
Probabilistic Runtime Enforcement
of Executable BPMN Processes

Yliès Falcone, Gwen Salaün, and Ahang Zuo

Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, 38000 Grenoble France

Abstract. A business process is a collection of structured tasks corre-
sponding to a service or a product. Business processes do not execute
once and for all, but are executed multiple times resulting in multiple
instances. In this context, it is particularly difficult to ensure correctness
and efficiency of the multiple executions of a process. In this paper, we
propose to rely on Probabilistic Model Checking (PMC) to automati-
cally verify that multiple executions of a process respect some specific
probabilistic property. This approach applies at runtime, thus the evalua-
tion of the property is periodically verified and the corresponding results
updated. However, we go beyond runtime PMC for BPMN, since we pro-
pose runtime enforcement techniques to keep executing the process while
avoiding the violation of the property. To do so, our approach combines
monitoring techniques, computation of probabilistic models, PMC, and
runtime enforcement techniques. The approach has been implemented as
a toolchain and has been validated on several realistic BPMN processes.

1 Introduction

Business processes are structured tasks that model a specific service or prod-
uct. Such processes are present in any company or institution worldwide, and
there is a need for better controlling these processes to reduce costs and im-
prove throughput. Many companies model their services and processes, thereby
increasing their level of automation. One of the challenges in this context is to
ensure the quality, correctness, and efficiency of these processes. In this paper, we
assume that processes are described using Business Process Model and Notation
(BPMN) [20], the standard business process modelling language. BPMN pro-
cesses are not executed once but multiple times, resulting in multiple instances.

In this study, we focus on quantitative analysis of processes, which is partic-
ularly useful for computing probabilistic properties or other metrics related to
time, costs or resource usage. More precisely, we use probabilistic model checking
(PMC) to automatically verify that multiple executions of a process respect prob-
abilistic properties [15]. In the context of BPMN processes, probabilistic proper-
ties help verifying that some task usage does not go above a certain threshold or
for computing how many resources have to be associated with specific tasks to
execute the process smoothly. Evaluating a probabilistic property is strongly re-
lated to the number of process instances being executed. Therefore, PMC should

2 Yliès Falcone, Gwen Salaün, and Ahang Zuo

be applied at runtime to analyse the current execution of running instances. The
property is periodically verified, and the corresponding results are updated.

In this paper, we not only verify probabilistic properties on BPMN processes
using PMC at runtime, but also enforce the process executions to not violate
the property. To do so, we rely on runtime verification and enforcement tech-
niques. Runtime verification [3,10] is a technique to verify whether system’s ex-
ecutions satisfy a given correctness property at runtime. Runtime Enforcement
(RE) [12, 13] is complementary to runtime verification and provides techniques
that can intervene in the system at runtime to ensure that the behaviour of the
system respects the expected properties. In this paper, the system consists in
the multiple executions of a process and we want these executions to always
satisfy a given property. This is possible by catching the flow of executions of
these process instances and by changing it (when the property is violated) using
correcting actions (such as buffering or reordering specific tasks).

More precisely, we introduce probabilistic runtime enforcement, allowing
BPMN processes to satisfy a given probabilistic property at runtime. To achieve
this, we first convert the BPMN process into a formal model represented by
a Labelled Transition System (LTS). We then monitor the multiple executions
of the process and extract the corresponding traces (one trace per process in-
stance). Based on these execution traces, we can annotate the LTS model of
the process by adding execution probabilities to transitions of the LTS, thus ob-
taining a Probabilistic Transition System (PTS) model. It is worth noting that
recent actions are taken into account to compute this PTS but are not effectively
released and considered executed. Probabilistic model checking is then used to
verify whether the PTS model satisfies the given property. If the property is
satisfied, all recent actions are released. If the property is violated, the enforce-
ment mechanism is triggered and the aforementioned recent actions are retained,
removed or re-ordered to avoid the property violation. This approach was fully
implemented and its effectiveness was validated on several examples of processes
and properties.

The contributions of this work can be summarised as follows:

– A novel algorithm, which analyses (possibly incomplete) execution traces
and builds a Probabilistic Transition System.

– A probabilistic enforcement mechanism, which avoids probabilistic property
violation when executing multiple process instances.

– An entire toolchain supporting the whole approach and its validation on
realistic processes.

The organisation of this paper is as follows. Section 2 introduces the back-
ground notions required to this work. Section 3 presents the probabilistic en-
forcement approach for BPMN. Section 4 describes the toolchain automating
all the approach steps, illustrates the approach with a case study, and presents
experimental results. Section 5 surveys related work, and Section 6 concludes.

Probabilistic Runtime Enforcement of Executable BPMN Processes 3

2 Background

This section outlines the fundamental concepts, such as BPMN, Labelled Tran-
sition System (LTS), Probabilistic Transition System (PTS), execution traces,
and probabilistic properties.

2.1 Business Process Model and Notation

Business Process Model and Notation (BPMN) is a widely used workflow-based
notation for describing and modelling business processes [20]. The syntax of a
BPMN process is defined as a graph-based structure, where vertices or nodes
represent various elements such as events, tasks, and gateways, and edges or
flows connect these nodes. Figure 1 introduces the key elements of the BPMN
notation.

Task

Initial Event End Event

Split gateways: inclusive, exclusive, parallel Merge gateways: inclusive, exclusive, parallel

Task Flow

Fig. 1: Excerpt from the BPMN notation.

The diagram includes the initial event and the end event, which serve to
initialise and terminate processes, respectively. It is assumed that there is only
one initial event, which corresponds to the initiation of a process and at least one
end event, which corresponds to the completion of a process. Task represents an
atomic activity and typically has only one incoming flow and one outgoing flow,
denoting the sequence of activities within the process. Gateways are used to
describe the control flow of the process. There are two patterns for each gateway
type: the split pattern and the merge pattern. The split pattern consists of a
single incoming flow and multiple outgoing flows. The merge pattern consists of
multiple incoming flows and a single outgoing flow. Several types of gateways
are available, such as exclusive, parallel, and inclusive gateways. An exclusive
gateway corresponds to a choice among several flows. A parallel gateway executes
all possible flows at the same time. An inclusive gateway executes one or several
flows. The choice of flows to execute in exclusive and inclusive gateways depends
on the evaluation of data-based conditions.

This paper focuses on the multiple executions of a single process, known as
process instances. Each instance is characterised by an identifier and by the list

4 Yliès Falcone, Gwen Salaün, and Ahang Zuo

of tasks executed by this instance. It is assumed that each instance eventually
completes, thus resulting in a finite list of tasks.

2.2 LTS & PTS

Labelled and Probabilistic Transition Systems are used in this paper as semantic
models for BPMN. Moreover, they allow the automated analysis of the corre-
sponding BPMN processes.

Definition 1 (LTS). A Labelled Transition System (LTS) is a tuple 〈Q,Σ, qinit ,
∆〉, where: Q is a finite set of states, Σ is a finite set of labels/actions, qinit is
the initial state, ∆ ⊆ Q × Σ × Q is a transition relation, where (q, a, q′) ∈ ∆
represents a possible transition from state q to state q′ with label a, also written
q

a−→ q′.

Probabilities are useful for making explicit the likelihood of executing specific
tasks in a process. Therefore, we also use Probabilistic Transition Systems [23],
an extension of the LTS model that incorporates probabilities for transitions.

Definition 2 (PTS). A Probabilistic Transition System (PTS) is a tuple 〈S,A,
sinit, δ, P 〉 such that 〈S,A, sinit, δ〉 is a labelled transition system as per Defini-
tion 1 and P : δ → [0, 1] is the probability labelling function.

P (s
a→ s′) ∈ [0, 1] is the probability for the system to move from state

s to state s′, performing action a. For each state s, the sum of the probabil-
ities associated with its outgoing transitions is equal to 1, that is ∀s ∈ S :∑

s′∈S P (s, a, s′) = 1. When using LTS or PTS as a semantic model of a BPMN
process, the set of labels or alphabet refers to the set of tasks appearing in the
BPMN process.

2.3 Execution Traces

A process can be executed multiple times, resulting in multiple instances. Each
process instance being executed can be in one of the following three states: wait-
ing state, running/ongoing state, and completed state. Any (ongoing or com-
pleted) instance consists of a sequence of tasks within the process. Every time
an instance executes, it results in an execution trace of tasks.

Definition 3 (Execution Trace). An execution trace (σT) refers to a se-
quence of tasks that are executed in a specific order by a specific process instance.

It is worth noting that in the rest of this work, an execution trace can be
completed or not. In the latter case, this is due to the fact that the process
instance is still running and has not completed yet.

Several operations can be performed on execution traces. Assuming an exe-
cution trace σ of length n and an execution trace σ′ of length m, we define the
following primitive operations:

Probabilistic Runtime Enforcement of Executable BPMN Processes 5

– Size: Size(σ) = |σ|.
– Index: σ[i] is the ith element in σ, i < n
– Slice: σ[0...i] = σ[0].σ[1]. · · · .σ[i− 1], i ≤ n.
– Concatenation: Concat(σ, σ′) = σ[0...n].σ′[0...m].
– Reorder: Reorder(σ, σ′) = σ′[0...m].σ[0...n].

2.4 Probabilistic Properties

The Model Checking Language (MCL) [26] is a branching-time temporal logic
that is suitable for expressing properties of concurrent systems using actions. It
extends the alternation-free µ-calculus [9] with regular expressions, data-based
constructs, and fairness operators. A probabilistic property is a specification
or requirement that expresses a probabilistic behaviour of a system or model
being analysed. In this paper, probabilistic properties are used to describe the
requirements for the probability of execution of a task or a set of combined tasks
in a BPMN process. We use MCL to describe probabilistic properties using the
prob R is op [?] E end prob construct [24], where R is a regular formula that
describes transition sequences, op is a comparison operator such as “<”, “≤”, “>”,
“≥”, “=”, “<>”, and E is a real number that represents a probability. Given an
MCL probabilistic property and a PTS model, we use the CADP Probabilistic
Model Checker [24] in order to evaluate the property on the PTS model.

3 Probabilistic Runtime Enforcement

Our approach takes two inputs, a BPMN model and a probabilistic property,
and produces as output a list of safe-to-execute tasks, in the sense that they
do not violate the given property. This approach consists of three parts: the
monitoring part, the transformation part, and the probabilistic runtime enforce-
ment mechanism (Figure 2). First, monitoring is used to observe the multiple
executions of the given process, in particular to retrieve the tasks executed by
each process instance (resulting in execution traces). Second, the input BPMN
model is transformed into its corresponding semantic model, namely an LTS.
This step is performed only once. Finally, the probabilistic runtime enforcement
mechanism consists of two modules. The first module corresponds to Probabilis-
tic Model Checking (PMC), which determines whether a new version of the PTS
violates the given probabilistic property. The second module corresponds to the
enforcer, which is activated only when the probabilistic model checking returns
false. In such a case, the enforcer applies appropriate techniques to modify the
input trace (e.g., by retaining some tasks and not executing them immediately),
and thus avoid property violation.

3.1 Monitoring

Monitoring techniques are useful to observe and monitor the current status of
the BPMN process executions. More precisely, we monitor process executions

6 Yliès Falcone, Gwen Salaün, and Ahang Zuo

Fig. 2: Approach Overview.

from an instance perspective since the main goal is to extract all traces executed
by ongoing process instances on a given period.

Figure 3 illustrates the monitoring process of a BPMN process at runtime,
which involves observing every generated instance for that process. Multiple
instances can execute concurrently, and all information related to the execution
of one process instance is stored in a database. To retrieve execution traces
for all process instances, we rely on extraction techniques at varying levels of
granularity. As shown in the figure, each instance execution trace is composed
of a process ID, an instance ID, a set of tasks, a start time, and an end time.

Fig. 3: Runtime monitoring of multiple executions of a BPMN process.

Since we focus here on long-running process executions, it does not make
sense to retrieve all execution traces from the beginning. Therefore, the extrac-
tion is triggered for a specific time window. This operation is repeated peri-
odically, thus resulting in a sliding window algorithm. Algorithm 1 aims at ex-
tracting the execution traces for all instances that are either in progress or have
already finished during a specified time window. The algorithm takes as input

Probabilistic Runtime Enforcement of Executable BPMN Processes 7

the process ID, the checkpoint timestamp, and the window duration. It first ini-
tialises an empty list for the output traces. Then, it retrieves all execution traces
associated with the process ID using the getTraces() method, which extracts all
execution traces as illustrated in Figure 3. For each instance, it checks whether
its endTime property is None (instance still running), or less than or equal to
the start of the window. If so, it appends the execution trace to the output trace
list. Finally, the algorithm returns as output a set of traces executed on that
window. The time complexity of this algorithm is O(n), where n is the number
of instances in the process.

Algorithm 1 Get traces in the sliding window
Inputs: Process ID PID , Checkpoint Timestamp ts, window duration td
Output: Execution traces T
1: T := []
2: Tall := PID .getTraces()
3: for each Tr ∈ Tall do
4: if Tr .endTime is None or Tr .endTime ≤ ts− td then T .append(Tr)

return T

3.2 Transforming BPMN into LTS

LTS is a semantic model that shows all possible execution paths for a process.
To transform BPMN into LTS, we rely on an existing approach that first trans-
lates BPMN into the LNT process algebraic specification language, and then
transforms it into an LTS by using CADP compilers [17]. For more information
on the transformation process from BPMN to LTS, please refer to [22,27].

3.3 Transforming LTS into PTS

The transformation process from an LTS to a PTS consists of two steps. The
initial step aims at traversing all provided instances and identifying all the possi-
ble execution paths for each instance (Algorithm 2). In a second step, a counter
is added to each transition of the LTS, thus allowing us to track the number of
times each transition is executed. This facilitates the calculation of the proba-
bility value associated with executing each transition. Finally, the output model
is represented as a PTS (Algorithm 3).

An execution path is a sequence of transitions in the LTS that matches
with the execution trace of an instance. When an instance has been successfully
completed, there exists only one corresponding execution path. The LTS may
exhibit non-deterministic behaviour due to the presence of inclusive gateways in
the BPMNmodel. Therefore, when considering unfinished instances, we calculate
the execution probabilities of all relevant paths and normalize these probabilities.

Algorithm 2 takes as input an LTS and an execution trace of an instance
Ttasks (i.e. a list of tasks), and finds all feasible execution paths in the LTS that

8 Yliès Falcone, Gwen Salaün, and Ahang Zuo

satisfy the given execution trace. The algorithm uses a depth-first search (DFS)
approach to traverse the LTS, starting from the initial state. It compares the
tasks in the transitions of the LTS with the tasks in the ordered sequence of tasks
to determine feasible paths. The algorithm maintains a stack to keep track of the
current state and partial paths, and recursively explores all possible transitions
from the current state until it reaches a state that fully matches the ordered
sequence of tasks. Given that it is a non-deterministic model, it then backtracks
to explore other possible transitions and continues the exploration process until
all paths have been exhaustively explored. The time complexity of the algorithm
is O(|Q| × |∆|), where |Q| represents the number of states in the LTS and |∆|
represents the number of transitions in the LTS.

Algorithm 2 Get all execution paths of an instance in LTS (FindPaths)
Inputs: LTS = 〈Q,Σ, qinit ,∆〉, an execution trace Ttasks = [t1, t2, . . . , tn]
Output: A list of paths (resultPaths)
1: resultPaths := []

return DFS(LTS, Ttasks , qinit , [], resultPaths)

2: function DFS(LTS, tasks, qcurrent , currentPath, resultPaths)
3: if Size(tasks) == 0 then
4: return resultPaths.append(currentPath)
5: else
6: task := tasks[0]; restTasks := tasks[1:]
7: Qnext := {q′ ∈ Q | (qcurrent , task, q

′) ∈ ∆}
8: for all qnext ∈ Qnext do
9: nextPath := currentPath
10: nextPath.append((qcurrent , task, qnext))
11: DFS(LTS, restTasks, qnext , nextPath, resultPaths)

Algorithm 3 takes as input an LTS and a list of execution traces I, and
computes a PTS representing the probability distribution of transitions between
states of the LTS based on the occurrence of tasks in the set of execution traces.
The algorithm first initialises a counter for each transition in the LTS, which
records the number of times the transition is taken in the execution trace (line 1).
Then, for each execution trace in the list, the algorithm computes the set of pos-
sible execution paths in the LTS that correspond to the execution trace (line 5).
If there is only one path, the algorithm increments the counter for each transition
in the path by 1 (lines 6 to 7). If there are multiple paths, the algorithm incre-
ments the counter for each transition in each path by 1, but also keeps track
of the number of execution traces that have multiple paths to avoid double-
counting (lines 10 to 11). Finally, the algorithm computes the probability of
each transition by dividing its counter by the sum of counters for all transitions
with the same source state and event (line 12). The resulting probabilities are
normalised so that they sum to 1 (line 13). The algorithm returns the PTS,

Probabilistic Runtime Enforcement of Executable BPMN Processes 9

which consists of the set of states, tasks, and transitions of the LTS, along with
the computed probabilities for each transition. The time complexity of this al-
gorithm is O(|I| × |Q| × |∆|), where |I| is the number of execution traces, |Q|
represents the number of states in the LTS, and |∆| represents the number of
transitions in the LTS.

Algorithm 3 Computation of PTS (ComputePTS)
Inputs: LTS = 〈Q,Σ, qinit ,∆〉, a list of execution traces I = [I1, I2, . . . , In]
Output: PTS = 〈S,A, sinit , δ, P 〉
1: for each (q, a, q′) ∈ ∆ do cnt((q, a, q′)) := 0

2: Paths := [], counter := 0 . counter records the number of unfinished traces
3: for all Ii ∈ I do
4: Ttasks := Ii.getTasks()
5: Paths := FindPaths(LTS, Ttasks) . FindPaths (Algorithm 2)
6: if Size(Paths) == 1 then
7: for each (s, a, s′) ∈ Paths[0] do cnt((s, a, s′)) := cnt((q, a, q′)) + 1

8: else
9: counter := counter + 1
10: for each Path ∈ Paths do
11: for each (s, a, s′) ∈ Path do cnt((s, a, s′)) := cnt((q, a, q′)) + 1

12: P := {(s, a, s′) 7→ cnt((s, a, s′))/ . calculate probabilities
(
∑

q∈S,a′∈A,(s,a′,q)∈δ cnt((s, a
′, q))− counter) | (s, a, s′) ∈ δ}

13: P := Normalisation(P)
return 〈S,A, sinit , δ, P 〉

3.4 Critical Tasks

In this subsection, we describe how to define and compute critical actions/tasks
given an LTS model of a BPMN process and a probabilistic property. Critical
tasks refer to specific tasks that play a crucial role in determining whether a
system’s behaviour violates or satisfies a given property. This notion is at the
heart of the enforcement techniques presented in the next subsection.

The notion of critical task used here is inspired by the notion of last action
of the property introduced in [16]. This paper states that the violation of a
property by a given model is somehow triggered when the last action of the
property is executed by the model. In other words, if the last action is not
executed, the model does not violate the property. Depending on the actions
used in the probabilistic property (including the last action), we can identify
one or more execution paths in the LTS, including the actions of the property,
where each path consists of an ordered list of transitions. We then traverse this
set of paths and for each path we search for the last state (the closest to the end
of the path) corresponding to a choice between several transitions. This state

10 Yliès Falcone, Gwen Salaün, and Ahang Zuo

s is particularly important because it is the last opportunity to avoid reaching
the last action (of the property) and thus violating the property. The actions or
tasks for all transitions outgoing from state s are candidates to critical tasks. At
this point, the operator of the property needs to be considered. If the operator is
less than ("<" or "≤"), there is one critical task, corresponding to the transition
outgoing from s and leading to the last action. If the operator is greater than
(">" or "≥"), the critical tasks correspond to all transitions outgoing from s
and leading to actions other than the last one. If the operator is "=" or "<>",
the critical tasks correspond to all tasks appearing on transitions outgoing from
s.

Algorithm 4 Computation of critical tasks in LTS (ComputeCriticalTasks)
Inputs: LTS = 〈Q,Σ, qinit ,∆〉, Probabilistic property (pp)
Output: A set of Critical Tasks (CTasks)
1: CTasks := {}, Ttasks := pp.getTasks()
2: Paths := FindPaths(LTS, Ttasks) . FindPaths (Algorithm 2)
3: for each path ∈ paths do
4: reversedPath := Reverse(path)
5: for each transition (s, task , s ′) in reversedPath do
6: ∆s ⊆ {(s, a, q) ∈ ∆ | q ∈ Q}
7: if Size(∆s) > 1 then
8: if pp.operator() is ” > ” or ” ≥ ” then
9: CTasks := CTasks ∪ {a ∈ Σ \ task | ∃q ∈ Q, (s, a, q) ∈ ∆s}
10: else if pp.operator() is ” < ” or ” ≤ ” then
11: CTasks := CTasks ∪ {task}
12: else
13: CTasks := CTasks ∪ {a ∈ Σ | ∃q ∈ Q, (s, a, q) ∈ ∆s}
14: break

return CTasks

Algorithm 4 presents a method for computing the critical tasks (CTasks)
given an LTS and a probabilistic property (pp). The algorithm starts by initial-
ising CTasks as an empty set and extracts the set of all tasks Ttasks included
in the probabilistic property. Next, it calls FindPaths (Algorithm 2) to find all
paths in the LTS that include the tasks in Ttasks (line 2). For each path found,
the algorithm reverses it and iterates over the transitions in reverse order. For
each transition t represented as (s, task, s′), the algorithm selects the set of out-
going transitions from state s in the LTS, denoted by ∆s (line 6). If the size of
∆s is greater than 1, the algorithm checks the operator specified in pp (lines 7
to 13). If the operator is either > or ≥, the algorithm adds to CTasks the set
of all actions a in Σ that have outgoing transitions from state s and do not
correspond to the task in task (lines 8 to 9). If the operator is < or ≤, the algo-
rithm adds the task task to CTasks (lines 10 to 11). Otherwise, the algorithm
adds to CTasks the set of all actions a in Σ that have outgoing transitions from
state s (line 13). Finally, the algorithm breaks out from the loop for the current

Probabilistic Runtime Enforcement of Executable BPMN Processes 11

path. The algorithm returns the set of critical tasks CTasks as output. The time
complexity of this algorithm is O(f(n)×|∆|), where f(n) is the time complexity
of the FindPaths algorithm and |∆| is the number of transitions in the LTS.

3.5 Probabilistic Runtime Enforcement (PRE)

The enforcement mechanism (EM) requires as input a probabilistic property ϕ
and an LTS (Fig. 4). It is triggered right after the monitoring component. At
runtime, it periodically receives a list of execution traces and a list of waiting
tasks (waiting to be executed) from the monitoring component, and produces
as output a list of tasks (to be executed) whose execution does not cause the
violation of the probabilistic property, as verified using PMC techniques.

Fig. 4: Overview of PRE.

The enforcement techniques used in this paper rely on two operations: re-
ordering and buffering. Reordering techniques correspond to a change in the
order of application of some of the tasks received as input. Buffering techniques
rely on a FIFO buffer B, which stores critical tasks when necessary. Buffering
techniques aim at delaying the execution of specific tasks by adding them tem-
porarily to the buffer B and taking them out of the buffer when their execution
does not induce the violation of the property.

Algorithm 5 presents the enforcement mechanism in detail. The algorithm
takes as input a list of (waiting) tasks, a probabilistic property ϕ, and an LTS.
It returns a list of tasks to be executed (in the best case, the same sequence of
tasks given as input) that satisfies ϕ. The idea is to update the PTS by merging
the execution traces and the tasks to be executed (waiting tasks and tasks in
the buffer), and to use PMC techniques to determine whether these new tasks
would still preserve the satisfaction of the property. If the executions of these
tasks would violate the property, buffering or reordering techniques are triggered.

The algorithm is initialised when the EM is called for the first time. Initiali-
sation consists of (i) computing the critical tasks using the ComputeCritical-
Tasks algorithm (Algorithm 4) and storing them in the global variable ct, and
(ii) initialising the buffer B to empty. The ComputeCriticalTasks algorithm
computes the tasks of the process that can avoid the property violation and thus
will be stored in the buffer B by the enforcer when necessary. When the enforce-
ment mechanism is used for the first time, the list of tasks to be processed only
consists of the waiting tasks. Later on, each time enforcement is used, the list

12 Yliès Falcone, Gwen Salaün, and Ahang Zuo

Algorithm 5 Enforcement Mechanism
Inputs: a list of execution traces T , a list of waiting tasks σT , a probabilistic property

ϕ, an LTS.
Output: a list of tasks to be executed σ′

T
1: if EM is not initialised then . ct and B are Global variables.
2: ct := ComputeCriticalTasks(LTS, ϕ) . Algorithm 4
3: B := [], σ := σT . Initialise Buffer B
4: else
5: σbuffer := 〈task | task ∈ B.getTasks()〉 . All tasks in Buffer
6: σ := Concat(σbuffer , σT) . Concatenation

return σ′
T := EM(LTS, T , σ, ϕ, ct)

7: function EM(LTS, T , σ, ϕ, ct)
8: if Check(LTS, T , σ, ϕ) then
9: σs := 〈task | task ∈ σ ∧ task ∈ B.getTasks()〉
10: RemovefromBuffer(σs) . Buffering: (Remove)
11: return σ
12: else
13: σ1 := 〈task | task ∈ σ ∧ task ∈ ct〉, σ2 := 〈task | task ∈ σ ∧ task /∈ σ1〉
14: σr := Reorder(σ1, σ2) . Reordering
15: if Check(LTS, T , σr, ϕ) then
16: σs := 〈task | task ∈ σr ∧ task ∈ B.getTasks()〉
17: RemovefromBuffer(σs) . Buffering: (Remove)
18: return σr
19: else
20: σ′, σ′′ := Bisection(σ1) . Binary-Search
21: σa := 〈task | task ∈ σ′′ ∧ task /∈ B.getTasks()〉
22: AddtoBuffer(σa) . Buffering: (Add)
23: σb := Concat(σ2, σ

′) . Concatenation
24: EM(LTS, T , σb, ϕ, ct)

25: function Check(LTS, T , σ, ϕ) . Probabilistic model checking
26: return UpdatePTS(LTS, T , σ) |= ϕ ? true : false

27: function UpdatePTS(LTS, T , σ) . Transforming LTS into PTS
28: I := []
29: for each task ∈ σ, in order do I := task .getInstance() . I: Execution trace
30: I.append(task), I.append(I)
31: for each τ ∈ T do I := τ.getInstance()
32: if I /∈ I then I.append(I)
33: return ComputePTS(LTS, I) . ComputePTS (Algorithm 3)

34: function Bisection(σ) . Binary-Search
35: n := Size(σ); m := bn/2c
36: return σ[0...m], σ[m...n]

Probabilistic Runtime Enforcement of Executable BPMN Processes 13

of tasks to be processed is obtained by concatenating all the tasks in the buffer
with the tasks in the waiting list (line 6). Function EM then starts processing
this list of tasks. The Check function first verifies whether the given execution
traces and the given list of tasks satisfy the property by using PMC. If this func-
tion returns true, all the tasks are removed from the buffer and the algorithm
returns the tasks in the buffer and the waiting tasks (lines 8 to 11). Otherwise,
the enforcement techniques are triggered. First, reordering techniques are ap-
plied as follows. The list of tasks is reordered by favouring (and thus executing
first) the non-critical tasks, which are placed at the beginning of the list. Then,
the PTS is built again, and PMC called to check whether ordering differently
the tasks to be executed avoid the property violation (line 15). If the result is
true, the buffer is emptied, and the list of tasks is returned. If the result is false,
reordering techniques are not enough, and in such a case, the mechanism then
executes some of the tasks only partially. To identify the subset of tasks that
can be executed without violating the property, we use the Bisection func-
tion (lines 34 to 36). This function helps to avoid an exhaustive exploration of
all possible combinations of tasks (and calling PMC for each solution), which
would be too costly and time-consuming. This function divides the list of critical
tasks into two parts. The algorithm then puts the second part into the buffer
and recursively calls the EM function for this new list of tasks, which is the
list of non-critical tasks (computed on line 13) concatenated with the first part
returned by the Bisection function (lines 20 to 24). The algorithm ends when
the verdict of PMC is true and returns a list of safe-to-execute tasks.

The time complexity of this algorithm is O(log |σT |× f(|σT |)), where |σT | is
the size of the given list of tasks, and f(|σT |) represents the time complexity of
using PMC.

3.6 Characteristics

This paper proposes enforcement mechanism that is online, untimed, and opera-
tional, meaning it utilises real-time system traces, disregards physical time inter-
vals, and offers a practical implementation guide. This mechanism has three main
characteristics: soundness, monotonicity, and transparency. PRE refers to the
probabilistic enforcement mechanism, PRE.buff is the buffer B, ¬E(PRE.buff)
means that the buffer was not triggered, PRE.out refers to the output of the
mechanism, and Check refers to the probabilistic model checking function.

Proposition 1 states that the tasks in each trace generated by the mechanism
do not violate the properties of the system by their execution.

Proposition 1 (Soundness)
∀σ : PRE(LTS, T , σ, ϕ).out = σ′

T =⇒ Check(LTS, T , σ′
T , ϕ) == true

Proof (Sketch). If the PMC’s verdict is false, the execution monitor does not
produce any tasks as output to maintain soundness.

Proposition 2 states that the enforcer’s output sequence consistently grows
with respect to the number of non-critical tasks in the input sequence.

14 Yliès Falcone, Gwen Salaün, and Ahang Zuo

Proposition 2 (Monotonicity)
∀t ∈ σ, t′ ∈ σ′, t, t′ /∈ ct : size(σ) ≤ size(σ′) =⇒ size(PRE(LTS, T , σ, ϕ).out) ≤
size(PRE(LTS, T , σ′, ϕ).out)

Proof (Sketch). The buffer exclusively stores critical tasks. Therefore, as the
number of non-critical tasks in the input increases, the length of the output of
the mechanism also increases.

The execution monitor is transparent, which means that it only intervenes if
the input tasks to be executed violate the property.

Proposition 3 (Transparency)
PRE(LTS, T , σ, ϕ).out = σ′

T ,¬E(PRE.buff) =⇒ PRE(LTS, T , σ′
T , ϕ).out = σ

Proof (Sketch). Since there is no suppression operation in the enforcement mech-
anism, all tasks in the input σ are the same as in the output σ′

T when the buffer
is not triggered.

4 Tool Support & Evaluation

This section first presents the toolchain that automates the different steps of
our approach. We then provide a practical illustration of the approach and tools
using a case study. Finally, additional experiments are presented to evaluate the
tools’ performance on a series of realistic examples.

4.1 Tool

Figure 5 gives an overview of the toolchain. As far as the inputs are concerned, we
rely on the open-source tool Activiti [2] to specify and execute BPMN processes.
Probabilistic properties are described using MCL. The monitoring techniques
are implemented in Java and aim at extracting the required information about
execution traces from a MySQL database. The transformation from BPMN pro-
cesses to LTS models is performed using an open-source tool called VBPMN [21].
The annotation of the LTS model with probabilities, thus resulting in a PTS
model, is implemented in Java. PMC is computed using the CADP probabilistic
model checker, which takes as input an MCL probabilistic property and a PTS,
and returns a Boolean value. Finally, the enforcer is also implemented in Java
and applies the correction when necessary on the input flow of tasks using the
techniques (reordering and buffering) presented in Section 3.

4.2 Case Study

The approach is illustrated using the shipment process of a hardware retailer [25].
Figure 6 shows the BPMN process of this example, whose final goal is to de-
liver goods. More precisely, this process starts when there are goods ready for
shipment. Two tasks are then executed concurrently: one involves packaging the

Probabilistic Runtime Enforcement of Executable BPMN Processes 15

Enforcer

BPMN Model

Instances

Database

Probabilistic property/properties
(Model Checking Language 5)

BPMN2LTS

LTS2PTS

Probabilistic
Model Checker

Execution Traces
+

List of waiting
tasks

Generate Transform

Log

Extract

Input(2): data

Input(1): LTS

PP

PTS Verdict

Output

Input

Monitoring

Transformation

Enforcement Mechanism

OutputList of safe-to-execute tasks

Fig. 5: Toolchain overview.

goods (T7) while the other determines whether a normal or special shipment
is required (T1). Based on that decision, the first option verifies the need for
additional insurance (T2), followed by the opportunity to purchase additional
insurance (T4) and/or complete a post-label (T5). Another option is to request
quotes from carriers (T3), followed by assigning a carrier and preparing the pa-
perwork (T6). Finally, the package is transferred to a designated pick-up area
(T8).

Decide: normal
post or

special carrier

Check extra
insurance

Move package to
pick area

Assign a carrier Request quotes
from carriers

Fill in a post label

Take out extra
insurance

Package goods

Goods to ship

Goods available
for pick

E1 PG1
T1 Normal post

T8

T6

T5

T4

T2

T3

T7

Special carrier

EG1

IG1 IG2

EG2

PG2

E2

Always

Extra insurance
required

Fig. 6: BPMN shipment process of a hardware retailer.

16 Yliès Falcone, Gwen Salaün, and Ahang Zuo

For illustration purposes, we choose a property checking that the probability
of executing task T4 after task T2 is less than 0.5. This is important because
the choice of taking extra insurance (T4) comes with a cost, and if this decision
is taken too often (more than half of the time here), this could result in high
expenses on a short period of time. This property is expressed in MCL as follows:
prob true*. T2. true*. T4 is < 0.5 end prob. As the question mark symbol is used,
the model checker returns a Boolean value indicating the property’s truthfulness
and a numerical value representing the probability of executing T4 after T2.

Fig. 7: Experiments on the case study without enforcement.

We have conducted two series of experiments with this running example,
one without the enforcement mechanism (results are shown in Figure 7) and
the other with enforcement (Figure 8). The same randomized workload of 2000
instances was used for each experiment. These experiments show that, without
enforcement techniques, there is a 7% risk of violating the property, resulting in a
satisfaction rate of 93%. In other words, the property is violated 7% of the time,
which corresponds to the situations where the curve goes above the probability
threshold represented as an horizontal line in Figure 7. On the other hand,
Figure 8 shows that with enforcement, the instance executions keep satisfying
the given probabilistic property, resulting in a 100% satisfaction rate and no
violation of the property. In practice, this allows one to delay payment of extra
insurance over time and thus avoids peaks of extra expenses.

Fig. 8: Experiments on the case study with enforcement.

Probabilistic Runtime Enforcement of Executable BPMN Processes 17

4.3 Experiments

The goal of this section is to evaluate the correctness and performance of the
enforcement approach. The correctness is calculated as the percentage of prob-
abilistic properties violated during the running process, while the performance
is measured by the average execution time (AET) of an instance. AET is com-
puted by summing the execution time of each instance and by dividing this value
by the number of instances. To conduct these experiments, we relied on a set
of BPMN processes taken from the literature. Each process was executed 1000
times, resulting in 1000 instances. The time taken between the startup of two
new process instances was computed using an exponential distribution with a
lambda value of 5 (λ = 5). These experiments were performed on an Ubuntu OS
laptop with a 1.7 GHz Intel Core i5 processor and 8 GB of RAM.

The results of these experiments are presented in Table 1. Each row gives
the results for a given process by providing a description, its size in terms of
number of tasks and gateways, the size of the corresponding LTS in terms of
number of states and transitions, the correctness results without (a) and with
(b) enforcement, and the AET without/with enforcement. The correctness value
corresponds to the satisfaction rate as a percentage (%). The second is described
as the unit of time for AET.

Table 1: Experimental results for some case studies.

No.
BPMN

Process

Characteristics PTS
Correctness AET (s)

Tasks Gateways States Transitions

1 Shipment [25] 8 2 + 2 + 2 18 38
(a) 93% 0.65

(b) 100% 1.38

2 Shipment [25] 8 2 + 2 + 2 18 38
(a) 47% 0.68

(b) 100% 2.23

3 Shopping [22] 22 8 + 2 + 2 59 127
(a) 93% 0.94

(b) 100% 1.98

4 Shopping [22] 22 8 + 2 + 2 59 127
(a) 54% 0.97

(b) 100% 3.76

5 AccoutOpening [22] 15 3 + 2 + 2 20 33
(a) 89% 0.56

(b) 100% 1.58

6 Online-Shop [22] 19 7 + 2 36 74
(a) 96% 1.98

(b) 100% 4.52

7 Multi-Inclusives [22] 8 6 141 1201
(a) 85% 3.42

(b) 100% 11.44

8 Booking [22] 11 2 + 4 53 252
(a) 88% 2.42

(b) 100% 6.17

18 Yliès Falcone, Gwen Salaün, and Ahang Zuo

Table 1 first shows that without enforcement techniques, the resulting cor-
rectness results present a satisfaction rate below 100%, whereas this rate is sys-
tematically of 100% when enforcement is used. As for AET, the execution time
is longer when using enforcement techniques. The time increases when the per-
centage of satisfaction of the property decreases. For instance, examples 1 and 2
use the same process but different properties. The percentage of property viola-
tions of example 1 is lower than example 2; therefore, the latter takes more time
when using enforcement because it takes more time for the process instances to
complete. Similar results can be observed for examples 3 and 4. Although the
enforcement mechanism increases the execution time of the process, it system-
atically ensures that the process executes while preserving the given property.

5 Related Work

In this section, we first compare with existing works on probabilistic verification
of business processes, and then we focus on enforcement techniques.

The approaches proposed in [5,6] deal with Bayesian networks to infer the re-
lationship between different events. As an example, the authors in [6] introduce a
BPMN normal form based on Activity Theory that can be used for representing
the dynamics of a collective human activity from the perspective of a subject.
This workflow is then transformed into a Causal Bayesian Network that can be
used for modelling human behaviours and assessing human decisions. In [18,19],
the authors present a framework for modelling and analysing business workflows.
These workflows are described with a subset of BPMN extended with probabilis-
tic nondeterministic branching and general-purpose reward annotations. An al-
gorithm translates such models into Markov Decision Processes (MDP) written
in the syntax of the PRISM model checker. This enables quantitative analysis
of business processes for properties such as transient/steady-state probabilities,
reward-based properties, and best- and worst-case scenarios. These properties
are verified using the PRISM model checker. This work supports design time
analysis but does not focus on the dynamic execution and runtime verification
of processes. The approach in [8] extends BPMN with time and probabilities.
Specifically, the authors expect that a probability value is provided for each flow
involved in an inclusive or exclusive split gateway. These BPMN processes are
then transformed to rewriting logic and analysed using the Maude statistical
model checker PVeStA. The authors in [15] propose to compute probabilities
from execution traces of executable BPMN and apply probabilistic model check-
ing techniques at runtime to analyse a given property. In this work, we also rely
on PMC, but we go beyond the analysis of BPMN processes, because when the
property is not satisfied, we apply techniques for enforcing the satisfaction of
the property.

As far as runtime enforcement is concerned, existing techniques usually rely
on common techniques including buffering, reordering, healing and discarding
actions or events [1, 4, 12, 14]. Buffering rely on storing events that violate cer-
tain property in a buffer, which helps delaying their execution. Reordering was

Probabilistic Runtime Enforcement of Executable BPMN Processes 19

used in several works for favouring or delaying the execution of some actions.
Healing is a technique that enforces properties by repairing or inserting new
events to ensure compliance. Suppression of events ensures property enforce-
ment by discarding specific events. In the context of BPMN processes, removing
specific tasks or artificially adding other tasks is meaningless due to the overall
goal of the running processes, explaining why we made use of reordering and
buffering techniques only. The authors of [11, 13] focus on developing runtime
enforcement techniques for timed properties, without targetting any specific ap-
plication area. In [7], the authors study runtime monitoring and enforcement of
first-order LTL properties over data evolution using an automata-based tech-
nique. Their approach is based on the construction of a first-order automaton
that is able to perform the monitoring incrementally and by using exponential
space in the size of the property. This theoretical work does not focus on BPMN
probabilistic processes, nor on probabilistic properties.

6 Conclusion

In this paper, we have proposed a probabilistic execution enforcement mechanism
for BPMN processes at runtime. The BPMN process is first transformed into an
LTS model. This model is periodically annotated with the execution probability
of each transition in the LTS, resulting in a PTS model. This step is achieved
by supervising the multiple executions of the BPMN process and extracting the
corresponding execution traces. When new instances are triggered, new tasks
are waiting to be executed. We check whether the execution of these tasks will
not violate the given probabilistic property. If it is the case, the enforcement
techniques are activated by either buffering or reordering tasks in order to avoid
the violation of the property. All the steps of the approach are automated by a
toolchain consisting of tools we implemented or reused. Experiments show the
correctness of the approach, which preserves the truthfulness of the property, and
a slight overhead in terms of performance, which comes from the time needed to
apply enforcement techniques.

The two main perspectives of this work are as follows. The first one is to
extend the PRE mechanism in order to minimise the frequency of verifications
by considering the PMC results. The second future work focuses on applying
PMC results to dynamically adjust the resource allocation necessary for efficient
process execution.

Acknowledgements. This work was supported by the Région Auvergne-Rhône-
Alpes within the “Pack Ambition Recherche” programme.

References

1. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On Runtime Enforcement
via Suppressions. In: 29th International Conference on Concurrency Theory (CON-
CUR 2018). pp. 34:1–34:17. https://doi.org/10.4230/LIPIcs.CONCUR.2018.34

https://doi.org/10.4230/LIPIcs.CONCUR.2018.34
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34

20 Yliès Falcone, Gwen Salaün, and Ahang Zuo

2. Activiti: Open source business automation (accessed December 2021), https://
www.activiti.org/

3. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. Lectures on Runtime Verification: Introductory and Advanced Topics
pp. 1–33 (2018). https://doi.org/10.1007/978-3-319-75632-5_1

4. Basin, D., Klaedtke, F., Zălinescu, E.: Runtime Verification over Out-of-Order
Streams. ACM Trans. Comput. Logic 21(1) (oct 2019). https://doi.org/10.
1145/3355609

5. Ceballos, H.G., Cantu, F.J.: Discovering causal relations in semantically-annotated
probabilistic business process diagrams. In: Global Conference on Artificial Intel-
ligence, GCAI. pp. 29–40 (2018). https://doi.org/10.29007/nd7r

6. Ceballos, H.G., Flores-Solorio, V., Garcia, J.P.: A probabilistic BPMN normal
form to model and advise human activities. In: International Workshop on Engi-
neering Multi-Agent Systems. pp. 51–69. Springer (2015). https://doi.org/10.
1007/978-3-319-26184-3_4

7. De Masellis, R., Su, J.: Runtime enforcement of first-order LTL properties on
data-aware business processes. In: Service-Oriented Computing: 11th International
Conference, ICSOC 2013, Berlin, Germany, December 2-5, 2013, Proceedings 11.
pp. 54–68. Springer (2013). https://doi.org/10.1007/978-3-642-45005-1_5

8. Durán, F., Rocha, C., Salaün, G.: Stochastic analysis of BPMN with time in
rewriting logic. Science of Computer Programming 168, 1–17 (2018). https:
//doi.org/10.1016/j.scico.2018.08.007

9. Emerson, E., Jutla, C.S., Sistla, A.: On model checking for the mu-calculus and its
fragments. Theoretical Computer Science 258(1), 491–522 (2001). https://doi.
org/10.1016/S0304-3975(00)00034-7

10. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. Engineer-
ing dependable software systems pp. 141–175 (2013). https://doi.org/10.3233/
978-1-61499-207-3-141

11. Falcone, Y., Jéron, T., Marchand, H., Pinisetty, S.: Runtime enforcement of regular
timed properties by suppressing and delaying events. Sci. Comput. Program. 123,
2–41 (2016). https://doi.org/10.1016/j.scico.2016.02.008

12. Falcone, Y., Mounier, L., Fernandez, J.C., Richier, J.L.: Runtime enforcement mon-
itors: composition, synthesis, and enforcement abilities. Formal Methods in System
Design 38, 223–262 (2011). https://doi.org/10.1007/s10703-011-0114-4

13. Falcone, Y., Pinisetty, S.: On the Runtime Enforcement of Timed Properties. In:
Proceedings of the Runtime Verification 2019 conference, pp. 48–69. Springer (Oct
2019). https://doi.org/10.1007/978-3-030-32079-9_4

14. Falcone, Y., Salaün, G.: Runtime Enforcement with Reordering, Healing, and Sup-
pression. In: SEFM 2021 - 19th IEEE International Conference on Software En-
gineering and Formal Methods. pp. 1–20. IEEE, Virtual, United Kingdom (Dec
2021). https://doi.org/10.1007/978-3-030-92124-8_3

15. Falcone, Y., Salaün, G., Zuo, A.: Probabilistic Model Checking of BPMN Pro-
cesses at Runtime. In: iFM 2022 - International Conference on integrated Formal
Methods. pp. 1–17. Lugano, Switzerland (Jun 2022). https://doi.org/10.1007/
978-3-031-07727-2_11

16. Faqrizal, I., Salaün, G.: Counting Bugs in Behavioural Models using Counterex-
ample Analysis. In: FormaliSE 2022 - International Conference on Formal Meth-
ods in Software Engineering. pp. 1–11. Pittsburgh, United States (May 2022).
https://doi.org/10.1145/3524482.3527647

https://www.activiti.org/
https://www.activiti.org/
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1145/3355609
https://doi.org/10.1145/3355609
https://doi.org/10.1145/3355609
https://doi.org/10.1145/3355609
https://doi.org/10.29007/nd7r
https://doi.org/10.29007/nd7r
https://doi.org/10.1007/978-3-319-26184-3_4
https://doi.org/10.1007/978-3-319-26184-3_4
https://doi.org/10.1007/978-3-319-26184-3_4
https://doi.org/10.1007/978-3-319-26184-3_4
https://doi.org/10.1007/978-3-642-45005-1_5
https://doi.org/10.1007/978-3-642-45005-1_5
https://doi.org/10.1016/j.scico.2018.08.007
https://doi.org/10.1016/j.scico.2018.08.007
https://doi.org/10.1016/j.scico.2018.08.007
https://doi.org/10.1016/j.scico.2018.08.007
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.1016/j.scico.2016.02.008
https://doi.org/10.1016/j.scico.2016.02.008
https://doi.org/10.1007/s10703-011-0114-4
https://doi.org/10.1007/s10703-011-0114-4
https://doi.org/10.1007/978-3-030-32079-9_4
https://doi.org/10.1007/978-3-030-32079-9_4
https://doi.org/10.1007/978-3-030-92124-8_3
https://doi.org/10.1007/978-3-030-92124-8_3
https://doi.org/10.1007/978-3-031-07727-2_11
https://doi.org/10.1007/978-3-031-07727-2_11
https://doi.org/10.1007/978-3-031-07727-2_11
https://doi.org/10.1007/978-3-031-07727-2_11
https://doi.org/10.1145/3524482.3527647
https://doi.org/10.1145/3524482.3527647

Probabilistic Runtime Enforcement of Executable BPMN Processes 21

17. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. 15(2), 89–107 (2013). https://doi.org/10.1007/s10009-012-0244-z

18. Herbert, L., Sharp, R.: Precise quantitative analysis of probabilistic business pro-
cess model and notation workflows. Journal of Computing and Information Science
in Engineering 13(1), 011007 (2013). https://doi.org/10.1115/1.4023362

19. Herbert, L.T., Sharp, R.: Quantitative analysis of probabilistic BPMN workflows.
In: International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference. vol. 45011, pp. 509–518. American Society
of Mechanical Engineers (2012). https://doi.org/10.1115/DETC2012-70653

20. ISO/IEC: International standard 19510, information technology – business process
model and notation. (2013)

21. Krishna, A., Poizat, P., Salaün, G.: VBPMN: Automated Verification of BPMN
Processes. In: 13th International Conference on integrated Formal Methods (iFM
2017). Turin, Italy (Sep 2017). https://doi.org/10.1007/978-3-319-66845-1_
21

22. Krishna, A., Poizat, P., Salaün, G.: Checking Business Process Evolution. Science
of Computer Programming 170, 1–26 (Jan 2019). https://doi.org/10.1016/j.
scico.2018.09.007

23. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation 94(1), 1–28 (1991). https://doi.org/10.1016/0890-5401(91)
90030-6

24. Mateescu, R., Requeno, J.I.: On-the-Fly Model Checking for Extended Action-
Based Probabilistic Operators. International Journal on Software Tools for
Technology Transfer 20(5), 563–587 (Oct 2018). https://doi.org/10.1007/
s10009-018-0499-0

25. Mateescu, R., Salaün, G., Ye, L.: Quantifying the Parallelism in BPMN Processes
using Model Checking. In: The 17th International ACM Sigsoft Symposium on
Component-Based Software Engineering (CBSE 2014). Lille, France (Jun 2014).
https://doi.org/10.1145/2602458.2602473

26. Mateescu, R., Thivolle, D.: A Model Checking Language for Concurrent Value-
Passing Systems. In: Cuellar, J., Maibaum, T. (eds.) FM 2008. Lecture Notes in
Computer Science, vol. 5014, pp. 148–164. Springer Verlag, Turku, Finland (May
2008). https://doi.org/10.1007/978-3-540-68237-0_12

27. Poizat, P., Salaün, G., Krishna, A.: Checking Business Process Evolution. In: 13th
International Conference on Formal Aspects of Component Software (FACS). Be-
sançon, France (Oct 2016). https://doi.org/10.1007/978-3-319-57666-4_4

https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1115/1.4023362
https://doi.org/10.1115/1.4023362
https://doi.org/10.1115/DETC2012-70653
https://doi.org/10.1115/DETC2012-70653
https://doi.org/10.1007/978-3-319-66845-1_21
https://doi.org/10.1007/978-3-319-66845-1_21
https://doi.org/10.1007/978-3-319-66845-1_21
https://doi.org/10.1007/978-3-319-66845-1_21
https://doi.org/10.1016/j.scico.2018.09.007
https://doi.org/10.1016/j.scico.2018.09.007
https://doi.org/10.1016/j.scico.2018.09.007
https://doi.org/10.1016/j.scico.2018.09.007
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1007/s10009-018-0499-0
https://doi.org/10.1007/s10009-018-0499-0
https://doi.org/10.1007/s10009-018-0499-0
https://doi.org/10.1007/s10009-018-0499-0
https://doi.org/10.1145/2602458.2602473
https://doi.org/10.1145/2602458.2602473
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/978-3-319-57666-4_4
https://doi.org/10.1007/978-3-319-57666-4_4

	Probabilistic Runtime Enforcement of Executable BPMN Processes

