Automatic Digributed Code Generation
from Formal Modes of Asynchronous Processs
Interacting by Multiway Rendez/ous

Hugues Evrard, Frédéric Lang

Inria
Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France
CNRS, LIG, F-38000 Grenoble, France

Abstract

Formal processlanguages inheriting the mncurrency and communication fea-
tures of processalgebras are cnvenient formalisms to model distributed ap-
plications, espedally when they are equipped with formal veri cation tods
(e.g., model cheders) to help hunting for bugs early in the development pro-
cess However, even starting from afully veri ed formal model, bugsarelikely
to beintr oduced while trandating (generally by hand) the mncurrent model

which relies on high-level and expressve communication primitives into
the distributed implementation which often relies on low-level communi-
cation primitives. In this paper, we present DLC, a compiler that enables
distributed codeto be generated from models writt en in a formal processlan-
guage alled LNT, which is equipped with arich veri cation todbox named
CADP, and where processs interact by value-passng multiway rendeavous.
The generated code uses an elaborate protocol to implement rendezvous,
and can be ather exeaited in an autonomous way (i.e., without requiring
additional code to be den ed by the user), or conneded to external soft-
ware through user-modi able C functions. The protocol itself is modeled in
LNT and veri ed usng CADP. We present several experiments asessng the
performance of DLC, including the Raft consensus algorithm.

Keywords. Multiway Rendeavous, Compilation, ProcessAlgebras,
Distributed Systems

Email addresses: Hugues.Evrard@inria.fr (Hugues Evrard),
Frederic.Lang@inria.fr (Frédéric Lang)

1. Introduction

Distributed systems often consist of several concurrent processs, which
interact to achieve a gobal god. Programming concurrent and interacting
processs is remgnized as complex and error-prone. One way to deted bugs
early isto (a) producea model of the system in a language with well-den ed
semantics, and to (b) use formal veri cation methods (e.g., model cheding)
to hunt for bugsin the mode. However, formal models of distributed systems
must eventually be trandated into a distributed implementation. If this
trandation isdone by hand then semantic discrepancies may appear between
the model and the n al implementation, possbly leading to bugs. In order
to avoid such discrepancies, an automatic trandator, i.e., a compiler, can be
used.

Such a compiler takes a formal modd as input and generates a runnable
program, which behaves according to the model semantics. In the case of
distributed systems, we want to produce several programs, which can be
exeauited on distinct machines, from a single model of a distributed system.
We identi ed several challenges related to this kind of compilation.

First, formal models generally rely on concurrency theory operatorsto ex-
press complex interactions between processes, whereas implementation lan-
guages often o er only low-level communication primitives. Hence the com-
plex interactions have to be implemented by non-trivial protocols built upon
the low-level primitives, which may be hard to master by (even experienced)
programmers. As a brief example, the synchronization of n distributed pro-
ceses may be expresed by a single rendezvous primitive (high-level), while
it requires a protocol between the n proceses when only message passng
primitives (low-level) are available. For any processinteraction sped ed in
the high-level modd, the compiler must be able to automatically instantiate
such protocolsin the generated code.

Semnd, the generated programs should be able to interact with their en-
vironment. Such interactions are often abstr acted away in the formal models,
while areal interaction isrequired in the n al implementation. For instance,
consider a distributed system where some processdeals with a database. In
the formal model, the database may be abstracted away by read and write
operations. However, we want t he implementation of these processesto actu-
ally conned t o an external database which is developed independently from

the distributed system under study. The compiler should provide a meda-
nism to den e interactions with the external environment and embed them
in the n al implementation.

Third, the generated implementation must t ake bene t of the distributed
nature of the system to achieve reasonable performances for rapid prototyp-
ing. Performance not only depends on the speal of each process but also on
how processinteraction is implemented. Naive implementations can lead to
very ine cient exeautables, due to unforeseen bott lenedks. For instance a
compiler implementing a naive protocol that consists in acquiring a unique
global lock to proceal on processinteraction would be extremely ine cient
as processes would mostly waste time waiting for the lock while they often
could safely exeaute concurrently. An e cient and decentr alized protocol is
therefore required to enable decet exeaution times. Even though the aim
is not to compete with hand-crafted optimized implementations, a too im-
portant performance penalty would make the rapid prototyping approach
irrelevant.

In this paper, we consider models written in LNT [12], a process lan-
guage with formal semantics. LNT combines a user-friendly syntax, close
to mainstr eam imperative languages, together with communication and con-
currency featuresinherited from processalgebras, in particular t he languages
LOTOS[3]] and E-LOTOS[32). Its ®mantics are formally den ed in terms
of an LTS (Labded Transition System): the observable events of an LNT
processare actions (possbly parametrized with data) on gates (which repre-
sent ports of interaction between processs, and also with the environment),
which label the transitions between states of the process

LNT models can be formally veri ed using software tods available in the
CADP? (Construction and Analysis of Distributed Processes) [26] tod box,
which provides smulation, modd cheding, and test generation tods, among
others.

LNT enables a high-level description of nondeterministic concurrent pro-
cesses that run asynchronoudly (i.e., at independent speels, as opposed to
synchronous processes driven by a global clock), and that interact by value-
pasdng rendezvous (or synchronization) on actions. The value-passng ren-
dezvous medanism of LNT is expressve and general:

A rendezvous may involve any number of processes (multiway ren-

Lhttp://cadp.inria.fr

deavous), i.e., it is not restricted to binary synchronizations. LNT
even features n-among-m synchronization [27], in which a rendeavous
may involve any subset of n processes out of a larger set of m.

Dueto nondeterminism (seled statement), every processmay be ready
for several actions at the same time. Di erent rendezvous may thus
involve one or more ammon processes, in which case we say that t he
rendezvous are con icting. Therefore, for a rendeavous between pro-
cesses to ocaur actually, it is not enough that all processs are ready;
they must also al simultaneously agreeto take that rendeavous instead
of con icting ones.

Processes may exchange data during the rendeavous (value-passng ren-
dezvous). Each data exchange may involve an arbitrary number of
senders and recevers, and a gven process may smultaneousy send
and receave di erent pieces of data during the same rendeaous.

The research problem we tackle here is how to automatically generate a
distributed implementation from an LNT model of a distributed system. To
our knowledge, there does not exist an automatic distributed code genera-
tion tod for a formal language that not only features such a general ren-
dezvous medanism, but is also equipped with powerful veri cation tods.
We intr oduce DLC? (Distributed LNT Compiler), a new tod that achieves
automatic generation of a distributed implementation in C from an LNT
model. We focus on LNT since we think its roas in process algebra o er
a well-grounded basis for formal study of concurrent systems [22], and be-
cause it is already equipped with the numerous veri cation features of our
team's todbox CADP, which however still | acks distributed rapid prototyp-
ing. Nonetheless our approach should be relevant to any language whose
inter-process communication and synchronization primitive is value-passng
multiway rendeavous. DLC meds the three tallenges dated earlier:

DLC transforms each concurrent process of the distributed system
model into a sequential program, and instantiates an elaborate pro-
tocol to handle value-passng multiway rendezvous. We designed a

2http://hevrard.org/DLC

rendezvous protocol that combines ideas from the literature into an ef-
cient solution, that we formally veri ed. The generated programs can
run on several distinct machines.

Interactions with the external environment are made possble through
calls to user-den ed external procedures. With DLC, the user can
den e hod functions that are integrated in the n al implementation
and called upon actions in the system. Hook functions are written in
C, and they provide a convenient way to interact with other systems.

DLC generates programs with reasonable performances, which qualify
for rapid prototyping. Although generated programs exeaution speed
may not be on par with an implementation in a classc programming
language, DLC makes it possble to easly produce a validated proto-
type, which can be deployed and run on a cluster, from a distributed
system modeled and veri ed using LNT and CADP.

We provide a formal model, written in LNT, of the multiway rendeavous
protocol used by DLC. This model has been veri ed using CADP, follow-
ing the approach depicted in [20]. The protocol model and its veri cation
approach were developed before the compiler. To adbtain the protocol even-
tually used by DLC, we started from the protocol proposed by Parrow and
Sodin [53], and we iteratively brought several enhancements to make it more
general, in order to handle LNT synchronizations, and also more e cient, for
bett er performances. At each step of thisiteration, we relied on our veri ca-
tion approach to ched that t he protocol remained corred. Henceorth, we
have a high con d ence on the protocol corredness

This paper is gructured as follows. Sedion 2 exploresrelated work. Sec
tion 3 illustrates how we an modd a distributed system in LNT. Sedion 4
details the multiway rendeavous protocol, and Sedion 5 covers how hook
functions enable interactions with the external environment. Sedion 6 ex-
poses how a distributed implementation is automatically generated. Sec
tion 7 presents experimental results, including a non-trivial application, the
Raft [51] consensus algarithm. Sedion 8 concludes and suggests future work.

2. Related Work

Several programming languages o er useful primitives or libraries for in-
teraction between distant processes, i.e., processs on separate machines con-
neded by a network. The most common medanisms are. message passng,

5

where processes can send messages to each other, eg., POSIX sockets in
C, or Erlang built-in messaging; and RPC (Remote Procedure Call), where a
processcan invoke a procedure exeauted by another distant process e.g, Java
RMI (Remote Method Invocation), or the net/rpc package of the Golang®
standard library. However, we are not aware of a library for popular pro-
gramming languages that would implement LNT -like value-passng multiway
rendeavous.

Modeling Languages Equipped with both Formal Veri cation and Code Gen-
eration Tools

The formal study of concurrent processsis arich ed of research, and
several formalisms exist to model such systems. For synchronous models,
where all processes dhare a unique dock, a god illustration is the Esterd
language, which comes with a suite of veri cation tods and compilers [7].

As regards asynchronous s/stems, i.e., the domain in which lies the lan-
guage LNT, the Topo [42] tod set for LOTOS features code generation in
either C or Ada, and enables environment interactions via LOT OS annota-
tions. However, the generated implementation is squential, and Topo is not
maintained anymore. LOTOSisalsothehistorical formal language of CADP,
which provides the EXEC/ CASAR [28] tod to generate C code with inter-
facefunctionsthat must be user-den ed. Onceagain, this codeis ssquential,
and our DLC tod builds upon EXEC/ CAESAR (which also accepts LNT as
input) for generating the ade rresponding to sequential proceses. UP-
PAAL [4] provides a framework to operate on networks of timed automata,
including formal veri cation tods. The asciated Times tod [1] generates
C code from UPPAAL models, but the n al program is squential.

In the framework of SPIN [30], Promea is a modeing language which
uses channels rather than multiway rendeavous for processinteractions. A
Promelato distributed C compiler has been proposed [41], relying on a client-
server approach, still the user must explicitly spedfy by hand which process
is sxver or client. More recaitly, a ren ement calculus to dbtain C from
Promela has been presented [59], but this time the generated code is not
distributed.

The Chor [1]] language enables programming of distributed systems as
choreographies, and hasveri cation features based on behavorial types. Chor

3Golang is a programming language made public in 2009 see https://golang.org

adoptsa corred-by-construction approach, by cheding for instance dead-
lock freedom at t he choreography level, and providing automated generation
of distributed implementations. The Chor authors also study composition of
choreographies [46], which is a desirable feature in corred-by-constr uction
approaches. Another choreographic language with tod support is Scribble?,
which has recently been extended to parametrized protocols in Pabble [48]
and relies on parametrized sesson types for veri cation features. Still, nei-
ther Chor nor Pabble o er value-passng multiway rendezvous as a primitive,
sincein these languages, processes interact t hrough message passng.

The BIP framework describes a system in threelayers. Behaviors, Inter-
actions and Priorities. Interactions between behaviors correspond to value-
passng multiway synchronizations. In addition, priorities may di erentiate
interactions: when several interactions are possble, the one with highest
priority must occur, preampting others (when interaction have the same pri-
ority, any of them may occur). To our knowledge, BIP veri cation features
are now limited to a deadlock detedion tod [5], while CADP o ers sveral
model cheders [43, 44, 45|, equivalence heders [6], tods for compositional
veri cation [23, 38, 25|, test case generation [33], performance evaluation [14],
and even more®. Nonetheless a distributed code generation tod is avail able
for BIP [9]; it instantiates a multiway rendezavous protocol to handle inter-
action in a distributed way the protocol presented in this paper improves
over the one used in BIP. BIP priorities, which is not a built-in concept in
LNT, ishandled in the rendeavous protocol by requiring a centr alized knowl-
edge to resolves them, thus limiting the paralld exeaution of the generated
implementation.

A recent paper [17] estabishes a formal relation between BI(P) (i.e., BIP
without t he priority layer) and the Reo [2] coordination language, thus paving
the way to interoperability between their tods. Besides, the Dreams [56]
framework provides a methodology to generate, from Reo programs, dis
tributed applications running on Java Virtual Machines.

Both BIP and Reo distributed code generators create a program for each
processpresent in the formal sped cation, and also extra programs required
toimplement interactions between the sped cation processes. When running
on a cluster of machines, one must dedde how to partition, i.e., dispatch, all

4htt p:// www.scribble.org/
SFor an overview of CADP todls, seehttp://cadp.inria.fr/tools.html

these programs on the available nodes. This ans to be a non-trivial prob-
lem: the BIP distributed code generator requires the end user to explicitely
provide this partition, while sped c tedniques [34] are needed in Reo. The
parallel composition operator of LNT provides a, if not optimal, at least rel-
evant partition of the generated programs, such that t he end user does not
have to think about partitioning.

Distributed mplementation of Multiway Rendezvous

Sincethe processinteraction medanism isakey challengein adistributed
system, we also brie y review protocols that implement t he multiway ren-
dezvous in a distributed manner. As oon as 1983 works on the distributed
implementation of Petri netslead to propositions [64, 63]. Each transition of
a Petri net can be onsidered as a rendeavous between its precealing places,
and trangitionsarein con ict when they share common precaling places. To
ensure the mutual exclusion of transitions in con ict, a transition must lock
atoken in each precaling place There are several approachesto avoid dead-
locks during this locking phase: either eled a winner among tr ansitions that
lock the sametokens [64], or alwayslock thetokensin the same order [29, 63].

Multiway rendezavous can be mnsidered as a variation of the committ ee
coordination problem, stated by Chandy and Misra [13], where professors
(processes) must schedule committ eemedings (rendeavous), with every pro-
fesor being a member of several committees. Bagrodia [3] lists classcal
solutions to this problem and presents the event manager algorithm, based
on a token ring approach, which is also explored by Kumar [36].

At t he same period, various dudies on the distributed implementation
of LOTOS led to several protocol proposals [8, 61, 62 53], and a protocol
based on ordered broadcast was later designed [65]. In a previous gudy [20],
we used LNT and CADP to model and verify threeprotocols, and we spot-
ted previously undeteded deadlocks, under asynchronous communication hy-
pothesis, in the one designed by Parrow and §o6din [53]. The airrent work
is based on a correded verson we suggested and on which we veri ed the
absence of deadlocks.

Out of the LOTOS context, Pérez et al. [54] presented the -core pro-
tocol, but the original sped cation contains a bug documented by Katz and
Peled [35. More recaitly, work on the hardware implementation of CSP
programs required the design of a protocol [49], which however imposes a
restriction on the number of processes that can send data during an inter-
action. Theoretical studies on the encoding of interactions in the -calculus

8

also refer to rendeavous implementation tedniques [47, 55. All the works
presented in [8, 61, 62 53 65, 54] focus on the protocol rather than on the
compiler implementation.

At last, this paper comes after a series of other papers that are diredly
related with DLC. A rst paper [20], already mentioned above, deals with
formal veri cation of rendeavous protocols using CADP. A semnd paper [21],
of which the aurrent paper is an extended version, presents the implemen-
tation of the protocol into the DLC tod. The extension mainly consists of
a new sedion that provides details about t he multiway rendezvous protocol,
and an appendix containing the LNT formal model of the protocol. More-
over, the related work sedion has been enriched, and we present additional
experiments to assss performance of the generated code. A third paper [19]
demonstrates the usage of DLC on a pedagodcal toy example. Finally, the
PhD thesis of the rst author [18] (in French) presents a comprehensive de-
scription of the protocol, its veri cation, the DLC tod, and case studies
achieved using DLC.

3. Modeling Distributed Systemsin LNT

LNT provides sveral levels of abstraction and structuration, namely
modules, types, functions, and processes. We mnsider distributed systemsto
be composed of several tasks, which interact with each others. T he behaviour
of each task isden ed by an LNT processand theinteractions between tasks
are described by paralld composition of the @rresponding processes, syn-
chronized by value-passng multiway rendeavous on gates.

We give an informal introduction to LNT using an example; for a for-
mal and full denition of LNT syntax and semantics, see[12]. We modée
a smpli ed version of the leader eledion phase of the Raft [51] consensus
algorithm, which consists of a set of serversthat haveto eled aleader among
them. The servers either run corredly or they crash and terminate (as op-
posed to erratic Byzantine behaviors). Sincethe leader can crash, several
eledions may happen astime goes by. Timeis divided in terms, each server
maintaining aterm index, which increases monotonically. A term represents
a logcal period of time during which at most one leader may emerge from
the group of servers, and it is also possble that no leader is eleded during a
term before the next is darted.

In each term, servers may bein either follower, candidate or leader state.
All servers dart asfollowers, then some of them eventually beame andidate

9

after a timeout. A candidate increases its term index, votes for itself and
asks other servers for their vote. A server grantsits vote only if itsterm is
equal to the andidate one and if it has not voted for someone dse erlier
in the arrent term. When a candidate has receved a majority of votes,
it becomes the leader for this term. Whenever servers communicate, they
provide their current term, and when a server receves a term higher than
itsown, it updatesits own term and resigns to the follower state. Moreover,
servers may crash and stop. In the context of Raft, the leader eledion is
more daborate, eg., the leader prevents timeouts of other servers with a
heartbeat medanism; we do not model these features here for the sake of
brevity.

Figure 1 illustrates the LNT model of a server. LNT syntax is close
to mainstream implementation languages, and most code should be under-
standable for someone with a programming background. After initialization,
a server enters its main loop where the nondeterministic choice operator
select , reminiscent of D¥kstra [16], is used to enumerate several possble
behaviors, separated by [] . The server will exeaute one branch of the se-
led operator, depending on its current state and the possble actionsin the
system.

The observable events of an LNT processare actions on gates, gates are
dedared between the square brackets in the processheader. For instance a
server indicates that it performs atimeout or a crash, or announces its lead-
ership with an action on either gates TIMEOUTCRASHEr LEADERespedively.
Actions on these threegates are used to make the related events observable
from the environment, they are not used to synchronize servers (any server
can make an action on one of these three gates on its own). Servers deal
votes through an abstracted RPC medanism: a request for vote is queried
by an action on RVOTHElines 43 and 61), followed by an answer on AVOTE
(lines 54 and 62). Actions on these two gaes will synchronize two serversto
enable ommunication between them.

A processcan send or receve data using data o ers on an action. Each
data o er may have one of two forms. either a value-expresson (optionally
precaled by the symbol !), corresponding to the emisson of the @rre-
sponding data value; or a variable precaled by the symbol ? , correspond-
ing to the reception of a data value, which is dored in the variable. For
instance a server sendsitsidenti er and its current t erm when it announces
its leadership on LEADERIine 72) and when a server is requested for vote on
RVOTEhe aller identi er is gored in the rpcld variable (line 43) that is

10

1 Data types 43 RVOTE(?rpcld, selfld, ?rpcTerm);

2 type state is follower, candidate, leader end type 44 if rpcTerm > selfTerm then

3 type abool is array [0 .. 2] of bool end type 45 selfTerm := rpcTerm;

4 46 eval resign(?state, ?votedld, ?voteCount, ?voted)
5 Global parameters (constants dedared as functions) 47 end if;

6 function majority : nat is return 2 end function 48 if (selfTerm == rpcTerm) and (not(voted)) then

7 function maxld : nat is return 3 end function 49 voteGranted := true;

8 function maxTerm : nat is return 2 end function 50 voted = true

9 51 else

10 function resign (out state: state, out votedld: abool, 52 voteGranted ;= false

11 out voteCount: nat, out voted: bool) is 53 end if;

12 state := follower ; 54 AVOTE(selfld, rpcld, selfTerm, voteGranted)

13 votedld := abool(false); (set all array to false) 55 I (send vote request)

14 voteCount := 0; 56 case state in

15 voted = false 57 candidate >

16 end function 58 rpcld := any nat where rpcld < maxlid;

17 59 (Don't send request if rpcld already voted)
18 process SERVER [LEADER,CRASH,TIMEOUT ,RVOTE,AVOTE: any] 60 if (votedid[rpcld]) then stop end if;

19 (selfld : nat) is 61 RVOTE(selfld, rpcld, selfTerm);

20 var state: state, 62 AVOTE(rpcld, selfld, ?rpcTerm, ?voteGranted);
21 selfTerm, voteCount, rpcld, rpcTerm: nat, 63 if rpcTerm > selfTerm then

22 votedld: abool, 64 selfTerm := rpcTerm;

23 voted, voteGranted: bool 65 eval resign(?state, ?votedid, ?voteCount, ?voted)
24 in 66 else

25 (initialization) 67 votedld[rpcld] := true;

26 selfTerm = O 68 if voteGranted then

27 eval resign(?state, ?votedld, ?voteCount, ?voted); 69 voteCount := voteCount + 1;

28 (mainloop) 70 if voteCount >= majority then

29 while selfTerm < maxTerm loop 71 state := leader;

30 select (possble behaviors delimited by "[1") 72 LEADER(selfld, selfTerm)

31 (timeout, become candidate) 73 end if

32 case state in 74 end if

33 follower | candidate > 75 end if

34 TIMEOUT (selfld, selfTerm); 76 | follower | leader > stop (do not request vote)
35 selfTerm = selfTerm + 1; 77 end case

36 votedld[selfld] := true; 78 0 (fal stop)

37 state = candidate; 79 CRASH(selfld, selfTerm); stop (server halts)
38 voteCount =1 80 end select

39 voted = true 81 end loop

40 | leader > stop (leader cannot become candidate) 82 end var

41 end case 83 end process

42 I (recdve vote request)

Figure 1: LNT sped cation of a server for the leader elecion algorithm.

used later in the answer action on AVOTHline 54). Note that both emisson
and reception data o ers may ocaur mixed on the same gate (see eg., action
AVOTIHEt line 62), and that a rendeavous may involve an arbitrary number
of senders and recevers. LNT follows the value-matching semantics adopted
by process algebras auch as LOTOS and CSP, in which a condition for a
rendezvous to take place is that t he values taken by the data o ers match
(smilarly to patt ern-matching) during rendezvous.

Figure 2 illustrates a parallel composition of servers. The par operator
den es which processes must synchronize on which gates. Here for example,
we use n-among-m synchronization to indicate that processes must synchro-
nize by pair (n = 2) on gates RVOTEnd AVOTET hus, an action on one of
these two gaes consists of a binary rendeavous of two processes with data

11

par RVOTE # 2, AVOTE # 2 in

SERVER [LEADER, CRASH, TIMEOUT, RVOTE, AVOTE] (0 of nat)
|| SERVER [LEADER, CRASH, TIMEOUT, RVOTE, AVOTE] (1 of nat)
|| SERVER [LEADER, CRASH, TIMEOUT, RVOTE, AVOTE] (2 of nat)
end par

Figure 2: Parallel composition of server proceses. #2 indicates that actions on gates
RVOTENd AVOTHEnust involve two processes among the three servers (n-among-m syn-
chronization, wheren = 2 and m = 3).

exchange. By default, actions on other gates only involve one process i.e,,
they are not synchronized. Although not illustrated here, it is also possble
to indicate, for each process the list of gates it must synchronize on. To-
gether with n-among-m synchronization and the possbility of nesting par
operators, we can model complex interactions between an arbitrary number
of proceses. The possbleinteractionsden ed by a parallel composition can
be represented internally with synchronization vedors [38] that denote, for
each gate, which tuples of proceses must synchronize their action. For in-
stance if we denote by Sy, S; and S, the threeservers, the synchronization
vedors for gate LEADERand also CRASINd TIMEOUTare f Sqg, f S;g and
fS,0; the ones for gate RVOTHEand also AVOTEare f Sg; S;9, fSp; S,g and
fS;;S,g. We say that two synchronization vedors (and the @rresponding
transitions in a gven state) are con icting if the intersedion between their
synchronization vedors is not empty (i.e., they have at least one task in
common).

In this example of distributed system, servers represent task processes
and possble interactions between tasks are set by the parallel composition.
Before we dig into how we generate a distributed implementation from such
a model, we brie y illustrate how formal veri cations can be applied to it.

LNT semantics are den ed formally in terms of an LTS (Labded Transi-
tion System). Formally, an LTS isden ed asatuple (S;A;T;sy) where S is
the set of states, sy the initial state, A the set of observable events, called
actions,and T S A S thetranstion relation between process s$ates,
labeled by actions. Non-observable (a.k.a. hidden) events can be modeled
using aparticular action written . To any LNT processcorrespondsan LTS
whose observable actions consist of the gate name, followed by the exchanged
data values (if any). When building the LTS, each state is built from the
vedor of variable values and control state of the LNT process However,
the state mntents are dropped once the LTS construction is complete, and

12

we onsider LTSs modulo the strong bisimulation equivalence® [52], which
allows to merge LTS states which have the same future (e.g., all deadlock
states may be merged into a unique deadlock state). For instance here is
a small LNT process and its corresponding LTS, where the initial state is
marked by a black disc:

process foo [A,B,C,D: any] is
var b : bool in
A
select
B(?b)
I C; b:=true; A
end select ;
D (b)
end var
end process

The LTS represents the LNT model state space i.e., all its possble ex-
eaution paths. Since it may be huge, models are often parametrized and
parameters are assgned at low values to control the state space eplosion.
For instance the dedion algorithm is approximated to asmaller state space
by bounding server terms with a preden ed maxTernd

The CADP tods can be used to perform formal veri cations, e.g., model
cheding, on the LT Srepresentation, either on-the- y or after complete state
spacegeneration. For instance EVALUAT OR4 [45] can be used to ched the
safety property there are not two leaders in the same term expressed as
the following MCL (Model Checkng Language) [45] formula:

[true . { LEADER ?idl:Nat ?t1l:Nat } .
true . { LEADER ?id2:Nat ?t2:Nat where t1 = t2 }] false
Thisformula statesthat t here must not be mnseaitive leader announcements
(gate LEADERfor the same term. Similarly, we an verify other properties
such as if lessthan a majority of servers have aashed or reach the maxi-
mum term, then a leader can be deded . The interested reader may take a

6ln an LTS (S;A;T;s), two states s;t 2 S are strongly bisimilar if there eists a
symmetric relation R on' S S such that R(s;t) and for each s%t° such that R(s% 19, if
there eists a transition (s%a;s% 2 T, then there eists a transition (t%a;t% 2 T such
that R(s%t% (the mnverse also holds by the symmetry condition).

"In Raft, terms are unbounded and over ow is not addressed; with a timeout of 150
ms, terms gored on 32 (resp. 64) bits take, in the worst case, more than 20 (resp. 80
billion) yearsto over ow.

13

look at [26] to know more about formal veri cation using CADP, which also
features equivalence dhedking, smulation, and many other tods.

4. Multiway Rendezvous Protocol

Multiway rendezavous requires a protocol in order to be implemented in
a distributed way. This protocol den es how tasks, and possbly other aux-
iliary processes, communicate in order to dedde which actions are realized
by the system with resped t o the possble rendeavous de n ed by the parallée
composition of tasks. We make the assumption that processes communicate
using asynchronous messages over a reliable network (no message losg, and
that, from a processto another, messages are recaved in the order they are
sent.

Among the protocols of the literature (see Sedion 2), we seleded the
one designed by Parrow and §odin [53 as a basis, since it is extensible
to the general synchronizations of LNT, and it requires few messages to
achieve a rendeavous. In the sequel, we brie y present this protocol and
our formal veri cation approach. Wethen identify theo set synchronization
phenomenon, enhance the protocol in various ways to smplify it and make
it more e cient, and add the autolock optimization. In order to kee the
protocol corred in the presence of both autolock and o set synchronizations,
we also present t he purge medanism that we have designed.

4.1. Parrow and S6din Protocol

The protocol designed by Parrow and §6din den estwo kinds of auxiliary
proceses. managea's conduct rendeavous negatiations for tasks, and gates
represent t he gates of the syssem.® Each task is asociated with a manager,
and each gate is represented by a gae process Table 1 lists the di erent
types of messages exchanged between tasks, managers and gates.

We @an distinguish threephases in the protocol:

Announce phase When a task is ready on one or more actions, it sends
these actions to its manager through a request message. Then, the
manager dispatches these ready announces to al relevant gates, with
ready messages.

8In the original paper [53], managers and gates are called mediators and ports, respec
tively.

14

Type

Description

request | A task sends its possble actionsto its manager
ready | A manager forwards possble actions of itstask to a gde
query | A gate starts a negatiation by sending alock request t o

the rst manager of the synchronization vedor

lock | A manager forwards the lock request t o another manager

yes A manager alerts a gaethat t he negatiation is succesdul

commit | A manager alerts a manager that t he negatiation is succesdul

no A manager alerts a gaethat t he negatiation has failed

abort | A manager alerts a manager that t he negatiation has failed

con rm | A manager sendsto itstask which action must be realized

Table 1: The nine types of messages in Parrow and Sjddin protocol.

Locking phase When a gae deteds that all tasks of its g/nchronization

vedor are ready, it starts a negatiation with task managers. A ne
gatiation consists in trying to lock all managers of the tasks involved
in the synchronization in order to ensure the exclusion with other po-
tentially con icting rendeavous. Managers are then similar to shared
resources between gates, and the protocol uses the dassc ordered lock-
ing tedinique [29 to avoid deadlocks. To enable this tedinique, all
gates consider the same order den ed on managers. A gate startsa ne-
gatiation by sending alock request, using aquery message, tothe rst
manager of the synchronization vedor. A manager accepts at most
one lock at a time, and when it does 9, it forwards the lock request
to the next manager of the synchronization vedor by sending a lock
message. Managersinvolved in a synchronization thus form an ordered
chain that is called a lock chain.

Result phase If the last manager of the synchronization vedor receves

and accepts the lock request, then the negatiation is a success This
manager sends a yes message to the gate that started the negatiation,
and a commit message that is forwarded along managers of the syn-
chronization vedor, in reverse order of the lock chain. Moreover, each
conca’ned manager sendsa con rm message to itstask, which realizes
the seleded action acoordingly and continues its exeaition.

When a negatiation succeels, each manager in the lock chain discards
each of its pending lock requests (if any) by sending a no message to

15

the relevant gate, and an abort message to the manager that sent t he
lock request. Like a commit message, an abort message is forwarded
back along locked managers of thefailed negatiation, which are released
from their lock. A locked manager that isreleased by an abort message
can accept a new or a pending lock request, and can thus participate
to another negatiation.

We illustrate this protocol on the following example, where the paralle
composition imposes that actions on gates A or B must be synchronized
between tasks T1 and T2, while actions on gate C can be realized by task
T2 done. Therefore, the synchronization vedor for both A and B isfT1,
T2g, and the synchronization vedor for C isfT2g.

process T1 [A, B: any] is process T2 [A, B, C: any] is composition
select select par A, B in
A A T1[A, B]
0B 0B [l T2[A, B, C]
end select 0 CB end par
end process end select

end process

Figure 3 illustrates a possble exeaition of the protocol, where managers
of tasks T1 and T2 are labeled M1 and M2, respedively. At the start, task
readinessis sgnaled with request and ready messages. When gate A deteds
that enough tasks are ready for an action, it starts a negdtiation with a
query message. So do gaes B and C. The rst query to reach manager
M1 is the one from gate A; the manager then forwards the lock query to
manager M2. Manager M1 aso receves a query from gate B, and storesit as
a pending lock request. Meanwhile, manager M2 has succesdully negatiated
an action on gate C for itstask, which is now ready for an action on gate B,
solely. Therefore, manager M2 refuses the lock request for gate A receved
from manager M1, and sends an abort and a no message accordingly. Upon
recetion of the abort message, manager M1 releases itself, then accepts and
forwards the pending lock request related to gae B. Manager M2 accepts
thislock request and repliesto gae B and manager M1 with yes and commit
messages, respedively. Both managers also send con rm messages to their
tasks.

A noticeable feature of this protocol is that t he locking scheme requires
only one message per task to be locked. For a comparison, the -core pro-
tocol [54] also relies on an ordered locking of tasks, but gates centr alize lock

16

A oE D B B FEOE

request(A,B) request(A,B,C)
ready ready
ready ready
query ready
query query
yes
con rm(C)
lock(A)
abort
no
request(B)
ready
lock(B)
commit
con rm(B) yes
con rm(B)
il il
.

Figure 3: lllustration of Parrow and Sjodin protocol, the locking phase of an o set syn-
chronization is bolded. The synchronization vedor for both A and B isfT1, T2g and the
synchronization vedor for C isfT2g.

requests, hence the locking phase requires two messages per task. Asillus
trated in Figure 4, Parrow and §06din locking approach is more e cient.
The ordered locking tednique may lead to overload of lower managers,
which are likely to receve more lock requests than others. However, when
a manager receves veral lock requests while it is waiting on a negatia-
tion answer, these lock requests correspond to negatiations for con icting
rendezvous. Lower managers act as Iters for negatiations of con icting ren-
dezvous, by forwarding only one negatiation at a time to upper managers.
Since only one of these negatiations will eventually succea anyway, the ear-

17

1 4 |

manager }—Zﬁ manager }—3>’ manager ‘

P

|
I

Figure 4: Parrow and S6din locking scheme requires lessmessages than the -core one.

lierit is ©leded, the bett er. Therefore, the ordered locking tednique enables
the early sdledion of a negatiation among con icting ones, while still all ow-
ing non-con icting negatiations to ocaur in paralld sincethey lock di erent
sets of managers.

O set Synchronization

This protocol enables a particular phenomenon that we named o set syn-
chronization. We expose this phenomenon sinceit appears in discusgons on
the corrednessof the protocol.

In most protocols, when arendezvous succeels, then all negatiations deal-
ing with con icting rendezvous are aborted because the tasks that partici-
pated to the succesdul rendeavous have moved to a new state, whose set of
ready actions may have changed. However, in Parrow and §6din protocol, a
negatiation on a con icting rendeavous may still succed if the set of ready
actions in the new states dill contain the action concened by the negdtia-
tion. The synchronization (which is valid) resulting from this negatiation is
named o set synchronization, because there is an 0 set of some task state
between the start of the negatiation and its ending. An o set synchroniza-
tion can be seen astheresult of a short-cutting negatiation, in the sense
that t he succesdul negatiation spansover a state update of at least one of the
involved tasks, whereas in most protocols such state updates g/stematically
invalidate ongang negatiations.

This phenomenon is illustrated in Figure 3, where the bold path from
messages query to lock(B) denotes such a negatiation. Gate B starts a nego-
tiation by sending a query message to manager M1, in order to synchronize
both tasks T1 and T2. Meanwhile, manager M2 concludes a negatiation for
task T2, which realizes an action on gate C (message con rm(C) sent by
M2 to T2) and reaches a new state in which it is ready on gate B, agan
(message request(B) sent by T2 to M2). Therefore, when the negatiation
started by gate B reaches manager M2 (message lock(B) sent by M1 to M2),

18

this manager can accept it. Thus, task T2 has updated its gate while the
negatiation started by gate B was ongaoing, and the negatiation still succeels:
the resulting rendeavous is an 0 set synchronization.

4.2. Protocol Corredness Systematic Validation Approach

In order to gan con d encein the protocol corredness we use the formal
approach set up in our previous work [20]. In a nutshell, from the sped -
cation of a distributed system, we automatically generate the formal model
of the system implementation, which includes the rendeavous protocol. In
other words, from an LNT composition of tasks interacting by multiway ren-
dezvous, we generate an LNT model of the implementation, which contains a
model of tasks, managers, gates, and bu ers for asynchronous message pass
ing between processs, asillustrated in Appendix A.5. Using CADP, we then
perform threeformal veri cations:

Livelock detection. We ded in the implementation model that t he pro-
tocol cannot conduct negatiations forever without reaching a result,
i.e, thereisnoin niteloogp of protocol messages without announces of
a succesdul action.

Deadlock detection. We ched in the implementation model that t he pro-
tocol cannot get into a sink state before reaching an action, if any
action is possble with resped to the sped cation.

Equivalence between speci cation and implementation. We ded that
the implementation model is behaviorally equivalent to the original
system sped cation, with resped to an equivalence relation that ab-
stracts away the actions of the protocol. To do so, we use safety equiv-
alence [10], the abstraction consisting in turning every action of the
protocol into the invisible action . This guarantees that every action
sequence of the model can be mimicked by the implementation.

9Two LTSs (S1;Ax; T1;S(1;0)) and (Sz; Az; T2; S(2.0)) are safety ecuivalent if their exists
a capreorderv on(S: S2)[(S22 Si) suchthat sig.1y V So;2) and S0y V S(o;1y- A

:a preorder is any relation that satis es the following constraint: if sv t and s isthe
source of a (arbitrarily long, posgbly null) sequence of transitions labeled by foll owed
by atransition labeled by a visible action a and leading to a state s° then t is the source
of a similar sequence (of possbly di erent length, but ended by the same visible action a)
that leads to a state t such that s®v t°

19

We performed these formal veri cations on a test suite made of 1571
systems. Taking into acoount our knowledge of synchronization protocols,
we wrote 63 tests by hand. These systems aim at pushing the protocol in
its corners, and include intricate multiway synchronizations of threeor more
tasks. Nevertheless we have a subjedive vision of possble corner cases for
the protocols, therefore we also generated other testsin an att empt t o cover
all basic cases. The remaining 1508tests are automatically generated and
represent parallel composition of tasks with two transitions.

Our veri cation approach may not be as complete as a formal proof of the
protocol, but we underline that our approach led to the detedion of possble
deadlocks in Parrow and §ddin protocol, despite that t he corrednessof this
protocol had been proven manually [53]. Later, using the same approach, we
also con rmed possble deadlocks (already identi ed by Katz and Peled [35])
in -core, which had also been proven manually [54].

Moreover, since our veri cation approach is automated, it allowed us to
perform a systematic validation of several protocol enhancements. Each time
we modi ed the protocol, we could quickly verify whether the modi cation
triggered bugsin any system of our test suite. Starting from the Parrow and
Sodin protocol model, we thus iterated to dbtain the protocol eventually
used in DLC, even before implementing the compiler.

In the sequel, we informally present our iterations from the Parrow and
Sadin protocol. In Appendix A, we give the LNT formal sped cation of
the resulting protocol, which isthe one used in DLC. ThisLNT sped cation
is also available in the DLC distribution, since it is the one actually used
for the protocol formal veri cation with CADP. The LNT sped cation was
validated using our systematic validation approach. On our test suite, it
never leadsto alivelock or to adeadlock, and safety equivalenceis preserved
between the original system sped cation and the automatically generated
implementation model. We thereby have a goa con d ence in the protocol
corredness

4.3. Protocol Enhancement

In order to improve the implementations generated by DLC, we enhanced
the protocol. The enhancements are tagged with resped to ther god: cor-
reaness simpli cation, expressveness or performance For thereader inter-
ested in more formal details, we regularly make an explicit r eferenceto lines
of the LNT model given in Appendix A.

20

Supparting Asynchronous Communications (corredness). In one of our pre-
vious works [20], we showed that t he Parrow and §6din protocol can lead to
deadlocks when processes communicate asynchronously. To summarize the
issie may arise when a gae receves a yes message and removes all ready
announces it has receved so far theidea being that since the negatiation
succeeled, ready announces are not valid anymore. However, a task involved
in the negatiation may have receved a commit message, realized the action
and tr ansferred a new ready message before the yes message reachesthe gate.
In such a case, the gate eaases the task from the set of ready tasks, possbly
leading to a deadlock.

Our solution to x this problem is to separate the ready announces that
are receved during a negadtiation from those that were already there before
the negatiation. When the gate receves the negatiation result, it updates
the set of ready tasks. If the negdtiation is succesful (message commit), the
gate removes the wncerned tasks from the ready set, and then updates the
ready set with ready announces receved during the negdtiation (lines 365
376. Otherwise, the gate removes the task that sent t he abort message from
the ready set, and still update the ready set with ready announces receved
during the negatiation (lines 378 387).

Merging Task and Manage (simpli cation). A task and its asciated man-
ager are merged into one process where both task and manager behave as
coroutines. Onceatask haslisted its possble actions, it yields the exeation
to its manager. The manager conducts negatiations, and yields back the ex-
eaition to the task oncea negatiation succeeled. Thismodi cation removes
the neal for request and con rm message types.

Reducing Message Types (smpli cation). Since query and lock messages
have resembling semantics (i.e.,, a lock request), we unite these two types
of messages into a single lock type. Similarly for the result messages, we
unite yes and commit into a single commit message type, and no and abort
into asingle abort message type. Consequently, out of the original nine mes-
sage types only four remain, namely ready for announces, lock for locking,
and commit and abort for results (lines 73 80).

Broadcasting Results (performance). To avoid deadlocks, the locking phase
respeds the manager order. However, ordered transmisson is not required
for the result messages. Therefore, the manager that initiates a commit or
abort chain might as well broadcast t his message to al concerned managers

21

(for instance, seelines 510 515 for the broadcast of commit messages by a
manager). This modi cation does not reduce the total number of messages,
but it avoids a sequence of messages by broadcasting results in parallél.

Supparting Multiple Synchronization Vedors per Gate (expressveness). The
Parrow and §odin protocol is ed ed for only one synchronization vedor
per gate. We extended the protocol to support several ones, such that all
constructions using the LNT parallel composition, in particular n-among-
m synchronization, can be handled. Prior to starting a negatiation, a gae
seleds any of its s/nchronization vedors for which all tasks are ready (lines
332 339). In addition, the synchronization vedor isincluded in lock requests,
such that each task knows which other tasks must be locked.

Supparting Internal Actions (expressveness). A task can perform internal
actions (tr aditionally noted in processalgebras, or i in LNT), on which no
rendezavous can be performed. Internal actions are dedded at t he task level,
with resped to ongoing negatiations. a task can realize an internal action
only if it isnot currently locked by a negatiation for another action on a gae
(lines 550 555). In practice i.e. in the C implementation of the protocol, we
let atask ready for both internal actions and gate actions wait for lock
requests for some time, and then procea to an internal action if no lock
request has been receved.

Adding Optional Gate Con rmation (expressveness). The last task of the
lock chain is the one that, if it accepts the lock, makes the synchronization
happen. However, as we will seein Sedion 5, we sometimes need to dedde
at the gate level whether an action happens or not. We add the possbility
for a gaeto require the negatiation con rmation. When the gate wants to
con rm a negatiation, it addsa con rm agto the lock request (lines 355
356. When the last task of the lock chain accepts a lock request with a
con rm ag, it forwards the lock message to the gate (lines 502 504), which
must dedde whether to con rm the negatiation or not and then acoordingly
broadcast a commit or abort message back to dl involved tasks (lines 389
413. This protocol modi cation lets a gae know when all tasks are locked
but still does not consider the negatiation as a successyet.

Supparting Data O ers (expressveness). Although data o ers may seem to
be ort hogmal with the synchronization problem, we actually discovered that

22

a naive handling of o ers can trigger deadlocks. Consider the following sys-
tem:

process T [A: nat] is
select
A (1 of nat)
[i; A(2of nat)
end select
end process
Figure 5 illustr ates a possble protocol exeaution. We skip the detailed
description of the start, in order t o focus on the gate behavior when it receves
theabort message. In the Parrow and §d6din protocol, when the gate receves
an abort message from a task, it considers this task as not ready anymore
sinceit has just refused a lock request. Here however, task T is gill ready
on gate A, only with an o er incompatible with the one proposed for the
lock request. If gate A had to consider task T as unready, the system would
deadlock. Therefore, gate A must still consider task T as ready, even though
the gate has just receved an abort message from the task. To summarize
when a gaereceves an abort message, it should consider the sending task to
be still ready if the task has sgnaled itself as ready during the negatiation.
These possble deadlocks were not discovered by our formal veri cation

approach, but by classcal testing of implementations generated by DLC. This
isdueto thefact t hat when we generate the model of the implementation, we
cannot t akedata o ersof theoriginal system into acoount. However, thislim-
itation only concens the generation of the implementation model, whereas
the actual implementations generated by DLC can handle data o ers. The
corredion was taken into acocount in the formal model (lines 381 382).

4.4. Autolock Optimization

The autolock optimization is a performance enhancement that aims at
reducing the length of negatiations.

The locking phase ensures that no task commits to more than one action
at a time. However, when a task is ready on only one gate, there is no
necessty to lock thistask sinceit will not accept locks from any other gate.
Based on this observation, the -core protocol [54] avoids unnecessary lock
messages (seethe participate message type of -core).

We introduce a similar optimization that we name autolock: a task that
is ready on only one gate automatically locks itself and signals it to the
gate by a ready(locked) message (lines 363 370). The locking phase of a

23

ready(1 of nat)

E:' lock(A,{T},1 of nat)
ready(2 of nat)

R———

abort

< Even though it recaved abort, gate A considers task T as ready with o er 2 of nat >
lock(A,{T},2 of nat)

commit

A 12

Figure 5: Data o er handling requires to modify the gate behavior.

subsequent negatiation from this gate an safely bypassthe autolocked task,
and therefore requires less messages.

We illustr ate the autolock optimization on the following example, where
gae A has a single synchronization vedor fT1, T2g as ed ed by the
parallel composition (on the right below):

process T1 [A: any] is process T2 [A: any] is par A in
select select T1[A]
A A A || T2 [A]
oi;A oi;A end par
end select end select
end process end process

Figure 6 illustrates a possble exeation of the protocol. Initially, both
tasks are ready on gate A and on the internal action i. Task T1 exeaites
the internal action, becomes ready only on gate A and announces it with a
ready(locked) message. At this point, gate A considers both tasks as ready
and T1 as autolocked. The dotted arrows indicate the locking phase that

24

would be required in absence of autolock: the lock chain must passthrough
both tasks. Thanks to the autolock, this locking phase is reduced to only
one lock request for T2.

2] [~] 2]

ready ready

ready(locked)
lock(A,{T1,T2})

lock(A ,{T2})

commit {f
commit
E E
.

Figure 6: When T1 is ready only on gate A, it locks itself, and the subsequent locking
phase is reduced.

4.5. Purge Mechanism

As 0n as we added the autolock optimization to the protocol, our sys-
tematic validation approach allowed us to identify an error caused by the
combination of autolock and o set synchronization. We rst illustrate this
problem, and then present t he purge medanism that allows to use the au-
tolock optimization while preserving the protocol corredness

Figure 7 illustrates the issue on the previous example, with a di erent
protocol exeaution. Both tasks T1 and T2 send a ready message to gae A,
which starts a negatiation by sending alock message to task T1. Before the
recetion of thislock message, task T1 realizes an internal action, bemmes
ready only for an action on gate A and sends a ready(locked) message to
gae A. Then, task T1 receves the lock request from gate A, accepts it and
forwards it to task T2, which accets the lock request and informs both

25

gate A and task T1 of the negatiation success with a commit message. a

rst rendeazvous on gate A between tasks T1 and T2 is achieved. At this
point, gate A considers task T1 autolocked, since gate A has receved the
ready(locked) message after it has ®nt the lock request totask T1. Task T2
bewmes ready for only an action on gate A, and signals itsdlf as autolocked
to gaeA. Gate A now considers both tasks autolocked, and concludesthat a
seond rendeavous on gate A is achieved. However, the sped cation of task
T1 authorizes only one action on gate A, therefore this mnd rendeavous is
invalid for task T1.

7] [~] 2]

ready ready
lock
]
ready(locked
lock
commit
< — ot
D] ready(locked) [A]
§ @
|

Figure 7: Autolock and o set synchronization lead to an invalid action.

The invalid action comes from the fact t hat gate A considerstask T1 to
be autolocked although it is not. To avoid such situations, we designed the
purge medanism that enables a task to purge, i.e., to cancd, an autolock
message already sent t 0 a gae. We describe this medanism on the previous
example. Figure 8 illustrates an exeaution of the protocol where the purge
is implemented.

The beginning of the exeaution is gmilar to before. When task T1 is au-
tolocked but receaves alock request from gate A, it knowsthat gate A started

26

7] [~] 2]

ready ready
lock(A {T1,T2})
]
ready(locked
lock(A{T1,T2},{T1})
commit
. it
D:' ready (locked) |_A—|
lock(A {T1})
abort
| | _—

Figure 8: The purge medanism avoids the invalid action.

the negatiation before recaving the ready(locked) message. In this case, task
T1 adds itself to the new purge eld of the lock message (lines 495 498),
written in bold on Figure 8. This purge €d is transmitted to gae A by
the commit message from task T2. When gate A receves this message, it
purges the ready(locked) message from T1. gate A now considerstask T1 as
ready, but not autolocked (seethe all to function update purge at line
374). Then, task T2 dedares itself autolocked to gate A, which starts a new
negatiation. Since gate A does not consider T1 as autolocked anymore, the
negatiation starts with a lock request to task T1, which refuses it. Hence
forth, theinvalid action cannot ocaur, and the exeaution remains corred with
resped to the system sped cation.

4.6. Protocol Complexty

We comparethe complexity of the Parrow and §odin protocol, -coreand
the one used in DLC. Table 2 summarizes the number of messages required
to achieve a synchronization between n tasks including k autolocked tasks.
Since the broadcast of messages is generally not much more astly in time
that the transmisson of a single message, we also gve the length of the

27

longest chain of messages $nt in sequence during a succesul negatiation.
As explained below, numbers between brackets represent optional messages.

Protocol Total messages Longest sequence
Parrow-§adin [53] 5n 2n+ 2
X ifn=k: 2
-core [54] an 2k+2 (p 1) I "
=1 ifn>k: 4+ 2(n k)
DLC 3n k [+2] 2+n k [+1]

Table 2: Summary of protocol complexity: total number of messages and length of the
longest sequence of messages required to synchronizen tasksincluding k autolocked tasks.
pi representsthe number of gates on which task i isready (p; > 0). For DLC, expressons
between brackets indicate the message overhead when gate con rmation is required.

We brie y comment on how we mmputed these message ounts:

Parr ow-Sjodin. Each task sends a request message to its manager, which
then sends a ready message to the gate. The lock chain consumes n
messages to reach the last manager, which sends 1 yes message to the
gateand startsachainof n 1 commit messages. All involved managers
also send a con rm message to their task. Therefore, 5n messages are
required in total.

Therequest, ready and con rm messages can be transferred in paralléd,
whereas there eists an order due to causality in the transmisson of
lock and commit messages. Therefore, the longest sequence @nsistsin
1 request message, 1 ready message, followed by n lock messages and
n 1 commit messages, pluslcon rm message. Theyes messageisnot
taken into acoount sinceit is ent in paralle with a commit message.
Hence the longest sequence is made of 2n + 2 messages.

-core. Firgt, each task signalsthat it isready to the gate, which then locks
tasksin order. Asillustrated in Figure 4, the locking scheme consumes
2 messages per task. Autolocked tasks neel not to be locked, so the
locking phase requires 2(n k) messages, followed by n con rmation
messages broadcasted by the gateto al tasks. At this point, each task
that was also ready on other gates sgnals these other gates that it is
not ready anymore, and waits for the acknowledgment of these gates:
thisdisallows 0 set synchronizations, and requires extra messages. We

28

denote by p; the number of gates on which task i isready, and here we
asame p; > 0 sincewhen p; = O thetask i is not ready on any gates
and therefore no negatiation ocaurs. When atask realizes an action on
a gae, the protocol requires 2 messages for each other gate, for atotal
of 2 in=1(piP 1) extra messages. Hence the -core protocol neels
4n 2k+2 . (p 1) messagesin total.

When all tasks are autolocked, i.e. n = k, only readinessand con rma-
tion messages are exchanged, both in parallél, sothelongest sequenceis
made of 2 messages. Otherwise, lock requests are nealed, and each non
autolocked task also consumes extr a messages, sent in parallel, to warn
other gates that it is not ready anymore. The longest sequence then
amounts to the 2 readinessand con rmation messages, plus 2(n k)
locks and 2 extra messages, for atotal of 4+ 2(n k) messages.

DLC. Eachtask sendsaready message, followed by (n k) lock requests, and
then by n commit messages, for atotal of 3n k messages. Moreover,
when the gate requires the mn rmation, the extra lock and commit
messages add 2 messages.

The longest sequence is made of 1 ready message followed by (n k)
lock requests, and then by 1 commit message, for atotal of 2+ n k
messages. In caseof gate @wn rmation, 1 extralock messageisrequired.

To summarize our protocol combines the locking phase of Parrow and
Sjodin protocol with the autolock optimization. The -core protocol has a
similar optimization, but includes extra messages that disable o set synchro-
nizations. Thanksto the purge medanism, which isembedded in the payload
of existing messages and does not require additional messages, our protocol
can use the autolock optimization in presence of 0 set synchronizations.

5. Interaction with the Environment

DLC generates dandalone programs, which do not require user-den ed
external code to run. However, the programs generated by DLC are of lim-
ited usage if they cannot perform side e ed interactions with their external
environment, such as writing datato a le, or prompting a user. Moreover,
the end user may alsowant t oin u encewhich actionsare seleded at r untime,
for instance to control the server crash rate in the leader eledion example
of Sedion 3. To cover these ases, we designed a medanism that permits

29

user-den ed external procedures written in C, named hodk functions, to be
integrated into the n al implementation. Our god is to make interaction
with the external environment and contr ol of actions as easy to program as
possble, while kegping decent performance

Hodk functions are triggered upon actions, which are the observable
events of an LNT distributed system. Three kinds of hook functions are
intr oduced:

When gate g is about to start a negatiation, it rst exeates a hodk
function named g_pre_negotiation_hook , which returns a bodean
value indicating whether the negatiation is worth being started. The
role of this hook is to prevent uselessnegatiations for actions that t he
user would not allow anyway. If the hook replies positively, the gate
startsa negatiation for which it requiresthe con rmation, as discussed
in Sedion 4.3.

When a negatiation succeels on a gdae g, the gate exeaites a hook
function named g_post_negotiation_hook , which returns a bodean
value indicating whether the action can actually ocaur. Additionally,
this function can be used to feal the system with data taken from the
environment, as we will detail |ater.

When an action ocaurs, i.e., when the gate program announces a com-
mit t o this action, each involved task t exeautes a local hook function
named t_hook, which can be used for local monitoring.

When a pre-negatiation or a post-negatiation hook replies false, the gate
program reacts smilarly to a negatiation failure: it chedks whether some
new task messages arrived, then searches a possble action with resped to
synchronization vedors, and, if one is deteded, it calls the pre-negatiation
hook and, accordingly, either starts the negatiation or not. Thus, a gae
program loops on trying to perform an action, each time randomly sdeded
among the airrently possble ones.

The threeof the hodk functions take as argument a structure @ntaining
information about t he action, including the gate, the merged data o ers, and
theinvolved tasks. A gate program exeautes its post-negatiation hook before
it cheks that all data o er variables are set. Therefore, the user can use the
post-negatiation hook to deted unset variables, assgn to them a value from

30

the external environment, and ag them as st. This enables fealing data
values from the external environment into the system at runtime.

We illustr ate the usage of hook functions on a system with a unique task
logger, which loops on gett ing the data asciated to akey in a database and
loggng this data, until it receves an interruption. The task is ged ed as
follows:

process logger [GET, LOG, INTERRUPT: any] (key: nat) is
var val : nat in
loop (get and log data, until interruption)
select
GET (key, ?val) ; LOG(val)
[INTERRUPT ; stop
end select
end loop
end var
end process

Figures 9, 10, and 11 illustrate various usages of hooks. Figure 9 de-
n es a hook function logger_hook for task logger. This function writes the
data pased on LOG actions onto the local storage of the machine where
the task program runs. Figure 10 den es pre- and post-negatiation hook
functions for gate GET. There is no motivation to prevent actions on gate
GET, so its pre-negatiation hook GET_pre_negotiation_hook always re-
turns true. The GET post-negatiation hook GET_post_negotiation_hook
retrieves the key from data o ers, conneds to an external database to fetch
the arresponding value, and then provides this value to the logger task
by setting the semnd data o er variable. At last, Figure 11 den es pre-
and post-negatiation hooks for gate INTERRUPT. The pre-negatiation hook
INTERRUPT_pre_negotiation_hoolprevents uselessnegatiationsif no inter-
ruption is deteded. The post-negatiation hook INTERRUPT_post_negotia-
tion_hook isexeauted only if the pre-negatiation hodk gave itsauthorization
earlier, so it blindly replies true. The gate INTERRUPT illustr ates the pur-
pose of pre-negatiation hooks: the user knows that an interruption is a rare
event, so he dhedks it early in the pre-negatiation hook to prevent unneces-
sary negatiations for INTERRUPT, and thus does not hamper negatiations
for GET.

With hooks, theuser can prevent some actions, but cannot achieve actions
that would not have been previoudy allowed by the protocol. Hence since
hodks can only restrict t he system behavior, the exeaution path eventually
walked is gill within the original LNT model semantics. Nevertheless users
have to use hook functions carefully as preventing actions can obviousy

31

void logger_hook(struct action *a) {

switch(a->gate) {

case GATE_GET: break;// no local side effect

case GATE_INTERRUPT: breali no local side effect

case GATE_LOG:
uint val = a->offers[0].value;
WriteLog(val); /I write on task machine local storage
break; }

Figure 9: Example of local hook function for task logger .

bool GET_pre_negotiation_hook(struct action *a) {
return True; // no reason to prevent a GET action

}

/I post-negotiation hook can feed data into the system
bool GET_post_negotiation_hook(struct action *a) {

uint key = a->offers[0].value; /I get key from offer
uint val = DataBase_read(key); // external database call
a->offers[1].value = val; /I set the value
a->offers[1].set = True; /I mark the value as set
return True; /I always allow the action

}

Figure 10: Example of pre-negatiation and post-negoatiation hooks for gate GET

intr oduce deadlocks.

The possbility that t he system deadlocks does not question the safety
properties (nothing bad will happen) chedked on the modd. Asregardsthe
livenessproperties (something goal will happen), as usual they assuume that
the environment will i nteract with the system in a way that t he goad things
will e edively happen. For instance it can be dhedked that a telecommuni-
cation protocol will transfer arriving data (which is a livenessproperty), but
nothing guarantees that t he eavironment will enable some data to arrive. In
thisresped, one should view the hook conditions, which are exactly at t hein-
terface between the system and the environment, as part of the environment
rather than part of the system. For the veri cation of hodks themselves, we
invite users to use traditional veri cation methods auch as testing.

32

bool interruption = False; /I record interruption detection

/I Prevent useless negotiations
bool INTERRUPT _pre_negotiation_hook(struct action *a) {

if (linterruption) { /I may be previously detected
interruption = detect_interrupt(); /I rarely true

}
return interruption;

}

bool INTERRUPT_post_negotiation_hook(struct action *a) {
interruption = False; /I reset interruption flag
return True;

}

Figure 11. Example of pre-negctiation and post-negatiation hooks for gate INTERRUPT

6. Automatic Generation of Distributed Implementation

Figure 12 gves an overview of DLC architedure. The DLC tod takes
a system sped cation given as an LNT parallel composition of tasks as in-
put, optionally together with C hook functions, and produces a distributed
implementation in C.

N

LNT |taskf| T EXECICAESAR }—(interface} . Dtask startef |config| |
x starteﬂ . !

specification

: || - P F v
II| task —(extract info—+{ specinfo] : gard] | ey

. user input

-------------------- DLC ' i o
i el protocol manage} gatg S i [genericlib.
! hooks -y L5) i implem. i |:| generated lib.

__ T TTtee— e e e meii————me---- L-J)

Figure 12: DLC architedure overview.

DLC rst extractsinformation about t he input sped cation and colleds
them into a C library named spednfo , which is thus automatically gen-
erated for each system compiled by DLC. This library contains for instance
the number of tasks and gates, the synchronization vedors, and the like.

DLC uses the EXEC/ CASAR tod of CADP to dbtain a sequential im-
plementation, in C, for each task. A program generated by EXEC/ CAESAR
isableto list possble actions from the aurrent state of the task, but cannot
dedde which action isrealized. DLC injeds an interfaceinto the C code pro-
ducead by EXEC/ CAESAR in order to bind the task with the manager logc

33

of the rendeavous protocol, which is responsible of conducting negatiations
to determine which action should be realized. Moreover, each task is linked
with the spednfo library in order to have accessto the system information,
such as synchronization vedors.

DLC produces a gae processfor each gate of the system. The gate logc
isimplemented in a generic module, whose behavior is con gured to match
a gae of the aurrent system thanks to information of the spednfo library.

Moreover, both tasks and gates use the network library of CADP (not
represented in Figure 12) for communication between distant processes. This
library is built upon TCP sockets, and thus stis esthereiable and ordered
communication hypothesis required for the protocol (as was shown in [40]).
In addition, the network library provides a integrated deployment service
through a starter program that is able to automatically distribute and
start other programs on a cluster of machines. The starter program is con-

gured with a smple text le (named con g on Figure 12) that lists the
names of machines available for deployement. The cwon guration le an be
written by hand or generated by other scripts, thus making automatic dus-
ter deployment easy. By default, DLC produces a con guration le where
all tasks and gates run on the local host.

The user can den e hook functions for tasks and gates in C source les,
named task .taskhook.c and gate.gatehook.c . DLC automatically de-
teds the presence of these les and embeds them into the generated imple-
mentation. DLC also provides a hook template aeator, which can be used to
obtain hodk functions with empty bodies for any task or gate of the system.

In terms of program size the wde generator part of DLC is made of
more than 1600lines of C, and the runtime of generated implementations
(i.e., mainly the protocol logc) represents more than 2000lines of C. The
amount of C code generated depends on the system given as input. For
instance on the Raft example of Sedion 7.3, DLC generates 2302lines of C
code for each server, and 84 lines of C code for the synchronization vedor
library.

Nondeterminism and Fairnessin the Generated | mplementation

If the input sped cation is nondeterministic, then the distributed imple-
mentation generated by DLC is also nondeterministic. The main source of
nondeterminism is the variable delay of messages exchanged between pro-
grams. When several negatiations are concurrently started for con icting
rendezvous, the rst negatiation that locks all tasks will succeel: this de-

34

pends on the cmmunication delay to transfer lock messages to tasks. |If
such delays are variable, then any of the started negatiations has a chance
to succeel.

However, thisis not enough to gve a chanceto al possble actions: when
a gaereceaves enough ready messages to enable several synchronization vec
tors, if the gate always chooses to start a negatiation for the same synchro-
nization vedor among the enabled ones, then actions corresponding to other
enabled synchronization vedors have no chanceto happen. In order to avoid
such arestriction of nondeterminism, a ga e randomly choaoses a synchroniza-
tion vedor (to start a negatiation for) among the enabled ones. Thus, when
a gde deteds sveral synchronization vedors enabled at t he same time, a
negotiation may be started for any of the enabled synchronization vedors.

Since a negatiation may be started for any enabled synchronization vec
tor, and that all started negatiations have a chance to succeeal, all possble
actions of the system may be realized. Hence the generated implementation
kegos the same level of nondeterminism as the original sped cation. This
is actually cheded in the protocol veri cation method (discussed in Sec
tion 4.2): sincethe model of the implementation is at least safety-equivalent
with theoriginal sped cation, all actionspossblein theoriginal sped cation
are reachable by the implementation.

A dightly more involved question is whether all con icting rendeavous
have the same probability of being exeauted by the implementation. We
believe that it is not the ase. Inded, if ready messages are sent by a task
to the ready gates always in the same order, then it is likely that the gate
that is contacted rst will achieve its rendeavous dightly more often than
the next gates, becuse of the high probability that it will receve the ready
message before its con icting gaes and will bethe rst to lock all tasksin
its lock chain. This can easily be solved by choosing randomly the order
in which gates are mntacted by a task, but the mmplexity of the locking
medanism let us think that several other parameters can have an impact
on the distribution of exeaution probabilities between con icting rendezvous,
such as the length of the respedive lock chains, the order of tasks in lock
chains, and the relative positions in the lock chains of those tasks that are
in the intersedion of the wn icting synchronization vedors. In the future,
it would be interesting to study formally this asped, for instance using the
guantitative analysis tods available in CADP [14] after adding quantitative
annotations in the LNT moded. Such a study requires to have a realistic
guantitative model of communication delays, which itsef may depend on

35

several parameters, but we believe that r easonable asumptions can be made,
which would help to improve the fairnessof the implementations generated
by DLC.

Booatstrappng and Rendezvous Protocol | mplementation

We do not have an LNT formal model of the whole DLC compiler, but it
isin itself a colledion of code generation procedures, which are sequential.
We focused our e ort on the formal sped cation and veri cation of the ren-
dezvous protocol, which is at the heart of each distributed implementation
generated by DLC.

Given that DLC isableto generatethe LNT model of an implementation
for veri cation purposes (see Sedion 4.2), we an think of a boatstrapping
approach that consistsin using EXEC/ CAESAR on thisLNT modéd to even-
tually obtain a C implementation. However, thisis currently impractical, es-
sentially becuse the veri cation branch of DLC islimited to systems where
rendezvous have no data exchange (whereas the implementation branch of
DLC does support value-passng rendezvous). Therefore, weimplemented the
protocol by hand, strictly following the LNT sped cation for the synchro-
nization logic. The hand-writing approach allowed us to diredly integrate
data o ersand hodk functions support, with minimal performance overhead.

The protocol implementation consists of two modules for the protocol
logic of tasks and gates. These modules are writt en once and for all, and are
subsequently reused in generated implementations, where their behavior is
tailored to the aurrent system through information from the spednfo library.
Theisolation of the protocol corelogc in generic modules eases its debuggng
and maintenance and raises the level of trust we have in its corredness

As a comparison, the approach used to generate a distributed implemen-
tation in BIP is closer to the boatstrapping approach mentioned earlier: the
protocol logcisinserted at t he BIP level, to dbtain aBIP sped cation where
processs interact only by sending and receving messages. Then, this model
iscompiled to aplatform that provides message-passng primitives. Thisisa
valid corred-by-construction approach when the equivalence of BIP models
before and after protocol insertion can be demonstr ated; however, the prodf
does not concern the protocol actually used in the implementation (namely

-core), but smpli ed protocols, which do not enforce progress i.e., do not
guaranteethat possble rendezavous will eventually happen (seethe discusson
on interoperability of reservation protocols in Sedion 6 o [57]). Progress
is cheded in our approach using livelock and deadlock detedion.

36

Current Limitations
We brie y list t he main current limitations of DLC:

DLC can handle data o ersin rendeavous for smple types which val-
uescan t on a 32bit C integer, but it cannot handle data o ers for
more mmplex types such as arrays and lists. Complex types can be
used in the sped cation, but t hey must not appear in rendezvous data
0 ers, otherwise DLC emits an error during compilation. The support
of complex types neads srialization and deserialization primitives for
any user-den ed type. We consider that such primitives sould be gen-
erated by CADP todswhich have the contr ol on the C implementation
of these types; we thus left complex type support for future work.

DLC considers that t he number of tasks is a constant den ed by the
(static) parallel composition of the input systems. In particular, a
task cannot dynamically create other tasks at runtime. Although the
dynamic aeation of tasks is an interesting feature, it requires substan-
tial modi cations of the EXEC/ CASAR tod, such that t he generated
C implementation of a task could fork itself into several tasks, which
could be deployed at runtime. Moreover, the protocol would also need
to modify the synchronization vedors at runtime, to take new tasks
into acocount. For the moment, dynamic aeation of tasks can be sm-
ulated in the sped cation by dedaring a static pod of tasks, and by
activating some tasks among thispod using sped c actionsat runtime.

LNT allows guarded actions, i.e., actions which are authorized only if
a condition, which may depend on a value recaved during the action,
isveri ed. For instance the following LNT code sped es an action on
gate A that can be realized only if the value receved in variable x is
greater than the value stored in variable y:

A (?X) where x > y

DLC doesnot handle guarded actionsyet because EXEC/ CAESAR does
not give accessto the guard condition. To support guarded actions, we
neal to modify EXEC/ CAESAR,; thisis left for future work.
7. Experimental Results
We mnducted several experiments to evaluate the implementations gen-
erated by DLC. The rst two experiments focus on the evalutation of the

37

multiway rendezvous protocol. The last experiment is a case study on the
Raft consensus algorithm. These experiments are performed on clusters pro-
vided by thedistributed computing testbed Grid'5000%°. Measures may have
been impacted by other experiments of other researchers running at t he same
time.

7.1. Distributed Synchronization Barrier

This experiment evaluates the rendeavous protocol on a system with non-
con icting multiway rendezvous between a various number of tasks. The
system is a classcal distributed synchronization barrier between several de-
terministic proceses. We measure the time required for distant processs to
synchronize themselves sveral times on a barrier.

Implementing adistributed barrier in LNT isdiredly achieved by a multi-
way rendezavous between all workerson asinglegate, asdepicted in Figure 13.
In order to compare the performances of the implementation generated by
DLC with other possble solutions, we also implemented this system in C,
Java and Erlang, using respedively sockets, Java RMI (Remote Method In-
vocation) and Erlang's built-in message passng as communication primitive
between processes. Sincethese languages do not o er multiway rendeavous,
we fall back on the dasscal implementation of a distributed barrier. For
instance, Figure 14 illustrates the Java implementation: a distinct barrier
process blocks workers until they have all invoked the SYNC method, and
then let t hem continue. C and Erlang implementations follow the same idea,
using message passng between workers and the barrier process

1 process WORKER [SYNC: none] is 9 Parallel composition: 5 workers
2 varn:natin 10 par SYNCin

3 for n:= 0 while n < 1000 by n:= n + 1 loop 11 WORKER [SYNC]

4 SYNC 12 || WORKER [SYNC]

5 end loop 13 || WORKER [SYNC]

6 endvar 14 || WORKER [SYNC]

7 end process 15 || WORKER [SYNC]

8 16 end par

Figure 13 Implementation of a synchronization barrier in LNT: all worker processs
synchronizes with a multiway rendezvous on gate SYNC.

Figure 15 illustrates the time required to perform a thousand synchro-
nizations between several processes which are deployed on distinct machines.
We observe that t he implementations generated by DLC are slower than the

Phttp://www.grid5000.fr

38

1 public class Barrier implements Barrierinterface { 17 /I main method: create RMI registry, register method SYNC
2 private static int ¢ = 0; 18 }

3 private nal static Object lock = new Object(); 19

4 private static int nb_worker = 5; 20 public class Worker {

5 21 public static void main(String[] args) {

6 public void SYNC() { 22 /I Retrieve RMI registry from host given as argument

7 synchronized (lock) { 23 Registry registry = LocateRegistry. getRegistry (args [0]);
8 [24 /I Get barrier stub

9 if (c == nb_worker) { 25 Barrierinterface stub = (Barrierinterface) registry .lookup("SYNC");
10 c=0; 26 /I Synchronize 1000 times

11 lock. notifyAll (); 27 for (int i = 0; i < 1000; i++) {

12 } else { 28 stub.SYNC();

13 lock . wait () ; 29 }

14 } 30 }

15 } 31}

16 }

Figure 14 Implementation of a synchronization barrier in Java: each Worker invokes
(through Remote Method Invocation) the SYNC method of the Barrier process which
makes workers wait until they have all i nvoked the method.

C programs, but faster that t he Erlang and Java ones. All programs €an
to scale linearly with the number of processs.

600 |
500 |
400 |
300 |
200 |
100 |

Time (ms) for 1000 synchro.

Number of distant processes

Figure 15: Distributed synchronization barrier: thanks to the autolock optimization, the
code generated by DLC reaches the speal of regular programming languages.

The synchronization protocol appearsto be asfast as native implementa-
tionsin the situation of a distributed barrier, which can be explained by the
autolock optimization. In the LNT implementation, task processs are al-
ways ready on only one gate (which correspondsto the barrier), therefore the
autolock optimization is activated. With autolock, protocol negatiations are
reduced to aready and a commit message per task: this matchesthe dasscal
implementation of a distributed barrier used in other implementations.

There are onstant performance gaps between the implementations. On
the one hand, we think that DLC generated implementations are slower than

39

the native C ones because DLC generates C code that contains all the logic
of the protocol, and that uses alibrary for message passng on top of sockets.
Ontheother hand, we supposethat Java and Erlang solutions are slower than
the DLC ones because of the overhead imposed by their respedive virtual
machines. This experiment shows that, in the absence of con icts, the DLC
protocol performanceis smilar to native implementations.

7.2. Dining Philosophers

The aim of this experiment isto evaluate the e ciency of the rendeavous
protocol on a system containing many con icting multiway rendeavous. We
consider the dining philosophers problem [15], which is a clasgcal problem
of mutual excluson when accessng shared resources. This example has the
advantage of being simple and well-understood, so we @nsider it as an ap-
propriate benchmark to evaluate DLC. It consists of several philosophers
gtting a a round table to eat meals. In order to eat, a philosopher must
take its two surrounding forks, which are shared with its neighbors. Forks
correspond to resources that are shared between philosophers, and the prob-
lem isto guaranteethe mutual exclusion of philosophers who want t 0 access
the same forks, without intr oducing deadlocks.

Most solutions are based on the hypothesis that a philosopher can only
interact with one fork at a time. Thus, the solution is a protocol to ensure
that both forks can be picked without leading the system into a deadlock.
Werevisit the problem in LNT, now equipped with the multiway rendezvous:
a philosopher takes its both surrounding forks in one rendeasous where the
threeprocesss (t he philosopher and the two forks) synchronize An excerpt
of the LNT code is given in Figure 16. Rendezvous on eating actions are
con icting for neighboring philosophers. These @n icts are resolved in the
DLC-generated implementations by the synchronization protocol, which en-
sures the mutual exclusion of con icting rendeavous.

For comparison, we wrote a distributed philosopher solution in Java, us-
ing RMI for processinteractions. An except of the Java code is given in
Figurel7. Forksareobjedswith take and release methods, and phil oso-
phersareobjedsthat call fork methodsthrough RMI. In order to avoid dead-
locks, we use the simple solution that consists in imposing a gobal order on
fork picking.

In practice we measure the amount of timerequired by a group of phil oso-
phersto eat a catain amount of meals each. Note that both LNT and Java
implementations do not prevent the possble starvation of a philosopher.

40

However, in the context of this experiment, we do not focus on a starvation-
free solution to the dining philosophers. We merely want to produce im-
plementations with many interactions between distant processes. Moreover,
since we bound the number of meals that each philosopher must eat, all
philosophers eventually have the opportunity to nish all their meals. The
exeaution times for both the LNT/DLC and Java versions of the dining
philosophers example are presented in Figures 18 and 19 respedively. They
show that both DLC and Java provide solutions with similar performance

1 process PHILO [EAT: none] (nbmeals : nat) is 15 nbmeals := nbmeals 1

2 while nbmeals > 0 loop 16 end loop

3 EAT; 17 end process

4 nbmeals := nbmeals 1 18

5 end loop 19 3 philo and 3 forks, 1000 meals per philo

6 end process 20 par

7 21 EAT_O > PHILO [EAT_0] (1000)

8 process FORK [EAT_LEFT, EAT_RIGHT: none] (nbmeals : nat) is 22 || EAT_O, EAT_1 > FORK [EAT_O0, EAT_1] (1000)
9 nbmeals := nbmeals 2; a fork is used by 2 philo 23 || EAT_1 > PHILO [EAT_1] (1000
10 while nbmeals > 0 loop 24 || EAT_1, EAT_2 > FORK [EAT_1, EAT_2] (1000)
11 select 25 || EAT_2 > PHILO [EAT_2] (1000)
12 EAT_LEFT 26 || EAT_2, EAT_O > FORK [EAT_2, EAT_O0] (1000)
13 I EAT_RIGHT 27 end par
14 end select ;

Figure 16: LNT code for the dining philosophers example.

1 public class Fork implements Forkinterface { 17 int nbmeals = Integer. parselnt (args [4]);

2 private static Lock | = new ReentrantLock(true); 18 /I Get Forks sub

3 19 Forkinterface sl = (Forkinterface) rl.lookup("Fork");
4 public void take() { I.lock(); } 20 Forkinterface s2 = (Forkinterface) r2.lookup("Fork");
5 public void release() { |.unlock(); } 21 /I sort to take forks in order

6 22 if (forkidl > forkid2) {

7 /I main method: create RMI registry, register Fork 23 Forkinterface tmp = sl; sl = s2; s2 = tmp;

8} 24 }

9 25 for (int i = 0; i < nbmeals; i++) {

10 public class Philo { 26 sl.take();

11 public static void main(String[] args) { 27 s2.take();

12 /I args: forkidl, hostl, forkid2, host2, nbmeals 28 sl. release ();

13 int forkidl = Integer. parselnt (args [0]); 29 s2. release () ;

14 Registry rl = LocateRegistry. getRegistry (args [1]); 30 }

15 int forkid2 = Integer. parselnt (args [2]); 31}

16 Registry r2 = LocateRegistry. getRegistry (args [3]); 32 }

Figure 17: Java code for the dining phil osophers example.

7.3. Case Study: Raft Consensus

We modeded Raft [51] in LNT in order to demonstrate DLC on a non-
trivial system. Raft, like the better known Paxos [37], is a consensus al-
garithm: it maintains a consistent log d entries replicated among a set of
servers, while surviving the failure of some servers. It t hus enables fault t ol-
erant services to be built using the replicated state machine tedinique [58].

41

execution time (ms)

number of philosophers

6000 | /3
8000 B /

mealsper philosopher

Figure 18: Exeaution time for the dining phil osophers exampleusing LNT and DLC. Vary-
ing parameters are the number of phiosophers and the number of meals per philosopher.

Raft isused in several industrial-classfault t olerant key-value stores, such as
Consul.t

A TLA+ formal sped cation of Raft corefeatures (leader eledion and log
replication) is available, upon which a hand-writt en safety prodf is built [50].
Our LNT modd includes a basic key-value store made fault t olerant using
Raft: every client request to the store is rst committed on a majority of
servers before the answer is #nt back to the dient. We use hook functions
to implement (a) the timeout medanism nealed in Raft, (b) the control of
server crashes, and (¢) a socket interface to the key-value store, such that
external client programs can be implemented in any language. We managed
to implement the core of Raft in approximately 500Ilines of LNT plus 300
lines of C for hook functions (mainly boilerplate for sockets); for comparison,
the Consul Raft library alone represents approximately 4000lines of Golang.

The generated distributed programs succesdully run on a cluster of ma-
chines. We rst experimented with server crashes to validate that t he key-
value store remains available as long as a majority of servers are running.
Then, for di erent cluster sizes, we made several runs of a thousand write
requests to the key-value store, with crashes disabled. Figure 20 compares
the performances of DLC with those of Consul.

I Consul: www.consul.io , and its Raft library: github.com/hashicorp/raft

42

r of philosophers

10000
meals per philosopher

Figure 19: Exeaution time for the dining phil osophers example using Java.

We measure throughput with requests coming from many clients in par-
ald (seeleft of Figure 20). In this case, Consul implementation is up to
ten times faster than our solution, and seems to be only dightly impacted
by the duster size After a discusson with Consul developers, we realized
that Consul uses a Raft-level optimization: when the leader server receves
a client request, it waits 50ms to gaher other client requests in order to
replicate the group of requests among Raft servers in only one round of log
replication, whereas the LNT implementation triggers a log replication for
each client request. We annot easily implement t he Consul strategy since
DLC does not yet handle arrays or lists in rendeavous.

Nonetheless Consul latency, measured with sequential requests from a
single dient (seeright of Figure 20), su ers from the optimization. Indeed,
the leader server pauses 50ms for each requests, thus the procealing time
for 1000 serial requests reaches 50 seconds. The LNT implementation is
not impacted sinceits leader server tr eats requests squentially anyway, and
presents a latency which increased with the size of the Raft cluster, as ex-
peded. For the 7 servers con guration, our solution proceeals 1000requests
in 5469ns (in average), i.e., alittle bit more than 5ms per request r eplication

While DLC does not pretend to generate implementations that compete
with hand-crafted programs, we mnsider that t he performance achieved so
far ill qualify for rapid prototyping, with all the bene tsthat formal veri -
cations brought on. Moreover, hook functions enable to mode and prototype

43

o

@ 6000 .

= — LNT-Raft _ Z 60000 ——= LNT-Raft

S 5000 b &= Consul % &2 Consul

5 ‘= 50000 % o %

2 4000 F & o o o

3 g 40000 | e S

9 S 3 o

g 3000 F T 30000 [S S 2<

— e *i/ x:/ Xi/

5 2000 | % 20000 < < <

@ E % 35 5

E 1000 [2 10000 f- < < 5

@ s e8] £ = < < <

E 0 i 2 %1 = 0 o it I_l et

= 3 5 7 3 5 7
Number of raft servers Number of raft servers

Figure 20: Raft consensus: comparison with Consul, throughput (left) and latency (right).

only a part (e.g., the safety critical part) of a larger system while till i nter-
acting with the rest of the system through hook functions.

8. Conclusion and Future Work

A distributed system made of asynchronous concurrent processs can be
formally modeled in LNT, using powerful primitives such as value-passng
multiway rendezvous. An LNT mode can be formally veri ed thanks to
the numerous and mature tods of CADP. The tod DLC, presented in this
paper, now also enables rapid prototyping by automatically generating a
distributed implementation in C. We think the combination of LNT, CADP
and DLC provides a featureful framework for the formal veri cation and
rapid prototyping of distributed systems.

We presented the protocol used to implement value-passng multiway ren-
dezvous, which allows 0 set synchronizations together with the autolock op-
timization, made @rred t hanks to the purge medcanism. We incrementally
developed this protocol thanks to an automatic veri cation approach which
relies on the formal tedniques that our team has been working on for years.
We provide the LNT formal spea cation of this protocol in Appendix A.
In order to let the end-user have some wntrol on the generated programs
and den e interactions with the external world, we introduced hook func-
tions, which enable user-den ed C proceduresto beintegrated into the n al
implementation. The hook functions can only restrict t he system behavior,
therefore they should not be able to make it behave incorredly with resped
to the original sped cation semantics. We cvered how DLC proceals to

44

generate distributed programs, and we exposed DLC internal architedure.
We presented three experiments made with DLC, including an implementa-
tion of the non-trivial Raft algorithm. The measured performances reveal
that even if DLC generated programs may be aurrently sower than solutions
writt en in general programming languages, we @nsider that t hey still qualify
for rapid prototyping.

Asfuture work, we plan to make DLC handle mmplex types, such aslists
and arrays, in data o ers. We also think the protocol negatiations can be
shortened in some spedal cases (such as binary rendezvous) which could lead
to better performances. Moreover, it would be useful to implement timing
medianisms (such as timeouts) as primitives of LNT, as already suggested
in [60]. Currently, DLC communication relies on TCP sockets, which is a
uniform communication mean but not necessarily the most e cient in all
situations. A new track of research could be to investigate how DLC could
generate ade spedalized to sped ¢ computing architedures (multi-core or
distributed, communication through a local network or through internet,
etc.), for instance by adding options in the network con guration le, or
DLC-sped c annotations in the LNT modd. Finally, a way to raise the
trust in the crreanessof DLC could beto boatstrap the compiler from LNT
sources, for instance using our team compiler constr uction framework [24].
We @n also consider using CADP todson the sourceLNT model to perform
co-smulation of the distributed program exeaution, in a way similar to what
Garave et al. [28 and Lantreibeay et al. [39) have already explored using
EXEC/ CASAR.

Acknowledgments

The authors warmly thank Lucas Cimon for suggesting Raft as a case
study, and theInria/ CONVECSteam members, in particular Wendelin Serwe
and Hubert Garave, for useful discusgons. This work was partly funded by
the French Fonds national pour la Société Numérique (FSN), Péles Minalogic,
Systematic and SCS (projed OpenCloudware). Experiments presented in
this paper were aarried out using the Grid'5000testbed, support ed by a scien-
ti cinterest group hosted by Inria and including CNRS, RENATER and sev-
eral Universitiesaswell asother organizations (seehtt ps.// www.grid5000Qfr).

45

Appendix A. LNT Model of the Multiway Rendezvous Protocol

This appendix presents the LNT model of the multiway rendeavous pro-
tocol in ve parts. Appendix A.l lists the data types, the functions den ed
on these types, and the communication channels used in the sped cation.
Some standard functions, such as st-related operations (member, insert, di |,
etc), arepreden ed in LNT, see[12] for more details. Appendix A.2 presents
the generic mode of a gae processand Appendix A.3 presents the generic
model of a manager process Appendix A.4 presents a bu er process which
is a bounded FIFO bu er used to model asynchronous communications be-
tween gates and managers. Finally, Appendix A.5 presents a small system
sped cation and the implementation model generated by DLC from this
sped cation, which uses instances of the generic models of gate, manager
and bu er.

ThisLNT modd isthe one actually used for the formal veri cation of the
protocol with CADP. Therefore, it is also present in the DLC distribution,
available at http://hevrard.org/DLC

Appendix A.1. Data Types, Functions and Channels

TYPES

1
2
3 type nat_set is

4 set of nat

5 with "length", "access', "member"
6 end type

7

8

9

type id_set is
sorted set of DLC_ID

10 with "head", "length", "access', "member", "di ", "union", "remove", "empty", "inter"
11 end type
12
13 type id_list is
14 list of DLC_ID
15 with "union", "empty", "head", "member", "delete", " tail "

16 end type

17

18 type sync_ved_list is

19 list of id_set

20 with "head", "access', "length"
21 end type

22

23 type sync_map_entry is
24 sync_map_entry (gate : DLC_ID, ved_list : sync_vect_list)

25 with "get"
26 end type
27

28 type sync_map is
29 list of sync_map_entry

46

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

85
86

with "access', "length"
end type

type dic_action is
action (gate : DLC_ID)
with "get", "=="

end type

type action_set is

set of dic_action

with "length", "access', "member"
end type
type transition is

nil_transition ,
transition (action : dic_action, next_states : nat_set)
with "get", "=="

end type

type transition_list is
list of transition
end type

type state is
nil_state ,
state (id : nat, transitions : transition_list)
with "get"
end type
type state list is
list of state
end type

type lock is

lock (action : dic_action, index : nat, path : id_set, con rm : bool, purge :

with "get", "set
end type

type lock_list is
list of lock

with "empty", "append", "head", "length", "access', " tail "
end type

type message is
READY (autolocked : bool),
LOCK (lock : lock),
COMMIT,
COMMIT (purge : id_list),
ABORT,
ABORT (purge : id_list)
end type

type message_list is

list of message

with "append”, "head", " tail *, "length", "empty"
end type

a7

id_list)

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

type arrival is

arrival (action : dic_action, arrival

with "get"
end type

type arrival_list is

list of arrival

with "access', "length"
end type

type gate_state is
idle,
dealing
with "=="
end type

type manager_state is
free,
locked,
autolock_ free,
autolock_locked
with "==" "I="
end type

FUNCTIONS

function nd_state (space : state list , id

case space in

var i : nat, tra : transition_list , tail

{ > return nil_state

: nat)

: nat) : state is

state list in

| cons(state (i, tra), any state list) wherei ==

return state (i, tra)
| cons (any state, tal) >
return nd_state (tail , id
end case
end function

)

function nd_transition (tl : transition_list , act :

case tl in
var a : dlc_action, nl : nat_set,
{} > return nil_transition

| cons (transition (a, nl), any transition_list) where a == act

return transition (a, nl)
| cons (any transition , tail)

return nd_transition (tail , act)

end case
end function

function get_next(space : state list , id

var t : transition in

>

tail

id >

dic_action) :

transition_list in

. nat,

action

: dlc_action)

transition is

>

: nat_set is

t := nd_transition (get_transitions (nd_state (space, id)), action) ;

if t == nil_transition then
return {}
else
return get_next_states (t)
end if
end var

48

144 end function

145

146 function collect_action (tl : transition_list , al : action_set) : action_set is
147 case tl in

148 var act : dic_action, tail : transition_list in

149 {} > returnal

150 | cons (transition (act , any nat_set) , tail) >

151 return collect_action (tail , insert (act, al))

152 | cons (nil_transition , tail) >

153 should never happen, remove compiler warning

154 return collect_action (tail , al)

155 end case

156 end function

157

158 function possble_actions (space : state list , id : nat) : action_set is
159 return collect_action (get_transitions (nd_state (space, id)), {})
160 end function

161

162 function extract_gate (al : action_set, gl : id_set) : id_set is

163 case al in

164 var g : DLC_ID, tail : action_set in

165 {3} > returngl
166 | cons (action (g), tal) >
167 return extract_gate (tail , insert (g, gl))

168 end case

169 end function

170

171 function arrival_state (dl : arrival_list , act : dic_action) : nat
172 raises action_not_found : none

173 is

174 var n : nat in

175 for n := 1 while n <= length (dI) by n := n+1 loop
176 if get_action (access (dl, n)) == act then
177 return get_arrival (access (dl, n))

178 end if

179 end loop;

180 raise action_not_found

181 end var

182 end function

183

184 function isin (ved, rdytask : id_set) : bool is
185 var n : nat in

186 for n := 1 while n <= length (vect) by n := n+1 loop
187 if not (member (access (ved, n), rdytask)) then
188 return false

189 end if

190 end loop ;

191 return true

192 end var

193 end function

194

195 function possble_rdv (rdytask : id_set, vecors : sync_ved_list) : bool is
196 var ved : id_set, n: nat in

197 for n := 1 while n <= length (vectors) by n := n+1 loop
198 ved := (access (vedors, n));

199 if isin (ved, rdytask) then

200 return true

49

201 end if

202 end loop ;
203 return false
204 end var

205 end function

206

207 function list_rdv_index (rdytask : id_set, vectors : sync_ved_list) : nat_set is
208 var vedt : id_set, n: nat, result : nat_set in

209 result := {};

210 for n := 1 while n <= length (vectors) by n := n+1 loop
211 ved := (access (vedors, n));
212 if isin (ved, rdytask) then
213 result := insert (n, result)
214 end if

215 end loop ;

216 return result

217 end var

218 end function

219

220 function lock_state (in out manager : manager_state) raises invalid_state : none is
221 case manager in

222 free > manager := locked
223 | autolock_free > manager := autolock_locked
224 | any > raise invalid_state

225 end case

226 end function

227

228 function get_sync_vect (lock : lock, gsm : sync_map) : id_set is
229 var g : DLC_ID, n, index : nat in

230 g := get_gate (get_action (lock));

231 index := get_index (lock);

232 for n := 1 while n <= length (gsm) by n := n+ 1 loop
233 if get_gate (access (gsm, n)) == gthen

234 return access (get_vec_list (access (gsm, n)), index)
235 end if

236 end loop ;

237 return {} of id_set

238 end var

239 end function

240

241 function next_task (task : DLC_ID, ved :id_set) : DLC_ID is
242 var n : nat in

243 for n := 1 while n < length (vect) by n := n+1 loop
244 if t == access (ved, n) then

245 return access (ved, n+1)

246 end if

247 end loop ;

248 return DLC_NULL_ID

249 end var

250 end function

251

252 function update_purge (in out purgel : id_list , purge : id_list, in out autolock : id_set) is
253 var id : DLC_ID, newpurge : id_list in

254 purgel := union (purgel, purge);
255 newpurge := {} ;

256 while not (empty (purgel)) loop
257 id := head (purgel);

50

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

if member (id, autolock) then
autolock := remove (id, autolock)
else
newpurge := cons (id, newpurge)
end if;
purgel := tail (purgel)
end loop;
purgel := newpurge

end var
end function

CHANNELS

channel com is
(DLC_ID, message)
end channel

275 channel annonce is
(DLC_ID, id_set)
277 end channel

276

Appendix A.2. Generic model of the Gate Process

277 process GATE [SEND, RECV : com, ACTION, HOOK_REFUSE : annonce]

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

is

var

(gate : DLC_ID, vectors: sync_vect_list)

state . gate_state,
readyset o id_set, ready tasks
autolock o id_set, autolocked tasks
dealreadyset : id_set, tasks ready during a negotiation
dealautolock : id_set, tasks autolocked during a negotiation
dealvect id_set, current negotiation synchro vector
dealindex : nat, current negotiation synchro vector index
dealpath o id_set, current negotiation lock chain
purgelist ©oid_list tasks to purge

temporary variables
n . nat,
task : DLC_ID,
lock : lock,
con rm . boal,
purge ooid_list

autolocked : boal,
vedindexes : nat_set

initialization
state = idle;
readyset =
autolock = {;
dealreadyset = {} ;
dealautolock = {} ;
dealvect ={;
purgelist =
dealpath =

main loop

loop

51

311 select

312 Recdve READY message

313 RECV (?task, ?PREADY (autolocked));

314 if member (task, purgelist) and (autolocked) then

315 purge : ignore the autolock eld

316 purgelist := delete (task, purgelist);

317 autolocked := false

318 end if;

319 if state == dealing then

320 dealreadyset := insert (task, dealreadyset);

321 if autolocked then

322 dealautolock := insert (task, dealautolock)

323 end if

324 else

325 readyset := insert (task, readyset);

326 if autolocked then

327 autolock := insert (task, autolock)

328 end if

329 end if

330 0

331 Start a negotiation

332 only if (state == idle) and (possble_rdv (readyset, vectors)) then
333 vedindexes := list_rdv_index (readyset, vedors);
334 Choose randomly among possble synchronizations
335 dealindex := any nat where member (dealindex, vectindexes);
336 dealvect := access (vedors, dealindex);

337 dealpath := di (dealvedt, autolock);

338 if empty (dealpath) then

339 All tasks are autolocked

340 select

341 Post negotiation hook may refuse the action
342 HOOK_REFUSE (gate, dealvect)

343 1|

344 ACTION (gate, dealvect);

345 for n := 1 while n <= length (dealvect) by n := n+1 loop
346 SEND (access (dealvedt, n), COMMIT)

347 end loop;

348 readyset di (readyset, dealved);

349 autolock := di (autolock, dealvect)

350 end select

351 else

352 Lauch a lock request

353 task := head (dealpath);

354 Simulate hook presence: randomly require con rmation
355 con rm := any boal;

356 SEND (task, LOCK (lock (action(gate), dealindex, dealpath,
357 con rm, {}));

358 dealreadyset = {} ;

359 dealautolock = {} ;

360 state := dealing

361 end if

362 end if

363 0

364 Recdve a COMM IT message

365 only if state == dealing then

366 RECV (?task, ?COMMIT (purge) of message);

367 readyset := di (readyset, dealved);

52

368 readyset union (readyset, dealreadyset);

369 readyset := remove (task, readyset);

370 autolock := di (autolock, dealved);

371 autolock := union (autolock, dealautolock);

372 autolock := remove (task, autolock);

373 eval update_purge (!?purgelist , purge, !?autolock);
374 state := idle

375 end if

376 1]

377 Recdve an ABORT message

378 only if state == dealing then

379 RECV (?task, 2ABORT (purge) of message);

380 readyset := remove (task, readyset);

381 readyset := union (readyset, dealreadyset);

382 autolock := remove (task, autolock);

383 autolock := union (autolock, dealautolock);

384 eval update_purge (!?purgelist , purge, !?autolock);
385 state := idle

386 end if

387 1]

388 Recdve a LOCK message

389 only if state == dealing then

390 RECV (?task, ? LOCK (lock) of message);

391 select

392 HOOK_REFUSE (gate, dealved);

393 for n := 1 while n <= length (dealpath) by n := n+1 loop
394 SEND (access (dealpath, n), ABORT)

395 end loop;

396 readyset := union (readyset, dealreadyset);

397 autolock := union (autolock, dealautolock)

398 1]

399 ACTION (gate, dealvect);

400 for n := 1 while n <= length (dealvect) by n := n+1 loop
401 SEND (access (dealvect, n), COMMIT)

402 end loop;

403 readyset := di (readyset, dealved);

404 readyset := union (readyset, dealreadyset);

405 readyset := remove (task, readyset);

406 autolock := di (autolock, dealved);

407 autolock := union (autolock, dealautolock);

408 autolock := remove (task, autolock)

409 end select ;

410 eval update_purge (!?purgelist , lock.purge, !?autolock);
411 state := idle

412 end if

413 end select

414 end loop

415 end var

416 end process

Appendix A.3. Generic Model of the Manage Process

416 process MANAGER [SEND, RECV : com, ACTION : annonce]

417 (task : DLC_ID, statespace : state_list , map : sync_map)
418 is

419 var

420 manager © manager_state,

53

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

task currently possble actions

list of (action, state destination)
current state of task

pending locks

active lock

next action to realize

task can do an internal action
must add ourself to the purge

Manager setup w.r.t. task current state

action (DLC_NULL_ID);

actions . action_set,
arriv_list : arrival_list ,
taskstate : nat,
waitlock o lock_list ,
lock : lock,
action . dlc_action,
internal : bool,
sigpurge : booal,
temporary variables
n . nat,
| : lock,
to, gate . DLC_ID,
ved ;id_set
initialization
taskstate := O;
waitlock = {};
main loop
loop
manager = free;
internal = false;
action =
sigpurge := false;
actions =

posshle_actions (statespace, taskstate);

For equivalence relation reasons, when atask can reach
di erent state with the same action, the destination state
must be dedded before the negotiation

arriv_list

=14

for n:= 1 while n <= length(actions) by n := n+ 1 loop
var dest_set : nat_set, dest : nat, act : dic_action in

act := access (actions, n);
dest_set := get_next (statespace, taskstate, act);
Choose randomly a destination state
dest := any nat where member (dest, dest_set);
arriv_list := cons (arrival (act, dest), arriv_list)
end var
end loop;
if (length (actions) ==
and ((get_gate (access (actions, 1))) !'= DLC_GATE_I)
then
autolock
action := access (actions, 1);

SEND (action.gate, READY (true));

manager := autolock_free;

sigpurge
else
for n:=

= true

1 while n <=

length (actions) by n := n+1 loop

gate := get_gate (access (actions, n));
if (gate == DLC_GATE_I) then

internal := true

else

SEND (gate, READY (false))
end if
end loop

54

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

end if;

loop NEGOTIATION in
select
Recdve a LOCK message
RECV (? any DLC_ID, ?LOCK (I) of message);
waitlock := append (I, waitlock)

0
Treat oldest pending lock
only if not (empty (waitlock))

and ((manager == free) or (manager == autolock_free))
then
lock := head (waitlock);
waitlock := tail (waitlock);
if member (lock.action, actions) then
if (manager == autolock_free) and (sigpurge) then

lock := lock.{ purge => cons (task, lock.purge)};
sigpurge := false
end if;
action := lock.action;
if task == access (lock.path, length (lock.path)) then
We are the last task of the lock chain
if lock.con rm then
SEND (lock.action.gate, LOCK (lock));
eval lock_state (!?manager)
else
Conclude negotiation
ved := get_sync_vect (lock, map);
ACTION (lock.action.gate, ved);
SEND (lock.action.gate, COMMIT (lock.purge));
for n := 1 while n <= length(vect) by n := n+1 loop
to := access(ved, n);
if to != task then
SEND (to, COMMIT)
end if
end loop;
break NEGOTIATION
end if
else
Forward lock request
to := next_task (task, lock.path);
SEND (to, LOCK (lock));
eval lock_state (!?manager)
end if
else
Reject lock request
SEND (lock.action.gate, ABORT (lock.purge));
for n := 1 while n <= length (lock.path) by n := n+ 1 loop
to := access (lock.path, n);
if to < task then
SEND (to, ABORT)
end if
end loop
end if
end if
0

Recdve a COMM IT message

55

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

574
575
576
577
578
579
580
581
582
583
584
585
586
587

only if manager != freethen
RECV (? any DLC_ID, COMMIT
break NEGOTIATION

end if

Recdve an ABORT message

);

only if (manager == locked) or (managel

RECV (? any DLC_ID, ABORT);
if manager == locked then
manager = free

== autolock_locked) then

elsif manager == autolock_locked then

manager := autolock_free
end if
end if

Realize an internal action

only if (manager == free) and (internal) then
ACTION (DLC_GATE_I, {task} of id_set);

action := action (DLC_GATE_|
break NEGOTIATION
end if
end select
end loop; NEGOTIATION
Rejeat pending locks
while not (empty (waitlock)) loop
| := head (waitlock);
waitlock := tail (waitlock);

)i

SEND (l.action.gate, ABORT (l.purge));

for n := 1 while n < length (I.path) by n :

to := access (I.path, n);
if to < task then
SEND (to, ABORT)
end if
end loop
end loop;
Task moves to next state

taskstate := arrival_state (arriv_list , action)

end loop MAIN

end var
574 end process

n+ 1 loop

Appendix A.4. Generic Model of a Communication Bu er

Bu er size is a parameter
function BUFSIZE : nat is
return 3

end fu

nction

Bu er acts as a FIFO (models TCP)
process BUFFER [GETFROM, SENDTO : com] (from, to : DLC_ID) is

var

in

msg : message,
mq : message_list

mq:= {};
loop
select

56

588
589
590
591
592
593
594
595
596
597
598
599
600

only if length (mqg) < BUFSIZE then
GETFROM (to, ?msg);
mq = append (msg, ma)
end if
1
only if not (empty (mq)) then
SENDTO (from, head (mq));
mq := tail (mq)
end if
end select
end loop
end var
end process

Appendix A.5. Example of LNT Implementation Model Generated from a
System Instance
Consider the following system:

process T1 [A,B: any] is process T2 [A,B: any] is par Ain
A select T1[A,B]
B A || T2[A,B]
end process 0B end par
end select

end process

Our validation approach can automatically generatethe LNT model of the
implementation of this gystem. First, the system characteristics (identi ers,
task state space and synchronization vedors) are den ed:

type DLC_ID is
DLC_TASK_O0_T1,
DLC_TASK_1_T2,
DLC_GATE_A,
DLC_GATE_B,
DLC_NULL_ID
with "== ", "l=" "<"

end type

function task_T1 state space: state list is

return {
state (O, { transition (action(DLC_GATE_A), {1})}),
state (1, { transition (action(DLC_GATE_B), {2})}),
state (2, {} of transition_list (deadlock))

end function

function task_T2_state space: state list is
return {
state (O, { transition (action(DLC_GATE_A), {1}),
transition (action(DLC_GATE_B), {1})}),
state (1, {} of transition_list (deadlock))

}

57

end function

function gate A_ sync_ved : sync_vect_list is
return {{ DLC_TASK_0 T1, DLC_TASK_1 T2 }}
end function

function gate B_ sync_ved : sync_ved_list is
return {{ DLC_TASK_O0_T1},
{ DLC_TASK_1. T2}
end function

function global_sync_map : sync_map is
return {
sync_map_entry (dic_gate A, gate A_sync_ved),
sync_map_entry (dic_gate B, gate_B_ sync_ved)
}

end function

Then, the implementation consists of managers, gates, and FIFO bu ers
running in paralle. The main processof the implementation model is thus:

process MAIN [TASK_0_T1_ SEND, TASK_0_T1 RECV,
TASK_1_T2_ SEND, TASK_1_T2_ RECV,
GATE_A_SEND, GATE A_RECV,
GATE_B_ SEND, GATE_B_ RECV: com,
ACTION, HOOK_ REFUSE: annonce]
IS
par TASK_0_T1 SEND, TASK_0_T1 RECV,
TASK_1_T2_SEND, TASK_1_T2_RECV,
GATE_A_ SEND, GATE_A_ RECV,
GATE_B_ SEND, GATE_B_ RECV,
n
par
BUFFER [TASK_0_T1_SEND, TASK_1 T2 RECV] (DLC_TASK_0_T1, DLC_TASK_1_T2)
|| BUFFER [TASK_1_T2_ SEND, TASK_0_T1 RECV] (DLC_TASK_1 T2, DLC_TASK_0_T1)
|| BUFFER [TASK_0_T1_SEND, GATE A RECV] (DLC_TASK_0_T1, DLC GATE A)
|| BUFFER [GATE_A_SEND, TASK_0_T1 RECV] (DLC_GATE A, DLC_TASK_0_T1)
|| BUFFER [TASK_0_T1_SEND, GATE_B_RECV] (DLC_TASK_0_T1, DLC_GATE B)
|| BUFFER [GATE_B_SEND, TASK_0_T1 RECV] (DLC_GATE B, DLC_TASK_0_T1)
|| BUFFER [TASK_1_T2_ SEND, GATE_A_RECV] (DLC_TASK_1_T2, DLC_GATE_A)
|| BUFFER [GATE_A_ SEND, TASK_1_T2 RECV] (DLC_GATE_A, DLC_TASK_1_T2)
|| BUFFER [TASK_1 T2 SEND, GATE B_RECV] (DLC_TASK_1_T2, DLC_GATE B)
|| BUFFER [GATE_B_ SEND, TASK_1 T2 RECV] (DLC_GATE B, DLC_TASK_1_T2)

MANAGER [TASK_0_T1_SEND, TASK_0_T1_RECV, ACTION]
(DLC_TASK_0_T1, task_T1 state space, global_sync_map)
|| MANAGER [TASK_1_T2 SEND, TASK_1_T2 RECV, ACTION]
(DLC_TASK_1 T2, task_T2_ state space, global_sync_map)
|| GATE [GATE_A_SEND, GATE_A_ RECV, ACTION, HOOK_ REFUSE]
(DLC_GATE_A, gate_A_ sync_vect)
|| GATE [GATE_B_ SEND, GATE_B_ RECV, ACTION, HOOK_ REFUSE]
(DLC_GATE_B, gate B_ sync_vect)
end par
end par
end process

58

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8l

[0

Amndl, T., Fersman, E., Mokrushin, L., Petterson, P., Yi, W., 2004
TIMES: A tod for schedulability analysis and code generation of real-
time systems. In: Formal Modeling and Analysis of Timed Systems.
Springer, pp. 60 72.

Arbab, F., 2004 Reo: A channed-based coordination mode for compo-
nent composition. Mathematical Structuresin Computer Science 14 (3),
329 366.

Bagrodia, R., 1989 Process ynchronization: Design and performance
evaluation of distributed algarithms. IEEE Transactions on Software
Engineeging 15(9), 1053 1065

Behrmann, G., Larsen, K. G., Madller, O., David, A., Petterson, P.,
Yi, W., 2001 Uppad present and future. In: Procealings of the 40th
IEEE Conferenceon Dedsion and Control. Vol. 3. IEEE, pp. 2881 2886

Bensalem, S., Griesmayer, A., Legay, A., Nguyen, T., Sifakis, J., Yan,
R., 2011 D-Finder 2. Towards e cient corredness of incremental de-
sign. In: Proceealings of the 3rd NASA International Symposium on
Formal Methods (NFM'2011), Pasadena, CA, USA. pp. 453 458

Bergamini, D., Descoubes, N., Joubert, C., Mateescu, R., Apr. 2005
Bismulator: A modular tod for on-the- y equivalence deding. In:
Halbwachs, N., Zuck, L. (Eds.), Procealings of the 11th International
Conference on Tods and Algarithms for the Construction and Analy-
sis of Systems TACAS 2005 (Edinburgh, Scotland, UK). Vol. 3440 &
Ledure Notes in Computer Science Springer, pp. 581 585,

Berry, G., 2007 SCADE: Synchronous design and validation of em-
bedded control software. In: Next Generation Design and Veri cation
Methodologes for Distributed Embedded Control Systems. Springer,
pp. 19 33.

Bochmann, G., Gao, Q., Wu, C., 1989 On the distributed implementa-
tion of LOTOS. In: Procealings of the 2nd International Conference on
Formal Description Tedwniques (FORTE'89). pp. 133 146.

Bonakdarpour, B., Bozga, M., Quilbeuf, J., 2013 Mode-based imple-
mentation of distributed systems with priorities. Design Autom. for
Emb. Sys. 17 (2), 251 276.

59

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

Bouajjani, A., Fernandez, J.-C., Graf, S, Rodriguez C., Sifakis, J.,
1991 Safety for branching time semantics. In: Proceealings of 18th
ICALP. Springer.

Carbone, M., Montes, F., 2013 Deadlock-freedom-by-design: Multi-
party asynchronous global programming. In: Giacobazz, R., Cousot, R.
(Eds.), Procedaings of the 40th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL'13), Rome,
Italy. ACM, pp. 263 274

Champelovier, D., Clerc, X., Garavd, H., Guerte, Y., McKinty, C.,
Powazny, V., Lang, F., Serwe, W., Smeding, G., 2015 Reference man-
ual of the LNT to LOTOS trandator (version 6.2), INRIA/VASY and
INRIA/ CONVECS, 130 pages.

Chandy, K. M., Misra, J., 1988 Paralld program design: A foundation.
Addison-Wedley.

Coste, N., Garavd, H., Hermanns, H., Lang, F., Mateecu, R., Serwe,
W., 2010 Ten years of performance evaluation for concurrent systems
using CADP. In: Margaria, T., Ste en, B. (Eds.), Procealings of the
4th International Symposium on Leveraging Applications of Formal
Methods, Veri cation and Validation ISoLA 2010 (Amirandes, Hera-
clion, Crete), Part Il. Vol. 6416 ¢ Ledure Notesin Computer Science
Springer, pp. 128 142

DYkstra, E. W., 1965 Solution of a problem in concurrent programming
control. Commun. ACM 8 (9), 569 570.

DYkstra, E. W., 1975 Guarded commands, non-determinacy and formal
derivation of programs. Communication of the ACM 18 (8), 453 457.

Dokter, K., Jongmans, S. T. Q., Arbab, F., Bliudze S., 2015 Reating
BIP and reo. In: Knight, S, Lanese, |., LIuch-Lafuente, A., Vieira, H. T.
(Eds.)), Procealings of the 8th Interaction and Concurrency Experience
(ICE'2019, Grenoble, France Vol. 189 d EPTCS. pp. 3 20.

Evrard, H., 2015 Génération automatique d'i mplémentation distribuée
a partir de modéees formels de procesaus concurrents asynchrones. The-
sis, Université Grenaoble Alpes.

URL https://hal.inria.fr/tel-01215634

60

[19]

[20]

[21]

[22]

[23]

[24)

Evrard, H., 2016 DLC: Compiling a Concurrent System Formal Spec
I cation to a Distributed Implementation. In: Procealings of the 22nd
International Conference on Tods and Algarithms for the Constr uction
and Analysis of Systems TACAS 2016 Ledure Notes in Computer Sci-
ence Springer-Verlag.

URL https://hal.inria.fr/hal-01250925

Evrard, H., Lang, F., 2013 Formal veri cation of distributed branch-
ing multiway synchronization protocols. In: Beyer, D., Boreale, M.
(Eds.), Procealings of the IFIP Joint International Conference on For-
mal Tedniques for Distributed Systems (FORTE/ FMOODS 2013, Flo-
rence Italy. Vol. 7892 ¢ Ledure Notes in Computer Science IFIP,
Springer, pp. 146 160.

Evrard, H., Lang, F., 2015 Automatic distributed code generation from
formal models of asynchronous concurrent processes. In: Procealings of
the 23rd Euromicro International Conference on Paralld, Distributed
and Network-based Processng (PDP'2015, Turku, Finland. IEEE.
URL https://hal.inria.fr/hal-01086522

Garavel, H., 2008 Re edions on the future of concurrency theory in
general and processcalculi in particular. In: Palamidess, C., Valencia,
F. D. (Eds), Procealings of the LIX Colloguium on Emerging Trendsin
Concurrency Theory (Ecole Polytednique de Paris, France), November
13 15, 2006 Vol. 209 d Eledronic Notesin Theoretical Computer Sci-
ence Elsevier Science Publishers, pp. 149 164, also available as INRIA
Research Report RR-6368

Garavel, H., Lang, F., Aug. 2001 SVL: a scripting language for com-
positional veri cation. In: Kim, M., Chin, B., Kang, S, Lee D. (Eds)),
Procealings of the 21st IFIP WG 6.1 International Conference on For-
mal Tedniques for Networked and Distributed Systems FORTE'2001
(Chgu Idand, Korea). IFIP, Kluwer Academic Publishers, pp. 377 392,
full version available as INRIA Research Report RR-4223

Garavel, H., Lang, F., Mateescu, R., 2002 Compiler construction us-
ing LOTOS NT. In: Horspod, N. (Ed.), Procedalings of the 11th In-
ternational Conference on Compiler Construction (CC'2002, Grenable,
France Vol. 2304 d¢ Ledure Notes in Computer Science Springer, pp.
913.

61

[25 Garavel, H., Lang, F., Mateescu, R., Apr. 2015 Compositional Veri -
cation of Asynchronous Concurrent Systems Using CADP. Acta Infor-
matica 52(4), 337 392

[26) Garavel, H., Lang, F., Mateescu, R., Serwe, W., 2013 CADP 2011
A todbox for the mnstruction and analysis of distributed processs.
Springer International Journal on Software Tods for Tedinology Trans
fer (STTT) 15(2), 89 107.

[27] Garavel, H., Sighireanu, M., 1999 A graphical parallel composition op-
erator for processalgebras. In: Wu, J., Gao, Q., Chanson, S. T. (Eds),
Procealings of the Joint International Conferenceon Formal Description
Tedniques for Distributed Systems and Communication Protocols, and
Protocol Sped cation, Testing, and Veri cation (FORTE/PSTV'99),
Beving, China. IFIP, Kluwer Academic Publishers, pp. 185 202

[28 Garavel, H., Viho, C., Zendri, M., 2001 System design of a CC-Numa
multiprocessor architedure using formal sped cation, model-cheding,
co-smulation, and test generation. Springer International Journal on
Software Tods for Tedinology Transfer 3 (3), 314 331, also available as
INRIA Research Report RR-4041

[29] Havender, J., 1968 Avoiding deadlock in multitasking systems. IBM
systems journal 7 (2), 74 84.

[30] Holzmann, G. J., 2004 The SPIN model chedker: Primer and reference
manual. Vol. 1003 Addison-Wedley Reading.

[3]] ISO/IEC, 1982 LOTOS A formal description tednique based on
the temporal ordering of observational behaviour. International Stan-
dard 8807 International Organization for Standardization Informa-
tion Processng Systems Open Systems Interconnedion, Geneva.

[32] ISO/IEC, 2001 Enhancaments to LOTOS (E-LOTOQOYS). International
Standard 154372001, International Organization for Standardization
Information Tednology, Geneva.

[33 Jard, C., Jéron, T., Aug. 2005 Tgv: Theory, principles and algarithms

atod for the automatic synthesis of conformancetest cases for non-

deterministic reactive systems. Springer International Journal on Soft-
ware Tods for Tedinology Transfer (STTT) 7 (4), 297 315

62

[34]

[39]

[36]

[37]
[38]

[39]

[40]

[41]

[42

Jongmans, S. T. Q., Santini, F., Arbab, F., 2014 Partially-distributed
coordination with Reo. In: Procealings of the 22nd Euromicro Interna-
tional Conferenceon Paralld, Distributed, and Network-Based Process
ing (PDP'2014, Torino, Italy. pp. 697 706.

Katz, G., Peled, D., 201Q Code mutation in veri cation and automatic
code rredion. In: Procealings of the International Conference on
Tods and Algorithms for the Construction and Analysis of Systems
(TACAS2010Q. Springer, pp. 435 450.

Kumar, D., 1990 An implementation of n-party synchronization using
tokens. In: Procealings of the 10th International Conference on Dis
tributed Computing Systems (ICDCS 1990, Paris, France pp. 320 327.

Lamport, L., 2001 Paxos made simple. ACM Sigact News 32(4), 18 25.

Lang, F., 2005 EXP.OPEN 2.0: A exible tod integrating partial or-
der, compositional, and on-the- y veri cation methods. In: van de Pal,
J., Rom¥an J., Smith, G. (Eds.), Procealings of the 5th International
Conferenceon Integrated Formal Methods (IFM'2005, Eindhoven, The
Netherlands. Vol. 3771 ¢ Ledure Notes in Computer Science Springer,
pp. 70 88, full version available as INRIA Research Report RR-5673

Lantreibeq, E., Serwe, W., 2011 Modd cheding and co-smulation of
a dynamic task dispatcher circuit usng CADP. In: Salaiin, G., Schétz,
B. (Eds.), Procedlings of the 16th International Workshop on Formal
Methods for Industrial Critical Systems (FMICS 2011, Trento, Italy.
Vol. 6959 d Ledure Notesin Computer Science Springer, pp. 180 195

Lockefee, L., Williams, D. M., Fokkink, W. J., 2016 Formal sped -
cation and veri cation of TCP extended with the window scale option.
Science of Computer Programming 118 3 23.

L6 er, S, 1996 From sped cation to implementation: A PROMELA
to C compiler. Projed Report Ecole Nationale Supérieure des Téémm-
munications.

Manas, J. A., de Migue, T., Salvachua, J., Azoorra, A., 1993 Tod sup-
port t o implement LOTOS formal sped cations. Computer Networks
and ISDN Systems 25 (7), 815 839,

63

[43]

[44]

[49]

[46]

[47]

[48]

[49]

[50

Mateescu, R., Garavel, H., Jul. 1998 Xtl: A meta-language and tod for
temporal logc model-chedking. In: Margaria, T. (Ed.), Procealings of
the International Workshop on Software Tods for Tedinology Transfer
STTT '98 (Aalborg, Denmark). BRICS, pp. 33 42.

Mateescu, R., Sighireanu, M., Mar. 2003 E cient on-the- y mode-
cheding for regular alternation-freemu-calculus. Sci. Comput. Program-
ming 46 (3), 255 281

Mateescu, R., Thivolle, D., 2008 A model chedking language for con-
current value-passng systems. In: Cudlar, J., Maibaum, T., Sere, K.
(Eds), Procedlings of the 15h International Symposum on Formal
Methods (FM'08), Turku, Finland. Vol. 5014 ¢ Ledure Notes in Com-
puter Science Springer, pp. 148 164

Montes, F., Yoshida, N., 2013 Compositional choreographies. In:
D'Argenio, P. R., Mdlgratti, H. C. (Eds.), Proceelings of the 24th In-
ternational Conference on Concurrency Theory (CONCUR'13) Buenos
Aires, Argentina. Vol. 8052 ¢ Ledure Notes in Computer Science
Springer, pp. 425 439.

Nestmann, U., Pierce B. C., 1996 Demding choice encodings. In: Mon-
tanari, U., Sasone, V. (Eds.), Procealings of the 7th International Con-
ference on Concurrency Theory (CONCUR'96), Pisa, Italy. Vol. 1119 ¢
Ledure Notesin Computer Science Springer, pp. 179 194

Ng, N., Yoshida, N., 2014 Pabble: Parameterised scribble for parallel
programming. In: 22nd Euromicro International Conferenceon Paralld,
Distributed, and Network-Based Processng (PDP'2014, Torino, Italy.
IEEE Computer Society, pp. 707 714.

Oliveira, M. V. M., de Medeiros Junior, I. S., Woodcock, J., 2013 A ver-
I ed protocol to implement multi-way synchronisation and interleaving
in CSP. In: Hierons, R. M., Merayo, M. G., Bravetti, M. (Eds.), Pro-
cealings of the 11th International Conference on Software Engineeing
and Formal Methods (SEFM'2013, Madrid, Spain. Vol. 8137 ¢ Ledure
Notes in Computer Science Springer, pp. 46 60.

Ongaro, D., Ousterhout, J., 2013 Safety prodf and formal sped cation
for Raft.
URL http://ramcloud.stanford.edu/~ongaro/raftproof.pdf

64

[5]] Ongaro, D., Ousterhout, J., 2014 In search of an understandable
consensus algorithm. In: Procealings of the USENIX Annual Tednical
Conference (USENIX ATC'2014. USENIX Aswciation, Philadelphia,
PA, pp. 305 319
URL https://www.usenix.org/conference/atc14/
technical-sessi%ons/presentation/ongaro

[52] Park, D., 1981 Concurrency and automata on innite sequences. In:
Deussen, P. (Ed.), Theoretical Computer Science Vol. 104 d Ledure
Notes in Computer Science Springer, pp. 167 183

[53] Parrow, J., §adin, P., 1996 Designing a multiway synchronization pro-
tocol. Computer communications 19 (14), 1151 1160

[54] Pérez J. A., Corchudo, R., Toro, M., 2004 An order-based algorithm
for implementing multiparty synchronization. Concurrency - Practice
and Experience 16 (12), 1173 1206

[55 Peters, K., Nestmann, U., Goltz, U., 2013 On distributability in process
calculi. In: Feleisen, M., Gardner, P. (Eds.), Procealings of the 22nd
European Symposium on Programming (ESOP'2013, Rome, Italy. Vol.
7792 ¢ Ledure Notes in Computer Science Springer, pp. 310 329

[56] Proenca, J., Clarke, D., de Vink, E., Arbab, F., 2012 Dreams. A
framework for distributed synchronous coardination. In: Proceealings of
the 27th International Symposium on Applied Computing (SAC'2012,
Trento, Italy. ACM.

[57] Quilbeuf, J., 2013 Distributed implementations of component-based
systems with prioritized multiparty interactions. Ph.D. thesis, Univer-
Sté de Grenable.

[58] Schneider, F. B., 199Q Implementing fault-tolerant services using the
state machine approach: A tutorial. ACM Computing Surveys 22 (4),
299 319

[59] Sharma, A., 2013 A ren ement calculus for PROMELA. In: Proceal-
ings of the 18 h International Conference on Engineeaing of Complex
Computer Systems (ICECCS2013. IEEE, pp. 75 84.

65

[60] Sighireanu, M., 1999 Contribution ala dénition et a I'implémentation
du langage Extended LOTOS . Theése de Doctorat, Université Joseph
Fourier, Grenable.

[6]] Sisto, R., Ciminiera, L., Valenzano, A., 1991 A protocol for multiren-
dezvous of LOTOS processs. IEEE Transactions on Computers 40 (4),
437 447.

[62] §odin, P., 1991 From LOTOS sped cations to distributed implemen-
tations. Ph.D. thesis, Department of Computer Science University of
Uppsala (Sweden).

[63 Taubner, D., 1987 On the implementation of Petri nets. In: Rozenberg,
G. (Ed.), Procealings of the 8th European Workshop on Applications
and Theory of Petri Nets, Zaragaza, Spain. Vol. 340 d Ledure Notesin
Computer Science Springer, pp. 418 434

[64] Winkowski, J., 1983 A distributed implementation of Petri nets. Ted.
Rep. 518(1983, Poalish Academy of Science Institute of Computer Sci-
ence Warsaw.

[65 Yasumoto, K., Higashino, T., Taniguchi, K., 2001 A compiler to im-
plement LOTOS sped cations in distributed environments. Computer
Networks 36 (2), 291 310

66

