499 . 9

2.2.1 Types of function block . 10

2.2.2 Syntax . 12

2.3 Formal methods . 14

2.3.1 Probabilistic model checking 15

2.3.2 Runtime enforcement . 17

2.4 Concluding remarks . 17

3 Formal modelling of IEC 61499 applications 19

3.1 Case study . 19

3.2 IEC 61499 behavioural model . 20

3.3 Translation techniques . 22

3.4 LTS generation . 24

3.5 Concluding remarks . 27

4 Probabilistic model checking of IEC 61499 applications 29

4.1 Case study . 30

4.2 Monitoring techniques . 33

4.3 Probabilistic model computation . 35

4.4 Tool support . 36

4.5 Experimental results . 37

v

4.5.1 Probabilistic properties . 38

4.5.2 Results and discussion . 40

4.6 Concluding remarks . 42

5 Runtime enforcement for IEC 61499 applications 45

5.1 Case study . 46

5.2 IEC 61499 runtime enforcement problem 47

5.3 Contract automata . 47

5.3.1 Syntax . 48

5.3.2 Semantics . 51

5.4 Enforcer synthesis and integration 53

5.4.1 Synthesis of interfaces . 53

5.4.2 Synthesis of ECC . 54

5.4.3 Enforcer integration . 58

5.5 Runtime enforcement characteristics 60

5.5.1 Soundness and transparency 61

5.5.2 Deadlock-freedom . 61

5.6 Tool Support . 62

5.7 Experimental results . 63

5.8 Concluding remarks . 65

6 Guided evolution of IEC 61499 applications 67

6.1 Extended behavioural model . 68

6.2 Case study . 69

6.3 Guided evolution techniques . 72

6.3.1 Preliminary . 73

6.3.2 Model evolution . 74

6.3.3 Guidelines generation . 77

6.4 Implementation . 80

6.5 Concluding remarks . 80

7 Related work 83

7.1 Formal modelling . 83

7.2 Verification . 86

7.3 Evolution . 88

7.4 Concluding remarks . 92

8 Conclusion 95

8.1 Summary of contributions . 95

8.2 Future work . 96

vi

Bibliography 99

vii

Introduction
1

Automation incorporates various technologies to assist human activities by reducing
manual intervention. Its history dates back to ancient times when systems such as
water clocks and hydraulic automatic doors were invented [Gua10]. In the 18th
century, the first industrial revolution marked the beginning of mass production of
goods using automation systems based on steam engines [Ros10]. However, it was
only in recent years that the transformative power of automation in the industry
became more evident than ever before, inspiring a new era of possibilities.

In this era, called Industry 4.0 [Sch17], industrial automation systems are enhanced
with advancements in information technology, such as Artificial Intelligence and
the Internet of Things [Sis+18]. This results in smart grid [ZV12], smart manu-
facturing [Li+18], smart factory [RM23], and other advanced applications. These
advancements allow automation systems to be more productive, thus contributing
to the global economy and asserting their importance [Kro+19]. Furthermore,
Industry 4.0 has also led to the creation of new standards for developing indus-
trial automation systems. IEC 61499 [IEC12] is an international standard that
has been gaining popularity recently due to its capability to develop complex and
distributed systems [Vya11]. It is the successor of IEC 61131-3 [IEC02], which was
the state-of-the-art standard for developing automation systems.

Although the fourth industrial revolution seems promising for the future of automa-
tion systems, new challenges arise. First of all, in order to fully take advantage of
automation, developers must also consider external elements associated with the
system. In particular, modern automation systems are equipped with many sensors
and actuators that interact with nondeterministic environments. Taking into account
the probabilistic behaviours originating from this interaction can help optimise
the system’s quantitative aspects, such as productivity. Secondly, complex systems
that incorporate the aforementioned technologies are costly to develop. Therefore,
these systems are expected to last for a long time and must be able to evolve when
some new requirements arrive after the deployment phase. Designing the target
system that can satisfy these requirements is complicated. Manual modifications
may introduce erroneous and unexpected behaviours to the system.

1

1.1 Context

Industrial automation systems consist of mechanical components, sensors, actuators,
control devices, and control applications [MR14]. Mechanical components are
physical parts of the system (e.g., a conveyor). Sensors read the environment
state (e.g., the temperature) and send signals to the control devices, whereas
actuators receive signals from the control devices and activate the mechanical
components (e.g., start the conveyor). Control devices, such as Programmable
Logic Controller [Ley92], are the systems’ processing units. This thesis focuses on
the control applications that reside in these devices. Each application defines the
behaviour of the automation system using certain programming standards.

IEC 61499 [IEC12] is a promising industrial automation standard in the era of
Industry 4.0. The standard enables application-centric design, allowing developers
to focus on designing the system’s behaviour at the application level. Once this step
is completed, the software components can be freely distributed to control devices in
the system. Furthermore, the standard is notable for its reusability, reconfigurability,
interoperability, and portability [Vya11; Pan+14]. More precisely, the building
block of an application, called Function Block (FB), can be reused for different
applications without integration issues. Reconfiguration of FBs and their respective
control devices can be done at runtime without stopping the execution, allowing
downtimeless evolution of the system [Hum+06; SVZ13]. Interoperability means
that applications can execute on devices from any vendor. Portability is supported
because the development of applications is not restricted to specific software tools.
Moreover, the standard is favoured by researchers in the industrial automation
domain who continuously propose new verification and evolution techniques because
of its potential. There have been over 300 scientific articles on IEC 61499 published
in the past 20 years 1. Ultimately, the methodology proposed in this thesis is aimed
at industrial automation systems that are based on the IEC 61499 standard.

Formal methods apply various mathematical techniques in computer science for
the design and verification of software and hardware systems [ORe17; GBP20].
Their application in the industrial automation domain has been increasing in recent
years [Sin+19] due to their robustness and capability to mathematically ensure the
system’s correctness and identify erroneous behaviours. Furthermore, the continuous
development of verification tools makes them more accessible for practitioners in
the industry [Alm+11]. For these reasons, this thesis employs formal methods to
support long-running and evolving industrial automation systems.

1source: https://dblp.org/search/publ?q=IEC+61499

2 Chapter 1 Introduction

Requirements are conditions specified by the user to be possessed by the system for
achieving specific objectives [ANS83]. The taxonomy described in [Gli07] classi-
fies requirements into functional requirements, performance requirements, quality
requirements, and constraints 2. A functional requirement is associated with the
system’s behaviour. Performance requirements specify measurable aspects. Quality
requirements define the system’s characteristics. Constraints are a set of restrictions
the system must comply with. This thesis focuses on functional requirements, specif-
ically those involving the system’s behaviours that can be associated with sequences
of executions at the application level.

1.2 Motivations

Complex IEC 61499 applications consist of many FBs distributed onto multiple con-
trol devices associated with many sensors and actuators [Par+23]. Such applications
exhibit unpredictable behaviours due to their interactions with the environment,
which involves various external elements that may impact the system’s behaviour.
For example, the performance of a power plant can be influenced by the surrounding
temperature [DA11]. A recent study shows that warm conditions prevent the plant
from generating optimal power [Sha+24]. Another example is that workers in a
manufacturing factory may have different methods or strategies when interacting
with the system’s mechanical components. Some workers may work in a certain
way that can be inefficient and thus impact productivity. Overall, these external
elements are often unpredictable, but it is important to analyse and understand them
because they can impact the system’s quantitative aspects. A helpful approach is to
use techniques that can analyse the likelihood of nondeterministic events associated
with the system’s external elements.

Formal verification techniques, such as model checking [BK08], have been proposed
in [OV21; Dro+16; BRS17] to ascertain the correctness of IEC 61499 systems.
However, static techniques are insufficient to take into account the probabilistic
behaviours originating from the environment. This is because they only consider
application behaviour at design time, whereas the likelihood of executions can only
be observed at runtime. Altogether, the existence of the environment in industrial
automation systems motivates the following research question.

2The last three classes are often categorised as non-functional requirements.

1.2 Motivations 3

RQ1: How to formally verify and analyse the quantitative aspects of IEC 61499
applications by considering their probabilistic behaviours originating from the
environment?

Industrial automation systems undergo evolutions during their lifecycle to sat-
isfy certain requirements. IEC 61499 standard provides downtimeless evolution
frameworks [SVZ13] that are useful in this context. However, designing the target
application that satisfies the requirements is a tedious and time-consuming task. This
task becomes even more challenging when there are many possible modifications,
such as changing the FBs’ internal functionalities and creating new connections
between FBs. Manual efforts may result in unsatisfied requirements, unexpected
behaviours, and extra complexity.

Existing works [PS21; PHS22a; PHS22b; WSZ20; Son+21; Son+22] mostly focus
on facilitating the reconfiguration process (i.e., the steps required to safely modify
the application at runtime). They do not define how to obtain the target application
systematically. Hence, the user must provide it as input. Consequently, there
is no notion of requirements that should be satisfied after the application has
been modified. Ultimately, there is a need for techniques that can automatically
compute the target application of an initial IEC 61499 application to satisfy certain
requirements. Such techniques have not yet been proposed to the best of our
knowledge. Therefore, this thesis also focuses on the following research question.

RQ2: How to automatically compute IEC 61499 applications that satisfy some
given requirements?

1.3 Approach

For the first research question, probabilistic model checking is proposed to formally
verify and analyse the quantitative aspects of IEC 61499 applications. Runtime
enforcement and guided evolution are proposed for the second research question
to generate new IEC 61499 applications from given initial applications and input
requirements.

Probabilistic Model Checking (PMC) [KNP18] is a formal method to verify the quan-
titative properties of stochastic systems. It enables users to check the likelihood of
certain execution sequences, which helps verify the system’s probabilistic behaviours
originating from the environment. For instance, when a certain temperature interval
is desirable for improving the system’s performance, PMC can check its likelihood by

4 Chapter 1 Introduction

checking the probability of the corresponding execution sequences. PMC is applied
to an IEC 61499 application by first creating the formal model of its behaviour.
This model consists of states and transitions labelled with events and data that the
application can trigger. Next, a monitor is created and integrated into the application
to record execution traces, which are sequences of events and data. Probabilistic
models are then computed by enriching the transitions of the initial model with the
probabilistic values computed from the execution trace. Finally, these enriched mod-
els can be verified using the probabilistic model checker for some given probabilistic
properties.

Runtime enforcement [Fal10; Fal+18] is a method to ensure system correctness
during its execution. The idea is to integrate an enforcer, synthesised from a given
property, to modify the application execution whenever the property is violated.
This concept is adopted for evolving IEC 61499 applications according to the re-
quirements. A lightweight and expressive language, called contract automata, is
proposed to specify the requirements. A contract automaton specified by the user
is synthesised into an enforcer in the form of an FB. This enforcer FB is integrated
into the application so that it executes according to the automaton. The approach
simplifies the evolution process by automatically adding an enforcer to modify the
execution instead of manually modifying the FBs and their connections to make the
application execute as specified in the given requirements.

As an alternative to runtime enforcement, guided evolution techniques for IEC 61499
applications are proposed. This approach takes as input an initial application and
some given requirements to generate guidelines for obtaining the target application.
The approach relies on the application behavioural model. The main idea is to
modify parts of the model to make them comply with the requirements. Then, the
initial and modified models are compared to generate evolution guidelines. These
guidelines can bridge the gap between the requirements and the target application.
Traditionally, developers may need to consider many options when modifying the
application according to the requirements. The approach helps these developers to
determine the target application by considering the generated guidelines.

1.4 Contribution

This thesis presents four contributions. Each of them is demonstrated with a unique
IEC 61499 application as a case study because the proposed methods are better

1.4 Contribution 5

explained using specific cases. For example, the probabilistic model checking ap-
proach is demonstrated with a drilling station. This system is suitable because it has
a nondeterministic aspect originating from the operators who place and take the
industrial materials on the rotating table.

The contributions of this thesis are summarised as follows:

Contribution 1: Formal modelling of IEC 61499 applications
A method to automatically generate behavioural models of IEC 61499 applications is
proposed. An application is first translated into a specification language called LNT
(LOTOS New Technology) [Cha+24]. Afterwards, the CADP toolbox [Gar+13] is
used to compile the specification into a Labelled Transition System (LTS) behavioural
model [Kel76]. The modelling approach is applied on an IEC 61499 blinking
application. The generated model captures the sequences of events and data that
the application can trigger.

Contribution 2: Probabilistic model checking of IEC 61499 applications
Probabilistic model checking is applied to verify and analyse the quantitative aspects
of IEC 61499 applications. The approach consists of monitoring techniques and
probabilistic model computation. An application is monitored by adding an FB
dedicated to recording the execution traces. A trace and an initial LTS model are then
used to compute a Probabilistic Transition System (PTS), which is an LTS extended
with probabilistic values on its transitions. A tool to automate this computation is
developed. The approach is demonstrated using an IEC 61499 drilling station for
manufacturing industrial materials. Several properties are checked on the generated
PTS models (computed from different traces) using the CADP probabilistic model
checker. The results are helpful for analysing the impact of the environment with
respect to the system’s quantitative aspects, such as productivity.

Contribution 3: Runtime enforcement for IEC 61499 applications
Runtime enforcement is applied to make IEC 61499 applications satisfy some given
requirements. This contribution consists of (i) a contract automata specification lan-
guage and (ii) enforcer synthesis and integration methods. Contract automata is the
input language for specifying the evolution requirements. A contract automaton is a
finite-state machine in which its transitions can be typed to specify the modification
of events and data. This automaton is synthesised into an enforcer in the form of a
basic FB, which is composed of interfaces and an Execution Control Chart (ECC).
An enforcer is then integrated by modifying the set of connections in the applica-
tion. The approach satisfies soundness and transparency characteristics, whereas
deadlock-freedom can be verified with model checking. An IEC 61499 conveyor test
station is used as a case study to present the runtime enforcement approach. A tool

6 Chapter 1 Introduction

to automate the synthesis of enforcers is developed, and experiments to show that
enforcers do not induce performance overheads are conducted.

Contribution 4: Guided evolution of IEC 61499 applications
An approach to generate guidelines for evolving IEC 61499 applications is proposed.
The approach consists of three modules: (i) preliminary, (ii) model evolution,
and (iii) guidelines generation. The preliminary module extends the modelling
techniques to generate behavioural models that involve both the inputs and outputs
of FBs in the application. The model evolution module identifies relevant parts of
the model and modifies them according to the input requirements. The guidelines
generation compares the initial and modified models to generate the steps required
to modify the application. The guided evolution approach is demonstrated using an
IEC 61499 mixing tank system as a case study.

1.5 List of publications

The aforementioned contributions resulted in the following publications:

• Yliès Falcone, Irman Faqrizal, Gwen Salaün. Runtime Enforcement for IEC 61499
Applications. In: Proc. of SEFM’22, Vol. 1355, LNCS, Springer, 2022, pp. 352-368.
(Contribution 3)

• Yliès Falcone, Irman Faqrizal, Gwen Salaün. Probabilistic Analysis of Industrial IoT
Applications. In: Proc. of IoT’22, ACM, 2022, pp. 41-48. (Contributions 1 and 2)

• Irman Faqrizal, Tatiana Liakh, Midhun Xavier, Gwen Salaün, Valeriy Vyatkin.
Probabilistic Model Checking for IEC 61499: A Manufacturing Application. In: Proc.
of ICIT’24, IEEE, 2024, pp. 1-6. (Contributions 1 and 2)

• Irman Faqrizal, Gwen Salaün, Yliès Falcone. Guided Evolution of IEC 61499
Applications. In: Proc. of ETFA’24, IEEE, 2024. (Contribution 4)

• Irman Faqrizal, Gwen Salaün, Yliès Falcone. Adaptive Industrial Control Systems
via IEC 61499 and Runtime Enforcement. In: ACM Trans. Autonom. Adapt. Syst,
2024. (Contribution 3)

1.6 Outline

The rest of this thesis is structured as follows:

Chapter 2: Preliminaries
This chapter introduces relevant background notions. It begins with the notations

1.5 List of publications 7

used in the rest of the thesis. The IEC 61499 standard is then explained. Afterwards,
the notion of formal methods is discussed, in particular, probabilistic model checking
and runtime enforcement techniques.

Chapter 3: Formal modelling of IEC 61499 applications
This chapter explains how to generate behavioural models of IEC 61499 applications.
The case study for this chapter is first described. Then, the definition of an IEC
61499 behavioural model is given. Afterwards, the methods to translate IEC 61499
applications into LNT specifications and to generate LTS models are explained.

Chapter 4: Probabilistic model checking of IEC 61499 applications
This chapter presents an approach to apply probabilistic model checking to IEC
61499 applications. A drilling station manufacturing system is first introduced as
a case study. Afterwards, the monitoring techniques and the probabilistic model
computation are explained. Next, the tool support to automate the approach is
presented. Experimental results are then presented to demonstrate that the approach
can be used to analyse the quantitative aspects of the drilling station.

Chapter 5: Runtime enforcement for IEC 61499 applications
This chapter presents the runtime enforcement techniques for IEC 61499 applications.
It starts with a description of a conveyor test station as a case study to illustrate the
approach. The IEC 61499 runtime enforcement problem is then defined. Afterwards,
a specification language called contract automata is proposed. Next, the synthesis
and integration of enforcers are explained. Runtime enforcement characteristics are
then explained. Finally, implementation and experiments are presented.

Chapter 6: Guided evolution of IEC 61499 applications
This chapter presents a method to guide the evolution of IEC 61499 applications.
It begins with a section on an extended version of the behavioural model. Then, a
mixing tank system is described as a case study. Afterwards, the three modules for
generating evolution guidelines are explained. Finally, a prototype of the approach’s
implementation is shown.

Chapter 7: Related work
This chapter surveys related works and compares them with the thesis’s contributions.
Firstly, LTS and PTS models are compared with existing IEC 61499 formal models.
Then, several verification techniques for the standard are surveyed. Finally, the
differences between our evolution methods and the existing ones are explained.

Chapter 8: Conclusion
This chapter concludes the thesis with a summary of the works and possible perspec-
tives to be considered in the future.

8 Chapter 1 Introduction

Preliminaries
2

This chapter introduces relevant background notions. Section 2.1 introduces some
notations used in this thesis. Section 2.2 describes the IEC 61499 standard. Sec-
tion 2.3 explains probabilistic model checking and runtime enforcement methods.
Section 2.4 concludes the chapter.

2.1 Notations

The following notations are used in the rest of this thesis:

• S is the set of strings.
• B is the set of boolean values.
• Z is the set of integers.
• N is the set of natural numbers.
• V is the set of variables. A variable v = (x, y) ∈ V consists of a name x ∈ S

and a value y ∈ B ∪ Z.
• BV represents a boolean expression over a set of variables V ⊆ V. For instance,

BV is an expression (a = true) ∧ (b ̸= null) over V = {(a, false), (b, 3)}. We
can also write this expression as a = true or a.

• G is the set of bags. A bag can be used to store any type of element, allowing
multiple occurrences. For instance, GZ is the set of bags over integers; each
bag bZ ∈ GZ can be used to store integers (e.g., bZ = {1 , 1 , 2 , 3}),

• ϵ represents an empty value.

2.2 IEC 61499

IEC 61499 [IEC12] is a standard for designing industrial automation systems. It is
the successor of IEC 61131-3 [IEC02]. Unlike its predecessor, which uses a cyclic
execution model, IEC 61499 adopts an event-driven execution model. The standard
defines the behaviour of an application using interconnected function blocks. A

9

(a) FB’s execution model (b) IEC 61499 application

Figure 2.1: FB and IEC 61499 application

Function Block (FB) is connected to other FBs through its input and output event
and data interfaces (see Figure 2.1). An FB encapsulates an internal behaviour that
is executed when one of its input event interfaces receives an event. IEC 61499
applications presented in this thesis are designed using 4diac IDE [Str+08].

The execution model of an FB in IEC 61499 standard [ZL14], depicted in Figure 2.1a,
is as follows: (1) an event is received, and the values of the associated data inter-
faces are updated, (2) based on the FB’s current state in the execution control, an
encapsulated functionality is executed, (3) this execution assigns new values to the
output data interfaces, and the execution control determines the output event to
be sent, (4) the output event is sent, and the values of the associated output data
interfaces are updated. This is the generic execution model. In practice, steps 2 to 4
can be repeated multiple times depending on the FB’s type and the execution control.
Furthermore, a single activation of the FB can be defined as the period between the
beginning of step 1 and the termination of step 4. Once an input event activates the
FB, another event cannot enter before the previous activation has finished.

An IEC 61499 application is illustrated in Figure 2.1b. For clarity, connections
between event and data interfaces are represented with different styles: solid lines
for event connections and dashed lines for data connections. The standard allows
both fan-in (e.g., FB1 to FB2) and fan-out (FB3 to FB1 and FB2) connections for
event interfaces. However, it only allows fan-out (e.g., FB1 to FB2 and FB3) for
data interface connections.

2.2.1 Types of function block

There are three types of FB: Basic FB (BFB), Service Interface FB (SIFB), and
Composite FB (CFB). A BFB defines its behaviour using a Moore-type finite state
machine called the Execution Control Chart (ECC). SIFB behaviours are specific
to their control device. A CFB is composed of a network of FBs. Note that when

10 Chapter 2 Preliminaries

(a) FB and its interfaces (b) ECC (c) ST programs

Figure 2.2: Example of BFB

referring to an FB in an application, we use the name of the instance instead of
the FB’s name (e.g., CY1 instead of E_CYCLE in Figure 2.3) because there can be
multiple FBs with the same name.

Basic Function Block. In a BFB, the aforementioned execution control is specified
using ECC, and encapsulated functionality is expressed as programs written in Struc-
tured Text [Ant20] 1. In Figure 2.2, an example of a basic FB named E_COUNTER 2

with its ECC and ST programs is presented. This FB behaves like a counter. It counts
how many times CU receives an event and shows the result on CV . An example of
this FB activation is as follows. When an event arrives at CU , the FB is activated.
First, it checks the current state of the ECC. By design, the current state of this FB at
the beginning of an activation is always START . From this state, if CV is less than
100, then S1 is visited, and P1 is executed to increment CV by one. Afterwards, an
output event CUO is sent. The transition labelled with 1 (i.e., true) is automatically
traversed to come back to START , and then the activation terminates. When R
receives an event, the transition from START to S2 is traversed without checking
the value of CV . Then, P2 sets the value of CV to 0, and event RO is sent. A
more detailed explanation of the basic FB’s execution model, including the ECC’s
Operation State Machine (OSM), is given in [Dro+21].

Service Interface Function Block. SIFBs give access to the services provided by the
control device where the IEC 61499 application resides. Device manufacturers have
unique methods for creating SIFBs. Therefore, unlike BFBs, their internal behaviours
are often hidden. The most common service is access to the sensors and actuators in
the system. SIFBs that can read sensor states are called sensor SIFBs, whereas the
ones that can set actuator states are called actuator SIFBs.

In Figure 2.3, S1 is a sensor SIFB that sends an event from CNF with IN = true
if the current state of the sensor reads positive; otherwise, it sends an event from
CNF with IN = false. A sensor SIFB is coupled with an FB that can send an event

1ST programs are often called algorithms in the literature. The term ST program is used to distinguish
algorithms written in ST from algorithms proposed in this thesis.

2This is a simplified version of an FB from the standard library called E_CTU .

2.2 IEC 61499 11

Figure 2.3: Example of IEC 61499 application with SIFBs

Figure 2.4: Network of FBs inside E_F_TRIG

periodically, such as CY1 , to keep reading the sensor’s state. A1 is an actuator SIFB,
which controls the actuator’s state. Suppose the actuator is the motor of a conveyor.
Then, the conveyor starts (or stops) when REQ receives an event with OUT = true
(or OUT = false).

Composite Function Block. CFBs are used mostly to design applications where the
system can be divided into several subsystems [Son+21]. A subsystem consisting
of several FBs is represented with a single CFB. A CFB can also be a combination
of several BFBs to serve a specific purpose. For instance, EF1 in Figure 2.3 is an
instance of E_F_TRIG, which is a CFB composed of two BFBs shown in Figure 2.4.
Applications with CFBs can always be flattened [DV08]. Such applications only
consist of BFBs and SIFBs.

2.2.2 Syntax

This section explains the syntax of IEC 61499. We focus on describing the compo-
nents of a BFB because the SIFBs’ execution controls and encapsulated functionalities
are hidden. Also, applications with CFBs can be flattened so that they consist of only
BFBs and SIFBs.

Interfaces. FB’s interfaces consist of event and data input and output interfaces.
An event interface is a string, whereas a data interface is a variable that can store a

12 Chapter 2 Preliminaries

value. An event interface and a data interface can be associated to update the data
interface value when the associated event interface receives or sends an event.

Definition 2.2.1 (Interfaces) Interfaces are a tuple (EI , EO, DI , DO, AI , AO), where:

• EI = {ei1 , ei2 , ..., ein ∈ S} is a set of input event interfaces,
• EO = {eo1 , eo2 , ..., eon ∈ S} is a set of output event interfaces,
• DI = {di1 , di2 , ..., din ∈ V} is a set of input data interfaces,
• DO = {do1 , do2 , ..., don ∈ V} is a set of output data interfaces,
• AI ⊆ EI × DI is a set of input event and data interface associations,
• AO ⊆ EO × DO is a set of output event and data interface associations.

We use function w : EI ∪ EO → 2 DI ∪ 2 DO to obtain the set of associated data
interfaces for a given event interface.

Internal data. In addition to DI and DO, data can also be stored internally. The
internal data in a BFB is denoted by DV = {dv1 , dv2 , ..., dvn ∈ V}. These data can
be part of the BFB’s ECC, but their value cannot be shared with other FBs in the
application. The set of all data in a BFB is denoted by DA = DI ∪ DO ∪ DV .

ST programs. The modification of data values in a BFB is specified using Structured
Text (ST) [Ant20]. We use a fragment of the ST syntax shown in (2.1), where x ∈ S
is a variable name, y ∈ B and z ∈ Z are boolean and integer values.

p ::= p1 . p2 | x1 := x2 ; | x := y ; | x1 := x2 + z ; | x1 := x2 − z ; (2.1)

The syntax shows that each program is a sequence of assignments, additions, and
subtractions. ST programs written with this syntax are denoted by P. Furthermore,
programs are written inside ⟨ ⟩ brackets to distinguish them from other notations.

Execution control chart. The ECC determines a BFB’s output events and data every
time one of its input event interfaces is triggered. An ECC is composed of states
and transitions. A state consists of a sequence of operations, whereas a transition is
labelled with a guard. An operation r = (p, eo) is composed of a program p ∈ P and
an output event interface eo ∈ EO.

A guard is written as Jei[BDA]K, where ei ∈ EI is an input event interface and BDA

is a boolean expression over the set of all data DA. A guard with empty expression
Jei[true]K (or empty event interface Jϵ[BDA]K) is written JeiK (or J[BDA]K). An empty
guard (i.e., Jϵ[true]K) is written as 1 . A transition labelled by an empty guard is
called an unguarded transition.

2.2 IEC 61499 13

Definition 2.2.2 (Execution control chart) An ECC is a tuple (Se, se0 , Ge, Te), where:

• Se is a set of states, and each state se ∈ Se consists of a sequence of operations
r1 , r2 , ..., rn ,

• se0 ∈ Se is the initial state,
• Ge is a set of guards,
• Te ⊆ Se × Ge × Se is a set of transitions.

Basic function block. We can now define a BFB as an FB that consists of interfaces,
internal data, programs, and ECC. SIFBs use the same notation as BFBs, but the last
three components are empty.

Definition 2.2.3 (Basic function block) A BFB is a tuple (itf , DV , P, ecc), where:

• itf = (EI , EO, DI , DO, AI , AO) is the interfaces,
• DV = {dv1 , dv2 , ..., dvn ∈ V} is a set of internal data,
• P = {p1 , p2 , ..., pn ∈ P} is a set of programs,
• ecc = (Se, se0 , Ge, Te) is the ECC.

Application. Finally, an IEC 61499 application consists of a set of FBs and connec-
tions between their event and data interfaces.

Definition 2.2.4 (Application) An application is a tuple (FB, EC , DC), where:

• FB = {fb1 , fb2 , ..., fbn} is a set of FBs,
• EC ⊆ EO′ × EI ′ is a set of event connections, EO′ = EO1 ∪ EO2 ∪ ... ∪ EOn

and EI ′ = EI1 ∪ EI2 ∪ ... ∪ EIn are the event interfaces of fb1 , fb2 , ..., fbn ,
• DC ⊆ DO′ × DI ′ is a set of data connections, DO′ = DO1 ∪ DO2 ∪ ... ∪ DOn

and DI ′ = DI1 ∪ DI2 ∪ ... ∪ DIn are the data interfaces of fb1 , fb2 , ..., fbn .

2.3 Formal methods

Formal methods [ORe17; GBP20] include various mathematical techniques to sup-
port system design, including specification, analysis, and verification. These tech-
niques are helpful in ensuring the dependability and reliability of industrial au-
tomation systems [Sin+19]. Specific types of formal methods need to be selected
according to the objectives of this thesis. The first objective is to verify and analyze
the quantitative aspects of the system. For this, a verification method that considers
the likelihood of executions is required. Hence, probabilistic model checking is
chosen. The second objective is to evolve the application according to some given

14 Chapter 2 Preliminaries

(a) Example of DTMC (b) Example of PTS

Figure 2.5: Probabilistic models

requirements, for which a method that can modify the runtime execution is required.
Therefore, runtime enforcement is chosen.

2.3.1 Probabilistic model checking

Model checking [BK08] is a method that verifies whether a system model satisfies a
given property. The model checker returns a counterexample, a sequence of actions
leading to property violation when the property is unsatisfied. This method can
assert properties such as something bad never happens (i.e., safety) or something
good eventually happens (i.e., liveness).

Probabilistic Model Checking (PMC) can be regarded as an extension of model check-
ing. A system is modelled as a probabilistic model to be verified with probabilistic
properties. Beyond verifying the system’s correctness according to the properties,
PMC allows one to verify the likelihood of those properties being satisfied. Discrete-
Time Markov Chain (DTMC) [KNP18] is a commonly used probabilistic model
formalism. Figure 2.5a shows an example of a DTMC that models three possible
states of a particular system with the probabilities of moving from one state to
another. An example of a probabilistic property in the PRISM [KNP02] language
for this model is P = 1 [F “Terminated”], which states that the probability of the
system termination must be equal to 1.

In this work, we use the CADP [Gar+13] probabilistic model checker. A system is
specified in the LNT (LOTOS New Technology) specification language [Cha+24],
an extension of LOTOS [ISO89], an ISO-standardized process algebra. We present
a fragment of LNT syntax in Table 2.1. In this table, π is a process name, e is an
event, d is a variable name, k is a type, and y is a boolean expression. The syntax
consists of the process definition (process), sequential execution (;), assignment
(:=), process call (π[]()), select statement (select), hiding of actions (hide),
conditional statement (if), variable definition (var), and parallel composition
(par). An action can be defined as an internal action (i). It can also be defined as an
event representing an input (?) or output (!) communication gate for data. An LNT

2.3 Formal methods 15

Table 2.1: Fragment of LNT

l ::= process π[e0 , e1 , ... : any](d0 : k, d1 : k, ...) is x end process

x ::= a | x1 ; x2 | d0 := d1 | π[e0 , e1 , ...](d0 , d1 , ...)
| select x1 []...[]xn end select | hide d : k in x1 end hide

| if (y) then x1 else x2 end if | var d : k in x1 end var

| par {e(1 ,1), e(2 ,1), ...} → x1 ∥...∥{e(1 ,n), e(2 ,n), ...} → xn end par

a ::= i | e | e(?d0 ,?d1 , ..) | e(!d0 ,!d1 , ..)

Table 2.2: Fragment of MCL5

f ::= a | true | false | not a | a1 or a2 | a1 and a2

r ::= f | nil | r1 . r2 | r1
��r2 | r*

m ::= prob r is o p end prob

specification can be compiled into a Labelled Transition System (LTS) behavioural
model [Kel76], which is a state machine consisting of states and transitions labelled
with events.

CADP supports PMC by extending LTS into Probabilistic Transition Systems (PTSs),
where transitions are also labelled with probabilities. Figure 2.5b presents an
example of a PTS model of the E_COUNTER FB in Figure 2.2 3. The initial state is
highlighted to distinguish it from other states. The PTS describes the probabilities
of event sequences. For example, the probability of CU followed by CUO and then
RO is 0.0099. Both DTMC and PTS can represent industrial automation systems
as probabilistic models. However, PTS is chosen because IEC 61499 adopts an
event-driven execution model. The transition probability represents the likelihood
of executing an event rather than the likelihood of being in a certain state. PTS
facilitates system verification at the application level by specifying the probability of
sequences of events and data that the application can trigger.

In CADP, probabilistic properties are written in MCL [MR18]. We use a frag-
ment of the MCL syntax shown in Table 2.2. In this fragment, a is an action,
true, false, not, or, and are logical operators, nil is an empty operator, .
is a concatenation operator,

�� is a choice operator, * is a transitive and reflexive clo-
sure operator, o is a comparison operator (i.e., >, <, >=, <=, =, <>), and p ∈ [0 , 1]
is a probability. The symbol ? can be added before p to return the probability of
sequences of executions described by r . An example of a probabilistic property for

3The methods for generating LTSs and PTSs are explained in the following chapters.

16 Chapter 2 Preliminaries

Figure 2.6: Conceptual view of runtime enforcement

the PTS in Figure 2.5b is prob R . RO is > 0 end prob, which states that the
probability of resetting the counter must be greater than 0.

2.3.2 Runtime enforcement

Runtime enforcement [Fal10; Fal+18] is a method for enforcing certain requirements
to the application’s behaviour by modifying its runtime execution. This modification
is instrumented by an additional component named enforcer.

Runtime enforcement is illustrated in Figure 2.6. An enforcer receives as input a
trace σ ∈ Σ∗, a sequence of executions produced by the system. Σ∗ represents the set
of all possible sequences of executions. The enforcer encapsulates an Enforcement
Mechanism (EM), which determines the modification of the trace. The enforcer and
its EM are synthesised from requirements specified as φ. EM is defined as a function
EM φ : Σ∗ → Σ∗, where for a given input trace σ, it returns an output trace σ′ that
satisfies the requirements φ, i.e., EM φ(σ) = σ′, such that σ′ ⊨ φ.

Let us illustrate runtime enforcement with an example within the context of IEC
61499. Suppose a trace of the E_COUNTER in Figure 2.2 is defined as the sequence
of events triggered from the output event interfaces. For instance, it produces a
trace σ = CUO, CUO, RO, Requirements can be formulated using LTL (Linear
Temporal Logic) [Pnu77], such as φ = □CUO. It means that the application should
only generate sequences of CUO. Let us assume that EM replaces every RO with
CUO. Therefore, EM φ(σ) = σ′ = CUO, CUO, CUO, This example is given only
to illustrate how runtime enforcement works in practice. Chapter 5 discusses the
application of runtime enforcement to IEC 61499 in more detail.

2.4 Concluding remarks

This chapter has presented some preliminary concepts, including the notations used
in the thesis, the IEC 61499 standard, probabilistic model checking, and runtime
enforcement.

2.4 Concluding remarks 17

Formal modelling of IEC
61499 applications

3

This chapter describes an approach to formally model the behaviour of IEC 61499
applications. A model of a system is an abstract representation of the system. There
are many different ways to design a system’s model because different levels of
abstraction exist [AS96]. This thesis focuses on modelling the system’s behaviour
at the application level, which aligns with the type of input requirements we aim
for (as explained in Chapter 1). An IEC 61499 application is modelled as a Labelled
Transition System (LTS). Transitions in an LTS are labelled with events and data that
the FBs in the application can trigger. The formal modelling approach limits data
type to boolean to avoid state space explosion. This limitation is not an issue since
boolean values are sufficient to define the control logic of industrial systems relying
on IEC 61499.

The overview of the formal modelling approach is shown in Figure 3.1. Each FB in
the application is first translated into an LNT process. Afterwards, a main process
consisting of a parallel composition of the translated processes is created. Finally,
the LNT specification is compiled into an LTS model.

This chapter is organised as follows. Section 3.1 presents a case study. Section 3.2
defines the IEC 61499 behavioural model. Section 3.3 explains the translation from
IEC 61499 FBs to LNT processes. Section 3.4 describes how LNT main processes are
built and compiled into LTSs. Section 3.5 concludes.

3.1 Case study

The formal modelling techniques introduced in this chapter are illustrated using
an IEC 61499 blinking application [IDE24] in Figure 3.2. The application consists
of three FBs. DL triggers an event periodically from EO. As described in its ECC
(Figure 3.2b), SW sends an event from EO0 if G = false; otherwise, it sends EO1 .

19

Figure 3.1: Overview of the formal modelling techniques

(a) Application (b) SW ECC (c) SR ECC (d) ST programs

Figure 3.2: IEC 61499 blinking application

Finally, the value of Q in SR changes to true (or false) if S (or R) receives an event.
The network of FBs results in an output data interface, Q, whose value alternates
between true and false (thus known as the blinking application). The syntactic
components of the blinking application are presented in Table 3.1.

3.2 IEC 61499 behavioural model

In this section, the notion of the IEC 61499 behavioural model is first defined. As a
first step, an atomic execution in the application is defined. This execution is called
an action, which consists of an event and data generated by an FB.

Definition 3.2.1 (Action) An action is a tuple (fb, e, D), where:

20 Chapter 3 Formal modelling of IEC 61499 applications

Table 3.1: Components of the IEC 61499 blinking application

iec (FB, EC , DC)

FB {DL = (itf1 , ϵ, ϵ, ϵ), SW = (itf2 ,∅,∅, ecc2), SR = (itf3 ,∅, P3 , ecc3)}

itf1
�

EI1 = {START , STOP}, EO1 = {EO}, DI1 = {(DT , s)}, DO1 = ∅,

WI1 = {(START , DT)}, WO1 = ∅
�

itf2
�

EI2 = {EI}, EO2 = {EO0 , EO1}, DI2 = {G}, DO2 = ∅, WI2 = {(EI , G)}, WO2 = ∅
�

itf3
�

EI3 = {S , R}, EO3 = {EO}, DI3 = ∅, DO3 = {Q}, WI3 = ∅, WO3 = {(EO, Q)}
�

P3 (SET = ⟨Q := true ;⟩, RESET = ⟨Q := false ;⟩)

ecc2
�

Se2 = {START , G0 = (ϵ, EO0), G1 = (ϵ, EO1)}, se0
2 = START ,

Ge2 = {JEI [G]K, JEI [NOT GK]}, Te2 = {(START , JEI [NOT G]K, GO),
(GO, 1 , START), (START , JEI [G]K, G1), (G1 , 1 , START)}

�

ecc3
�

Se3 = {START , SET = (SET , EO), RESET = (RESET , EO)}, se0
3 = START ,

Ge3 = {JRK, JSK}, Te3 = {(START , JSK, SET), (SET , JRK, RESET),
(RESET , JSK, SET)}

�

EC ′ {(EO, START), (EO, EI), (EO0 , S), (EO1 , R)}

DC ′ {(Q, G)}

• fb ∈ S is an FB,
• e ∈ S is an output event,
• D = {d1 , d2 , ..., dn ∈ V} is a set of data.

We assume that once an FB generates an action from an event output interface and
its associated output data interfaces, the connected input interfaces simultaneously
receive the action. For instance, an action (DL, EO, {(G, true)}) represents an
execution where DL triggers an event from EO, then SW receives this event on EI
so that the value of the associated data interface G is updated.

An IEC 61499 application is modelled as a Labelled Transition System (LTS) [Kel76]
consisting of states and transitions labelled with actions.

Definition 3.2.2 (Behavioural model) The behaviour of an IEC 61499 application
is modelled as an LTS (S , s0 , A, T), where:

• S is a set of states, and s0 ∈ S is the initial state,
• A is a set of actions,
• T ⊆ S × A × S is a set of transitions.

An IEC 61499 behavioural model describes the global behaviour of an application
consisting of every possible sequence of actions. In practice, during runtime, an
application generates a sequence of actions called an execution trace (or trace for
short). A trace represents the runtime behaviour of an application.

3.2 IEC 61499 behavioural model 21

Definition 3.2.3 (Trace) A trace σ of size n is a sequence of actions a1 , a2 , ..., an .

The set of all possible traces in an LTS m = (S , s0 , A, T) is denoted as
t(m) = {σ1 , σ2 , ..., σn}. A trace can be extracted from an LTS or generated using
monitoring techniques. Monitoring does not require the application to be trans-
formed into an LTS. It is also useful to capture the nondeterministic behaviour
of an application influenced by the presence of sensor SIFBs interacting with the
environment. An example of a trace for the application shown in Figure 3.2 is
(DL, EO, {(Q, false)}), (SW , EO0 ,∅), (SR, EO, {(Q, true)}), (DL, EO, {(Q, true)}),
(SW , EO1 ,∅), (SR, EO, {(Q, false)}).

3.3 Translation techniques

An LTS is generated by first transforming the application into an LNT specification.
This specification consists of a main process representing the application structure
and other processes representing the FBs inside that application. This section
explains how to translate FBs into these processes. In this thesis, we focus on the
translation of BFBs. The LNT process of a SIFB can be created by analysing its input
and output events and data. As for CFBs, they can be flattened into BFBs and SIFBs
before the translation [DV08].

The translation from a BFB into an LNT process relies on the ECC of that BFB.
The idea is to translate ECC states into LNT subprocesses. The code inside each
subprocess is generated according to the outgoing transitions in the corresponding
ECC state. The target state of the transition is translated as a call to the next
subprocess representing that state. We use this concept to formulate translation
patterns in Table 3.2. In these patterns, any text in italic x denotes an insertion of
the value of x into the LNT code. Also, the parameters of the subprocess definition
are hidden for brevity (i.e., π()[]). The translation patterns are as follows:

(1) A state with an unguarded transition is translated into a subprocess with an
internal action followed by a call to the next subprocess.

(2) A state with a transition guarded by an input event interface is translated into
a subprocess with an action composed of that interface and its associated input
data interfaces followed by a call to the next subprocess.

(3) A state with a transition guarded by data is translated into a subprocess with a
conditional statement parameterised by the boolean expression specified in
the transition’s guard. The next subprocess is called if the condition is satisfied;
otherwise, the current subprocess is called.

22 Chapter 3 Formal modelling of IEC 61499 applications

Table 3.2: Translation patterns from ECC to LNT

Pattern ECC state LNT

(1) State with an
unguarded transition

(se, 1 , se′)
process se[]() is
i ; se′[]()

end process

(2) State with a transi-
tion guarded by an event

(se, JeiK, se′)
process se[]() is

ei(?w(ei)) ; se′[]()
end process

(3) State with a transi-
tion guarded by data

(se, J[BDA]K, se′)
process se[]() is
if (BDA) then se′[]()
else se[]() end if

end process

(4) State with a transi-
tion guarded by an event
and data

(se, Jei[BDA]K, se′)
process se[]() is

ei(?w(ei)) ;
if (BDA) then se′[]()
else se[]() end if

end process

(5) State with sequential
transitions

(se0 , 1 , se1),
(se1 , 1 , se2),
(se2 , ..., ...)

process se0[]() is i ; se1[]()
end process
process se1[]() is i ; se2[]()
end process
process se2[]() is ...
end process

(6) State with branching
transitions

(se0 , Jei1 K, se1),
(se0 , Jei2 K, se2),
(se0 , ..., ...)

process se0[]() is
select

ei1(?w(ei1)) ; se1[]()
[] ei2(?w(ei2)) ; se2[]()
[] ... ; ...
end select

end process

(7) State with a transi-
tion to another state with
operations

(se0 , 1 , se1), where
se1 = (p1 , eo1),
(p2 , eo2), ...

process se0[]() is
i ; p1 ; eo1(!w(eo1)) ;
p2 ; eo2(!w(eo2)) ;
... ; se1[]()

end process

(4) A state with a transition guarded by an event and data is translated according
to pattern (2) followed by pattern (3).

(5) A state with a sequence of transitions is translated into a chain of subprocesses.
(6) A state with multiple outgoing transitions is translated into a subprocess with

a select statement, where each block of code in the statement represents an
outgoing transition.

(7) A state with a transition outgoing to another state with operations is translated
into a subprocess with (i) a sequence of assignments in the programs followed
by (ii) output events and (iii) a call to the next subprocess.

Example. Listing 3.1 shows LNT processes of the blinking application generated
using the translation patterns. Process DL is created according to the behaviour of
SIFB DL, which repeatedly triggers EO while updating the value of G. Process SW

3.3 Translation techniques 23

Listing 3.1: SW and SR processes

1 process DL [EO: any] (G:bool) is
2 loop EO (?G) end loop
3 end process
4
5 process SW [EI, EO0, EO1: any] (G: bool) is
6 EI(?G) ;
7 if (G) then EO1 ; G1 [EI, EO0, EO1] (G)
8 else EO0 ; G0 [EI, EO0, EO1] (G) end if
9 end process

10 process G1 [EI, EO0, EO1: any] (G: bool) is
11 i ; SW [EI, EO0, EO1] (G)
12 end process
13 process G0 [EI, EO0, EO1: any] (G: bool) is
14 i ; SW [EI, EO0, EO1] (G)
15 end process
16
17 process SR [S, R, EO: any] (Q: bool) is
18 S ; Q := true ; EO(!Q) ; SET [S, R, EO] (Q)
19 end process
20 process SET [S, R, EO: any] (Q: bool) is
21 R ; Q := false ; EO(!Q) ; RESET [S, R, EO] (Q)
22 end process
23 process RESET [S, R, EO: any] (Q: bool) is
24 S ; Q := true ; EO(!Q) ; SET [S, R, EO] (Q)
25 end process

is translated from the initial state of BFB SW using patterns (4) and (7). This state
has two outgoing transitions guarded by events and data. Therefore, as described
in pattern (4), it is translated as a process with an action (line 6) followed by a
conditional statement (lines 7 and 8). Pattern (7) is then applied to insert the target
states’ events into the statement (EO1 in line 7 and EO0 in line 8). Subprocesses
G1 and G0 (lines 10 to 15) are generated according to pattern (1) because they
correspond to ECC states with unguarded transitions. The initial state of SR is
translated into process SR (lines 17 to 19) with patterns (2) and (7). The process
begins with S, which is the event guard on the transition, followed by Q := true

and EO(!Q), which are obtained from the ECC state’s operation. Afterwards, a call
is made to the next process SET, which represents ECC state SET . The next two
processes (lines 20 to 25) are generated using the same patterns as SR.

3.4 LTS generation

Once the application’s FBs have been translated into LNT processes, the next step
is to build the main process by creating a parallel composition of the generated
processes. This parallel composition can be automatically created by analysing the
application’s structure.

24 Chapter 3 Formal modelling of IEC 61499 applications

Listing 3.2: Skeleton of an LNT main process

1 process main [Events : any] is
2 var Variables : bool in
3 par Parallel end par
4 end var
5 end process

Algorithm 1: LNT main process generation
Inputs : iec = (FB, EC , DC)
Output :Events, Data, Parallel

1 EOtemp, DOtemp, separator := ∅, ∅, ””
2 foreach (eo, ei) ∈ EC do // iterate through the set of event connections

3 if eo /∈ EOtemp then // check if the event has been added

// concatenate the event connection to the string of events

4 Events := Events + separator + getFB(eo, FB) + ”_” + eo
5 separator := ”, ”
6 EOtemp := EOtemp ∪ eo

7 separator := ””
8 foreach (do, di) ∈ DC do // iterate through the set of data connections

9 if do /∈ DOtemp then // check if the data has been added

// concatenate the data connection to the string of data

10 Data := Data + separator + getFB(do, FB) + ”_” + do
11 separator := ”, ”
12 DOtemp := DOtemp ∪ do

13 separator := ””
14 foreach fb ∈ FB do // iterates through the set of FBs

15 FBsync := getSync(fb, EC)
16 FBevents := fb.itf .EI ∪ fb.itf .EO
17 FBdata := fb.itf .DI ∪ fb.itf .DO

// concatenate the synchronisation set and process call to the end of the

string for parallel composition

18 Parallel := Parallel + separator + FBsync + ” → ”
+ fb + ”[” + FBevents + ”]” + ”⟨” + FBdata + ”⟩”

19 separator := ” || ”

The objective is to complete the LNT code shown in Listing 3.2 using the components
of the IEC 61499 application. Events consists of event declarations that are used
in the main process. Variables is composed of variable declarations, and Parallel is
the parallel composition of the processes that were previously generated using the
translation techniques.

Algorithm 1 describes the generation of the LNT main process. It takes an IEC
61499 application as input. The algorithm returns Events, Variables, and Parallel

3.4 LTS generation 25

Listing 3.3: LNT specification of the IEC 61499 blinking application

1 process main [DL_EO, SW_EO0, SW_EO1, SR_EO: any] is
2 var SR_Q : bool in
3 par
4 DL_EO -> DL[DL_EO](SR_Q)
5 ∥ DL_EO, SW_EO0, SW_EO1 -> SW[DL_EO, SW_EO0, SW_EO1](SR_Q)
6 ∥ SW_EO0, SW_EO1 -> SR[SW_EO0, SW_EO1, SR_EO](SR_Q)
7 end par
8 end var
9 end process

as output. These outputs are strings that can be used to complete the LNT code
shown in Figure 3.2. Function getFB returns the FB of a given interface. Function
getSync returns the event interfaces of an FB that are connected to other FBs.

The algorithm first iterates through the set of event connections (lines 4 to 8). An
output event interface is appended to Events in each iteration (line 5). The same
steps are required to obtain Variables string by iterating through DOtemp. Four
components are combined for each FB in order to construct the Parallel string (lines
16 to 21). These are the synchronisation set, the name of the FB, the FB’s events,
and the FB’s data (line 20). A process’s synchronisation set is computed according
to the event interfaces of the corresponding FB that are connected to other FBs. This
computation is represented with function getSync, which takes as input an FB and
the set of all event connections.

Example. Listing 3.3 presents the LNT main process of the blinking application. The
process’s parameters consist of events that can be triggered by the application (line
1). Note that events and data are appended with the corresponding FBs as prefixes
to make them unique (e.g., DL_EO is event EO from FB DL). Q, which is the only data
in the application, is declared as an LNT variable (line 2). A parallel composition
is then built from the translated processes and synchronisation sets. Each of these
processes represents an FB, and the synchronisation sets are obtained from the
connections between FBs. For instance, DL_EO represents the connections between
FBs DL and SW . Therefore, this connection is inserted in the synchronisation sets
of both DL and SW.

The completed LNT specification is compiled into an LTS shown in Figure 3.3. The
LTS shows all possible sequences of actions that the application can execute. For
instance, after (DL, EO, {(Q, false)} and (SW , EO0 ,∅) are executed, there are two
possible actions to be executed next. These actions are either (DL, EO, {(Q, false)}
or (SR, EO, {(Q, false)}. The current LTS does not show the probability of executing

26 Chapter 3 Formal modelling of IEC 61499 applications

Figure 3.3: Blinking application LTS

these actions. The next chapter describes how to compute probabilistic values on
the transitions using an LTS and an execution trace as input.

3.5 Concluding remarks

This chapter has explained the formal modelling of IEC 61499 applications. An
IEC 61499 behavioural model is defined as a transition system labelled with the
application’s events and data (i.e., actions). The creation of this model involves
translating each application’s FB into an LNT process and subprocesses. A main
process is then built and compiled into an LTS. The approach is applied to a blinking
application to show that the model can describe all possible sequences of actions
that the application can trigger.

3.5 Concluding remarks 27

Probabilistic model
checking of IEC 61499
applications

4

This chapter presents the Probabilistic Model Checking (PMC) approach for IEC
61499 applications. The objective is to analyse the quantitative aspects of the
applications by taking into account the likelihood of executions originating from the
environment. The key idea is to enrich the behavioural models generated during
design time (using formal modelling techniques) with execution traces monitored
during runtime. This results in new models called Probabilistic Transition Systems
(PTSs), which are LTSs extended with probabilistic values on their transitions. PTSs
inform the probabilities of sequences of actions that the applications can trigger.

Figure 4.1 presents the approach overview. In steps (1) and (2), an LTS model is
generated from the application. In step (3), a monitoring FB is synthesised and
integrated into the application. Step (4) executes the application such that the
monitor can start recording execution traces. The trace and the LTS are used in step
(5) to compute a PTS model. In step (6), the CADP model checker [Gar+13] is used
to check probabilistic properties, expressed as an MCL formula, on the PTS. CADP
returns (i) a verdict and (ii) the probability of executing the sequences specified
in the property. An industrial manufacturing application is used as a case study to
illustrate our approach. The experimental results show that the approach helps in
analysing and improving the system’s productivity.

The structure of this chapter is as follows. Section 4.1 introduces the drilling
station and its behavioural model. Section 4.2 explains the monitoring techniques.
Section 4.3 describes how to compute probabilistic models. Section 4.4 presents the
tool support. Section 4.5 shows the experimental results. Section 4.6 concludes.

29

Figure 4.1: Probabilistic model checking for IEC 61499

(a) Mechatronic components (b) Application

Figure 4.2: Drilling station

4.1 Case study

An IEC 61499 drilling station [XPV21] is used to illustrate the probabilistic model
checking approach. As shown in Figure 4.2a, the system consists of three mecha-
tronic components: (i) a table, (ii) a tester, and (iii) a drill. These components are
considered smart, i.e., equipped with their own control devices that implement basic
operations. The table component undergoes rotation from one fixed position to
another. A complete cycle is achieved when the table rotates six times. Whenever a
material is in the loading position, the table rotates to align it under the tester com-
ponent. The tester then checks that the material has been drilled. If it has already
been drilled, the drill component is not activated. Otherwise, the drill component
is activated to drill the material as soon as its sensor detects the presence of the
material beneath it. Materials that have not been drilled are called solid materials
(X), while those that have been drilled are called void materials (Y).

There are operators who place solid materials on the table and take the void ones.
These operators, who can either be humans or robots, are not part of the system.

30 Chapter 4 Probabilistic model checking of IEC 61499 applications

(a) Table (b) Tester

Figure 4.3: Table and Tester CFBs

Instead, we consider their interaction with the drilling station as a nondeterministic
aspect of the environment that can influence the system. For instance, if they do not
place any material on the table, the drill will not be used even though the drilling
station is running. Ideally, the system should drill as many materials as possible
during its execution to optimise productivity.

The IEC 61499 application for the drilling station consists of 21 FBs. However, we
focus on Table and Test CFBs depicted in Figure 4.2b. They are chosen because their
input interfaces receive events and data from the sensor SIFBs associated with the
environment. For instance, when the value of delivered in Table is true, it means that
a material is detected in the loading position. It is not necessary to consider other
FBs that have deterministic behaviour with respect to the environment. For example,
when there is solid material under the drill component, it is certain that the drilling
process, described by the respective FBs, will start. The networks of FBs inside Table
and Test are shown in Figure 4.3. ON and OFF trigger events to start and stop the
table rotation. CHECK is triggered when there is a material; otherwise, ROTATE is
triggered. EXTEND and RETRACT are triggered sequentially to move the cylinder
and check the material type. DONE is triggered with void = false if it is a solid
material; otherwise, void = true.

Modelling. The first step in modelling an IEC 61499 application is to translate the
application into an LNT specification. We use the translation techniques explained
in Chapter 3 to obtain the LNT processes shown in Listing 4.1. The subprocesses are
not shown for brevity. Processes Table and Tester consist of parallel compositions
between the FBs in Table and Tester CFBs, respectively. Another parallel composition
is created in the main process to represent the drilling station application. Some
LNT actions (e.g., FB1_OK) are hidden using hide construct (e.g., line 3) because
they are not observable at the application level. LNT actions representing input

4.1 Case study 31

Listing 4.1: Drilling station LNT specification

1 process Table [FB1_TRIG, FB1_REQ, FB1_O1, FB1_O2,
2 FB4_EO0, FB4_EO1: any] (FB1_inPos, FB4_G: bool) is
3 hide FB1_OK, FB1_O1, FB1_O2, FB1_TIMEOUT,
4 FB2_STOP, FB2_EO, FB3_STOP, FB3_EO, FB4_EO0, FB4_EO1: any in
5 par
6 FB4_EO0, FB3_EO, FB1_OK, FB1_O1, FB1_O2, FB1_TIMEOUT ->
7 FB1 [FB1_TRIG, FB4_EO0, FB1_REQ, FB3_EO,
8 FB1_OK, FB1_O1, FB1_O2, FB1_TIMEOUT] (FB1_inPos)
9 || FB1_OK, FB2_EO -> FB2 [FB1_OK, FB2_EO]

10 || FB1_TIMEOUT, FB3_EO -> FB3 [FB1_TIMEOUT, FB3_EO]
11 || FB2_EO, FB4_EO0, FB4_EO1 -> FB4 [FB2_EO, FB4_EO0, FB4_EO1] (FB4_G)
12 end par
13 end hide
14 end process
15
16 process Tester [FB5_TRIG, FB5_REQ, FB5_OK, FB5_EXT,
17 FB5_RET: any] (FB5_QI, FB5_QO: bool) is
18 hide FB6_EO, FB5_TIMEOUT: any in
19 par
20 FB6_EO, FB5_TIMEOUT -> FB5 [FB5_TRIG, FB5_REQ, FB6_EO,
21 FB5_OK, FB5_EXT, FB5_RET, FB5_TIMEOUT] (FB5_QI, FB5_QO)
22 || FB5_TIMEOUT, FB6_EO -> FB6 [FB5_TIMEOUT, FB6_EO]
23 end par
24 end hide
25 end process
26
27 process main [Table_ON, Table_OFF, Table_ROTATE, Table_CHECK,
28 Tester_DONE, Tester_EXTEND, Tester_RETRACT: any] is
29 hide Table_TRIGGER, Table_REQUEST, Tester_REQUEST: any in
30 var Table_inPosition, Table_delivered, Tester_sensor, Tester_void: bool in
31 par Table_CHECK in
32 Table [Table_TRIGGER, Table_REQUEST, Table_ON, Table_OFF,
33 Table_ROTATE, Table_CHECK] (Table_inPosition, Table_delivered)
34 || Tester [Table_CHECK, Tester_REQUEST, Tester_DONE, Tester_EXTEND,
35 Tester_RETRACT] (Table_inPosition, Table_delivered)
36 end par
37 end var
38 end hide
39 end process

events (e.g., TABLE_TRIGGER) are also hidden because we only model sequences
of events and data triggered (not received) by the application FBs.

The LNT specification is then compiled into an LTS presented in Figure 4.4. This LTS
shows sequences of actions that the application can trigger. Every action corresponds
to a mechatronic component’s physical activity. For instance, let us consider the fol-
lowing sequence of activities: (i) the table starts moving, (ii) the table stops moving,
(iii) a material is detected, (iv) the tester’s cylinder extends, (v) the tester’s cylinder
retracts, (iv) a solid material is detected because the cylinder collides with the top
surface of the material. This sequence corresponds to the following sequence of ac-
tions: (Table, ON ,∅), (Table, OFF ,∅), (Table, CHECK ,∅), (Tester , EXTEND,∅),
(Tester , RETRACT ,∅), (Tester , DONE , {(void, false)}).

32 Chapter 4 Probabilistic model checking of IEC 61499 applications

Figure 4.4: LTS of the drilling station

4.2 Monitoring techniques

The goal of monitoring the application is to obtain execution traces for computing
probabilistic models. To do so, a monitoring FB is synthesised and integrated into
the application. This FB is a BFB with input interfaces that receive actions triggered
by the application and an ECC that records these actions.

The synthesis and integration of a monitoring FB is described in Algorithm 2. The
algorithm iterates through the output interfaces of the application’s FBs to create
the monitoring FB components. For every output event interface, the following
components are created: input event interface (line 8), ECC transition guard (line
9), ST program (line 11), ECC state (line 13), ECC transitions (line 16), event
connections (line 17). For every output data interface, a monitoring input data
interface is created (line 20), and a new connection is made (line 21).

Example. Figure 4.5 shows the monitored drilling station application and the ECC
inside the monitoring FB. Eight input interfaces are created and connected to the
output interfaces of the application. The ECC describes how an action is recorded
every time an event is received. For instance when Table_ON receives an event, the
current state moves from S0 to S1 . In this state, A1 is executed to record Table_ON ,
which encodes as an action (Table, ON ,∅). Then, an event is triggered from CNF
to update the value of Trace, and the current state moves back to the initial state.
The ST program in A5 is different from others because DONE is associated with
a data interface void. As seen in lines 1 to 5, the value of the data in the action is
assigned according to the value of the interface.

4.2 Monitoring techniques 33

Algorithm 2: Synthesis and integration of a monitoring FB
Inputs : iec = (FB, EC , DC)
Output : fbm = (itfm , DVm , Pm , eccm)

1 itfm := (EI , {CNF}, DI , {(Trace,∅)}, AI , {(CNF , Trace)})
2 DVm := {(Index, 0)} // create an index variable

3 eccm := (Se, se0 , Ge, Te)
4 foreach fb = (itf , DV , P, ecc) ∈ FB do // iterate through the set of FBs

5 itf := (EI ′, EO′, DI ′, DO′, AI ′, AO′)
6 foreach eo′ ∈ EO′ do // iterate through output event interfaces

7 ei := fb + “_” + eo′

8 EI := EI ∪ {ei} // create an input event interface

9 Ge := Ge ∪ {JeiK} // insert an ECC transition guard

10 p := createST (fb, ei) // create an ST program to record the input

11 Pm := Pm ∪ {p}
12 se := (p, CNF)
13 Se := Se ∪ {se} // create an ECC state operation

14 te1 := (se0 , JeiK, se)
15 te2 := (se, 1 , se0)
16 Te := Te ∪ {te1 , te2 } // create ECC transitions

17 EC := EC ∪ {(eo′, ei)} // connect the event interfaces

18 foreach do′ ∈ DO′ do // iterate through output data interfaces

19 di := fb + “_” + do′

20 DI := DI ∪ {di} // create an input data interface

21 DC := {(do′, di)} // connect the data interfaces

(a) Application (b) ECC

(c) ST programs

Figure 4.5: Drilling station application extended with a monitoring FB

34 Chapter 4 Probabilistic model checking of IEC 61499 applications

4.3 Probabilistic model computation

An LTS is a model of the application that represents all possible sequences of actions.
This model can be extended into a probabilistic model such that it also represents
the likelihood of those sequences to be executed by the application. In this thesis,
we adopt the Probabilistic Transition System (PTS) [LS91] as a probabilistic model
of an IEC 61499 application. A PTS is composed of the same elements as an LTS
with the addition of a probability in each of its transitions. The sum of probabilities
of transitions outgoing from a given state is equal to 1, and by default, they have
the same value (i.e., equiprobable).

Definition 4.3.1 (Probabilistic transition system) A PTS is an LTS (S , s0 , A, Tp)
in which transitions are extended with probabilities such that Tp ⊆ S × A × p × S,
where each p ∈ [0, 1] is the probability of executing a transition from its source state.

Algorithm 3: Computation of PTS
Inputs :m = (S , s0 , A, T), σ ∈ t(m)
Output :mp = (Sp, s0

p , A, Tp)
1 s0

p := (s0 , 1) // set initial state counter to 1

2 Sp := {(s, 0) | s ∈ S \ {s0 }} ∪ {s0
p } // set remaining state counters to 0

3 Tp := {(s, a, s′, 0 , 0 .) | (s, a, s′) ∈ T} // set counters and probabilities to 0

4 sp := s0
p // current state

5 foreach a ∈ σ, in order do // iterate through the actions in the trace

6 let T ′
p ⊆ Tp be the set of transitions outgoing from (s, x) = sp in

7 foreach
�
(s, x), a′, (s′, x ′), y, p

� ∈ T ′
p do

8 if a = a′ then // transition’s action = the current action in the trace

9 y := y + 1 // increment transition counter

10 sp := (s′, x ′ + 1) // set the next state

11 p := y ÷ x // compute the probability

Algorithm 3 takes an LTS and a trace as input to produce a PTS. The first four lines
show the preliminary initialisation of variables. In a PTS, each state is extended
with a counter x, whereas each transition has a counter y and a probability p.
Counters represent how many times states/transitions have been traversed. They
are initialised to 0 except for the initial state, which is initialised to 1 because it is
the state where the algorithm starts its traversal. The main idea of the algorithm is
to compute the probability p from the frequency of visiting the transitions and states.
The counters are used for computational purposes and can be removed from the PTS
after the computation is completed. More precisely, the PTS is traversed by iterating

4.3 Probabilistic model computation 35

Figure 4.6: Example of drilling station PTS

over the trace starting from the first action (line 5). If an outgoing transition’s label
a′ is the same as the current action a, the counter on that transition is updated,
and the next state is selected (lines 8 to 10). Afterwards, the outgoing transition
probability is updated by dividing its counter with the state’s counter.

Example. Figure 4.6 shows an excerpt of PTS computed from the drilling station LTS
in Figure 4.4 and a trace obtained using monitoring setup in Figure 4.5. In this case,
the drilling station rotated six times (i.e., one cycle), and three solid materials were
detected. As one of the observable results, the probabilities of transitions from states
2 to 0 with action (Table, ROTATE ,∅) and 2 to 3 with action (Table, CHECK ,∅)
are the same. This example shows that observing the PTS allows us to see the
probability of event sequences. However, techniques such as PMC are required for
more specific results that are not straightforward to obtain manually. For instance, it
is not straightforward to compute the probability of detecting three void materials in
six rotations (i.e., a complete cycle) only by looking at the PTS. Moreover, a complex
model may contain millions of states. Hence, it would be impossible to analyse the
PTS visually.

4.4 Tool support

We have developed a tool to compute the PTS of a given LTS and an execution
trace 1. This tool is the implementation of Algorithm 3 and is written in Java. It
takes as input an LTS and a trace in textual format as shown in Figure 4.7. The
generated PTS, along with a probabilistic property written in MCL5, can be used as
input for PMC using the CADP toolbox [Gar+13].

1available online at https://gitlab.inria.fr/ifaqriza/pts-computation

36 Chapter 4 Probabilistic model checking of IEC 61499 applications

Figure 4.7: Tool support for computing PTSs

4.5 Experimental results

This experiment 2 aims to show that PMC is helpful in analysing the impact of the
environment for optimising the system’s productivity. For this, we define a scenario
where the environment is represented by different strategies for placing and taking
materials on the drilling station table. The system is executed according to these
strategies to obtain several execution traces for generating multiple PTS models.
Several probabilistic properties are then checked on the models using the CADP
model checker. CADP can return the probability of action sequences specified in each
property (see Figure 4.1). The resulting probabilities are presented as charts that
can be analysed to see which strategy is better for productivity and also to improve
existing strategies.

Scenario. Two workers are involved as the drilling station operators. Placer puts
solid materials on the table, while Taker picks the void ones. They have other
responsibilities because the drilling station is part of a larger industrial system.
Therefore, they are not always stationed at their location. The notion of environment
varies depending on the system. In more complex systems, the role of Placer and
Taker can be replaced by other external aspects (e.g., room temperature) that impact
the system in a more complicated manner.

Two strategies in Figure 4.8 are chosen for this experiment. In S1, the void materials
are taken individually, whereas in S2, they are all taken at once but after a longer
period of time. The strategies are described as follows:

(S1) Placer places a solid material every 20 to 25 seconds, and Taker picks a void
material every 35 to 40 seconds.

(S2) Placer places a solid material every 20 to 25 seconds, and Taker picks all void
materials every 85 to 90 seconds.

2Available online at https://gitlab.inria.fr/ifaqriza/pmc-experiments

4.5 Experimental results 37

Figure 4.8: Strategies for placing and taking the materials

Figure 4.9: Drilling station experimental system execution

System execution. The system was executed and monitored for 10 minutes using
the aforementioned strategies. Two main execution traces containing nearly 700
actions were obtained. More precisely, the system execution for this experiment is
illustrated in Figure 4.9. S1 was applied in the first five minutes to get the first trace
σS1 , and for the second half, we used S2 to obtain σS2 . These two traces are used to
generate PTS models that can be checked as a summary of the system execution. In
addition, the entire trace is cut into 22 pieces using a sliding window [MBB17] to
generate several traces σ1 , σ2 , ..., σ22 . These traces are used to generate PTS models
for checking the system execution over time as the Placer and Taker apply their
strategies.

4.5.1 Probabilistic properties

We focus on the following probabilistic properties to measure the productivity of the
system:

(P1) the probability of detecting a type of material,
(P2) the probability of having a certain number of materials in the system, and
(P3) the probability of detecting a solid material in several rotations.

P1 helps to analyse system productivity by showing how often a type of material
is detected during system execution. Three MCL formulas associated with this
property are presented in Listing 4.2. The first one is to check the probability of

38 Chapter 4 Probabilistic model checking of IEC 61499 applications

Listing 4.2: MCL formulas for P1

1 prob (* empty place *)
2 (not ("Table_CHECK" or "Table_ROTATE"))* . "Table_ROTATE"
3 is >= ? 0 end prob
4
5 prob (* solid material *)
6 (not ("Table_CHECK" or "Table_ROTATE"))* . "Table_CHECK" .
7 (not ("Tester_DONE_void !TRUE" or "Tester_DONE_void !FALSE"))* .
8 "Tester_DONE_void !FALSE"
9 is >= ? 0 end prob

10
11 prob (* void material *)
12 (not ("Table_CHECK" or "Table_ROTATE"))* . "Table_CHECK" .
13 (not ("Tester_DONE_void !TRUE" or "Tester_DONE_void !FALSE"))* .
14 "Tester_DONE_void !TRUE"
15 is >= ? 0 end prob

detecting an empty place, whereas the second and third ones are for solid and
void materials. The regular expression inside each formula specifies the sequences
of actions corresponding to the detection of a material. For instance, the second
formula specifies a sequence where (Table, CHECK ,∅) (i.e., there is material) is
followed by (Tester , DONE , {(void, false)}) (i.e., the material is solid).

Listing 4.3: Excerpt of MCL formulas for P2

1 prob
2 loop (x, y: Nat := 0) : (z: Nat) in
3 if (x = 6) then exit (y)
4 else
5 ("Table_ROTATE" or "Tester_DONE_void !TRUE").continue(x + 1, y)
6 | ("Tester_DONE_void !FALSE").continue(x + 1, y + 1)
7 | not ("Table_ROTATE" or "Tester_DONE_void !FALSE"
8 or "Tester_DONE_void !FALSE").continue(x , y)
9 end if

10 end loop .
11 if z <> 3 then false end if
12 is >= ? 0 end prob

In P2, the number of materials in the system means the number of materials after a
full cycle (i.e., six rotations). The results can be used as a summary for evaluation
purposes. There are 21 MCL formulas for this property to check the probabilities
of having zero to six materials for all three types. For example, Listing 4.3 shows
a formula to check the probability of having three solid materials in the system 3.
A combination of loop and conditional operators is used to represent sequences

3Lines 5 to 8 can be replaced with sequences that represent the detections of other types of material,
and the number 3 at line 11 can be replaced with 0 to 6 to check the probability of having a
different number of materials.

4.5 Experimental results 39

of actions. The loop iterates through transitions in the PTS until sequences that
represent a full cycle are obtained (line 3). The condition ensures that only sequences
with three detections of solid material are returned (line 11).

Listing 4.4: Excerpt of MCL formulas for P3

1 prob
2 ((not ("Table_CHECK" or "Table_ROTATE"))* . (("Table_CHECK" .
3 (not ("Tester_DONE_void !TRUE" or"Tester_DONE_void !FALSE"))* .
4 "Tester_DONE_void !TRUE") | ("Table_ROTATE"))
5) {0 ... 10} .
6 (not ("Table_CHECK" or "Table_ROTATE"))* . "Table_CHECK" .
7 (not ("Tester_DONE_void !TRUE" or "Tester_DONE_void !FALSE"))* .
8 "Tester_DONE_void !FALSE"
9 is >= ? 0 end prob

P3 returns the probability of detecting a solid material after some rotations. It also
shows how many rotations are required to make the probability of detecting a solid
material close to 100% (e.g., more than 90%). There are 21 MCL formulas for this
property to check from after 0 to 20 rotations. The formula to check the probability
of detecting a solid material after ten rotations is shown in Listing 4.4 4. Here, the
first part refers to 10 detections of an empty place or a void material in a row (lines
2 to 5). The second part signifies the detection of a solid material (lines 6 to 8).

MCL formulas for P1 are used to check PTS models generated using traces
σ1 , σ2 , ..., σ22 . This allows us to see the probabilities of detecting types of ma-
terial over time. On the other hand, formulas for P2 and P3 are checked on models
computed from σS1 and σS2 to show a summary of how the two strategies can
impact the probabilities of material detection.

4.5.2 Results and discussion

The probabilistic properties are checked on the PTS models computed from the
execution traces. Since there are several formulas and models, the results are
presented using charts to analyse the impact of strategies in terms of productivity.

Figure 4.10 shows the probability of detecting materials (P1). Window (x-axis)
represents the PTS models generated over time using σ1 , σ2 , ..., σ22 . The probability
of detecting void materials increases up to 77% when S1 is applied. It decreases
and remains close to 50% in the second half when the strategy is changed to S2. In

4The number 10 at line 5 can be replaced with 0 to 20 to check the probability of detecting a solid
material after a different number of rotations.

40 Chapter 4 Probabilistic model checking of IEC 61499 applications

Figure 4.10: Probability of detecting different types of material over time

Figure 4.11: Probability of the numbers of materials in the system

contrast, the probability of empty places gets lower when using S1 until reaching
5%; then, it returns to about 45% when S2 is used. The probability of solid material
detection stays just under 25% in both strategies.

Figure 4.11 shows the probability of having certain numbers of materials in the
system (P2). The probability of empty places is overall higher using S2 compared to
S1; with S2, there is 5% probability that there are five empty places. The probability
of having solid materials on the table is also higher when S2 is used, with the
probability of having two of them close to 25%. The probability of void materials
in the system is higher using S1. Furthermore, there is a 4% probability that void
materials fully occupy the table.

Figure 4.12 shows the probability of detecting a solid material in several rotations
(P3). S2 requires fewer rotations to get a higher probability. More precisely, only
12 rotations are needed to get the probability above 90%, while S1 requires 16
rotations. As highlighted, the peak difference of probabilities between the two
strategies occurs in four rotations (57% and 66%, respectively, for S1 and S2).

4.5 Experimental results 41

Figure 4.12: Probability of detecting a solid material in several rotations

The results show that the two strategies representing two environments have dif-
ferent impacts on the drilling station. There are two important points from this
experiment. Firstly, S2 is better than S1 for optimising productivity because the
probability of detecting void materials is lower, allowing solid materials to be placed
on the table. Secondly, the probability of detecting empty places is also higher
in S2. Therefore, Placer should put solid materials on the table more frequently.
For instance, we may propose a new strategy where solid material is placed every
10 to 15 seconds. Overall, analysing the results of PMC can help to decide which
environment (i.e., strategy) is better for optimising the quantitative aspects of the
system (i.e., productivity).

4.6 Concluding remarks

This chapter provides an answer to RQ1 stated in Chapter 1. PMC can be used to
formally verify and analyse the quantitative aspects of IEC 61499 applications origi-
nating from the environment. The approach begins with building the probabilistic
model of the application. This model, called PTS, contains the runtime information
of the system because it has been enriched with an execution trace gathered using
monitoring techniques. It allows verifying the probability of action sequences that
the application can trigger.

In our experiment, PMC is applied to analyse an IEC 61499 drilling station. The
environment is represented as operators’ strategies when interacting with the system,
and the objective is to optimise productivity. Several probabilistic properties were

42 Chapter 4 Probabilistic model checking of IEC 61499 applications

checked on the system’s generated probabilistic models. We show that the results
visualised using charts are helpful for exhaustive analysis of the impact of strategies
on the system. This allows us to choose which strategy is better and propose new
strategies to increase productivity.

4.6 Concluding remarks 43

Runtime enforcement for
IEC 61499 applications

5

This chapter presents the runtime enforcement approach for IEC 61499 applications.
The goal is to evolve the initial application according to some given requirements.
The idea is to insert enforcers in the form of BFBs into the application to modify its
runtime behaviour as specified in the requirements. Our approach avoids manual
modifications that require considerable effort and may introduce errors.

Our approach begins with specifying the requirements using a specification language
that we proposed called contract automata. A contract automaton is a state machine
in which its transitions can be typed to apply specific modifications to the events
and data triggered by the application. This automaton is then used to synthesise an
enforcer as a BFB. Finally, the new FB is integrated into the application to execute
according to the requirements. The approach is demonstrated using an IEC 61499
conveyor test station. We show that our method conforms to soundness and trans-
parency, and deadlock-freedom can also be verified using model checking. A tool for
automating the synthesis of enforcers has been developed. In addition, experiments
were performed to evaluate the performance of enforcers by measuring the execution
time of several applications before and after the integration of enforcers.

This chapter is organised as follows. Section 5.1 introduces the case study. Sec-
tion 5.2 explains the IEC 61499 runtime enforcement problem. Section 5.3 defines
the contract automata language. Section 5.4 describes the enforcer synthesis and
integration. Section 5.5 explains the preserved runtime enforcement characteristics.
Section 5.6 presents the tool support. Section 5.7 shows the experimental results.
Section 5.8 concludes.

45

(a) Design (b) Application

Figure 5.1: Conveyor test station

5.1 Case study

This section introduces an IEC 61499 conveyor test station [ZL14] as a case study
to be used for illustrating the runtime enforcement approach. Minor modifications
were made to facilitate the explanation of our approach.

Figure 5.1a presents the physical design of the running example. The system aims
to check the qualities of industrial materials passing through a conveyor belt. Firstly,
a conveyor is connected to a control panel where the user can either start or stop
the conveyor (i.e., by pressing on or off buttons). Then, the component feeder is
in charge of transferring materials onto the conveyor. Next, a quality acceptance
station evaluates the materials as they pass through. Lastly, depending on the test
results, the roll-off mechanism allows the materials to be distributed onto the next
industrial process or dropped into a hopper by opening the reject gate.

The IEC 61499 application of the conveyor test station is presented in Figure 5.1b.
Cnvy1 and Ctrl1 correspond to the conveyor and its control panel. Feed1 represents
the material feeder, QualStation1 deals with the quality acceptance station, and
RollOff1 handles the roll-off mechanism. Exec1 and Inventory1 correspond to the
initialisation of the application and the database which stores the materials data.
In all these FBs, event and data interfaces are associated with the application’s
functionalities. For instance, the Running data interface in Cnvy1 has a boolean
value representing the conveyor belt’s state. When the conveyor is running, then
Running = true, otherwise Running = false. The Quality data interface has an
integer value representing the quality of the material. It ranges from 0 to 100, and
the material is accepted if this value exceeds 50.

46 Chapter 5 Runtime enforcement for IEC 61499 applications

The application was designed by its authors following the IEC 61499 hierarchical
design patterns [ZP13]. As a result, the application consists of seven CFBs with
at least 35 FBs inside of them in total. A more comprehensive description of the
conveyor test station can be found in [ZL14].

5.2 IEC 61499 runtime enforcement problem

The goal of our runtime enforcement approach from the structural point of view is to
transform an IEC 61499 application iec = (FB, EC , DC) into iec′ = (FB′, EC ′, DC ′).
The new set of FBs is FB′ = FB ∪ {fbe}, where fbe = (itfe, DVe, Pe, ecce) is a BFB
that plays the role of the enforcer according to given requirements. EC ′ and DC ′

are the new sets of connections after fbe is integrated into the application.

From the runtime perspective, our objective is to ensure that the execution of
the application satisfies the requirements. More precisely, let us consider the input
requirements as φ, and Σ∗ is the set of all possible traces that can be generated by iec.
The new application iec′ must able to produce a set of traces Run(iec′) = A∗, such
that ∀σ ∈ A∗ : σ ⊨ φ. It means that the enforcer fbe, along with all its components
(itfe, Age, DVe, ecce), must be synthesised using a certain mechanism such that it
can behave as a function EM φ : Σ∗ → Σ∗. This function modifies every sequence of
actions σ = a1 , a2 , ..., an ∈ Σ∗ that would violate the requirements, i.e., σ ̸⊨ φ, into
σ′ = a′

1 , a′
2 , ..., a′

m ∈ Σ∗, such that σ′ ⊨ φ. In our case, an action is a pair of an event
and data (e, D) ∈ Σ . Therefore, the enforcer may modify the event, data, or both.

With respect to the perspectives above, we focus on solving the following problems.

• How can one express the requirements φ for specifying the behaviour of an
IEC 61499 application iec?

• How to synthesise an enforcer fbe = (itfe, DVe, Pe, ecce) according to the given
requirements φ?

• How to integrate the enforcer fbe into iec = (FB, EC , DC) to obtain
iec′ = (FB ∪ {fbe}, EC ′, DC ′)?

5.3 Contract automata

We propose a specification language called contract automata to express the re-
quirements of IEC 61499 applications. When there is a situation in which the
application needs to adapt to the requirements, users can specify these requirements

5.2 IEC 61499 runtime enforcement problem 47

Figure 5.2: Transition types in contract automata

as a contract automaton. The term contract means that the application will behave
according to the automaton, whereas automata is a common terminology in run-
time enforcement when defining specification languages. For instance, two notable
languages are Security Automata [Sch00] and Edit Automata [LBW05]. Contract
automata is an extended version of these two languages where transitions are typed
to add expressiveness. The notions of accepting and non-accepting states are excluded
because there is no need to specify the type of each state. Contract automata can be
specified to buffer the application executions (i.e., actions). Users may also specify
to discard or replace specific executions when necessary. Overall, in this work,
contract automata is proposed as an expressive and intuitive runtime enforcement
specification language for IEC 61499 applications.

In this section, the syntax of contract automata is first introduced, followed by the
description of its semantics. In addition, two examples of contract automata are
presented for illustration purposes.

5.3.1 Syntax

A contract automaton consists of states and transitions. The transitions are typed to
specify unique modifications to the set of actions that the application can execute.
In other words, when an action is executed, the type of transition corresponding to
that action determines the modification to be applied. In Figure 5.2, these types are
represented with different styles, and their descriptions are as follows:

• forward indicates no modification,
• discard indicates that the action is discarded,
• replace indicates that the action is replaced with a different one,
• buffer indicates that the action is buffered.

Besides a type, a transition also has a guard. The set of all guards present in the
automaton is denoted as G. A guard g ∈ G is written J(fb)e[BD]K, where fb is an
FB, e is an event, and BD is a boolean expression over a set of data. The set of
actions specified by G is denoted by function Act : 2 G → 2 Σ . Every guard is a
function g : Σ → B ∪ {i}. For an action a = (fb′, e′, D) and a guard g = J(fb)e[BD]K,

48 Chapter 5 Runtime enforcement for IEC 61499 applications

g(a) = true iff (fb′ = fb) ∧ (e′ = e) ∧ (D |= BD), otherwise g(a) = false. The symbol
i is returned when the input action a /∈ Act(G).

To illustrate guards, let us consider actions a =
�
Ctrl1 , Press, {(On, true)}�

,
a′ =

�
Feed1 , OK1 , {(OnBelt, true)}�

, and a guard g = J(Ctrl1)Press[On = false]K.
Act(G) = {(Ctrl1 , Press, {(On, true)}), (Ctrl1 , Press, {(On, false)}) is the set of
specified actions. Here, g(a) = false since {(On, true)} ̸|= (On = false), whereas
g(a′) = i because a′ /∈ Act(G).

Let us define a contract automaton consisting of states and transitions labelled with
types and guards.

Definition 5.3.1 (Contract automaton) A contract automaton is a tuple
(S , s0 , Γ , G, T), where:

• S is a (finite) set of states, and s0 ∈ S is the initial state,

• Γ = {forward, discard, replace, buffer} is the set of transition types,

• G is a set of guards and Act : 2 G → 2 Σ returns the set of specified actions,

• T ⊆ S × Γ × G × Act(G) × S is a set of transitions and each transition
t = (s, γ, g, α, s′) ∈ T , where:

– s, s′ ∈ S are source and target states,

– γ ∈ Γ is the transition type,

– g ∈ G is the guard,

– α ∈ Act(G) is a replacement action.

The replacement action α is necessary for transitions typed as replace because each
transition with this type represents the replacement of an initial action a, satisfying
the guard g, with a different action α. Transitions typed as forward, discard, or buffer
do not indicate replacements of actions; therefore, α is empty in these transitions.

Example. Two examples called Automaton A and Automaton B are presented in
Figures 5.3 and 5.4 to illustrate contract automata. Given the running example pre-
sented in Section 5.1, suppose the following functional requirements are desired:

(i) Pressing the on button when the conveyor is running or off when idle should
not impact the application to prevent unexpected behaviour.

(ii) If the button off is pressed when there is still material on the conveyor, then
the conveyor will only stop running when that material has passed through the
roll-off mechanism to ensure that the conveyor is unoccupied when it stops.

5.3 Contract automata 49

Figure 5.3: Automaton A with discard and buffer transitions

Figure 5.4: Automaton B with a replace transition

(iii) To avoid too many rejected materials, there should not be two rejections in
a row. The second rejection is considered an acceptance instead, and the
material’s quality is set to 51.

Automaton A aims to satisfy (i) and (ii). For specifying requirement (i), from the
initial state, we apply a correction by discarding the action satisfying the guard
J(Ctrl1)Press[On = false]K to suppress the impact of a user pressing the off button
when the conveyor is idle. Transitions typed as discard can be implicit when the
source and target states are the same (i.e., self-loop). For instance, in state 1, it is not
mandatory to specify a discard transition guarded with J(Ctrl1)Press[On = true]K.
This discard mechanism is explained further in the semantics part of this sec-
tion. To satisfy (ii), we specify the transition in state 2 to buffer an action sat-
isfying the guard J(Ctrl1)Press[On = false]K. This is because in this state, action
(Feed, OK1 , {(OnBelt, true)}) has been executed (i.e., the material has been fed onto
the conveyor) and action (RollOff1 , OK2 , {(OffBelt, true)}) has not been executed
yet (i.e., the material has not passed through the roll-off mechanism).

Automaton B specifies requirement (iii). In state 1, when the action satisfying the
guard J(QualStation1)Done[Pass = false ∧ Quality < 51]K (i.e., the quality station
rejects the material) is executed for the second time, we use a replace transition to
trigger a different action that is (QualStation1 , Done, {(Pass, true), (Quality, 51)})
(i.e., the material is accepted and its quality is set to 51).

50 Chapter 5 Runtime enforcement for IEC 61499 applications

5.3.2 Semantics

The notion of buffer is needed to define the semantics of contract automata. The set
of bags over the set of actions Σ is denoted by GΣ . A buffer buf ∈ GΣ is a bag to store
buffered actions. The following functions are used to represent the operations on this
buffer. Functions add : GΣ × Σ → GΣ and remove : GΣ × Σ → GΣ are respectively
used for adding and removing actions from the buffer. Function Find : S × GΣ → Σ∗

finds a sequence of actions in the buffer that subsequently satisfies the guards of
forward transitions from a given starting state. Function Reach : S × Σ∗ → S returns
a reachable state from a given starting state and a sequence of actions.

A transition system is used to describe the semantics of contract automata. It relies
on the notion of configuration. The set of configurations in a contract automaton
is defined as Conf = S × GΣ , where S is the set of states and GΣ is the set of
buffers. A transition (s, buf) a/o−−→ (s′, buf ′) indicates a move from configuration
(s, buf) to configuration (s′, buf ′) while taking an input a ∈ Σ and returning an
output o ∈ Σ∗.

Table 5.1 presents the transition rules between configurations in contract automata.
Each rule defines the behaviour of the application every time an action is executed.
We use examples of contract automata in Figures 5.3 and 5.4 (i.e., Automaton A and
Automaton B) to illustrate these rules in the following explanations:

• f0 states that if every transition guard returns i when evaluating an action,
then, this action is not modified, and the configuration does not change. This
is the case when an action (Exec1 , INIT ,∅) is executed from any state in
Automaton A, this action is forwarded, and the current state does not move.

• f1 states that when an action satisfies the guard of a forward transition, this
action is not modified, and the current state moves to the target state. As an
example, when action

�
Ctrl1 , Press, {(On, true)}�

is executed in Automaton A
state 0, this action is forwarded, and the current state moves to state 1.

• d0 states that if every transition guard returns false when evaluating an action,
then, the action is discarded, and the current state remains the same. For
example, when action

�
Ctrl1 , Press, {(On, true)}�

is executed in Automaton A
state 1, this action is discarded, and the current state remains in state 1.

• d1 states that when an action satisfies the guard of a discard transition, this
action is discarded, and the current state moves to the target state. For instance,
when action

�
Ctrl1 , Press, {(On, false)}�

is executed in Automaton A state 0,
this action is discarded, and the current state moves to the same state since
the transition is a self-loop.

5.3 Contract automata 51

Table 5.1: Transition rules between configurations in contract automata

∀(s, γ, g, α, s′) ∈ T g(a) = i
(f0)

(s, buf) a/a−−→ (s, buf)

∃(s, γ, g, α, s′) ∈ T γ = forward g(a) = true
(f1)

(s, buf) a/a−−→ (s′, buf)

∀(s, γ, g, α, s′) ∈ T g(a) = false
(d0)

(s, buf) a/ϵ−−→ (s, buf)

∃(s, γ, g, α, s′) ∈ T γ = discard g(a) = true
(d1)

(s, buf) a/ϵ−−→ (s′, buf)

∃(s, γ, g, α, s′) ∈ T γ = replace g(a) = true
(r1)

(s, buf) a/α−−→ (s′, buf)

∃(s, γ, g, α, s′) ∈ T γ = buffer g(a) = true
(b1)

(s, buf) a/ϵ−−→ (s′, add(a, buf))

Find(s, buf) = a1 , a2 , ..., an = β Reach(s, β) = s′
(f2)

(s, buf) ϵ/a1 ,a2 ,...,an−−−−−−−−→ (s′, remove(β, buf))

• r1 states that when an action satisfies the guard of a replace transition, this
action is replaced with a replacement action and the current state moves to the
target state. As an example, when action

�
QualStation1 , Done, {(Pass, false),

(Quality, 50)}�
is executed in Automaton B state 1, this action is replaced

with
�
QualStation1 , Done, {(Pass, true), (Quality, 51)}�

and the current state
moves to state 0.

• b1 states that when an action satisfies the guard of a buffer transition, this
action is added into a buffer, and the current state moves to the target state. For
instance, when action

�
Ctrl1 , Press, {(On, false)}�

is executed in Automaton
A state 2, this action is buffered, and the current state moves to the same state
since the transition is a self-loop.

• f2 states that a sequence of actions is released from the buffer when those
actions satisfy the guards of sequential forward transitions. The released

52 Chapter 5 Runtime enforcement for IEC 61499 applications

actions are executed sequentially, and the current state moves to the target
state of the last transition. For example, in Automaton A state 1 an action
�
Ctrl1 , Press, {(On, false)}�

is available in the buffer because it was buffered
in state 2. This action satisfies the guard J(Ctrl1)Press[On = false]K in transi-
tion 1 to 0. Therefore, the action is removed from the buffer and executed.
Moreover, the current state moves from 1 to 0.

5.4 Enforcer synthesis and integration

A contract automaton specifies the modifications of application execution to satisfy
certain requirements. In order to perform these modifications, we must synthesise
a component of the application that can receive specific sequence of actions, and
modify each action in the sequence as specified in the automaton. Therefore, a
contract automaton is synthesised into an enforcer in the form of a BFB. The BFB
interfaces are created to receive and send the initial and modified actions, whereas
the generated ECC should be able to apply the modification of each action according
to the contract automaton.

Enforcer synthesis transforms a contract automaton in Definition 5.3.1 into a BFB in
Definition 2.2.3. An enforcer is denoted as fbe = (itfe, DVe, Pe, ecce). The enforcer
is then integrated into the initial application iec = (FB, EC , DC) to obtain a new
application iec′ = (FB ∪ {fbe}, EC ′, DC ′). The enforcer synthesis is divided into two
main parts: the interfaces (itfe) and the ECC (ecce). The internal variables (DVe)
and the programs (Pe) are included in the ECC synthesis.

5.4.1 Synthesis of interfaces

The interfaces of an enforcer are built by analysing the set of guards in the contract
automaton. A pair of input and output interfaces is created for every event and data
present in a guard.

Definition 5.4.1 (Enforcer interfaces) The enforcer interfaces itfe = (EI , EO, DI , DO,

WI , WO) are derived from the set of guards G = {J(fb1)e1 [BD1]K, J(fb2)e2 [BD2]K, ...}
in the contract automaton (S , s0 , Γ , G, T) such that:

• EI = {ei + “_I ”},

• EO = {ei + “_O”},

• DI = {(d ∈ Di) + “_I ”},

5.4 Enforcer synthesis and integration 53

(a) Interfaces of EnforcerA (b) Interfaces of EnforcerB

Figure 5.5: Synthesised enforcers’ interfaces from Automaton A and Automaton B

Figure 5.6: Untagged and tagged transitions

• DO = {(d ∈ Di) + “_O”},

• AI = {(ei + “_I ”, (d ∈ Di) + “_I ”)},

• AO = {(ei + “_O”, (d ∈ Di) + “_O”)},

In the above definition, suffixes “_I ” and “_O” are appended to the interface names
to distinguish between input and output interfaces. Furthermore, prefix fbi can be
appended to the interfaces with the same name.

Example. Figure 5.5 presents the interfaces of EnforcerA and EnforcerB synthesised
from Automaton A and Automaton B. The interfaces consist of input and output
interfaces interpreted from the guards present in the contract automata. For instance,
Press_I , Press_O, On_I , and On_O interfaces in EnforcerA are synthesised from a
guard J(Ctrl1)Press[On = true]K in Automaton A.

5.4.2 Synthesis of ECC

The enforcer’s ECC is constructed using a set of translation patterns for transforming
each transition in the contract automaton into transitions and states of ECC. However,
it is necessary beforehand to identify the release of actions characterised by rule
f2 in Table 5.1 by tagging the corresponding transitions in the contract automaton.
These tags help to determine which transitions in the contract automaton should be
translated into ECC’s transitions and states that can release the buffered actions.

Transition tags. The set of tags is defined as Λ = {u, release}, where u signifies
an untagged transition while release corresponds to transitions that can release
the buffered actions. As illustrated in Figure 5.6, a transition tagged as release is
represented using a different endpoint style. Only forward transitions can be tagged
as release because we should not discard nor replace the buffered actions.

54 Chapter 5 Runtime enforcement for IEC 61499 applications

Figure 5.7: Tagged Automaton A

Definition 5.4.2 (Tagged contract automaton) Given a contract automaton
c = (S , s0 , Γ , G, T) and the set of tags Λ = {u, release}, a tagged contract automa-
ton is cΛ = (S , s0 , Γ , G, Λ, TΛ), such that t = (s, γ, g, α, λ, s′) ∈ TΛ, where λ ∈ Λ.
Let Tag : T → Λ be the function to tag every transition t ∈ T in the automaton and
T ′ ⊆ T be the set of all transitions typed as buffer:

Tag(t)

release if (t.γ = forward) ∧ (∃t ′ ∈ T ′ : t.g = t ′.g)

u otherwise

Example. Tagged Automaton A is presented in Figure 5.7. The transition from states
1 to 0 is tagged as release because it is typed as forward and guarded with the same
guard as the transition typed as buffer (the self-loop transition in state 2).

Translation patterns. A contract automaton that has been tagged can be translated
into an ECC. We propose translation patterns to generate an ECC from a given
contract automaton. The idea of these patterns relies on the modifications of actions
represented by the contract automata transitions. For each transition type (i.e.,
forward, discard, replace, buffer , and release), we define ECC elements that can
perform the modification of an action according to the contract automata transition
rules (Table 5.1).

The translations patterns from contract automata transitions to elements of ECC are
shown in Table 5.2. Each pattern is associated with a transition rule (e.g., P(f1) is
associated with f1). The translation patterns are described as follows:

• In P(f1), a forward transition is translated to an ECC transition, leading to a
state that executes the same action received by the enforcer.

• In P(d1), a discard transition in a contract automaton is translated to an ECC
transition, leading to a state that does not execute any action.

• In P(r1), a replace transition in a contract automaton is translated to an ECC
transition, leading to a state that executes the replacement action.

• In P(b1), a buffer transition in a contract automaton is translated to an ECC
transition, leading to a state that stores the received action in a buffer.

• In P(f2), a release transition in a contract automaton is translated to two
ECC transitions. The first one, se to se′, leads to a state where the action is

5.4 Enforcer synthesis and integration 55

Table 5.2: Translation patterns from contract automata to ECC transitions

Pattern Contract automata ECC

P(f1)

D = {(x1 , y1), (x2 , y2), ...} DA = {(xi1 , y1), (xi2 , y2), ...},
p = ⟨xo1 := xi1 ; xo2 := xi2 ; ...⟩,
xii = xi + “_I ”, xoi = xi + “_O”

P(d1)

D = {(x1 , y1), (x2 , y2), ...} DA = {(xi1 , y1), (xi2 , y2), ...},
xii = xi + “_I ”

P(r1)

D = {(x1 , y1), (x2 , y2), ...},
Dα = {(xα1 , yα1), (xα2 , yα2), ...}

DA = {(xi1 , y1), (xi2 , y2), ...},
p = ⟨xo1 := yα1 ; xo2 := yα2 ; ...⟩,
xii = xi + “_I ”, xoi = xαi + “_O”

P(b1)

D = {(x1 , y1), (x2 , y2), ...} DA = {(xi1 , y1), (xi2 , y2), ...},
p = ⟨xb1 := xi1 ; xb2 := xi2 ; ... ;

b := b + 1 ⟩, xii = xi + “_I ”,
b = “Buf _” + e, xbi = “Buf _” + xi [b]

P(f2)

D = {(x1 , y1), (x2 , y2), ...} DA = {(xi1 , y1), (xi2 , y2), ...},
p = ⟨xo1 := xi1 ; xo2 := xi2 ; ...⟩,
xii = xi + “_I ”, xoi = xi + “_O”

Db = {(“Buf _” + e, yb)},
pb = ⟨xo1 := xb1 ; xo2 := xb2 ; ...⟩
xbi = “Buf _” + xi [“Buf _” + e]

56 Chapter 5 Runtime enforcement for IEC 61499 applications

(a) ECC (b) ST programs

Figure 5.8: ECC and ST programs of EnforcerA

forwarded as in the pattern (1). The second transition, se to se′′′, leads to a
state that releases an action from a buffer.

It is not necessary to construct a translation pattern for rule f0 because by construc-
tion only actions specified by the guards of contract automata can be received by
the enforcer. A pattern for rule d0 is also not needed because an action is discarded
by default when there exists no ECC transition guard that can be satisfied by this
action. Moreover, there is an additional transition outgoing to se′′ in every pattern
to allow the translation of multiple transitions with the same target state.

Note that the resulting ECC may exhibit nondeterministic behaviour when multiple
transitions outgoing from the same state satisfy pattern P(f2). For instance, two
transitions from the same state are guarded with J[Buf _A > 0]K and J[Buf _B > 0]K.
In such a case, the ECC would arbitrarily trigger one of the transitions if both buffers
contain the corresponding actions. As an alternative, the techniques could allow the
user to give priorities by annotating the buffer transitions to specify which one is
more important to be released. However, this would make the specification process
more intricate. Other possibilities are prioritising the oldest actions, as in the First In,
First Out concept, or releasing the longest sequence of actions, as proposed in [FS21].
All these methods could be implemented, but they would overly complicate the
translation patterns.

Example. The synthesised ECC of EnforcerA from Automaton A is presented
in Figure 5.8. In state START , there is an outgoing transition guarded with
Press_I [ON_I = true] leading to S0 where no action is executed (i.e., no ST pro-
gram nor output event interface). This corresponds to the discard transition in state
0 of the automaton. In state S5 , there is an outgoing transition state S6 where
interface Press_I can receive an event when the value of On_I = false. There is no
output event interface on S6 , but there is an algorithm to store the information of the
buffered action. Then, the unguarded transition goes back to S5 . This loop results

5.4 Enforcer synthesis and integration 57

(a) ECC (b) ST programs

Figure 5.9: ECC and ST programs of EnforcerB

from a self-loop buffer transition in state 2 of Automaton A. The two transitions from
S2 to S3 and S4 are synthesised according to the pattern (5) in Table 5.2. These
transitions mean that the action (Ctrl1 , Press, {(On, false)}) can either be released
when available in the buffer (transition S2 to S3) or forwarded when received by
the enforcer’s input interfaces (transition S2 to S4).

The result of the translation from Automaton B to the ECC of EnforcerB is depicted
in Figure 5.9. From the starting state of the automaton, there are two transitions
typed as forward. These are translated as transitions in ECC targeted to states S1 and
S5 , where the values of data Pass and Quality are forwarded by executing Algo1 ,
and the event Done is forwarded from interface Done_O. The replace transition
from 1 to 0 in the contract automaton is translated to ECC’s transition from S2 to
S4 . Here, when an action satisfies the ECC’s transition guard, in state S4 , the output
event of this action is forwarded, and the data is modified by executing Algo2 .

5.4.3 Enforcer integration

Integrating an enforcer into the application is done by disconnecting the initial
connections between the interfaces and creating new connections that include the
enforcer. This integration is described in Algorithm 4, which takes as input an
enforcer fbe and an IEC 61499 application iec. The algorithm generates a new
application iec′ where the enforcer has been integrated. The symbol ≈ means that
two interfaces have different names only because one of them is appended with the
suffix “_I ” or “_O”. For instance, the EnforcerA FB interface Press_I and the Ctrl1
FB interface Press have different names because Press_I is Press appended with
the suffix “_I ”; therefore, Press_I ≈ Press.

First, the enforcer is merged with the initial set of FBs (line 1). Temporary sets
are initialised for facilitating the integration; EC new and DC new store the new

58 Chapter 5 Runtime enforcement for IEC 61499 applications

Algorithm 4: Integration of enforcer
Inputs : fbe = (itfe = (EIe, EOe, DIe, DOe, WIe, WOe), DVe, Pe, ecce),

iec = (FB, EC , DC)
Output : iec′ = (FB′, EC ′, DC ′)

1 FB′ := FB ∪ {fbe} // enforcer is added to the set of FBs

2 EC new , DC new , EC old , DC old := ∅ // temporary sets of connections

3 foreach (ei, eo) ∈ EC do
4 foreach eie ∈ EIe do
5 if eo ≈ eie then
6 EC old := EC old ∪ {(ei, eo)} // an event connection to be removed

7 EC new := EC new ∪ {(eo, eie)} // an event connection to be added

8 foreach eoe ∈ EOe do
9 if ei ≈ eoe then EC new := EC new ∪ {(eoe, eo)}

10 foreach (di, do) ∈ DC do
11 foreach die ∈ DIe do
12 if do.id ≈ die.id then
13 DC old := DC old ∪ {(di, do)} // data connection to be removed

14 DC new := DC new ∪ {(do, die)} // data connection to be added

15 foreach doe ∈ DOe do
16 if di.id ≈ doe.id then DC new := DC new ∪ {(doe, di)}

17 EC ′ := (EC \EC old) ∪ EC new // new connections between interfaces

18 DC ′ := (DC \DC old) ∪ DC new

connections to be added, whereas EC old and EC old store the connections to be
removed (line 2). Next, the algorithm iterates through the set of event connections
(lines 3 to 9). When two event interfaces are associated with each other (i.e.,
eo ≈ eie), the initial event connection is stored in EC old (line 6), and the new event
connections are stored in EC new (lines 7 and 9). The iteration through the set of
data connections in lines 10 to 16 performs the same task as in event connections. It
finds and stores data connections to be removed and added in, respectively, DC old

and DC new . Finally, the new sets of event and data connections are created in lines
17 and 18.

Algorithm 4 is correct if it results in sets of event and data interfaces that (i) contain
new connections between the enforcer and the existing FBs, (ii) do not contain
former connections that must be removed due to the enforcer addition, and (iii)
contain former connections that need to be preserved. The first and second points
hold because new and former connections are added and removed every time an
interface of the enforcer is associated with the interface of an existing FB (lines 5,
10, 15 and 20). The third point holds because no connection is removed except the
ones in EC old and DC old (lines 23 and 24).

5.4 Enforcer synthesis and integration 59

(a) EnforcerA (b) EnforcerB

Figure 5.10: Enforcers integrated into the application

Example. In order to illustrate the algorithm, let us consider the integrations of
EnforcerA and EnforcerB into the IEC 61499 conveyor test station. The results
are depicted in Figure 5.10. Only new connections between the enforcers and
the existing FBs are shown for clarity. The other connections remain the same as
presented in Figure 5.1b. As described in Algorithm 4, event connections in the
application associated with the enforcer’s interfaces are removed, followed by the
creation of new connections. For instance, to integrate EnforcerA, Press output
event interface in Ctrl1 was initially connected to Press input event interface in
Cnvy1 . This connection is removed, and new connections are created between Press
in Ctrl1 to Press_I and Press_O to Press in Cnvy1 . Similarly, data connections
between Pass in QualStation1 to Pass in RollOff1 and Inventory1 are replaced
with connections from Pass to Pass_I . Then, Pass_O is connected to Pass in both
RollOff1 and Inventory1 .

5.5 Runtime enforcement characteristics

A runtime enforcement approach is correct when it satisfies soundness, transparency,
and deadlock-freedom characteristics [RRF20; FS21; LMM23]. Soundness is satisfied
when the application executes according to the requirements. Our approach must be
sound because the enforcer should modify the execution of the application such that
the requirements are satisfied. The runtime enforcement techniques are transparent
when they do not induce unexpected behaviour. Transparency is needed because the
enforcer should not make any unspecified modifications to the application execution.
Deadlock-freedom is satisfied when the application can always make progress. It is
required because the enforcer should not make the application stop executing. In
the following sections, we explain that soundness and transparency are guaranteed

60 Chapter 5 Runtime enforcement for IEC 61499 applications

by construction. Afterwards, the use of model checking to ensure deadlock-freedom
is described.

5.5.1 Soundness and transparency

Suppose that an enforcer fbe = (itfe, DVe, Pe, ecce) is synthesised from a contract
automaton c = (S , s0 , Γ , G, T). This enforcer is integrated into an initial IEC 61499
application iec = (FB, EC , DC), such that iec′ = (FB ∪ {fbe}, EC ′, DC ′).

Proposition 1 states that every trace produced by the application satisfies the contract
automaton.

Proposition 1 (Soundness). ∀σ ∈ Run(iec′) : σ ⊨ c

Proof (sketch). Soundness is satisfied because, by construction, the enforcer executes
every possible modification of action specified in the contract automaton.

Proposition 2 states that a trace is modified if and only if the modification is specified
in the contract automaton.

Proposition 2 (Transparency).
∀σ ∈ Run(iec) : (EM c(σ) = σ′) ∧ (σ ̸= σ′) iff (σ′ |= c)

Proof (sketch). The enforcer modifies the application execution only when it is
specified by the contract automaton. When an action is not associated with any
guard in the contract automaton, then the synthesised enforcer does not provide
the interfaces corresponding to this action. This implies that it is impossible for the
enforcer to modify this action.

5.5.2 Deadlock-freedom

Deadlock-freedom is not guaranteed by construction because the user may specify
contract automata synthesised into enforcers that cause deadlock (e.g., by discarding
events required for making progress). Therefore, we propose to use model checking
techniques to ensure this characteristic.

Before deploying the modified application, the formal modelling method in Chapter 3
is first applied to generate the LTS model. Afterwards, in order to check that an LTS

5.5 Runtime enforcement characteristics 61

model is free from deadlock, we must specify a property stating that every state has
at least one successor. This property is written in MCL [MS03] as [true*] <true>

true. The CADP model checker [Gar+13] is then used to check the property on
the LTS model. If true is returned, then deadlock-freedom is guaranteed.

Note that our approach for ensuring deadlock-freedom is generic. There exist other
works in [Dro+16; OV21; BRS17] that can also be used to apply model checking
techniques for IEC 61499 using various formal languages and model checkers.

5.6 Tool Support

This section presents the implementation of the IEC 61499 runtime enforcement
approach. We first focus on the technical details of the tool for synthesising enforcers.
Afterwards, experimental results are presented to show that enforcers do not induce
performance overhead.

Our implementation relies on 4DIAC-IDE [Str+08], an open-source development
tool for IEC 61499 applications. The developed tools and experiments presented in
this section are available in an online repository1. This repository also contains more
examples for readers interested in them. One of them is a more complex conveyor
test station containing 23 composite FBs with more than 100 FBs inside of them in
total. There is also a temperature control system with an enforcer that consists of 32
states and 44 transitions.

The technical detail for synthesising enforcers is presented in Figure 5.11. A program
written in the Java programming language has been developed to implement the
synthesis techniques described in Section 5.4. It returns an enforcer (i.e., a basic FB)
in the form of an XML file for a given contract automaton, which is written in a text
file. 4DIAC-IDE is used to read the generated enforcers. Every new enforcer must be
exported and compiled together with the runtime environment called FORTE 2. Once
all the steps are completed, the enforcer can be integrated into the application.

Figure 5.12 shows the steps required to use our approach for adapting physical
systems. The first step is to deploy the application. 4DIAC-IDE provides a compre-
hensive guide about the deployment of IEC 61499 applications [4DI24]. Once the
application is running, a contract automaton is specified to be synthesised as an

1https://gitlab.inria.fr/ifaqriza/runtime-enforcement-for-iec-61499
2This compilation process is detailed in the official webpage of 4DIAC-IDE:
https://www.eclipse.org/4diac/en_help.php?helppage=html/installation/
install.html

62 Chapter 5 Runtime enforcement for IEC 61499 applications

Figure 5.11: Implementation of enforcer synthesis

Figure 5.12: Adaptation of physical systems using runtime enforcement for IEC 61499

enforcer. Algorithm 4 computes a target application in which the enforcer has been
integrated. Next, a modification sequence is computed from the initial application
(without an enforcer) and the target application. This sequence is a list of operations
required for preserving dependencies during the dynamic modification (e.g., the
connections of an FB must be removed before deleting that FB). The work in [PS21]
describes the automated computation of the modification sequence. Finally, the ini-
tial application is modified into the target application according to the modification
sequence without stopping the physical system. Existing tools and frameworks, such
as the one proposed in [PRG20], can be used to complete this task.

5.7 Experimental results

The goal of this experiment is to compare the performance of IEC 61499 applications
before and after the integration of enforcers. This is done to make sure that the
enforcers do not induce significant performance overhead. We take several real-
world examples of IEC 61499 applications from the existing literature. Requirements
are then specified using contract automata. These automata are synthesised as
enforcers and integrated into the corresponding applications. Finally, we execute

5.7 Experimental results 63

Table 5.3: Experimental results

Application CA ECC Itf. ET(ms)

Name FBs St. Tr. St. Tr. Ev. Da. Be. Af.

1. Convey. 1A [ZL14] 7 3 6 10 14 6 6 59167 59108

2. Convey. 1B [ZL14] 7 2 4 6 7 2 4 59167 59151

3. Convey. 2A [ZL14] 23 3 6 10 14 6 6 83106 83115

4. Convey. 2C [ZL14] 23 10 20 30 40 2 4 83106 83129

5. Temp. A [ZL14] 4 2 4 6 8 2 2 10005 10003

6. Temp. B [ZL14] 4 5 12 18 24 2 2 10005 10004

7. Temp. 2C [ZL14] 8 11 22 32 44 2 2 10003 10005

8. Capping A [ZSE13] 5 2 4 6 8 4 0 10005 10004

9. Capping B [ZSE13] 5 5 12 18 24 4 0 10005 10003

10. Blink A [IDE24] 3 2 2 4 4 4 0 10002 10003

11. Blink B [IDE24] 3 2 4 6 8 4 0 10002 10005

Average 32233 32230

multiple simulations of these applications to obtain the average execution time with
and without enforcers. These simulations are performed using 4diac IDE [Str+08]
and FORTE runtime environment.

The results of our experiments are presented in Table 5.3. The first two columns
contain the application names and the numbers of FBs representing the size of the
application. The next two columns contain the number of states and transitions in
the contract automata to represent the complexity of each contract automaton. The
fifth and sixth columns contain the number of states and transitions of the enforcers’
ECCs, whereas the seventh and eighth columns contain the number of event and
data interfaces of the enforcers. They represent the complexity of the synthesised
enforcer. The last two columns contain the average execution time before and after
enforcers’ integrations in milliseconds. Note that some of the experiments were
performed using the same applications but different contract automata. Therefore,
they are named differently (e.g., applications Blink A and Blink B).

The results in Table 5.3 show the applicability of our approach in terms of perfor-
mance. In most cases, there is no significant overhead when an enforcer is integrated
into the application. Experiment 4 resulted in the highest increase of execution time

64 Chapter 5 Runtime enforcement for IEC 61499 applications

(23 ms). This is because, in this specific experiment, multiple complex enforcers
were integrated into an application that consists of many FBs. However, the increase
is much less than a second, thus negligible. Therefore, we may conclude that our
approach is applicable in terms of performance.

Threats to Validity. The experimental results are obtained using simulations in 4diac
IDE. There are two potential threats to the validity of these results. The first one
concerns the time intervals between the events in the simulations that may not reflect
those in physical systems. In physical systems, some events are triggered due to the
interactions between the sensors and the environment. In our simulations, these
events were created using additional FBs that can trigger events periodically called
E_CYCLE . Nevertheless, there should not be a significant threat to the validity of
the results in this regard because the execution time of the enforcer does not depend
on the execution time of other FBs. Secondly, our experiments do not consider
distributed applications. In such applications, there may be additional overheads
when the enforcers must receive and send events through the network [Lin+15].
Dedicated frameworks and extensions for distributed IEC 61499 applications, such
as the one proposed in [BWZ23], can be used to mitigate the communication delays
that may arise in such cases. Overall, this aspect does not pose a major threat to the
validity of the results.

5.8 Concluding remarks

This chapter provides a solution to RQ2 described in Chapter 1. The runtime
enforcement concept can be applied to compute IEC 61499 applications that satisfy
some given requirements. The method starts with an expressive and compact input
specification called contract automaton, which allows the user to specify different
modifications of actions according to the requirements. An action can be forwarded,
discarded, replaced, or buffered. This automaton is transformed into an enforcer
in the form of a BFB. Afterwards, the enforcer is integrated into the application to
modify its runtime execution as specified in the requirements.

The approach is demonstrated using a real-world IEC 61499 conveyor test station.
We showed that our runtime enforcement method is sound and transparent. A tool
is developed to automate the synthesis of enforcers. Furthermore, experiments
were presented to show that the enforcer does not induce significant performance
overhead.

5.8 Concluding remarks 65

Guided evolution of IEC
61499 applications

6

IEC 61499 applications may need to be evolved during their life cycles to satisfy
certain requirements. There are various ways to satisfy these requirements, such as
modifying the FBs’ internal functionalities and creating new connections between
FBs. Manual modifications may result in unsatisfied requirements, unexpected
behaviours, and extra complexity. To avoid these risks, it is important to define a
systematic and reliable software evolution method. This chapter offers a solution that
generates evolution guidelines, which can bridge the gap between the requirements
and the target application. Conventionally, the developers must consider several
possible modifications when there are requirements that need to be satisfied. The
guidelines generated by our techniques can help them to make necessary changes to
the application without introducing erroneous behaviour and extra complexity.

Our approach is illustrated in Figure 6.1. It takes as input (1) an initial IEC 61499
application and (2) the requirements. It generates as output (3) the guidelines to
obtain (4) an evolved IEC 61499 application satisfying the requirements. We focus
on applications that define the behaviours of industrial systems using interactions
between the sensors and actuators [ZL14]. Such applications are characterised by
the presence of SIFBs that are associated with the sensors (i.e., sensor SIFBs) and the
actuators (i.e., actuator SIFBs). Requirements are specified based on the expected
interactions between the sensors and the actuators. The generated guidelines inform
the developers about FBs and connections that need modification.

This chapter is structured as follows. Section 6.1 introduces an extended version
of the IEC 61499 behavioural model. Section 6.2 presents a mixing tank system
as the case study for illustrating our approach. Section 6.3 explains the guided
evolution techniques. Section 6.4 shows a prototype of the approach implementation.
Section 6.5 concludes.

67

Figure 6.1: Overview of the approach

6.1 Extended behavioural model

The behavioural model used in this chapter is adapted from the LTS model introduced
in Chapter 3. The notion of action is extended so that it consists of an output and a
set of inputs. An output is composed of interfaces that trigger an event and data,
whereas an input consists of interfaces that receive these events and data. The
purpose of this extension is to distinguish between outputs that are sent from the
sensor SIFBs and inputs that are received by the actuators SIFBs.

Definition 6.1.1 (Extended action) An extended action is a tuple (o, I), where:

• o = (fb, eo, DO) is an output consisting of a source FB fb, an event interface eo,
and a set of data DO,

• I = {(fb′
1 , ei1 , DI1), (fb′

2 , ei2 , DI2), ..., (fb′
n , ein , DIn)} is a set of inputs, each

consists of a target FB fb′, an event interface ei, and a set of data DI .

Example. To illustrate the extended model, an application is presented in Fig-
ure 6.2a. CY1 is an FB that generates events periodically. S1 and A1 are sensor
and actuator SIFBs. ED1 is a BFB with an ECC shown in Figure 6.2b. This BFB
regulates the flow of events in the application to make the actuator SIFB only
receive an event whenever the sensor SIFB’s data value changes. Suppose S1 trig-
gers an event from CNF with IN = true. Then, we can write this as an action

68 Chapter 6 Guided evolution of IEC 61499 applications

(a) Application

(b) ECC of ED1

(c) Extended LTS

Figure 6.2: Example of IEC 61499 application with SIFBs and its extended LTS

((S1 , CNF , {(IN , true)}), {(ED1 , CLK , {(DI , true)})}). Figure 6.2c shows the ex-
tended LTS. The highlighted texts are the outputs (green) and inputs (blue) of the
sensor and actuator SIFBs. The model shows both behaviour and structure of the
application. For instance, in transition 2 to 3, the actuator SIFB A1 receives an input
on REQ with OUT = false after the sensor SIFB S1 sent two outputs sequentially
from CNF with IN = true (transition 0 to 1) then IN = false (transition 1 to 2).

6.2 Case study

A mixing tank system [CC19] in Figure 6.3 is used in this chapter as a running
example to explain the guided evolution techniques. The system aims to mix two
types of liquid coming from two different sources. S1, S2, and S3 are the sensors
that detect the amount of liquid in the tank. P1, P2, M, and D are the actuators
associated with two pumps, a mixer, and a drain.

The initial behaviour of the mixing tank is described in Table 6.1 (Behaviour 1). This
behaviour is a standard mixing process in which both pumps start or stop pumping
when the tank is empty or full. The liquid is drained when the tank is full, and the

6.2 Case study 69

Figure 6.3: Mixing tank system

Table 6.1: The initial and target behaviours of the mixing tank

Behaviour 1 (initial behaviour)

1. When the liquid moves below S1, (i) P1 and P2 start pumping, and (ii) D stops draining.
2. When the liquid moves above S2, M starts mixing.
3. When the liquid moves above S3, (i) P1 and P2 stop pumping, and (ii) D starts draining.
4. When the liquid moves below S2, M stops mixing.

Behaviour A Behaviour B

1. When the liquid moves below S1, (i) P1 starts
pumping, and (ii) D stops draining.

2. When the liquid moves above S2, (i) P2 starts
pumping, and (ii) M starts mixing.

3. When the liquid moves above S3, (i) P1 and P2
stop pumping, and (ii) D starts draining.

4. When the liquid moves below S2, M stops mixing.

1. When the liquid moves below S1, (i) P1 and P2
start pumping, and (ii) D stops draining.

2. When the liquid moves above S3, (i) P1 and P2
stop pumping, (ii) D starts draining, and (iii) M
starts mixing.

3. When the liquid moves below S2, M stops mixing.

mixer is on when there is enough liquid. The other two behaviours in the table
are the target behaviours of the evolved applications. The bold texts highlight the
differences between the target and initial behaviours. In Behaviour A, we assume
that the liquid supply from P2 is almost fully consumed. Therefore, P2 only starts
pumping when the tank is half full. As for Behaviour B, M only starts mixing when
the tank is full to reduce energy consumption.

Table 6.2: Descriptions of the sensor and actuator SIFBs

Input and Output Description

(Pi , REQ, {(OUT , true)}) Pi starts pumping.
(Pi , REQ, {(OUT , false)}) Pi stops pumping.
(D, REQ, {(OUT , true)}) D starts draining.
(D, REQ, {(OUT , false)}) D stops mixing.
(M , REQ, {(OUT , true)}) M starts draining.
(M , REQ, {(OUT , false)}) M stops mixing.
(Si , CNF , {(IN , true)}) The liquid is above Si .
(Si , CNF , {(IN , false)}) The liquid is below Si .

70 Chapter 6 Guided evolution of IEC 61499 applications

Figure 6.4: Initial IEC 61499 application of the mixing tank system

Figure 6.5: Fragment of the initial application model

The IEC 61499 application describing the initial behaviour of the mixing tank is
depicted in Figure 6.4. S1 , S2 , and S3 are the sensor SIFBs. D, P1 , P2 , and M are
the actuator SIFBs. The inputs and outputs of these SIFBs are described in Table 6.2.
The other FBs (e.g., ED1 , ES1 , and TFD) regulate the interactions between the
SIFBs such that the mixing tank operates according to Behaviour 1.

We use the translation techniques described in Chapter 3 on the application in
Figure 6.4 to obtain a model consisting of 49392 states and 340956 transitions. To
illustrate, we present a fragment of this model in Figure 6.5. It consists of three
states and their outgoing transitions. The model shows that the initial state can
trigger six possible actions, which are triggered by the sensor SIFBs. Furthermore,

6.2 Case study 71

Figure 6.6: Overview of the guided evolution techniques

in state 2, ED1 can trigger EO with Q = false after the value of IN in S1 changes
from true (transition 0 to 1) to false (transition 1 to 2).

The following section explains how the guidelines for evolving the application in
Figure 6.4 into applications that execute according to Behaviour A and Behaviour B
can be automatically generated.

6.3 Guided evolution techniques

This work aims to guide the evolution of IEC 61499 applications to satisfy the
requirements. Our approach relies on the generated behavioural model of the
application. We propose algorithms and analysis techniques to infer the modifications
in the application using the model and the requirements.

The overview of the method, which consists of three modules, is presented in
Figure 6.6. In the Preliminary module, the application is translated into an LTS
model, and the requirements are interpreted as a specification. The Model evolution
module first analyses the generated model and the specification to identify relevant
submodels (Model analysis). Afterwards, the submodels are modified according to
the specification (Submodels modification). The last module, Guidelines generation,
compares the identified and modified submodels to generate guidelines for evolving
the application.

72 Chapter 6 Guided evolution of IEC 61499 applications

6.3.1 Preliminary

Our approach takes as input an IEC 61499 application and requirements to be
satisfied. The Preliminary module preprocesses these inputs before using them to
generate the evolution guidelines. The application is translated into an LTS model,
whereas the requirements are interpreted as a specification.

In this work, the description of the application behaviour is represented as interac-
tions. An interaction consists of a sequence of outputs triggered by the sensor SIFBs
and a set of inputs received by the actuator SIFBs.

Definition 6.3.1 (Interaction) An interaction is a tuple (Sen, Act), where

• Sen = o1 , o2 , ..., on is a sequence of outputs triggered by the sensor SIFBs
• and Act = {i1 , i2 , ..., in} is a set of inputs received by the actuator SIFBs.

The behaviours in Table 6.1 can be represented as interactions using the descrip-
tions in Table 6.2. For instance, the first statement in Behaviour A is represented
as (Sen, Act), where Sen = (S1 , CNF , {(IN , true)}), (S1 , CNF , {(IN , false)}) and
Act = {(P1 , REQ, {(OUT , true)}), (D, REQ, {(OUT , false)})}.

The evolution requirements describe the new behaviour of the application. Therefore,
these requirements can be represented as a set of new interactions that do not
belong in the application’s initial behaviour. This set is called a specification of the
requirements.

Definition 6.3.2 (Specification) A specification is a set of interactions {(Sen1 , Act1),
(Sen2 , Act2), ..., (Senn , Actn)}.

A specification r is obtained by first specifying the evolution requirements. In our
example, these are the bold texts in Table 6.1. Afterwards, we use the description
of the sensor and actuator SIFBs in Table 6.2 to translate the requirements into a
specification.

Example. Table 6.3 presents the specifications of Behaviour A and Behaviour B as
Specification A and Specification B. Each specification describes the behaviours of
the target application that differ from the initial application. For instance, the first
point of Behaviour A differs from Behaviour 1 because P2 does not start pumping
when the liquid moves below S1. This difference is represented as an interaction
(Sen1 , Act1) in Specification A. Sen1 contains a sequence of outputs corresponding

6.3 Guided evolution techniques 73

Table 6.3: Mixing tank system specifications according to Behaviour A and Behaviour B

Specification A

• (Sen1 , Act1)
Sen1 = (S1 , CNF , {(IN , true)}), (S1 , CNF , {(IN , false)})
Act1 = {(P1 , REQ, {(OUT , true)}), (D, REQ, {(OUT , false)})}
• (Sen2 , Act2)
Sen2 = (S2 , CNF , {(IN , false)}), (S2 , CNF , {(IN , true)})
Act2 = {(P2 , REQ, {(OUT , true)}), (M , REQ, {(OUT , true)})}

Specification B

• (Sen1 , Act1)
Sen1 = (S2 , CNF , {(IN , false)}), (S2 , CNF , {(IN , true)})
Act1 = ∅

• (Sen2 , Act2)
Sen2 = (S3 , CNF , {(IN , false)}), (S3 , CNF , {(IN , true)})
Act2 = {(P1 , REQ, {(OUT , false)}), (P2 , REQ, {(OUT , false)}), (D, REQ, {(OUT , true)}),

(M , REQ, {(OUT , true)})}

to the movement of the liquid from above S1 (i.e., (S1 , CNF , {(IN , true)})) to below
S1 (i.e., (S1 , CNF , {(IN , false)})). Act1 contains two inputs received by the actua-
tors P1 and D. Here, P1 should start pumping (i.e., (P1 , REQ, {(OUT , true)})), and
D should stop draining (i.e., (D, REQ, {(OUT , false)})). Notice that in this specifica-
tion (P2 , REQ, {(OUT , true)}) /∈ Act1 because P2 should not start pumping when
the liquid moves below S1.

6.3.2 Model evolution

The Model evolution module generates submodels that can guide the application’s
evolution. The initial model describes all possible sequences of actions that the
application can trigger. Some of these sequences are unrelated to the specification.
The first step in this module, Model analysis, identifies sequences in the model that
are relevant to the specification. This allows us to focus on the part of the model
that needs to be modified. The second step, Submodels modification, modifies the
identified submodels according to the specification.

Model analysis. Algorithm 5 describes how relevant submodels are identified. It
takes the initial application model minit and the specification r as input to return a set
of identified submodels Mident . A submodel consists of action sequences that begin
with the actions triggered by the sensor SIFBs and end with the actions received by
the actuator SIFBs. Function isNext checks if the output of an action is the next one
in the sequence, whereas function isTrig checks if an action is triggered by the FB to
which the previous action was sent. Function addToModel adds a transition into a

74 Chapter 6 Guided evolution of IEC 61499 applications

Algorithm 5: Model analysis
input :minit = (S , s0 , A, T), r = {(Sen1 , Act1),

(Sen2 , Act2), ..., (Senn , Actn)}
output :Mident = {m1 , m2 , ..., mn}

1 foreach (Sen, Act) ∈ r do // iterate through the set of interactions

2 m′ := (∅, s0 ,∅,∅) // initialise a new submodel

3 identify (s0 , minit , m′, Sen, ϵ)
4 Mident := Mident ∪ m′ // add the submodel to the set of identified submodels

5 identify (sc, m, m′, Sen, ap)
6 let Tc be the set of transitions outgoing from sc in
7 foreach t = (s, a, s′) ∈ Tc, do // iterate through the set of transitions

8 if isNext (a, Sen) ∨ isTrig (a, ap) then // check if the transition is

relevant

9 addToModel (m′, t) // add the transition to the submodel

10 identify (s′, m, m′, Sen, a)

(a) The first identified submodel according to Requirement A (Submodel A1)

(b) The second identified submodel according to Requirement A (Submodel A2)

(c) The first identified submodel according to Requirement B (Submodel B1)

(d) The second identified submodel according to Requirement B (Submodel B2)

Figure 6.7: Identified submodels

submodel. The algorithm iterates through the set of interactions (lines 1 to 4). In
each iteration, a submodel is built by traversing the initial model. A transition is
added into the model if its action’s output is the next one in Sen or triggered by the
FB to which the previous action was sent (lines 8 and 9).

Example. We apply Algorithm 5 on the initial model of the application to obtain
submodels shown in Figure 6.7. There are two submodels for each specification

6.3 Guided evolution techniques 75

because both Specification A and Specification B contain two interactions. Each
submodel describes the sequences of actions that can be triggered according to the
sequence of outputs in an interaction. For instance, in submodel A1 (Figure 6.7a),
the first two transitions correspond to the sequence of outputs in Sen1 (see Table 6.3,
Specification A). This submodel describes the sequences of actions that can be
triggered after the value of IN in S1 changes from true to false. It informs us about
the sequences leading to the inputs received by the actuators. One of the inputs is
(P2 , REQ, {(OUT , true)}) (in transitions 4 to 5 and 6 to 0). This input is not in the
set of expected inputs (i.e., Act1) and must be removed by modifying the submodel.
This modification is computed in the second step of this module.

Algorithm 6: Submodels modification
input :Mident = {m1 , m2 , ..., mn}, r = {(Sen1 , Act1),

(Sen2 , Act2), ..., (Senn , Actn)}
output :Mmodif = {m′

1 , m′
2 , ..., m′

n}
1 let P be the set of pairs {(m1 , (Sen1 , Act1)), (m2 , (Sen2 , Act2)),

..., (mn , (Senn , Actn))} such that mi ∈ Mident and (Seni , Acti) ∈ r in
/* iterate through the set of pairs */

2 foreach (m = (S , s0 , A, T), (Sen, Act)) ∈ P do
/* initialise the set of inputs to be removed from the submodel */

3 Irem := getInputs(m) \ Act
/* initialise the set of outputs to be added to the submodel */

4 Iadd := Act \ getInputs(m)
5 remInputs (s0 , m, Irem)
6 addInputs (s0 , m, Iadd)
7 Mmodif := Mmodif ∪ m

8 remInputs (sc, m, Irem)
9 let Tc be the set of transitions outgoing from sc in

10 foreach t = (s, a, s′) ∈ Tc do
11 Itmp := a.I ∩ Irem

/* check if the transition is labelled with an input to be removed */

12 if checkRem(Itmp, m) then removeTrans (t, m)
13 else modifyTrans (Itmp, t, m)
14 remInputs (s′, m, Irem)

15 addInputs (sc, m, Iadd)
16 let Tc be the set of transitions outgoing from sc in
17 foreach t ∈ Tc do

/* build interleaving transitions */

18 if checkAdd(t) then interleave (Iadd , t, m)
19 addInputs (s′, m, Iadd)

76 Chapter 6 Guided evolution of IEC 61499 applications

Submodels modification. Algorithm 6 describes how the identified submodels are
modified according to the specification. It takes the set of identified submodels
Mident and the specification r as input. The algorithm returns a set of modified
submodels Mmodif . P is a set of pairs. Each pair contains a submodel and its corre-
sponding interaction (e.g., submodel A1 is paired with interaction (Sen1 , Act1) in
Specification A). Function getInputs returns a set of inputs received by the actuators
of a given submodel. For instance, applying this function to submodel A2 returns
(M , REQ, {(OUT , true)}).

The algorithm iterates through the set of pairs to modify the identified submodels
(lines 2 to 7). In each iteration, it initiates the sets of inputs to be removed and
inputs to be added (lines 2 and 3). Function remInputs traverses a submodel to
find transitions labelled with actions containing inputs that need removal (lines 8 to
16). If the action contains another input corresponding to the same connection, the
transition is modified by removing only the input in the set Itmp (line 15); otherwise,
the transition is removed completely (line 13). Function addInputs traverses the
submodel for the second time (lines 17 to 22) to integrate the set of inputs Iadd to
the submodel by building interleaving transitions with other transitions containing
inputs that the sensor receives (line 21).

Example. Figure 6.8 shows the modified submodels obtained using Algorithm 6.
Each submodel now contains sequences of actions that satisfy the specification. For
instance, the input (P2 , REQ, {(OUT , true)}) is removed in the modified submodel
A1 (Figure 6.8a) because it is not one of the expected inputs in the corresponding
interaction (i.e., Act1 in Specification A). However, this input is added to the
modified submodel A2 (transitions 4 to 6 and 5 to 0 in Figure 6.8b) because it is
one of the expected inputs in Act2 .

6.3.3 Guidelines generation

The Guidelines generation module analyses the initial and modified submodels to
generate evolution guidelines. The idea is to find the differences between the
transitions in the initial submodel and the transitions in the modified submodel.

Algorithm 7 describes the guidelines generation. It takes an identified submodel
and a modified submodel as input. The algorithm returns event connections to be
removed, event connections to be added, data connections to be removed, data
connections to be added, and BFB to be modified. Function pref : T → 2 T∗

is used
to obtain sequences of transitions preceding a given transition.

6.3 Guided evolution techniques 77

(a) Modified A1

(b) Modified A2

(c) Modified B1

(d) Modified B2

Figure 6.8: Modified submodels

The algorithm iterates through the set of transitions in the identified and modified
submodels (lines 1 and 2). Afterwards, it checks if the transitions are preceded by
the same sequences and have the same outputs on their labels (line 3). The inputs
of the transitions are then compared (lines 4 to 11). This comparison results in one
of the following three possible outcomes. Firstly, connections between FBs must be
removed if an input is missing in the modified transition (lines 4 to 6). Secondly,
an FB must be modified if there is a new input in the modified transition and a
new transition exists in one of the subsequent transitions (lines 7 to 8). Lastly, new
connections must be added if a new input exists in the modified transition (lines 9
to 11).

Example. The evolution guidelines to obtain applications with Behaviour A and
Behaviour B are presented in Table 6.4 as Guidelines A and Guidelines B. Here,
(Source FB, Interface) - (Target FB, Interface) denotes a connection between two
FBs. The guidelines are generated according to the comparison between submodels
in Figures 6.7 and 6.8. For instance, in Guidelines B (i), the connection between

78 Chapter 6 Guided evolution of IEC 61499 applications

Algorithm 7: Guidelines generation
input :mident = (Si , s0

i , Ai , Ti), mmodif = (Sm , s0
m , Am , Tm)

output :ECrem , ECadd , DCrem , DCadd , FBmod

/* iterate through the set of transitions in the initial submodel */

1 foreach ti = (si , (oi = (fb, eo, DO), Ii), s′
i) ∈ Ti do

2 foreach tm = (sm , (om , Im), s′
m) ∈ Tm do

/* compare with each transition in the modified submodel */

3 if
�
pref (ti) = pref (tm)

� ∧ �
oi = om

�
then

/* remove connections if an input is removed from the corresponding

transition */

4 if ∃ii = (fb′, ei, DI) ∈ Ii : ii /∈ Im then
5 ECrem := ECrem ∪ {(eo, ei)}
6 DCrem := DCrem ∪ (DO, DI)

/* modify the BFB if there is a transition in the modified submodel

that is not in the initial one */

7 else if�∃im = (fb′, ei, DI) /∈ Im : im ∈ Ii
� ∧ �∃t ′

m = (s′
m , a, s′′

m) ∈ Tm : t ′
m /∈ Ti

�

then
8 FBmod := ECadd ∪ {(eo, ei)}

/* add new connections if an input is added to the corresponding

transition */

9 else if
�∃im = (fb′, ei, DI) /∈ Im : im ∈ Ii

�
then

10 ECadd := ECadd ∪ {(eo, ei)}
11 DCadd := DCadd ∪ (DO, DI)

Table 6.4: Evolution guidelines

Guidelines A

(i) remove (ES1 , EO0) - (TFP, T), (TFP, EO) - (P1 , REQ), and
(TFP, EO) - (P2 , REQ)

(ii) create (ES1 , EO0) - (TFP, T1), (ES2 , EO1) - (TFP, T2),
(ES3 , EO1) - (TFP, F1), (TFP, EO1) - (P1 , REQ), and (TFP, EO2)
- (P2 , REQ)

(iii) modify TFP
Guidelines B

(i) remove (ES2 , EO1) - (TFM , T)
(ii) create (ES3 , EO1) - (TFM , T)

EO1 in ES2 and T in TFM must be removed because the input (TFM , T ,∅) is
removed in the modified submodel B1. On the other hand, the connection between
EO1 in ES3 and T in TFM (i.e., Guidelines B (ii)) must be created because the
input (TFM , T ,∅) is added in the modified submodel B2 (transition 3 to 4). The

6.3 Guided evolution techniques 79

(a) According to Guidelines A (b) According to Guidelines B

Figure 6.9: Fragments of the evolved applications

fragments of the evolved applications according to the guidelines are shown in
Figure 6.9.

6.4 Implementation

We have developed a prototype to automate the Model evolution module. It is written
in Java and takes two text files as input. The first file is the textual representation of
the application model. The second one is the specification with the same format as
in Table. 6.3. It generates the identified and modified submodels in textual format as
output. Every module in our approach can be automated. However, associating the
input and output SIFBs with physical activities requires manual intervention (e.g.,
Table 6.2). Nevertheless, this is not an issue because SIFBs include documentation
explaining the meaning of their input and output interfaces.

Figure 6.10 shows a fragment of the prototype’s outputs. This prototype considers
only one data interface associated with an event interface. Thus, only the value
of the data is shown (e.g., !FALSE instead of {IN = false}). The fragment shows
the identified and modified submodels corresponding to the first interaction of
Requirement B (see Figures 6.7c and 6.8c).

6.5 Concluding remarks

This chapter presents an alternative solution to RQ2. We make use of various
algorithms and analysis techniques on the behavioural model of the application to
generate guidelines for evolving the application. The method begins with identifying

80 Chapter 6 Guided evolution of IEC 61499 applications

Figure 6.10: Fragment of the prototype’s outputs

the parts of the model that are relevant to the requirements. Afterwards, these
submodels are analysed and modified according to the requirements. Submodels
before and after modifications are compared to generate evolution guidelines. These
guidelines help to make the necessary modifications without adding extra complexity
or creating erroneous behaviour. The approach is demonstrated on an IEC 61499
mixing station. A prototype has been developed to automate the analysis and
modification of submodels.

6.5 Concluding remarks 81

Related work
7

This chapter surveys related works and is structured as follows. Section 7.1 com-
pares our formal modelling techniques with existing works that propose to model
the behaviour of IEC 61499 applications. Section 7.2 compares our probabilistic
model checking approach with similar verification techniques. Section 7.3 compares
our runtime enforcement and guided evolution techniques with research works
aimed at evolving automation systems to satisfy certain requirements. Section 7.4
concludes.

7.1 Formal modelling

Petri nets. The authors in [VH99] propose one of the earliest modelling techniques
for IEC 61499 applications when the standard was still a draft and called IEC
1499. An application is modelled as a type of Petri net [Rei85] extended with
condition and event arcs [RH95]. A model consists of places, transitions, and
arcs. Every arc between a place and a transition is labelled with either a condition
(e.g., an ST program is completed) or an event (e.g., an input event is received).
Petri net is chosen to avoid state space explosion [Cla+11]. Its non-interleaving
semantics permit firing several transitions simultaneously, which makes it suitable
for representing an event sent to multiple FBs. In our LTS model, an event triggered
by a source FB and events received by target FBs is represented as a single action,
which helps to mitigate the number of states. Moreover, FB’s internal executions,
such as the completion of an ST program, are not included in our model because
they are not closely related to the system’s physical behaviour. Overall, LTS provides
a more compact representation of the application behaviour by taking into account
the sequences of actions. Furthermore, an LTS can easily be extended into a PTS
by enriching the transitions with probabilistic values because we consider events
and data that can be monitored (unlike the executions of ST programs that are
encapsulated inside BFBs).

83

SMV languange. The authors in [PDV15b; PDV15c] propose to generate models
in the SMV language [Cim+99] from IEC 61499 basic function blocks. A BFB is
translated into an SMV module consisting of variable declarations, guard definitions,
states, and transitions. This translation is formalised using Abstract State Machine
(ASM) [Gur93] and implemented as fb2smv [Dmi24] tool. In [Dro+21], this
modelling approach is extended with timing aspects to support the verification of
real-time properties. The proposed translation methods are comparable with our
translation patterns. Their approach is more straightforward because the syntax of
SMV allows them to explicitly declare state variables and next functions to represent
ECC states and transitions. In our approach, we use (sub)processes and process
calls. However, their works only describe the translations of individual BFBs into
SMV modules, which means that modelling the entire application behaviour is not
yet supported. The issue is that modules in SMV can not be used in a parallel
composition with synchronisation on some actions, as in LNT. Moreover, SMV does
not support the addition of probabilistic values on its transitions.

Promela. The work in [SV21] proposes to model IEC 61499 applications with
Promela [Neu14], which is the input language for the SPIN model checker [Hol97].
The modelling approach relies on the ECC’s Operation State Machine (OSM). Three
Promela processes are created to represent the three states in OSM. Each process
contains conditional statements on the events and data followed by goto statements
to determine the next OSM state whenever a condition is satisfied. The authors use
the message channels in Promela to represent the transmissions of events between
the FBs so that the model of the whole application can be created. In comparison,
we use the parallel composition construct in LNT to incorporate all the processes
translated from the FBs in the application. Moreover, this work also does not produce
models that can be extended with probabilistic values because SPIN does not support
probabilistic model checking.

Execution traces. Formal modelling of IEC 61499 execution traces is proposed
in [Lia+22]. A trace is defined as a sequence of system states consisting of timestamps
and updates. An update contains any observable changes in the application at
runtime, such as an ECC’s current state moving to a new one. In total, there are
11 possible types of updates. The authors propose this notion of execution trace
for observation purposes. Thus, every detail in the application’s progression at
runtime is included. In comparison, our execution trace is dedicated to enriching
the behavioural model with the likelihood of execution sequences. Execution details
such as timestamps are not necessary because LTS considers only events and data
that the application can trigger.

84 Chapter 7 Related work

Misc. In [DVH06], IEC 61499 applications are modelled as Prolog programs [CM94].
The modelling begins with the creation of a Prolog term for each ECC state in the
application. Afterwards, a tree-like structure is built to represent the global state of
the application. Finally, a Prolog production rule is generated to represent the input
and output of each ECC transition. The case study shows that the model can help
answer questions such as "At which values of X will the ECC of FB Y be in state Z?".
In summary, the model proposed in their work is useful for reachability analysis and
checking the implication of data values in the application’s ECCs and ST programs.
In comparison, our model focuses on a higher level of abstraction, which is the
sequences of events and data of the application. This allows us to verify properties
that are closely related to the system’s physical activities.

In [PDV15a], IEC 61499 applications are modelled as programs in Ptolemy II [Pto14],
which is an embedded system development framework with an actor-oriented design
paradigm [LNW03]. FBs are transformed into actors, and each of their ECCs is
translated into an Extended State Machine (ESM), which defines the execution
logic of an actor. This translation makes use of an algorithm for converting Moore
machines (ECC) to Mealy machines (ESM). The modelling techniques proposed in
this work and ours are aimed at different objectives. Their main goal is to create
computational models that can leverage the loosely defined execution semantics of
IEC 61499. This is done by mapping the standard’s syntactic components to Ptolemy
II. In contrast, our focus is to model the likelihood of the application’s executions for
probabilistic model checking. To achieve this goal, we generate LTS models that can
be extended into PTSs to check some given probabilistic properties using the CADP
model checker [Gar+13].

In [KS21], the authors define a transformation of IEC 61499 applications to Business
Process Model Notation (BPMN) [AK15] models. This transformation makes use
of translation patterns from ECC components to BPMN notations. For instance, an
ECC state is translated into a BPMN task. A BPMN model represents an automation
system from a business perspective and enables quantitative analysis of process
models. This analysis assumes that choices in the process have equal probability. In
comparison, we enrich the transitions in our probabilistic models with probabilistic
values computed from the monitored traces to improve the quantitative analysis.

7.1 Formal modelling 85

7.2 Verification

Symbolic model checking. In [XPV21], a model checking tool-chain is developed
and used to verify an IEC 61499 drilling station. The authors use a simulation
model developed using NxtStudio to represent the drilling station. The tool-chain
relies on (i) the fb2smv [Dmi24] tool for converting the application’s FBs into SMV
models and (ii) the NuSMV model checker [Cim+99]. The verification results show
that the approach can check safety properties, such as the table should not rotate
while the drilling process is ongoing. Our probabilistic model checking was also
applied to a drilling station system. However, we focus on verifying the quantitative
aspects of the system, such as the likelihood of detecting a certain type of material.
Another difference is that their model checker is not applied to the model of the
whole application because the fb2smv only supports the translation of individual
FBs. Therefore, certain FBs that need to be verified must be determined before
applying the approach. In comparison, we use the CADP probabilistic model checker
on the PTS, which represents the probabilistic behaviour of the entire drilling station.
Furthermore, our experiments were conducted on a physical system, whereas theirs
were executed on a simulation model.

The work in [OV21] introduces a technique based on model checking to visually
explain properties’ violations. As in the aforementioned works, the approach begins
with automatic translations of IEC 61499 FBs into SMV models using the fb2smv
tool. Then, the NuSMV model checker is used to generate counterexamples from
the models and some given properties. Finally, the counterexamples are utilised to
infer influence paths in a graphical interface. These paths are presented visually to
the users to help them debug IEC 61499 applications. In this approach, the visual
explanations are aimed at debugging violations of safety properties. In contrast, we
apply PMC to several probabilistic models (computed from the same application
but with different traces) and properties. This results in the probabilities of action
sequences that can be presented visually using charts to analyse the quantitative
aspects of the system, such as productivity.

Statistical model checking. The works in [SAM23; AMO23; BH21] apply statistical
model checking [Leg+19] (SMC) to analyse and optimise industrial systems in
various aspects. In [SAM23], SMC is combined with the fault tree analysis method
to evaluate the probabilities of system failure and power consumption. The authors
in [AMO23] use system modelling language (SysML) to model cyber-physical sys-
tems. The case study on artificial pancreas shows that the approach can verify critical
safety properties. Finally, SMC is used to analyse the performance of production

86 Chapter 7 Related work

lines in [BH21]. These works employ SMC, while ours uses PMC. SMC is known to
have a lower memory requirement, but it returns approximative results as output.
In contrast, PMC may require exploring the entire state space but provides more
accurate results.

Runtime verification. The authors in [Jhu+21] propose a method for monitoring
adapter connections in IEC 61499 applications. The monitor contains state machines
specifying certain properties. When a property is violated, an event is triggered as a
notification. The work in [Tra+20] also relies on runtime verification. The authors
propose to integrate contract monitors into IEC 61499 applications. These monitors
can ensure some specified properties during runtime by constraining the behaviour
of existing FBs. This is done by allowing data input and output interfaces to receive
and send certain values only. The probabilistic model checking approach in our
work also involves monitoring the application. However, the monitor does not verify
properties but records the execution traces to be used for computing probabilistic
models. Furthermore, these runtime verification works are also comparable to our
runtime enforcement approach. The difference is that the added FB in our approach
modifies the runtime execution according to some given requirements.

The work in [YR10] uses Esterel for verifying the safety properties of IEC 61499
applications. One of the main features of this work is the use of synchronous
observers, where monitoring FBs are integrated to check the application’s correctness
at runtime. A case study on the cruise control system shows that the approach is able
to verify safety properties, such as the cruise mode should deactivate when the brake
pedal is pressed. This work focuses on verifying safety properties at runtime. In
contrast, we monitor the application execution when running and use the monitored
traces to infer probabilistic values in the model. Their verification method returns
whether the property is satisfied or not, whereas we inform the user about the
likelihood of the property being satisfied.

Misc. The work in [PVS12] presents the verification of an IEC 61499 pick-and-
place system. The authors make use of IEC 61499 to Petri net modelling tech-
niques [VH99] and the SESA model checker [KH11]. The system is developed
according to controller-client architecture, and the properties are specified to check
the interactions between controllers and workers. For instance, the approach can
verify that when controller cylinders descend, the client cylinders should stand still.
In this work, properties are specified to express the expected interactions between
system components. In comparison, probabilistic properties in our approach are
specified to express the likelihood of execution sequences.

7.2 Verification 87

A case study on the verification of an IEC 61499 airflow control system is presented
in [SG04]. The application is modelled as a network of timed automata. The
UPPAAL model checker [LPY97] is used to verify predefined properties on the model.
These properties correspond to the timing aspects of the application. For instance, a
property ensures that the output relative to a sampling event is returned before a new
sampling event is triggered. This work aims to verify the application’s correctness,
taking into account the timing aspects. In comparison, we focus on the quantitative
aspects of the application.

In [Bor+05], model checking is applied to verify the correctness of a turntable
system, which resembles the drilling station. Three model checkers were tested:
SPIN [Hol97], CADP [Gar+13], and UPPAAL [LPY97]. The system, written in χ

language, is translated to the model checkers’ specification languages. Properties
such as deadlock freedom and fairness were checked. This work does not consider
the presence of the environment, such as workers interacting with the system. On
the contrary, our approach considers the environment using probabilistic models
computed from execution traces.

7.3 Evolution

Downtimeless evolution. The authors in [Hum+06] propose a downtimeless evo-
lution method for IEC 61499 applications. The method relies on a new type of
FB called EvoFB, which encapsulates three sequences: initiations (RINIT), recon-
figuration (RECONF), and termination (RDINIT). The follow-up works in [SFV06;
SVZ13] propose verification techniques to evaluate the correctness of the reconfig-
uration process. Their method is extended in [SZ11] for distributed applications.
The work in [PS21] generates the correct order of the reconfiguration operations
(i.e., RECONF) using dependency graphs. This approach is refined in [PHS22a] to
support real-time systems by considering the timing constraints and applying the
priority ceiling protocol. Finally, the work in [PHS22b] describes the techniques
to generate rollback sequences when reconfigurations of applications need to be
cancelled. This collection of works (i.e., [Hum+06; SFV06; SVZ13; SZ11; PS21;
PHS22a; PHS22b]) facilitates the seamless evolution of IEC 61499 applications
without stopping their executions. In comparison, our proposed methods focus on
finding the target application for a given initial application and evolution require-
ments. Runtime enforcement is applied to satisfy the requirements by modifying
the runtime execution with enforcers, whereas the guided evolution techniques
could help by generating step-by-step guidelines. Our methods can be integrated

88 Chapter 7 Related work

into the aforementioned downtimeless evolution techniques to build an end-to-end
framework for evolving IEC 61499 applications.

Feature-oriented evolution. The work in [Hin+18] proposes a featured-oriented
evolution method for industrial automation systems. It relies on the mapping be-
tween features and codes. The evolution is simplified by automatically updating
the code when a new feature is introduced. This approach is useful for adding and
removing features. In comparison, both our guided evolution and runtime enforce-
ment techniques help to modify existing features according to the requirements. For
instance, their approach can be used when there is a new tester component that
needs to be added to the IEC 61499 conveyor test station, whereas ours can be used
when the behaviour of the existing tester needs to be modified.

Reconfiguration techniques. The work in [SJC14] proposes an approach to auto-
matically reconfigure the mappings of FBs in IEC 61499 applications into the control
devices according to requirements. Applications are represented as algebraic models
describing the associations between the FBs and the control devices. Requirements
are expressed using quantifier-free first-order formulae. A configuration engine
based on SMT constraint resolution computes the system’s satisfactory configuration.
Both this work and ours aim to support the evolution of IEC 61499 applications.
However, they focus on the application’s structural aspect when specifying the target
evolution, whereas we deal with the behavioural aspect of the application. For ex-
ample, their approach can evolve an application by adding an FB in a control device
because the requirements specify that this type of FB must exist in every control
device. In comparison, both our guided evolution and runtime enforcement tech-
niques can add an FB into the application because this FB can make the application
produce the sequences of events and data specified in the requirements.

Design patterns. The authors in [WSZ20; Son+21; Son+22] propose to support the
adaptability of IEC 61499 applications using specific design patterns. A distributed
hierarchical design pattern is studied in [WSZ20]. This pattern can be used when
the application involves many parallelism. In [Son+21], this pattern is extended
to further support the reconfigurability and reusability by differentiating FBs based
on their interactions. The most recent one [Son+22] introduces new FBs to the
pattern dedicated to error detection and handling. These works help the users in
building adaptable IEC 61499 applications using specific design patterns, which are
applied during the development phase (i.e., before deployment). Their objective is
to simplify the application’s modification when it needs to be evolved according to
some requirements at runtime. In contrast, our methods can be applied after the
deployment phase and can help the evolution process itself by either integrating an

7.3 Evolution 89

enforcer to change the runtime execution or generating guidelines for modifying the
application.

Self-adaptive systems. The authors in [Ade+22] propose to support adaptive au-
tomation systems by defining the formal notion of explanation. Explanations contain
information about certain adaptation decisions. Each explanation is characterised
by content, effect, and cost. Probabilistic model checking is used to obtain the
optimal explanation, which allows human operators to understand the change in
system behaviours during an adaptation process. When a questionable adaptation
occurs, the operator may cancel the process. Their notion of explanations can be
compared with the notion of guidelines in our guided evolution techniques. The
main difference is that explanations can only be obtained whenever the adaptation
has been determined by the system’s maintainers. In comparison, guidelines can
be used to determine the correct modifications that need to be done during the
adaptation itself.

The work in [CR23] introduces a goal modelling notation called EDGE to support
self-adaptive systems. This notation is proposed based on five desiderata (i.e., require-
ments), such as allowing automated goal selection. EDGE models are synthesised
into goal controllers using the PRISM model checker [KNP02]. The goal controllers
in this work are comparable with enforcers in our runtime enforcement approach.
However, a goal controller aims to change the system’s objective. For instance, it
can make the conveyor test station perform a new task, such as repairing defective
materials. In comparison, an enforcer focuses on changing the system’s behaviour,
such as making the conveyor test station accept every material. Alternatively, we
can also use guided evolution techniques to generate the modifications required to
make the application satisfy the requirements.

Runtime enforcement. The authors in [Pin+17] propose runtime enforcement
techniques for cyber-physical systems, in particular, the heart pacemaker system. The
requirements are expressed as Synchronous Discrete Time Automata (SDTA). This
language allows, for instance, to forbid two different pace signals (i.e., atrial and
ventricular paces) to happen simultaneously. In comparison with our work, the states
of SDTA are distinguished into two types: accepting and non-accepting. A contract
automaton does not require this distinction because it aims only at specifying how
the system can achieve a desired behaviour (as opposed to undesired behaviour
where non-accepting states are necessary). In SDTA, when the transition goes to
a non-accepting state, the corresponding action is replaced with another existing
action on a transition outgoing from the same source state. This is similar to our
replace mechanism, where the original and replacement actions are specified on the

90 Chapter 7 Related work

same transition. Their approach also does not halt the system because the heart
pacemaker is a reactive system in which it must trigger an output every time there is
an input. Hence, buffering is not an option for them, whereas it is acceptable for
us because the buffered action can be released in the next execution. Furthermore,
their enforcer is bi-directional because it receives inputs and sends outputs from the
heart and the pacemaker. In contrast, our enforcer is unidirectional, but its input
and output interfaces can be connected to multiple FBs.

The work in [LMM23] focuses on the application of runtime enforcement for in-
dustrial automation systems relying on the standard IEC 61131-3 [IEC02]. The
controller programs are expressed using a language based on a timed process cal-
culus, while the correctness of these programs is specified using time correctness
properties. Similarly to ours, a property is synthesised as an enforcer. The properties
that can be specified in this work are specific, such as bounded eventually, bounded
absence, and bounded maximum duration. In comparison, we propose to express
properties using contract automata. This allows the users to specify requirements to
be enforced by using different types of transitions. Moreover, their work targets the
IEC 61131-3 standard, where programs execute using a scan-based model, whereas
ours focuses on IEC 61499, which relies on an event-driven execution model.

Specification languages. Security Automata (SA), introduced in [Sch00], is one
of the earliest runtime enforcement specification languages. It is an FSM-based
language that runs in parallel with the system. A security automaton can specify to
halt the system when a transition corresponding to a certain action is not available
in the current state. Halting is not an option in our case because the automation
system must continue making progress. For instance, the industrial materials would
be congested if the conveyor test station is halted. In comparison, our contract
automata can specify to discard, replace, or buffer the undesired action without
stopping the IEC 61499 application.

Edit Automata (EA) described in [LBW05] is a well-known language to enforce
system properties. It extends SA’s capability to insert and suppress actions. This
feature is called buffering in contract automata. In addition to that, contract
automata can discard or replace actions. The discard mechanism can be useful
when it is not necessary to buffer certain actions. For instance, when a conveyor is
switched on, discarding the action that corresponds to switching on the conveyor is
preferred over buffering the action.

A specification language based on temporal logic [Pnu77] called Event-Driven
Temporal Logic (EDTL) is introduced in [Zyu+21]. The language can specify
requirements based on six unique attributes. For instance, the trigger attribute

7.3 Evolution 91

describes the starting event of the requirement, while the reaction attribute is
associated with the ending event. In comparison, we use different types of transition
in contract automata to specify the desired application behaviour.

7.4 Concluding remarks

In this chapter, we have presented existing works related to our contributions. The
comparisons between these works and ours show that our approaches differ in
several ways.

Existing works on formal modelling techniques for IEC 61499 do not take into
account the runtime execution of the application. In comparison, we use monitoring
techniques to enrich our model with probabilistic values to represent the likelihood
of execution sequences. Also, most of the works focus on generating models for each
individual FB (except modelling with Promela), whereas our method can be applied
to the entire application. Furthermore, the models in our approach represent the
system’s behaviour at the application level, which is unlike most other works that
consider the internal executions of FBs. The advantage of concentrating on this level
of abstraction is that we can specify properties that are closely related to the physical
activities of the system.

The existing verification methods for IEC 61499 mostly apply conventional model
checking to verify safety properties. There are also other existing techniques, such
as runtime verification. These methods return a verdict for the satisfaction of the
property. In comparison, our approach can produce the likelihood of the property
satisfaction. Overall, our PMC approach provides an alternative for users who are
interested in verifying the application’s quantitative aspects, such as productivity.

Various research works exist to help evolve IEC 61499 applications. Some of these
works focus on the evolution process from an initial application to a new application
without stopping the execution. However, these works do not describe the computa-
tion to find the new target application that can satisfy the requirements. Two works
that propose to generate target applications aim to add features and reconfigura-
tions of control devices. To the best of our knowledge, a method for computing
target applications based on the behavioural aspects has not been proposed. There
are also design patterns and self-adaptive concepts proposed to support evolving
industrial automation systems. However, these proposals must be applied before
the deployment. Our runtime enforcement and guided evolution techniques help
to fill these gaps. They can both be used to obtain a new application that satisfies

92 Chapter 7 Related work

some given requirements. These requirements can be specified according to the
desired behaviour using contract automata or specifications. Finally, we can use our
approach to satisfy requirements given at runtime.

7.4 Concluding remarks 93

Conclusion
8

This chapter concludes the thesis. It consists of a summary of the contributions and
perspectives for the future work.

8.1 Summary of contributions

Industrial automation has been gaining potential in recent years due to the advance-
ment in information technology. However, it faces many challenges that must be
addressed to optimise its capability. This thesis focuses on two major challenges. The
first one is how to consider probabilistic behaviour originating from the environment
to verify and analyse the system’s quantitative aspects. The second challenge is
how to evolve the system according to some given requirements at runtime. The
contributions of this thesis consist of several methods that are proposed to deal with
these challenges. These methods are aimed at systems designed using IEC 61499,
which is an emerging industrial automation standard.

Probabilistic Model Checking (PMC) techniques are proposed to verify and analyse
the quantitative aspects of IEC 61499 applications that are influenced by nondeter-
ministic environments. This approach involves both static and dynamic analyses,
which allows for capturing both the design time and runtime behaviours of the
system. At design time, we propose modelling techniques to generate a Labelled
Transition System (LTS) model from a given application. An LTS consists of states
and transitions labelled with events and data triggered by the application. At run-
time, we monitor the application to obtain execution traces. A trace is then used
to extend an LTS into a Probabilistic Transition System (PTS) model by computing
probabilistic values on the model’s transitions. The CADP model checker can be
used to check some probabilistic properties on the generated PTS. Experiments were
conducted on an IEC 61499 drilling station. The results show that this method
permits us to analyse the impact of the environment towards the quantitative aspects
of the system, such as productivity.

95

IEC 61499 comes with a downtimeless evolution feature, which can make an appli-
cation evolve without stopping the execution. Our contributions focus on finding the
target application according to some given requirements. For this, we propose two
different approaches. The first one implements the runtime enforcement concept
to IEC 61499 by integrating enforcers to make the application execution follow
the requirements. This approach begins with specifying requirements as contract
automaton, which describes the modifications of events and data using types of
transition. An automaton is then synthesised as an enforcer, which is then integrated
to modify the execution of the application according to the initial requirements. The
second approach uses the application’s behavioural models to generate evolution
guidelines. It starts with identifying the parts of the model that are relevant to the
requirements. These parts are then analysed and modified so that the sequences
of events and data in the model follow the desired requirements. The models are
then compared to generate evolution guidelines. These two approaches allow users
to specify some requirements and obtain either an application with enforcers for
modifying the runtime execution or guidelines that bridge the gap between the
requirements and the target application.

8.2 Future work

Probabilistic model checking. The main perspective for the IEC 61499 PMC ap-
proach is to consider other external aspects originating from the environment, such
as network communications between control devices in distributed applications.
The objective is to consider the possibility that an event sent through the network
may be lost during transmission. This possibility is not taken into account in the
current probabilistic model because we assume that events are always successfully
transmitted. Several methods could be applied to consider this network communi-
cation aspect. One of them is to extend the model with transitions that represent
event losses. The execution traces must also contain relevant information in order
to compute the probabilistic values on these transitions. For this, the monitoring FB
must be revised to recognise whether an event is lost during transmission.

A secondary perspective is to create a framework that can apply the PMC approach
at runtime. This could be done by improving the functionality of the monitoring FB.
More precisely, this FB is enhanced with functions to compute the probabilistic model
and to verify some given properties. This would allow users to analyse the impact of
the environment towards the system’s quantitative aspects during its execution.

96 Chapter 8 Conclusion

Runtime enforcement. The main perspective for runtime enforcement techniques
is to consider distributed applications. In such applications, FBs are mapped to
different control devices, and communication delays may occur whenever events
are sent through these devices’ networks. To mitigate these delays, we must decide
which control device is suitable for the enforcer whenever it needs to be integrated
into the application. A possible solution is to map the enforcer to a control device
where most of the corresponding FBs are located. Furthermore, in distributed
applications, the transmission of an event may fail when the network is congested.
This means that an enforcer that is supposed to send or receive such an event would
also fail to apply the necessary modifications as specified in the contract automaton.
Overall, further studies must be done to apply the runtime enforcement techniques
for distributed IEC 61499 applications.

Guided evolution. Possible future work for the guided evolution techniques is
to integrate the approach with existing tools and frameworks for evolving IEC
61499 applications without stopping their execution. This would allow seamless
evolutions of IEC 61499 applications, in which developers would only need to specify
requirements when evolving applications. The first step to achieve this goal is to
apply the modifications specified in the generated guidelines to the application. This
requires an algorithm that can modify the application according to the guidelines.
Afterwards, the modified application is used as input for a specific downtimeless
evolution framework so that the running application can be modified seamlessly to
satisfy the requirements.

8.2 Future work 97

Bibliography

[4DI24] 4DIAC. Deployment of IEC 61499 Applications. https://fordiac.sour-
ceforge.net/ehelp/html/overview/deployment.html. 2024 (cit.
on p. 62).

[AK15] Gustav Aagesen and John Krogstie. “BPMN 2.0 for Modeling Business Pro-
cesses”. In: Handbook on Business Process Management 1, Introduction, Meth-
ods, and Information Systems, 2nd Ed. Springer, 2015, pp. 219–250 (cit. on
p. 85).

[AS96] Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Com-
puter Programs, Second Edition. MIT Press, 1996 (cit. on p. 19).

[Ade+22] Sridhar Adepu, Nianyu Li, Eunsuk Kang, and David Garlan. “Modeling and
Analysis of Explanation for Secure Industrial Control Systems”. In: ACM Trans.
Auton. Adapt. Syst. 17.3-4 (2022), pp. 1–26 (cit. on p. 90).

[Alm+11] José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, and Simão
Melo de Sousa. “An Overview of Formal Methods Tools and Techniques”.
In: Rigorous Software Development: An Introduction to Program Verification.
London: Springer London, 2011, pp. 15–44 (cit. on p. 2).

[AMO23] Abdel-Latif Alshalalfah, Otmane Ait Mohamed, and Samir Ouchani. “A frame-
work for modeling and analyzing cyber-physical systems using statistical
model checking”. In: Internet of Things 22 (2023), p. 100732 (cit. on p. 86).

[ANS83] ANSI/IEEE. “IEEE Standard Glossary of Software Engineering Terminology”.
In: ANSI/IEEE Std 729-1983 (1983), pp. 1–40 (cit. on p. 3).

[Ant20] Tom Mejer Antonsen. PLC Controls with Structured Text (ST), V3 Monochrome:
IEC 61131-3 and best practice ST programming. Books on Demand, 2020
(cit. on pp. 11, 13).

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008 (cit. on pp. 3, 15).

[BH21] Paolo Ballarini and András Horváth. “Performance Analysis of Production
Lines Through Statistical Model Checking”. In: Proc. of EPEW’21, and ASMTA’21.
Vol. 13104. LNCS. Springer, 2021, pp. 264–281 (cit. on pp. 86, 87).

[BRS17] Zeeshan Ejaz Bhatti, Partha S. Roop, and Roopak Sinha. “Unified Functional
Safety Assessment of Industrial Automation Systems”. In: IEEE Trans. Ind.
Informatics 13.1 (2017), pp. 17–26 (cit. on pp. 3, 62).

99

[Bor+05] Elena M. Bortnik, Nikola Trcka, Anton Wijs, et al. “Analyzing a chi model
of a turntable system using SPIN, CADP and UPPAAL”. In: J. Log. Algebraic
Methods Program. 65.2 (2005), pp. 51–104 (cit. on p. 88).

[BWZ23] Friederike Bruns, Bianca Wiesmayr, and Alois Zoitl. “Supporting Model-Based
Network Specification for Time-Critical Distributed Control Systems in IEC
61499”. In: Proc. of CASE’23. IEEE, 2023, pp. 1–7 (cit. on p. 65).

[CR23] Radu Calinescu and Genaína Nunes Rodrigues. “Goal Controller Synthesis for
Self-Adaptive Systems”. In: Proc. of FormaliSE’23. IEEE, 2023, pp. 1–6 (cit. on
p. 90).

[Cha+24] David Champelovier, Xavier Clerc, Hubert Garavel, et al. “Reference Manual
of the LNT to LOTOS Translator (Version 7.3)”. 155 pages. 2024 (cit. on pp. 6,
15).

[CC19] Tim Chen and C.Y.J. Cheng. “Modelling and verification of an automatic
controller for a water treatment mixing tank”. In: Desalination and Water
Treatment 159 (2019), pp. 318–326 (cit. on p. 69).

[Cim+99] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.
“NUSMV: A New Symbolic Model Verifier”. In: Proc. of CAV’99. Vol. 1633.
LNCS. Springer, 1999, pp. 495–499 (cit. on pp. 84, 86).

[Cla+11] Edmund M. Clarke, William Klieber, Milos Novácek, and Paolo Zuliani. “Model
Checking and the State Explosion Problem”. In: Proc. of LASER’11. Vol. 7682.
LNCS. Springer, 2011, pp. 1–30 (cit. on p. 83).

[CM94] William F. Clocksin and Christopher S. Mellish. Programming in Prolog (4.
ed.) Springer, 1994 (cit. on p. 85).

[DA11] Ashley De Sa and Sarim Al Zubaidy. “Gas turbine performance at varying am-
bient temperature”. In: Applied Thermal Engineering 31.14 (2011), pp. 2735–
2739 (cit. on p. 3).

[Dmi24] Dmitrii Drozdov. IEC 61499 Function blocks XML code to SMV converter.
https://github.com/dmitrydrozdov/fb2smv. 2024 (cit. on pp. 84,
86).

[Dro+21] Dmitrii Drozdov, Victor Dubinin, Sandeep Patil, and Valeriy Vyatkin. “A Formal
Model of IEC 61499-Based Industrial Automation Architecture Supporting
Time-Aware Computations”. In: IEEE Open Journal of the Ind. Electronics
Society 2 (2021), pp. 169–183 (cit. on pp. 11, 84).

[Dro+16] Dmitrii Drozdov, Sandeep Patil, Victor Dubinin, and Valeriy Vyatkin. “Formal
verification of cyber-physical automation systems modelled with timed block
diagrams”. In: Proc. of ISIE’16. IEEE, 2016, pp. 316–321 (cit. on pp. 3, 62).

[DV08] Victor Dubinin and Valeriy Vyatkin. “On Definition of a Formal Model for IEC
61499 Function Blocks”. In: EURASIP J. Embed. Syst. 2008 (2008) (cit. on
pp. 12, 22).

100 Bibliography

[DVH06] Victor Dubinin, Valeriy Vyatkin, and Hans-Michael Hanisch. “Modelling and
Verification of IEC 61499 Applications using Prolog”. In: Proc. of ETFA’06.
IEEE, 2006, pp. 774–781 (cit. on p. 85).

[Fal10] Yliès Falcone. “You Should Better Enforce Than Verify”. In: Proc. of RV’10.
Vol. 6418. LNCS. Springer, 2010, pp. 89–105 (cit. on pp. 5, 17).

[Fal+18] Yliès Falcone, Leonardo Mariani, Antoine Rollet, and Saikat Saha. “Runtime
Failure Prevention and Reaction”. In: Lectures on Runtime Verification - Intro-
ductory and Advanced Topics. Vol. 10457. LNCS. Springer, 2018, pp. 103–134
(cit. on pp. 5, 17).

[FS21] Yliès Falcone and Gwen Salaün. “Runtime Enforcement with Reordering,
Healing, and Suppression”. In: Proc. of SEFM’21. Vol. 13085. LNCS. Springer,
2021, pp. 47–65 (cit. on pp. 57, 60).

[GBP20] Hubert Garavel, Maurice H. ter Beek, and Jaco van de Pol. “The 2020 Ex-
pert Survey on Formal Methods”. In: Proc. of FMICS’20. Vol. 12327. LNCS.
Springer, 2020, pp. 3–69 (cit. on pp. 2, 14).

[Gar+13] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. “CADP
2011: a toolbox for the construction and analysis of distributed processes”.
In: Int. J. Softw. Tools Technol. Transf. 15.2 (2013), pp. 89–107 (cit. on pp. 6,
15, 29, 36, 62, 85, 88).

[Gli07] Martin Glinz. “On Non-Functional Requirements”. In: Proc. of RE’07. IEEE
Computer Society, 2007, pp. 21–26 (cit. on p. 3).

[Gua10] Massimo Guarnieri. “The Roots of Automation Before Mechatronics [Histori-
cal]”. In: IEEE Industrial Electronics Magazine 4.2 (2010), pp. 42–43 (cit. on
p. 1).

[Gur93] Yuri Gurevich. “Evolving algebras 1993: Lipari guide”. In: Specification and
validation methods. Ed. by Egon Börger. Oxford University Press, 1993, pp. 9–
36 (cit. on p. 84).

[Hin+18] Daniel Hinterreiter, Herbert Prähofer, Lukas Linsbauer, et al. “Feature-Oriented
Evolution of Automation Software Systems in Industrial Software Ecosys-
tems”. In: Proc. of ETFA’18. IEEE, 2018, pp. 107–114 (cit. on p. 89).

[Hol97] Gerard J. Holzmann. “The Model Checker SPIN”. In: IEEE Trans. Software
Eng. 23.5 (1997), pp. 279–295 (cit. on pp. 84, 88).

[Hum+06] Oliver Hummer, Christoph Sünder, Alois Zoitl, et al. “Towards Zero-downtime
Evolution of Distributed Control Applications via Evolution Control based on
IEC 61499”. In: Proc. of ETFA’06. IEEE, 2006, pp. 1285–1292 (cit. on pp. 2,
88).

[IDE24] 4diac IDE. 4diac IDE Documentation. https://eclipse.dev/4diac/
en_help.php. 2024 (cit. on pp. 19, 64).

[IEC12] IEC. “International Electrotechnical Commission, Functional blocks - Part 1:
Architecture, 2nd edn, IEC 61499-1”. In: IEC Geneva (2012) (cit. on pp. 1, 2,
9).

Bibliography 101

[IEC02] IEC. “Programmable controllers-part 3: Programming languages”. In: IEC
61131-3 (Ed. 2.0) (2002) (cit. on pp. 1, 9, 91).

[ISO89] ISO. LOTOS — A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour. Tech. rep. 8807. ISO, 1989 (cit. on p. 15).

[Jhu+21] Pranay Jhunjhunwala, Jan Olaf Blech, Alois Zoitl, Udayanto Dwi Atmojo, and
Valeriy Vyatkin. “A Design Pattern for Monitoring Adapter Connections in IEC
61499”. In: Proc. of ICIT’21. IEEE, 2021, pp. 967–972 (cit. on p. 87).

[Kel76] Robert M. Keller. “Formal Verification of Parallel Programs”. In: Commun.
ACM 19.7 (1976), pp. 371–384 (cit. on pp. 6, 16, 21).

[KH11] Mohamed Khalgui and Hans-Michael Hanisch. “Automatic NCES-based speci-
fication and SESA-based verification of feasible control components in bench-
mark production systems”. In: Int. J. Model. Identif. Control. 12.3 (2011),
pp. 223–243 (cit. on p. 87).

[KS21] Ajay Krishna and Gwen Salaün. “Business Process Models for Analysis of
Industrial IoT Applications”. In: IoT ’21: 11th Int. Conf. on the IoT. ACM, 2021,
pp. 102–109 (cit. on p. 85).

[Kro+19] Lene Kromann, Nikolaj Malchow-Møller, Jan Rose Skaksen, and Anders
Sørensen. “Automation and productivity—a cross-country, cross-industry
comparison”. In: Industrial and Corporate Change 29.2 (July 2019), pp. 265–
287 (cit. on p. 1).

[KNP02] Marta Kwiatkowska, Gethin Norman, and David Parker. “PRISM: Probabilistic
Symbolic Model Checker”. In: Proc. of TOOLS’02. Vol. 2324. LNCS. Springer,
2002, pp. 200–204 (cit. on pp. 15, 90).

[KNP18] Marta Kwiatkowska, Gethin Norman, and David Parker. “Probabilistic Model
Checking: Advances and Applications”. In: Formal System Verification: State-of
the-Art and Future Trends. Springer, 2018, pp. 73–121 (cit. on pp. 4, 15).

[LMM23] Ruggero Lanotte, Massimo Merro, and Andrei Munteanu. “Industrial Control
Systems Security via Runtime Enforcement”. In: ACM Trans. Priv. Secur. 26.1
(2023), 4:1–4:41 (cit. on pp. 60, 91).

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. “UPPAAL in a Nutshell”.
In: Int. J. Softw. Tools Technol. Transf. 1.1-2 (1997), pp. 134–152 (cit. on
p. 88).

[LS91] Kim Guldstrand Larsen and Arne Skou. “Bisimulation through Probabilistic
Testing”. In: Inf. Comput. 94.1 (1991), pp. 1–28 (cit. on p. 35).

[LNW03] Edward A. Lee, Stephen Neuendorffer, and Michael J. Wirthlin. “Actor-
Oriented Design of Embedded Hardware and Software Systems”. In: J. Circuits
Syst. Comput. 12.3 (2003), pp. 231–260 (cit. on p. 85).

[Leg+19] Axel Legay, Anna Lukina, Louis-Marie Traonouez, et al. “Statistical Model
Checking”. In: Comput. and Softw. Science - State of the Art and Perspect.
Vol. 10000. LNCS. Springer, 2019, pp. 478–504 (cit. on p. 86).

102 Bibliography

[Ley92] F. Ley. “Programmable logic controllers - Architecture and applications : Gilles
Michel”. In: Autom. 28.3 (1992), pp. 652–653 (cit. on p. 2).

[Li+18] Qing Li, Qianlin Tang, Iotong Chan, et al. “Smart manufacturing standardiza-
tion: Architectures, reference models and standards framework”. In: Comput.
Ind. 101 (2018), pp. 91–106 (cit. on p. 1).

[Lia+22] Tatiana Liakh, Radimir Sorokin, Daniil Akifev, Sandeep Patil, and Valeriy
Vyatkin. “Formal model of IEC 61499 execution trace in FBME IDE”. In: Proc.
of INDIN’22. IEEE, 2022, pp. 588–593 (cit. on p. 84).

[LBW05] Jay Ligatti, Lujo Bauer, and David Walker. “Edit automata: enforcement
mechanisms for run-time security policies”. In: Int. J. Inf. Sec. 4.1-2 (2005),
pp. 2–16 (cit. on pp. 48, 91).

[Lin+15] Per Lindgren, Johan Eriksson, Marcus Lindner, et al. “Response time for IEC
61499 over Ethernet”. In: Proc. of INDIN’15. IEEE, 2015, pp. 1206–1212
(cit. on p. 65).

[MR18] Radu Mateescu and José Ignacio Requeno. “On-the-fly model checking for
extended action-based probabilistic operators”. In: Int. J. Softw. Tools Technol.
Transf. 20.5 (2018), pp. 563–587 (cit. on p. 16).

[MS03] Radu Mateescu and Mihaela Sighireanu. “Efficient on-the-fly model-checking
for regular alternation-free mu-calculus”. In: Sci. Comput. Program. 46.3
(2003), pp. 255–281 (cit. on p. 62).

[MR14] B.R. Mehta and Y.J. Reddy. Industrial Process Automation Systems: Design and
Implementation. Elsevier Science, 2014 (cit. on p. 2).

[MBB17] Orna Muller, Ayelet Butman, and Moshe Butman. “Opening a (Sliding) Win-
dow to Advanced Topics”. In: Proc. of ITiCSE’17. ACM, 2017, pp. 52–57 (cit.
on p. 38).

[Neu14] René Neumann. “Promela Formalization”. In: Arch. Formal Proofs 2014 (2014)
(cit. on p. 84).

[ORe17] Gerard O’Regan. Concise Guide to Formal Methods - Theory, Fundamentals and
Industry Applications. Undergraduate Topics in Computer Science. Springer,
2017 (cit. on pp. 2, 14).

[OV21] Polina Ovsiannikova and Valeriy Vyatkin. “Towards user-friendly model check-
ing of IEC 61499 systems with counterexample explanation”. In: Proc. of
ETFA’21. 2021, pp. 01–04 (cit. on pp. 3, 62, 86).

[PDV15a] Cheng Pang, Wenbin William Dai, and Valeriy Vyatkin. “Towards IEC 61499
models of computation in Ptolemy II”. In: Proc. of IECON’15. IEEE, 2015,
pp. 1988–1993 (cit. on p. 85).

[Pan+14] Cheng Pang, Sandeep Patil, Chen-Wei Yang, Valeriy Vyatkin, and Anatoly
Shalyto. “A portability study of IEC 61499: Semantics and tools”. In: Proc. of
INDIN’14. IEEE, 2014, pp. 440–445 (cit. on p. 2).

Bibliography 103

[Par+23] A. Parant, D. Zander, F. Gellot, and A. Philippot. “IEC 61499 Control Archi-
tectures Evaluation for Automation Software Development”. In: 56.2 (2023).
22nd IFAC World Congress, pp. 3660–3665 (cit. on p. 3).

[PDV15b] Sandeep Patil, Victor Dubinin, and Valeriy Vyatkin. “Formal Modelling and
Verification of IEC61499 Function Blocks with Abstract State Machines and
SMV - Execution Semantics”. In: Proc. of SETTA’15. Vol. 9409. LNCS. Springer,
2015, pp. 300–315 (cit. on p. 84).

[PDV15c] Sandeep Patil, Victor Dubinin, and Valeriy Vyatkin. “Formal Verification of
IEC61499 Function Blocks with Abstract State Machines and SMV - Mod-
elling”. In: Proc. of TrustCom/BigDataSE/ISPA’15. IEEE, 2015, pp. 313–320
(cit. on p. 84).

[PVS12] Sandeep Patil, Valeriy Vyatkin, and Majid Sorouri. “Formal verification of
Intelligent Mechatronic Systems with decentralized control logic”. In: Proc. of
ETFA’12. IEEE, 2012, pp. 1–7 (cit. on p. 87).

[PRG20] Eliseu Moura Pereira, João Pedro Correia dos Reis, and Gil Gonçalves. “DINA-
SORE: A Dynamic Intelligent Reconfiguration Tool for Cyber-Physical Produc-
tion Systems”. In: Proc. of SAM-IoT’20. Vol. 2739. CEUR. CEUR-WS.org, 2020,
pp. 63–71 (cit. on p. 63).

[Pin+17] Srinivas Pinisetty, Partha S. Roop, Steven Smyth, et al. “Runtime Enforcement
of Cyber-Physical Systems”. In: ACM Trans. Embed. Comput. Syst. 16.5s (2017),
178:1–178:25 (cit. on p. 90).

[Pnu77] Amir Pnueli. “The Temporal Logic of Programs”. In: Proc. of FOCS’77. IEEE
Computer Society, 1977, pp. 46–57 (cit. on pp. 17, 91).

[PHS22a] Laurin Prenzel, Simon Hofmann, and Sebastian Steinhorst. “Real-time Dy-
namic Reconfiguration for IEC 61499”. In: Proc. of ICPS’22. IEEE, 2022, pp. 1–
6 (cit. on pp. 4, 88).

[PHS22b] Laurin Prenzel, Simon Hofmann, and Sebastian Steinhorst. “Rollback Se-
quences for Dynamic Reconfiguration of IEC 61499”. In: Proc. of INDIN’22.
IEEE, 2022, pp. 81–86 (cit. on pp. 4, 88).

[PS21] Laurin Prenzel and Sebastian Steinhorst. “Automated Dependency Resolution
for Dynamic Reconfiguration of IEC 61499”. In: Proc. of ETFA’21. IEEE, 2021,
pp. 1–8 (cit. on pp. 4, 63, 88).

[Pto14] Claudius Ptolemaeus, ed. System Design, Modeling, and Simulation using
Ptolemy II. Ptolemy.org, 2014 (cit. on p. 85).

[RH95] M. Rausch and H.-M. Hanisch. “Net condition/event systems with multiple
condition outputs”. In: Proc. of ETFA’95. Vol. 1. 1995, 592–600 vol.1 (cit. on
p. 83).

[RM23] Kaushik Ray and Soumen Moulik. “i-DSME: An industrial-DSME MAC proto-
col for smart factory automation”. In: Internet Things 23 (2023), p. 100859
(cit. on p. 1).

104 Bibliography

[Rei85] Wolfgang Reisig. Petri Nets: An Introduction. Vol. 4. EATCS Monographs on
Theoretical Computer Science. Springer, 1985 (cit. on p. 83).

[RRF20] Matthieu Renard, Antoine Rollet, and Yliès Falcone. “Runtime enforcement
of timed properties using games”. In: Formal Aspects Comput. 32.2-3 (2020),
pp. 315–360 (cit. on p. 60).

[Ros10] William Rosen. The Most Powerful Idea in the World: A Story of Steam, Industry,
and Invention. Random House, 2010 (cit. on p. 1).

[SAM23] Ashkan Samadi, Marwan Ammar, and Otmane Ait Mohamed. “Statistical
Model Checking based Analysis of Fault Trees and Power Consumption to
Enhance Autonomous Systems Reliability”. In: Proc. of NEWCAS’23. IEEE,
2023, pp. 1–5 (cit. on p. 86).

[SZ11] Andreas Schimmel and Alois Zoitl. “Distributed online change for IEC 61499”.
In: Proc. of ETFA’11. IEEE, 2011, pp. 1–7 (cit. on p. 88).

[Sch00] Fred B. Schneider. “Enforceable Security Policies”. In: ACM Trans. Inf. Syst.
Secur. 3.1 (Feb. 2000), pp. 30–50 (cit. on pp. 48, 91).

[Sch17] Klaus Schwab. The Fourth Industrial Revolution. USA: Crown Publishing
Group, 2017 (cit. on p. 1).

[Sha+24] Alireza Shahrabi Farahani, Hamed Kohandel, Hamid Moradtabrizi, et al.
“Power generation gas turbine performance enhancement in hot ambient
temperature conditions through axial compressor design optimization”. In:
Applied Thermal Engineering 236 (2024), p. 121733 (cit. on p. 3).

[SV21] Viktor Shatrov and Valeriy Vyatkin. “Promela Formal Modelling and Verifica-
tion of IEC 61499 Systems with comparison to SMV”. In: Proc. of INDIN’21.
IEEE, 2021, pp. 1–6 (cit. on p. 84).

[SJC14] Roopak Sinha, Kenneth Johnson, and Radu Calinescu. “A scalable approach
for re-configuring evolving industrial control systems”. In: Proc. of ETFA’14.
IEEE, 2014, pp. 1–8 (cit. on p. 89).

[Sin+19] Roopak Sinha, Sandeep Patil, Luís Gomes, and Valeriy Vyatkin. “A Survey
of Static Formal Methods for Building Dependable Industrial Automation
Systems”. In: IEEE Trans. Ind. Informatics 15.7 (2019), pp. 3772–3783 (cit. on
pp. 2, 14).

[Sis+18] Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael
Gidlund. “Industrial Internet of Things: Challenges, Opportunities, and Direc-
tions”. In: IEEE Trans. Ind. Informatics 14.11 (2018), pp. 4724–4734 (cit. on
p. 1).

[Son+21] Lisa Sonnleithner, Bianca Wiesmayr, Virendra Ashiwal, and Alois Zoitl. “IEC
61499 Distributed Design Patterns”. In: Proc. of ETFA’21. IEEE, 2021, pp. 1–8
(cit. on pp. 4, 12, 89).

[Son+22] Lisa Sonnleithner, Bianca Wiesmayr, Virendra Ashiwal, et al. “Architectural
Concepts for IEC 61499-based Machine Controls: Beyond Normal Operation
Handling”. In: Proc. of ETFA’22. 2022, pp. 1–8 (cit. on pp. 4, 89).

Bibliography 105

[SG04] Marius Stanica and Hervé Guéguen. “Using timed automata for the verifica-
tion of iec 61499 applications”. In: 37.18 (2004). Proc. of IFAC’04, pp. 375–
380 (cit. on p. 88).

[Str+08] Thomas Strasser, Martijn Rooker, Gerhard Ebenhofer, et al. “Framework
for Distributed Industrial Automation and Control (4DIAC)”. In: Proc. of
INDIN’08. 2008, pp. 283–288 (cit. on pp. 10, 62, 64).

[SFV06] Christoph Sünder, Bernard Favre-Bulle, and Valeriy Vyatkin. “Towards an
Approach for the Verification of Downtimeless System Evolution”. In: Proc. of
ETFA’06. IEEE, 2006, pp. 1133–1136 (cit. on p. 88).

[SVZ13] Christoph Sünder, Valeriy Vyatkin, and Alois Zoitl. “Formal Verification of
Downtimeless System Evolution in Embedded Automation Controllers”. In:
ACM Trans. Embed. Comput. Syst. 12.1 (2013), 17:1–17:17 (cit. on pp. 2, 4,
88).

[Tra+20] Duc Do Tran, Jörg Walter, Kim Grüttner, and Frank Oppenheimer. “Towards
Time-Sensitive Behavioral Contract Monitors for IEC 61499 Function Blocks”.
In: Proc. of ICPS’20. IEEE, 2020, pp. 27–34 (cit. on p. 87).

[VH99] V. Vyatkin and H.-M. Hanisch. “A modeling approach for verification of
IEC1499 function blocks using net condition/event systems”. In: Proc. of
ETFA’99. Vol. 1. 1999, 261–270 vol.1 (cit. on pp. 83, 87).

[Vya11] Valeriy Vyatkin. “IEC 61499 as Enabler of Distributed and Intelligent Automa-
tion: State-of-the-Art Review”. In: IEEE Trans. Ind. Informatics 7.4 (2011),
pp. 768–781 (cit. on pp. 1, 2).

[WSZ20] Bianca Wiesmayr, Lisa Sonnleithner, and Alois Zoitl. “Structuring Distributed
Control Applications for Adaptability”. In: Proc. of ICPS’20. Vol. 1. 2020,
pp. 236–241 (cit. on pp. 4, 89).

[XPV21] Midhun Xavier, Sandeep Patil, and Valeriy Vyatkin. “Cyber-physical automa-
tion systems modelling with IEC 61499 for their formal verification”. In: Proc.
of INDIN’21. IEEE, 2021, pp. 1–6 (cit. on pp. 30, 86).

[YR10] Li Hsien Yoong and Partha S. Roop. “Verifying IEC 61499 Function Blocks
Using Esterel”. In: IEEE Embedded Systems Letters 2.1 (2010), pp. 1–4 (cit. on
p. 87).

[ZV12] Gulnara Zhabelova and Valeriy Vyatkin. “Multiagent Smart Grid Automation
Architecture Based on IEC 61850/61499 Intelligent Logical Nodes”. In: IEEE
Trans. Ind. Electron. 59.5 (2012), pp. 2351–2362 (cit. on p. 1).

[ZL14] Alois Zoitl and Robert Lewis. Modelling control systems using IEC 61499. 2nd
Edition. Institution of Engineering and Technology, 2014 (cit. on pp. 10, 46,
47, 64, 67).

[ZP13] Alois Zoitl and Herbert Prähofer. “Guidelines and Patterns for Building Hi-
erarchical Automation Solutions in the IEC 61499 Modeling Language”. In:
IEEE Trans. Ind. Informatics 9.4 (2013), pp. 2387–2396 (cit. on p. 47).

106 Bibliography

[ZSE13] Alois Zoitl, Thomas I. Strasser, and Gerhard Ebenhofer. “Developing modular
reusable IEC 61499 control applications with 4DIAC”. In: Proc. of INDIN’13.
IEEE, 2013, pp. 358–363 (cit. on p. 64).

[Zyu+21] Vladimir Zyubin, Igor S. Anureev, Natalya Olegovna Garanina, et al. “Event-
Driven Temporal Logic Pattern for Control Software Requirements Specifi-
cation”. In: Proc. of FSEN’21. Vol. 12818. LNCS. Springer, 2021, pp. 92–107
(cit. on p. 91).

Bibliography 107

