
A Rewriting Logic Approach to Resource Allocation
Analysis in Business Process Models

Francisco Durán

University of Málaga, Málaga, Spain

Camilo Rocha

Pontificia Universidad Javeriana, Cali, Colombia

Gwen Salaün
Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, F-38000 Grenoble France

Abstract

This paper presents an approach for the modeling and analysis of resource allo-
cation for business processes. It enables the automatic computation of measures
for precisely identifying and optimizing the allocation of resources in business
processes, including resource usage over time. The proposed analysis, especially
suited to support decision-making strategies, is illustrated with a case study of
a parcel ordering and delivery by drones that is developed throughout the paper.
The paper comprises an encoding of a significant and expressive subset of the
Business Process Model and Notation (BPMN) in rewriting logic, an executable
logic of concurrent change that can naturally deal with state and with concurrent
computations. The encoding is by itself a formal semantics and interpreter of the
BPMN subset that captures all concurrent behavior and thus is used to simulate
the concurrent evolution of any business process with a given number of resources
and replicas.

Key words: Business processes, BPMN, resource allocation, rewriting logic,
executable specification, automated verification, Maude.

1. Introduction

Business process optimization is a strategic activity in organizations because
of its potential to increase profit margins and reduce operational costs. One of

Preprint submitted to Science of Computer Programming November 4, 2019

the main challenges in this activity is concerned with the problem of optimiz-
ing allocation and sharing of resources. This is a key question because having a
clear answer on how resources are used can help in identifying availability, de-
tect bottlenecks, and improve sharing in order to make processes more efficient.
However, analyzing resource usage in business processes is far from being an easy
task. First, there is the need for a formal model expressive enough to capture the
semantics of processes. Second, resources have to be included in the formal model
supporting multiple concurrent executions of a process. Last, automatic verifica-
tion is required to compute certain metrics and properties of interest (e.g., resource
charge, resource occupancy, or usage percentage of each resource replica) on hun-
dreds and even thousands of simulations of a process with its resources.

This paper presents a formal executable model for business processes with
resource allocation and automatic verification techniques for analyzing resource
usage. The formal model relies on an encoding of a subset of the Business Pro-
cess Model and Notation (BPMN) in rewriting logic [22]. This specification is
executable in Maude [9], and supports the concurrent execution of a process with
different types of resources and with multiple replicas on any given workload. The
verification techniques use Maude’s rewriting tools for evaluating expected values
of any numerical or path expression in the executable model. The Maude speci-
fication supports BPMN activity and collaboration diagrams, four types of gate-
ways, quantitative aspects (such as times associated to flows and tasks, as well
as probabilities associated to branching behaviour), loops, resource description,
and unbalanced processes (which are workflows without a strict correspondence
between split and merge gateways).

The overall idea, from a verification viewpoint, is that multiple concurrent ex-
ecutions of a process compete for the shared resources. With the help of Maude,
this approach enables the automatic analysis of how resource usage evolves over
time when varying the workload and the amount of resources. This analysis is
performed on design models, without the need of an implementation of the sys-
tem running on real resources. All that is needed is the BPMN specification of
the process workflow completed with expert information on the operation of the
system. The usefulness of this kind of analysis is illustrated with several exper-
iments on real-world processes, confirming that the approach can help in detect-
ing resource usage problems, thus ultimately leading to the improvement of the
business process by optimizing its resource allocation. In particular, the experi-
ments presented in this paper identify, e.g., low-level occupancy of resources and
undesirable patterns of resource usage, such as sequential dependencies and bot-
tlenecks provoked by some highly used resources that may induce performance

2

fall-downs. Furthermore, a recommender system is proposed to find an optimal
assignment of resources following Monte Carlo simulations of the business pro-
cess.

In summary, the main contributions of this work are:
(i) a formal semantics captured by an encoding in rewriting logic of a signif-

icant subset of BPMN, including activity and collaboration diagrams, four
types of gateways, unbalanced workflows, loops, resource description, and
concurrent process execution;

(ii) automated formal analysis of resource allocation properties (e.g., accumu-
lated time of occupancy for resources) performed at design time and a rec-
ommender system computing the optimal assignment of resources;

(iii) the evaluation of the approach on a workbench of real-world BPMN pro-
cesses.

An early version of this paper has been published in [12] and has been signif-
icantly extended here as follows:

(i) a version of BPMN with explicit description of resources is considered;
(ii) the Maude encoding has been extended to support resources and the multi-

ple execution of a process (tokens, workload, scheduling) required for sim-
ulating the evolution of resource usage over time;

(iii) several properties of interest regarding average execution time and resource
occupancy, that can be analysed using the proposed framework, have been
identified;

(iv) the approach has been applied to several case studies for validation pur-
poses; and

(v) the introduction, related work section, and conclusion have been fully re-
vised, by taking the aforementioned extensions and improvements into ac-
count.

The rest of the paper is organized as follows. Section 2 introduces the main
features of BPMN. Section 3 briefly presents rewriting logic and explains the
encoding of the considered subset of BPMN. Section 4 presents how resource
analysis is achieved using Maude’s rewriting-based tools. This section also de-
scribes several experiments and illustrates how the automatic verification can help
in improving process definitions. Section 5 surveys related work and Section 6
concludes the paper.

3

Figure 1: Supported BPMN syntax.

2. Business Process Model and Notation

BPMN 2.0 (BPMN, as a shorthand, in the rest of this manuscript) was pub-
lished as an ISO/IEC standard [17] in 2013 and is nowadays extensively used for
modeling business processes. In this paper, two main kinds of BPMN diagrams
are considered, namely, activity and collaboration diagrams. In particular, the fo-
cus is on the BPMN elements related to control-flow modeling and behavioral
aspects that can be represented in BPMN constructs. Beyond those constructs,
resource description and allocation are also considered, for which an automated
analysis method is proposed.

Figure 1 summarizes the BPMN constructs supported in this work. These ele-
ments are used to develop activity and collaboration diagrams of process models.
In addition to the description of specific tasks and their sequencing, collaboration
diagrams also involve pools and lanes, which are structuring elements that split
processes into pieces.

Specifically, the node types event, task, and gateway, and the edge type se-
quence flow are considered. Start and end events are used, respectively, to initial-
ize and terminate processes. A task represents an atomic activity that has exactly

4

one incoming and one outgoing flow. A task may have a duration (expressed as
a stochastic expression) and may produce an event message. A sequence flow
describes two nodes executed one after the other, i.e., by imposing an execution
order with possible delays. The timing information associated to tasks and flows
(durations or delays) is described either as a literal value (a non-negative real
number, possibly 0) or sampled from a probability distribution function according
to some meaningful parameters. The probability distribution functions currently
available include exponential, normal/Gauss, and uniform (see, e.g., [34]).

Gateways are used to control the divergence and convergence of the execution
flow. Four types of gateways are considered: exclusive, inclusive, parallel, and
event-based. Gateways with one incoming branch and multiple outgoing branches
are called splits, e.g., split inclusive gateway. Gateways with one outgoing branch
and multiple incoming branches are called merges, e.g., merge parallel gateway.
An exclusive gateway chooses one out of a set of mutually exclusive alternative
incoming or outgoing branches. For an inclusive gateway, any positive number of
branches among all its incoming or outgoing branches may be taken (both BPMN
1.0 and 2.0 semantics for inclusive gateways are supported). A parallel gateway
creates concurrent flows for all its outgoing branches or synchronizes concurrent
flows for all its incoming branches; event-based gateway takes one of its outgoing
branches or accepts one of its incoming branches based on events. Event-based
split gateways may have a default branch fired by a timeout.

Data-based conditions for split gateways are modeled using probabilities as-
sociated to outgoing flows of exclusive and inclusive split gateways. The proba-
bilities of the outgoing flows in an exclusive split must sum up to 1, while each
outgoing flow in an inclusive split can be equipped with a probability between 0
and 1 without a restriction on their total sum. Workflows with looping behavior
are supported, as well as unbalanced workflows.

Each lane in a collaboration diagram corresponds to a specific role or to a spe-
cific resource. Collaboration diagrams are also often used for modeling distributed
systems and, in that sense, they heavily rely on message events and event-based
gateways. Once completed, a task may generate a message with a flow in another
lane as target. An event-based split gateway is triggered whenever a message is
available from one of its outgoing flows or when its timer event has completed.

Instead of implicitly associating resources to lanes, resources are explicitly
defined at the task level. A task that requires resources can include, as part of its
specification, the number of required instances (or replicas) of a resource. Indeed,
several tasks could compete for the same resources. Furthermore, since multiple
instances of a same process may be executed concurrently, different instances may

5

also access and thus compete for the shared resources. Section 3 presents how the
number of available resources can be specified and Section 4 how the optimal
number of resources can be computed.

The execution semantics of BPMN is informally described in official docu-
ments such as [28, 17]. Although the focus here is on the provided analysis tech-
niques, this work also gives a formal semantics to BPMN with time and resources.
Last but not least, in this paper, BPMN processes are assumed to be syntactically
correct. This can be enforced using existing works and tools, e.g., [15], the Activ-
iti BPM platform, Bonita BPM, or the Eclipse BPMN Designer.

Running example. To introduce and illustrate the use of these elements and
the approach presented in this paper, Figure 2 presents a process describing a
parcel ordering and delivery by drones. This BPMN process is presented as a col-
laboration diagram consisting of three lanes, one for the client, one for the order
management and one for the delivery process. In this example, the client first signs
in and then repeatedly looks for products. Eventually, the client can decide to give
up (termination) or to make an order by submitting it to the order management
lane. The client then waits for a response (acceptance or refusal of this order).
If the order can be completed, the client pays for it and then receives the parcel.
Otherwise (timeout or order refused), the client fills in a feedback form. As far
as the management lane is concerned, the first task aims at verifying whether the
goods ordered by the client are available. If they are not available, then the order
is canceled; otherwise, the order is confirmed. The order management takes care
of the payment of the order whereas the delivery lane is triggered to prepare the
parcel to be delivered by a drone. This process exhibits different kinds of gate-
ways, probabilities for choice gateways, stochastic functions for time associated
to tasks, a loop (Search products task), and unbalanced structures (for the event-
based gateways used in the client lane and the exclusive gateway after the initial
availability check).

To simplify the exposition of the running example (Figure 2), the delays in
all flows are set to 0 and the specification of the task duration has been placed at
the bottom-left corner of the process description. For instance, the duration of the
Sign in task follows a normal distribution with mean 1 and variance 0.5, and the
Search products task follows a uniform distribution in the interval [3, 30]. Exclu-
sive split gateways are modeled using probabilities associated to outgoing flows.
For instance, notice the exclusive split after the Search products task in the Client
lane of the running example, which has outgoing branches with probabilities 0.6,
0.2, and 0.2, specifying the likelihood of following each corresponding path. All

6

Figure 2: Running example: parcel delivery by drones.

these numbers (durations and probabilities) can be provided by experts or can be
obtained by executing the process in practice on a reasonable period of time (a
few days) and by extracting this information from the generated logs.

The process in Figure 2 relies on employees for parcel packing and drones for
parcel delivery. Notice the small circles at the bottom-right corner of the Prepare
parcel and Deliver parcel tasks, indicating that one instance of the employee re-
source and another one of the drone resource are required, respectively, for the
tasks completion.

3. From BPMN to Maude

This section presents the encoding of BPMN processes including time and
resources in Maude. The Maude system is chosen as the formal specification lan-
guage and verification platform for several reasons. Its language is expressive
enough for specifying all the aspects of BPMN introduced in the former section.
It also offers several rewriting-based tools that are adequate for simulating the
specification, and for computing numerical results for timing properties and re-
source analysis. This section first gives an overview of rewriting logic and the
Maude framework. The Maude specification of BPMN is then described in two
parts: the encoding of the process structure and the description of the semantics
of the BPMN subset using rewrite rules. The complete Maude implementation is
available online at [11].

7

3.1. Rewriting Logic and Maude Overview
Rewriting logic [22] is a logic of change that can naturally deal with state and

with highly nondeterministic concurrent computations. A rewrite logic theory is
a tuple (Σ, E∪A,R), where (Σ, E∪A) is a membership equational logic [4] theory
with Σ its signature, E a set of conditional equations and sort membership axioms,
A a set of equational axioms (e.g., associativity, commutativity and identity) so
that rewriting is performed modulo A, and R is a set of labeled conditional rules.

Maude [9] is a high-level language and a high-performance interpreter that
supports membership equational logic and rewriting logic specification and pro-
gramming of systems. Thus, Maude integrates an equational style of functional
programming with rewriting logic computation. Thanks to its efficient rewriting
engine and its metalanguage capabilities, Maude turns out to be an excellent tool
for creating executable environments of various logics, models of computation,
theorem provers, or even programming languages.

A functional specification must be terminating, confluent, and sort-decreasing.
Computation in a functional module is accomplished by using the equations as
simplification rules from left to right until a canonical form is found. Some
equations, such as those expressing the commutativity of binary operators, are
—however— not terminating. Nonetheless, they are supported by means of op-
erator attributes, so that Maude performs simplification modulo the equational
theories provided by such attributes, which can be associativity (assoc), commu-
tativity (comm), identity (id), and idempotency (idem). The above properties must
therefore be understood in the more general context of simplification modulo such
equational theories.

In Maude, a distributed system is axiomatized by a rewrite theory describing
its states as an algebraic data type (an equational sub-specification) and a collec-
tion of conditional rewrite rules specifying its behavior. Rewrite rules are written
crl [l] : t => t� if C, with l the rule label, t and t� terms, and C a guard or con-
dition. Rewrite specifications are not required to be terminating nor confluent.
Rules describe the local, concurrent transitions that are possible in the system,
i.e., when a part of the system state fits the pattern t, then it can be replaced by the
corresponding instantiation of t�. The guard C acts as a blocking precondition: a
conditional rule can only be fired if its condition is satisfied. Sometimes rules are
given without label or condition (which can be assumed to be true).

In the Maude language, object-oriented systems can be specified by object-
oriented modules in which classes and subclasses are declared, with the usual
support for inheritance, dynamic binding, etc. A class is declared with syntax

8

class C | a1 : S 1, . . . , an : S n, where C is the name of the class, ai are attribute iden-
tifiers, and S i are the sorts of the corresponding attributes. The objects of a class
C are then record-like structures of the form < O : C | a1 : v1, . . . , an : vn >, where
O is the name of the object and vi are the current values of its attributes.

In a concurrent object-oriented system, the concurrent state, which is called a
configuration, consist of a multiset of objects and messages. Rewrite rules then
define transitions between such configurations. These transitions represent the
different actions that may occur in the system. For instance, there will be rules
modeling the effects of events, or the synchronous and asynchronous communi-
cation events of objects and messages. The general form of a rewrite rule r is the
following:

crl [r] :
< O1 : C1 | atts1 > ... < On : Cn | attsn >
M1 ... Mm

=> < Oi1 : C�i1 | atts
�
i1
> ... < Oik : C�ik | atts

�
ik
>

< Q1 : C��1 | atts
��
1 > ... < Qp : C��p | atts��p >

M�1 ... M�q
if Cond .

where
• r is the rule label,
• M1...Mm and M�1...M

�
q are messages,

• O1...On and Q1...Qp are object identifiers,
• C1...Cn, C�i1 ...C

�
ik

and C��1 ...C
��
p are classes, i1...ik is a subset of 1...n, and

• Cond is a Boolean condition (the rule’s guard).
The result of applying such a rule is that:
• messages M1...Mm disappear, i.e., they are consumed,
• the state, and possibly the classes of objects Oi1 ...Oik may change,
• all the other objects Oj vanish,
• new objects Q1...Qp are created, and
• new messages M�1...M

�
q are created, i.e., they are sent.

The real-time aspects are modeled using Real-Time Maude [27], which sup-
ports the formal specification and analysis of real-time systems. Specifically, Real-
Time Maude provides a sort Time to model the time domain, which in this work is
assumed to be dense (i.e., represented as rational numbers). Then, given a system
configuration and a time amount, time elapse is modeled with tick rules like

crl [l] : { t, T } => { t�, T + τ } if C .

9

where t and t� are system states, T is the global time, and τ is a term of sort
Time that denotes the duration of the rewrite, and that affects the global time
elapse. Since tick rules affect the global time, in Real-Time Maude time elapse is
usually modeled by one single tick rule and the system dynamic behavior by in-
stantaneous transitions [27]. Although there are other sampling strategies, in the
most convenient one this single tick rule models time elapse by using two func-
tions: the delta function, that defines the effect of time elapse over every model
element; and the mte (maximal time elapse) function, that defines the maximum
amount of time that can elapse before any action is performed. Then, time ad-
vances non-deterministically by any amount τ, which must be less than or equal
to the maximum time elapse of the system.

Note that the above is a general form for the tick rules. As it will be seen
in the following sections, the concrete representation of states and global time
depend on the concrete system specification. This simple approach allows for
having multiple clocks and timers, and model the different real-time events that
could happen in the system quite naturally.

3.2. Process Description
In the Maude specification of BPMN, a process is represented as an object

with sets of flows and nodes as attributes. Nodes can be of five different types:
start, end, task, split, or merge. The representation of each of these types of el-
ements includes the necessary information. A task node involves an identifier, a
description, two flow identifiers (input and output), a stochastic function modeling
its duration (0 if there is no duration), a set of resources required for its execution,
and a set of messages to be delivered after its completion. A split node includes a
node identifier, a gateway type (exclusive, parallel, inclusive, or event-based), an
input flow identifier, and a set of output flow identifiers. A merge node includes a
node identifier, a gateway type, a set of input flow identifiers, and an output flow
identifier. The representation of a flow includes a probability distribution function
specifying its delay, a message produced by a task that blocks the flow until the
message is received, and a timer representing a delay after which the execution
can be triggered.

Figure 3 gives an excerpt of the representation for the running example. It
shows how a Process object has attributes with the definition of its nodes and
flows connecting them. For example, the exclusive split g2 has as incoming flow
cf4 and outgoing flows cf5, cf6, and cf7, with associated probabilities 0.6, 0.2,
and 0.2, respectively. As another example, the event-based split gate g3 has as

10

< pid : Process |
nodes : (start(initial, cf1),

merge(g1, exclusive, (cf2, cf5), cf3),
split(g2, exclusive, cf4, ((cf5, 0.6) (cf6, 0.2) (cf7, 0.2))),
split(g3, eventbased, cf8, (cf9, cf10, cf11)),
task(t10, "Prepare parcel", mf7, df1, Norm(5.0, 4.0), employee, empty),
task(t11, "Deliver parcel", df1, df2, Unif(5.0, 30.0), drone, parceldelivered),
...),

flows : (flow(cf1, 0),
flow(cf9, 0, message(orderconfirmed, "Order confirmed")),
flow(cf10, 0, message(ordercanceled, "Order canceled")),
flow(cf11, 0, timer(timeout, 60)),
...) >

Figure 3: Running example: representation in Maude of the parcel delivery process.

incoming flow cf8 and outgoing flows cf9, cf10, and cf11. These flows are defined
in the set of flows.

The transformation from the BPMN diagrammatic representation of processes
into the corresponding Maude representation is automated by an extension of the
VBPMN platform [18].

3.3. Execution semantics
The operational semantics of BPMN is defined using rewrite rules, modeling

how tokens evolve through a process, thus defining the execution semantics of
BPMN. Each observable action is modeled as a rewrite rule. For instance, when a
token arrives at a parallel split gateway, the token corresponding to the incoming
flow is removed, and one token is added for each outgoing flow. Technically,
rewrite rules operate on systems composed of a process object and a simulation
object.

Simulation object. While the process object introduced in Section 3.2 represents
the BPMN process and does not change during an execution, the simulation object
keeps information on the execution of the process. It stores a collection of tokens
(in a scheduler, see below), a global time (gtime), a set of events (messages and
timers), and a set of resources. It also keeps track of the quantities being measured
during the analysis of a process. Figure 4 presents the structure of the Simulation
object.

Tokens. Tokens are used to represent the evolution of the workflow under exe-
cution. A token is represented as a term token(TId, Id, T). Since several executions
are simultaneously happening, each execution has a unique identifier, and tokens

11

< s : Simulation | tokens : ..., ---- scheduler
gtime : ..., ---- global time
resources : ..., ---- resource set
events : ..., ---- event set
process-execs :, ---- execution times
sync-times : ..., ---- synchronization times
task-times : ..., ---- task execution times
... >

Figure 4: Representation of the Simulation object.

are identified by the execution instance TId they belong to, and the flow or node Id
they are attached to. The expression T represents a timer, of sort Time, modeling
a delay on the token. Once this timer becomes 0, the token may be consumed.

Scheduling. Tokens are stored in a scheduler implemented as a priority queue,
so that they are kept according to their due time. However, even with its timer
set to 0, the token at the front may be not enough to fire some action. Consider,
for example, a task that requires some resource that is not available or a parallel
merge for which some incoming flow is not yet active. To avoid blocking situa-
tions, the scheduler is provided with a shifting mechanism, which moves the first
active token to the front of the scheduler in case the current head cannot fire the
corresponding action. This scheduler is similar to those used in typical discrete
event simulations.

Events. A message event may be associated to a flow, and the flow is blocked
until the message is received. A timer event may be associated to a flow and has
a delay as parameter. When the flow of execution arrives at a timer event, its
countdown is started: once the countdown is completed, the token moves to the
outgoing flow. Both message and timer events are usually associated to event-
based gateways, but it is not necessarily the case (see, e.g., the initial flow for the
order management lane in the process in Figure 2). Asynchronous events are mod-
eled using an event set in the Simulation object. When a message is dispatched, a
corresponding event is added to the set. Flows and gateways that are waiting for
specific messages use this set to check whether the messages have arrived.

Resources. Each resource is represented with an identifier, the number of
available replicas (initially the total number), the total amount of time this resource
has been in use, and the intervals of time on which it was used. These two last
parameters are required for analysis purposes only. When a task requires several
resources, it atomically uses all of them at once, or waits for them to become
available.

12

1 crl [startProc] :
2 < PId : Process | nodes : (start(NId, FId), Nodes),
3 flows : (flow(FId, SE), Flows),
4 Atts >
5 < SId : Simulation | tokens : (token(TId, NId, 0) Tks), ... Atts1 >
6 < CId : Counter | counter : N >
7 => < PId : Process | nodes : (start(NId, FId), Nodes),
8 flows : (flow(FId, SE), Flows),
9 Atts >
10 < SId : Simulation | tokens : insert(Tks, token(TId, FId, T’)), ... Atts1 >
11 < CId : Counter | counter : N’ >
12 if {T’, N’} := eval(SE, N) .

Figure 5: Start event processing.

Workloads. Simulation-based analysis techniques are typically parameterized
by the workload that represents the way a system is used. They define the rate at
which new instances of a given process are executed. Currently, closed workloads
can be handled by specifying the number of executions and the rate at which
executions are started, that is, their inter-arrival times. Both the number and the
rate are specified as stochastic expressions.

Rewrite rules for BPMN constructs. Rewriting rules represent how tokens
evolve through the process and events are fired, thus defining the execution se-
mantics of BPMN. Each action supported by the system is modeled as a rewrite
rule. These rules are overviewed in the rest of this section to gather an intuition
on the formal semantics (see [11] for the complete specification).

Start/end events. Figure 5 depicts the rule for the start event. When there is a
token in the execution TId in the start node NId with delay 0 (note the token at the
front of the scheduler in the Simulation object in line 5), then this rule generates a
new token on the outgoing flow of the selected node to initiate the execution of a
process instance (line 10). The insert function puts this token in the scheduler and
the eval function evaluates the stochastic expression SE specifying the delay of
the outgoing flow FId to be assigned to the new token. Details on the initialization
of time stamps and recorded times for the initiated execution have been replaced
by ellipses. A termination rule, associated to stop events, consumes tokens when
they arrive at those events.

Tasks. A task execution is modeled with two rules. The first rule, the init-
Task rule shown in Figure 6, represents the task initiation, which is applied when
a token with zero time is available for the incoming flow (line 5). If all the re-

13

1 rl [initTask] :
2 < PId : Process |
3 nodes : (task(NId, TaskName, FId1, FId2, SE, RIds, SEI), Nodes), Atts >
4 < SId : Simulation |
5 tokens : (token(TId, FId1, 0) Tks),
6 task-tstamps : TTSs, gtime : T, resources : Rs, Atts1 >
7 < CId : Counter | counter : N >
8 => if allResourcesAvailable(RIds, Rs)
9 then < PId : Process |
10 nodes : (task(NId, TaskName, FId1, FId2, SE, RIds, SEI), Nodes), Atts >
11 < SId : Simulation |
12 tokens : insert(Tks, token(TId, NId, time(eval(SE, N)))),
13 task-tstamps : if TTSs[TId][NId] == undefined
14 then insert(TId, insert(NId, T, TTSs[TId]), TTSs)
15 else TTSs
16 fi, ---- for loops, stamps get overwritten
17 gtime : T,
18 resources : grabResources&updateTime(RIds, Rs, time(eval(SE, N)), T), Atts1 >
19 < CId : Counter | counter : int(eval(SE, N)) >
20 else ... ---- if necessary, the scheduler is updated
21 fi .

Figure 6: Task initiation rule.

sources required by this task are available, which is checked with the allResource-
sAvailable function (line 8), then a new token is generated with the task identifier
and the task duration (line 12). Otherwise, the scheduler’s token shifting mech-
anism is invoked (line 20). If available, all required resources are removed from
the set of resources, and the time those resources have been in use is updated
(grabResources&updateTime function, line 18). Since all auxiliary functions in
the right-hand side of the initTask rule are defined equationally, the checking and
grabbing of resources are performed atomically, without introducing any blocking
issues. Note also that rules update the information on execution times, task du-
rations, etc. (see, e.g., the update of the task-tstamps attribute, lines 13-16). This
information is important for analysis purposes, as it will be seen in Section 4.

A second rule, which models task completion, is triggered when there is a
token for that task with zero time. In that case, the token is consumed and a new
one is generated for the outgoing flow. All resources are released, and all the
message events associated to that task, if any, are added to the events set.

Exclusive gateways. There are two rules for the exclusive gateways, namely,
one for the split and one for the merge. The rule for the split applies when a token
with zero time is available on its incoming flow. A uniformly sampled probability
distribution is used to choose the branch to be executed. The newly created token

14

is assigned with its run-to-completion time generated by evaluating the stochastic
expression associated to the chosen outgoing flow—this is actually the case every
time a new token is added for a flow. The exclusive merge gateway is triggered
when one of its incoming flows has a token with zero time. In that case, a new
token is generated, assigned to the outgoing flow, and added to the scheduler.

Parallel gateways. The parallel split gateway rule is triggered when a token
with zero time corresponding to the input flow is available. If so, the token is
consumed and one token is added to each of its outgoing flows. The merge rule
for the parallel gateway is executed when there is a token with zero time for each
incoming branch. In that case, these tokens are removed and a new token is gen-
erated for the outgoing flow. In the merge rule, synchronization times are also
updated.

Inclusive gateways. The split rule applies when a token with zero time is
available at the incoming flow. Since all outgoing branches are equipped with
probabilities, a function in charge of computing the subset of branches to be trig-
gered is invoked. For each one of the selected branches, a new token is added
to the scheduler. Regarding merge gateways, both BPMN 1.0 and 2.0 semantics
are supported in this research. In BPMN 2.0, merge inclusive gateways behave
like exclusive ones. The 1.0 version of the semantics is more involved [8], since
the merge rule for the inclusive gateway is executed when all the expected tokens
are available with zero time. This requires a global analysis. To check whether
all expected tokens have arrived, a backwards traversal that explores the process
upstream and checks whether there are tokens on their way to that merge is per-
formed. In both cases, once the merge gateway is triggered, the incoming tokens
are removed, a new token is added to the scheduler for the outgoing flow, and
simulation information is updated with synchronization times.

Event-based gateways. When a token arrives at an event-based split gateway,
the token is made active with its optional timer. In that rule, if there is an out-
going flow with a timer, an event is added with the corresponding time to the set
of available events. Two additional rules handle the possible cases. If there is an
outgoing flow with a message in the set of events, then that branch can be acti-
vated and one token is added for that flow. This behavior is formalized with the
splitGatewayEventBased rule shown in Figure 7, where an event msg(MId) is in the
events set and MId is the message associated to the flow FId1, which is one of the
outgoing flows of the split NId. A second rule handles the case in which none of
the expected messages is in the set of events, but there is at least one timer for
which the time has expired. In this situation, a token is added to the outgoing flow
corresponding to that timer.

15

1 rl [splitGatewayEventBased-msg] :
2 < PId : Process |
3 nodes : (split(NId, eventbased, FId, (FId1, FIds)), Nodes),
4 flows : (flow(FId1, SE, message(MId, MD)), Flows),
5 Atts >
6 < SId : Simulation |
7 tokens : (token(TId, NId, 0) Tks), ---- token is at gateway
8 events : ((TId |-> (msg(MId), Evs)), ME), ---- message is available
9 Atts1 >
10 < CId : Counter | counter : N >
11 => < PId : Process |
12 nodes : (split(NId, eventbased, FId, (FId1, FIds)), Nodes),
13 flows : (flow(FId1, SE, message(MId, MD)), Flows),
14 Atts >
15 < SId : Simulation | ---- put token in the corresponding outgoing flow
16 tokens : insert(Tks, (token(TId, FId1, time(eval(SE, N))))),
17 events : ((TId |-> removeTimer(FIds, Flows, Evs)), ME), ---- remove timer
18 Atts1 >
19 < CId : Counter | counter : (N + int(eval(SE, N))) > .

Figure 7: Event-based split gateway: one message available.

Loops and unbalanced workflows. The modeling of the BPMN execution se-
mantics using tokens and their circulation through the process structure supports
intricate constructs such as loops and unbalanced workflows. As far as looping
behavior is concerned, a token may circulate back to an already visited flow with-
out any additional treatment. Similarly, tokens can advance through flows that are
part of balanced or unbalanced gateways, independently of their structure.

4. Resource Allocation Analysis

This section illustrates how resource allocation analysis can be performed with
the proposed approach using the running example. It also includes a discussion on
how the analysis can help in refining and improving resource allocation. Specif-
ically, given the process description, a specification of resources and a workload,
the experiments illustrate how information on execution times and resource usage
is collected. This information is used to find the optimal allocation of resources
that minimizes costs and execution times relative to an optimization goal. The
interested reader is referred to [11] for further details on the experiments carried
out on the running example.

16

4.1. Properties
The BPMN subset encoded in Maude is quite expressive and several kinds

of properties can be computed, including timing and resource-based properties.
These properties are meaningful when executing multiple instances of a process
that compete for the shared resources. As for timing properties, the approach
presented in this paper allows the computation of average execution times (AET)
of a process, its variance (Var), and the average synchronization time (AST) for
merge gateways, representing the time elapse from the arrival of the first token
through one of its incoming flows to its activation. Synchronization times make
sense only for parallel and BPMN 1.0 inclusive gateways, since there is no waiting
nor synchronization time for the other gateways.

As far as resource-based properties are concerned, which is the main focus in
this work, the following properties are computed:
• The global time usage of all instances of each resource R (GTUR). E.g.,

when executing 10 instances of a process P, with an AET of 42, it is possible
that the two instances of a resource A are used for 56 time units and the three
instances of resource B for 60 time units.
• The expression GTU1

R denotes the average GTU of resource R (i.e., the GTU
per instance of resource R). Thus, although in the previous example GTUB

is greater than GTUA, GTU1
A is 28 and GTU1

B is 20.
• The average usage percentage UPR for a resource R over the global execu-

tion time. E.g., continuing with the running example, in average, an instance
of the resource A is used 24% of the global execution time when executing
200 instances of a process P.

To verify these properties, Maude rewriting capabilities are used in order to
simulate and extract analysis results on a given BPMN process. The simulation
object presented in Section 3 is used to accumulate information of synchroniza-
tion times, task duration, and resource usage. At the end of all executions, these
results are used for computing the expected average times and resource usage
percentages. Since the analyzed processes are assumed syntactically correct and
processes that may lead to non-terminating analysis are not considered (e.g., loops
without end events), the verification process always terminates. This is the case
because all splits are probabilistic, and time duration and probabilities assigned
to the branches respect specific assumptions (e.g., all probabilities are between 0
and 1, they sum up to 1 in exclusive branches, and times are positive).

17

Num.
AET Var ASTg8 ASTee

Total Resources Anal.
inst. time GTUe GTU1

e UPe GTUd GTU1
d UPd time

100 107 190 70 57 327 316 158 48 852 284 87 6s
200 160 37 81 108 599 506 253 42 1665 555 93 30s
400 301 213 107 252 1202 1202 601 43 3493 1164 97 225s
800 550 4 156 501 2367 1978 989 42 6953 2318 98 1748s
1600 910 56 250 862 4263 4005 2003 47 12648 4216 99 11828s

Table 1: Experimental results for the running example (2 employees, 3 drones).

4.2. Evaluation
Table 1 summarizes experimental results on execution times and resource us-

age on the parcel order and delivery example (Section 2). They were carried out
on an iMac with 3,2GHz Intel Core i5 and 8GB of RAM. All simulations were
performed assuming a given workload with a number of instances (first column)
and an exponentially distributed interarrival time (λ = 4). Columns 2 to 6 contain,
respectively, the average execution time (AET), its variance (Var), the average
synchronization time for the parallel merge at the end of the delivery process lane
(ASTg8), the average synchronization time for the end events (ASTee), and the
total time to complete the execution of all instances. The next six columns show
results on resource usage for employees and drones—note the use of subindices e
and d for employees and drones, respectively. The final column gives the overall
time needed to complete the analysis. All times are logical (time units), except for
the ones in the last column that are given in seconds. Other information, such as
the duration of each task and the synchronization time of each merge gateway is
also collected.

These experiments consist of 100, 200, 400, 800, and 1600 instances for 2
employees and 3 drones. Note that the average execution and synchronization
times clearly increase with the number of instances. This is because the more
tokens compete for resources, the more time it takes to execute the process and
for the tokens to reach the synchronization points. Note the relationship between
AET and ASTee times, showing an unbalance between the three lanes: the client
lane terminates earlier than the two other lanes, which exhibit a bottleneck because
of the demand on the resources.

The global time (GTU) for each or all the instances increases with the num-
ber of executed instances. These times are particularly interesting because they
can be materialized as costs (e.g., cost of a resource, salary of an employee/all

18

employees). In relation with usage percentage (UP), the results indicate that the
employees are "underused" since they work around 40% of the time, in contrast to
the drones that are constantly busy and used about 90% of the time for delivering
parcels. This may suggest an inappropriate allocation of resources. It is worth ob-
serving that, although the number of instances clearly affects all computed times,
the results for resource usage (UP) are quite stable and a small number of instances
is enough for obtaining a good approximation of these percentages.

Resource allocation impacts execution times (AET) and resource usage (UP)
of a process. Figure 8 focuses on average execution time and depicts the results
when the number of employees and drones vary for a fixed number of executions
(400). The objective here is to reduce the average execution time for completing
the process: the quicker the parcel is delivered, the more satisfied the client is. It
can be observed that, independently of the number of employees, execution times
are not satisfactory with 1 or 2 drones (between 400 and 800 time units). The time
becomes reasonable for more than 3 drones (less than 300 time units) and tends
to stabilize. It is also worth noting that, given its low usage rate, the number of
employees does not impact significantly the execution time. For more than six
drones, only going from one to two employees makes a significant impact in the
AET values.

Figure 8: Running example (400 instances): average execution time.

Figure 9 gives a different point of view of resource usage by concentrating on
each resource instance. Figure 9 (left) shows that employees are close to 100%
usage only if there is 1 or 2 instances of that resource and at least 4 or 8 drones,
respectively. If the number of employees increases, the usage percentage quickly
drops, reaching a low level (e.g., 14% for 4 employees and 2 drones). This per-

19

centage slightly increases with the number of drone instances (e.g., 34% for 4
employees and 5 drones), but remains low (around 30%). Figure 9 (right) shows
that the drone usage is always quite high whatever the number of employees is.
With only 1 or 2 drones, the usage percentage is almost at 100% and slightly
decreases with 4 drones. When there are 6 drones and 1 employee, the percent-
age is still about 60%. Another interesting fact is that the number of employees
barely impacts the drone usage percentage. For example, with 4 drones, the usage
percentage is around 90% for any number of employees (varying from 1 to 10).

Figure 9: Running example (400 instances): average usage percentage per employee (left) and
drone (right).

4.3. Optimal Resource Allocation
The collected data on execution times and resource usage can be used to com-

pute the optimal allocation of resources for the running example. Given the data
represented in Figures 8 and 9, an optimization problem can be expressed as fol-
lows. Given expressions fcost and faet representing the normalized functions
for drone and employee cost (per time unit) and for average execution time, and
given wi with i ∈ {cost, aet} their respective weights, the following multi-objective
optimization problem

min
x∈X

�

i∈{cost, aet}
wi fi(x),

for which Pareto optimal solutions are required, can be solved. For instance,
assuming that the cost per hour of a drone and an employee is 20e and 50e,
respectively, Figure 10 depicts normalized costs and average execution times. If
the preference is to minimize delivery time, specified by, say, weights wcost =

20

0.4 and waet = 0.6, the best solution would be the one marked in the figure,
representing the combination of 3 employees and 8 drones.

Figure 10: Cost vs. average execution time.

Table 2 shows the results of the simulations for the running example, with
3 employees and 8 drones. If the results in Tables 1 and 2 are compared, an
improvement in all aspects can be observed, as expected. Specifically, average
execution times keep variance values and synchronization times at lower rates.
With this new assignment of resources, AETs have dropped significantly. E.g.,
from 910 to 302 for the 1600-instances case. The total time has similarly been
reduced in all cases, e.g., from 4263 down to 1627 in the 1600-instances case.
To conclude, this improvement is a consequence of a more balanced use of the
assigned resources. Employees are now used in the range 31%-77% of their time
(whereas they were in the range 42%-48% with the previous assignment). The
load for drones has slightly dropped, as a consequence of the better balanced load
of employees and drones.

Num.
AET Var ASTg8 ASTee

Total Resources Anal.
inst. time GTUe GTU1

e UPe GTUd GTU1
d UPd time

100 66 18 69 18 243 228 76 31 884 111 45 4s
200 73 0.3 76 27 232 434 145 62 1443 180 78 18s
400 109 67 102 63 460 865 288 63 3271 409 89 138s
800 181 7 156 135 873 1840 613 70 6540 817 94 1060s
1600 302 0.4 252 254 1627 3764 1255 77 12545 1568 96 7946s

Table 2: Experimental results for the running example (3 employees, 8 drones).

21

4.4. Search-Based Optimization
The analysis performed in the previous section requires the analysis of all

possible combinations of numbers of resource instances. In the example in the
previous section, the analysis was performed for the range [1..10] for both em-
ployees and drones. Considering more resources and wider ranges the analysis
could be very costly.

It is a classical optimization problem and it can be solved by embedding the
above-mentioned techniques for evaluating a specific resource assignment into
some of the heuristic-based search optimization techniques. The possibility of
using the techniques in the previous section into a simple gradient descent is illus-
trated next. Gradient descent is intended for finding local minimum (respectively,
maximum) values starting from a specific point. After analyzing the function in
the neighbouring points, the one with greatest value change is identified. Since
the goal is to find a local minimum, the smallest value is chosen. If none of the
neighbours is smaller, then the actual point is a local minimum.

By using the gradient descent algorithm on the running example, starting from
the assignment (employee �→ 4, drone �→ 4), and using the optimization function
and values in Section 4.3, the optimal solution can be found by following the se-
quence (4, 4) −→ (3, 5) −→ (2, 6) −→ (2, 7) −→ (3, 8). The values for which the
optimization function is computed by our search function and the corresponding
evaluations is depicted in Table 3. When compared to the analysis in Section 4.3,
only 27 combinations were analyzed, instead of the 100 combinations analyzed
above. More importantly, this dynamic search enables the exploration of greater
search spaces. However, notice that this is a local minimum. A more sophisticated
search algorithm may be required to find a global minimum, such as annealing or
genetic algorithms.

4.5. Additional Examples
The BPMN process depicted in Figure 11 describes the recruitment process in

an enterprise. This process shows how a candidate must fill in a hiring form, carry
on a medical checkup, and in some cases apply for visa. Once the documentation
is submitted, it is checked by the human resources office, which can decide to
accept, reject or request additional documentation. If accepted, the candidate is
informed, an assistant is in charge of preparing a welcome kit, and the technical
staff is in charge of including the corresponding data in the enterprise’s DB.

In this example, there are three resources modeled, namely human resources,
the assistants, and the technical staff. The execution of the gradient descent algo-
rithm on the recruitment example, starting from the assignment (hr �→ 3, assistant �→

22

Drones

Employees

1 2 3 4 5 6 7 8 9 10
1 0,591 0,591 0,567 0,687
2 0,560 0,492 0,467 0,425 0,428 0,446
3 0,514 0,621 0,508 0,480 0,464 0,420 0,528
4 0,622 0,685 0,653 0,527 0,461 0,508 0,466
5 0,626 0,731 0,603
6
7
8
9
10

Table 3: Computation using the gradient descent search algorithm (starting with the assignment
(employee �→ 4, drone �→ 4)).

3, technicalstaff �→ 3), using the optimization function and values in Section 4.3,
with costs (per hour) (hr �→ 50, assistant �→ 25, technicalstaff �→ 35), a local
optimal solution is found by following the sequence

(3, 3, 3) −→ (4, 3, 3) −→ (4, 3, 2) −→ (4, 3, 1) −→ (5, 3, 1) −→ (5, 2, 1).

If the range [1..10] is considered, then only 63 assignments are analyzed instead
of 10 × 10 × 10 cases.

The BPMN process depicted in Figure 12 describes a visa application process.
The visa requester must provide a scanned copy of her passport and pay certain
fees. The scanned passport is checked by an employee. If everything is all right,
the visa is granted and delivered to the requester.

In this example, there are two resources modeled, namely the employee and
the visa printer. Note that the task Deliver visa requires an instance of each of
the resources. The execution of the gradient descent algorithm on the visa ap-
plication example, starting from the assignment (employee �→ 1, printer �→ 5),
using the optimization function and values in Section 4.3, with costs (per hour)
(employee �→ 50, printer �→ 5), a local optimal solution is found by following the
sequence

(1, 5) −→ (2, 5) −→ (2, 4) −→ (2, 3) −→ (2, 2) −→ (2, 1).

If the range [1..10] is considered, then 24 assignments are analyzed instead of

23

Figure 11: BPMN process of the recruitment example.

10 × 10 cases.

5. Related Work

Resource allocation—including optimization, allocation constraints, and op-
timal schedule allocation—has been extensively explored for the business pro-
cess domain from several formal methods approaches. Schömig and Rau [32]
use colored stochastic Petri nets to specify and analyze business processes in the
presence of dynamic routing, simultaneous resource allocation, forking/joining of
process-control threads, and priority-based queueing. In their work, each resource
is equipped with properties grouped in a role defining if the resource is eligible
to perform a certain activity. Li et al. [19] introduce multidimensional workflow
nets to model and analyze resource availability and workload. Oliveira et al. [25]
use generalized stochastic Petri nets for correctness verification and performance
evaluation of business processes. In their work, an activity can be associated to
multiple roles and the completion of an activity can use a portion of the resources
available to a role. They also propose metrics for evaluating process performance
such as: the minimum number of resources needed for a role in order to complete

24

Figure 12: BPMN process of the visa example

a process, the expected number of activity instances when completing a process
under the assumption of sufficient resources, and the expected activity response
time.

The problem of understanding how bounded resources can impact the behavior
of a process is approached by Netjes et al. by using colored Petri nets [24]. They
introduce the notion of “flexible resource allocation” as a way to assign resources
associated to a given role based on priorities. Havur et al. study the problem of re-
source allocation in business processes management systems where resources can
be assigned constraints (e.g., time of availability) and have dependencies. Their
technique is based on the answer set programming formalism and is capable of
deriving optimal schedules. More recently, Sperl et al. [33] describe a stochastic
method for quantifying resource utilization relative to structural properties of the
processes and historical executions.

The work presented in this paper can encompass most of the specification and
analysis features in [32, 19, 25, 5, 33] for BPMN. The rewriting logic specification

25

presented here can be used to specify and verify resource availability and work-
load, several related measures, and the impact of bounded resources on a process
behavior. Despite the fact that the main focus of this paper has been on resource
allocation analysis and its optimization, the underlying rewriting logic seman-
tics can simultaneously be a testbed for integrating and combining several types
of mechanical formal analysis techniques such as algorithmic-based LTL model
checking and statistical verification. Features such as multiple roles associated to
an activity, flexible resource allocation, dependencies among the resources, and
the use of historical data can be extensions of the present work.

There is also significant effort in the research community aimed at providing
formal semantics and verification techniques for business processes using differ-
ent formalisms, with Petri nets and process algebra as the preferred formalisms
by most of them (see, e.g., [6, 10, 31]). [6] presents a business process monitor-
ing platform that relies on the ProM mining tool and Petri nets tools for verifying
synchronization, sojourn and waiting times. Raedts et al. [31] translate BPMN
processes into Petri nets and use model checkers to analyze invariants such as
deadlock freedom. The authors of [35] present a formal semantics for BPMN
by an encoding into the process algebra CSP. They show in [36] how such a se-
mantics can be used to verify compatibility between business participants in a
collaboration. There is a further extension in [37] to propose a timed semantics
of BPMN with delays. In [7, 23, 21], the focus is on the semantics formalized
in [35, 37] by proposing an automated transformation from BPMN to timed CSP,
as well as composition verification techniques for checking properties using the
FDR2 model checker. Poizat et al. [30] present an encoding of an untimed subset
of BPMN into the LNT process algebra for supporting the analysis of process evo-
lution. [14] presents an early attempt to represent BPMN processes enriched with
time features in Maude. This work was extended in [13] to provide automated ver-
ification of stochastic properties such as expected processing and synchronization
times. Compared to these related works, the executable specification in rewrit-
ing logic presented in Section 3 can be seen as a semantic framework for BPMN,
yet it is not the primary goal of this paper. The main difference with respect to
those works is that the focus here is in the formal specification and verification of
quantitative aspects of processes and their resources.

Several works propose extensions of BPMN with time constructs, see, e.g. [3,
16]. In [16], the authors present Time-BPMN, an extension of BPMN to repre-
sent various constraints and dependencies that may arise when modelling business
processes. The temporal constraints are used to control the beginning/end of an
activity, whereas temporal dependencies involve two activities and indicate the

26

relationship between their respective beginning/end. In [3], a metamodel-based
approach to integrate temporal constraints and dependencies is introduced. The
time aspects are specified using rules and OCL constraints capture the semantics
of these rules. [16] introduces time as a first class citizen to the BPMN standard
whereas [3] proposes an MDE-based approach that enrich the existing BPMN
control-flow graph model. In comparison, the goal in the present paper was not
to extend the BPMN notation to take expressive modeling of time constraints into
account, but to rely on usual time representation (duration of task and flow) and
concentrate on the analysis of key timing properties in these models.

The expected processing time, the expected synchronization time for merge
gateways, and other similar measures have been considered by some authors to
evaluate deployed processes by, e.g., collecting timestamps from logs (see, e.g.,
[1, 2, 6]). Task duration has been specified using literal values in [5, 6, 26] and
probabilities have been used to specify the likelihood of branching in [5, 26].
Inclusive gateways are only supported in [5, 20, 30] and loops only in [15, 26, 29].
The goal in most of these works is, however, quite different. Overall, Oliveira et
al. [26] possibly have the closest approach to the one presented in this paper: task
durations and probabilities for exclusive branching can be specified, and loops
and continuous time are considered. However, they cannot specify durations with
stochastic expressions and do not perform analysis on shared resources.

6. Conclusion

This paper presented a solution to the problem of formal modeling and me-
chanical analysis of resource allocation for BPMN processes. The approach re-
lies on the rewriting logic semantic framework and uses the Maude system (and
language) to stochastically simulate multiple concurrent executions of a process
instance that compete for the shared resources. The encoding of the BPMN syn-
tax and execution semantics in rewriting logic supports an expressive subset of
BPMN consisting of: activity and collaboration diagrams, several types of gate-
ways, timed flows and tasks, probabilities for exclusive and inclusive split gate-
ways, unbalanced workflows, and looping behavior. A main contribution of this
work is to demonstrate how several properties of interest on resource allocation
can be automatically analyzed, including resource charge over time and usage
percentage for each resource replica. This paper also showed how the optimal
allocation of resources can be computed by formulating a multi-objective opti-
mization problem. The approach was validated on several examples, including
real-world processes with large workloads.

27

As far as future work is concerned, a first perspective is to move from design
time to runtime. The idea would be to dynamically adjust the amount of resources
depending on the evolution of the workload. It is worth noting that this runtime
solution would apply in some specific cases only when resources are available
and could be used on-demand. A second perspective aims at using the results
of the analysis proposed in this paper to address refactoring issues of a process
in order to make it more efficient. As an example, the analysis may emphasize
the unnecessary use of certain gateways resulting in bottlenecks in the execution.
Ideally, the ultimate goal would be to have such a refactoring process as automated
as possible for simplifying this optimization task.

Acknowledgments. The first author was supported in part by projects PGC2018-
094905-B-I00 (Spanish MINECO/FEDER) and UMA18-FEDERJA-180 (FEDER
Andalucía). The second author has been supported in part by CAPES, Colcien-
cias, and INRIA via the STIC AmSud project “EPIC: EPistemic Interactive Con-
currency” (Proc. No 88881.117603/2016-01), and Capital Semilla 2017 project
“SCORES: Stochastic Concurrency in Rewrite-based Probabilistic Models” (Proj.
No. 020100610).

References

[1] van der Aalst, W.M.P., 2016. Process Mining - Data Science in Action,
Second Edition. Springer.

[2] van der Aalst, W.M.P., van Dongen, B.F., 2002. Discovering workflow
performance models from timed logs, in: Han, Y., Tai, S., Wikarski, D.
(Eds.), Engineering and Deployment of Cooperative Information Systems,
First International Conference, EDCIS 2002, Beijing, China, September 17-
20, 2002, Proceedings, Springer. pp. 45–63.

[3] Arévalo, C., Cuaresma, M.J.E., Ramos, I.M., Domínguez-Muñoz, M., 2016.
A metamodel to integrate business processes time perspective in BPMN 2.0.
Information & Software Technology 77, 17–33.

[4] Bouhoula, A., Jouannaud, J., Meseguer, J., 2000. Specification and proof in
membership equational logic. Theoretical Computer Science 236, 35–132.

[5] Braghetto, K.R., Ferreira, J.E., Vincent, J., 2011. Performance evaluation of
business processes through a formal transformation to SAN, in: Thomas, N.

28

(Ed.), Computer Performance Engineering - 8th European Performance En-
gineering Workshop, EPEW 2011, Borrowdale, UK, October 12-13, 2011.
Proceedings, Springer. pp. 42–56.

[6] Bruni, R., Corradini, A., Ferrari, G.L., Flagella, T., Guanciale, R., Spagnolo,
G., 2012. Applying process analysis to the italian egovernment enterprise
architecture, in: Carbone, M., Petit, J. (Eds.), Web Services and Formal
Methods - 8th International Workshop, WS-FM 2011, Clermont-Ferrand,
France, September 1-2, 2011, Revised Selected Papers, Springer. pp. 111–
127.

[7] Capel, M.I., Mendoza, L.E., 2012. Automating the transformation from
BPMN models to CSP+T specifications, in: Bowen, J.P., Zhu, H., Hinchey,
M. (Eds.), 35th Annual IEEE Software Engineering Workshop, SEW 2012,
Heraclion, Crete, Greece, October 12-13, 2012, IEEE Computer Society. pp.
100–109.

[8] Christiansen, D.R., Carbone, M., Hildebrandt, T.T., 2011. Formal semantics
and implementation of BPMN 2.0 inclusive gateways, in: Bravetti, M., Bul-
tan, T. (Eds.), Web Services and Formal Methods - 7th International Work-
shop, WS-FM 2010, Hoboken, NJ, USA, September 16-17, 2010. Revised
Selected Papers, Springer. pp. 146–160.

[9] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J.,
Talcott, C.L. (Eds.), 2007. All About Maude - A High-Performance Logi-
cal Framework, How to Specify, Program and Verify Systems in Rewriting
Logic. volume 4350 of Lecture Notes in Computer Science. Springer.

[10] Dijkman, R.M., Dumas, M., Ouyang, C., 2008. Semantics and analysis of
business process models in BPMN. Information & Software Technology 50,
1281–1294.

[11] Durán, F., Rocha, C., Salaün, G., 2018a. A Note on Resource Alloca-
tion Analysis of BPMN Processes. URL: http://maude.lcc.uma.es/
BPMN-R.

[12] Durán, F., Rocha, C., Salaün, G., 2018b. Computing the parallelism degree
of timed BPMN processes, in: Mazzara, M., Ober, I., Salaün, G. (Eds.), Soft-
ware Technologies: Applications and Foundations - STAF 2018 Collocated

29

Workshops, Toulouse, France, June 25-29, 2018, Revised Selected Papers,
Springer. pp. 320–335.

[13] Durán, F., Rocha, C., Salaün, G., 2018c. Stochastic analysis of BPMN with
time in rewriting logic. Sci. Comput. Program. 168, 1–17.

[14] Durán, F., Salaün, G., 2017. Verifying timed BPMN processes using maude,
in: Jacquet, J., Massink, M. (Eds.), Coordination Models and Languages -
19th IFIP WG 6.1 International Conference, COORDINATION 2017, Held
as Part of the 12th International Federated Conference on Distributed Com-
puting Techniques, DisCoTec 2017, Neuchâtel, Switzerland, June 19-22,
2017, Proceedings, Springer. pp. 219–236.

[15] El-Saber, N.A.S., Boronat, A., 2014. BPMN formalization and verification
using maude, in: Proceedings of the 2014 Workshop on Behaviour Mod-
elling - Foundations and Applications, BM-FA 2014, York, United King-
dom, July 22-22, 2014, ACM. pp. 1–8.

[16] Gagné, D., Trudel, A., 2009. Time-bpmn, in: Hofreiter, B., Werthner, H.
(Eds.), 2009 IEEE Conference on Commerce and Enterprise Computing,
CEC 2009, Vienna, Austria, July 20-23, 2009, IEEE Computer Society. pp.
361–367.

[17] ISO/IEC, 2013. International Standard 19510, Information technology –
Business Process Model and Notation.

[18] Krishna, A., Poizat, P., Salaün, G., 2017. VBPMN: automated verification of
BPMN processes (tool paper), in: Polikarpova, N., Schneider, S. (Eds.), In-
tegrated Formal Methods - 13th International Conference, IFM 2017, Turin,
Italy, September 20-22, 2017, Proceedings, Springer. pp. 323–331.

[19] Li, J., Fan, Y., Zhou, M., 2004. Performance Modeling and Analysis of
Workflow. IEEE Transactions on Systems, Man, and Cybernetics 34, 229–
242.

[20] Mateescu, R., Salaün, G., Ye, L., 2014. Quantifying the parallelism in
BPMN processes using model checking, in: Seinturier, L., de Almeida, E.S.,
Carlson, J. (Eds.), CBSE’14, Proceedings of the 17th International ACM
SIGSOFT Symposium on Component-Based Software Engineering (part of
CompArch 2014), Marcq-en-Baroeul, Lille, France, June 30 - July 4, 2014,
ACM. pp. 159–168.

30

[21] Mendoza, L.E., Capel, M.I., Pérez, M.A., 2012. Conceptual framework
for business processes compositional verification. Information & Software
Technology 54, 149–161.

[22] Meseguer, J., 1992. Conditional Rewriting Logic as a Unified Model of
Concurrency. Theoretical Computer Science 96, 73–155.

[23] Morales, L.E.M., Tuñón, M.I.C., Pérez, M.A., 2011. A formalization pro-
posal of timed BPMN for compositional verification of business processes,
in: Filipe, J., Cordeiro, J. (Eds.), Enterprise Information Systems - 12th In-
ternational Conference, ICEIS 2010, Funchal, Madeira, Portugal, June 8-12,
2010, Revised Selected Papers, Springer. pp. 388–403.

[24] Netjes, M., van der Aalst, W.M., Reijers, H.A., 2005. Analysis of Resource-
Constrained Processes with Colored Petri Nets, in: Jensen, K. (Ed.), Sixth
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools, Aarhus, Denmark, October 24-26, 2005, pp. 251–266.

[25] Oliveira, C., Lima, R., Reijers, H., Ribeiro, J., 2012. Quantitative Analysis
of Resource-Constrained Business Processes. Trans. on Syst., Man, and
Cybern. 42, 669–684.

[26] Oliveira, C.A.L., Lima, R.M.F., Andre, T., Reijers, H.A., 2009. Modeling
and analyzing resource-constrained business processes, in: Proceedings of
the IEEE International Conference on Systems, Man and Cybernetics, San
Antonio, TX, USA, 11-14 October 2009, IEEE. pp. 2824–2830.

[27] Ölveczky, P.C., Meseguer, J., 2007. Semantics and pragmatics of real-time
maude. Higher-Order and Symbolic Computation 20, 161–196.

[28] OMG, 2011. Business process model and notation (BPMN) - v 2.0.

[29] Poizat, P., Salaün, G., 2012. Checking the realizability of BPMN 2.0 chore-
ographies, in: Ossowski, S., Lecca, P. (Eds.), Proceedings of the ACM Sym-
posium on Applied Computing, SAC 2012, Riva, Trento, Italy, March 26-30,
2012, ACM. pp. 1927–1934.

[30] Poizat, P., Salaün, G., Krishna, A., 2017. Checking business process evo-
lution, in: Kouchnarenko, O., Khosravi, R. (Eds.), Formal Aspects of Com-
ponent Software - 13th International Conference, FACS 2016, Besançon,
France, October 19-21, 2016, Revised Selected Papers, pp. 36–53.

31

[31] Raedts, I., Petkovic, M., Usenko, Y.S., van der Werf, J.M.E.M., Groote,
J.F., Somers, L.J., 2007. Transformation of BPMN models for behaviour
analysis, in: Augusto, J.C., Barjis, J., Ultes-Nitsche, U. (Eds.), Modelling,
Simulation, Verification and Validation of Enterprise Information Systems,
Proceedings of the 5th International Workshop on Modelling, Simulation,
Verification and Validation of Enterprise Information Systems, MSVVEIS-
2007, In conjunction with ICEIS 2007, Funchal, Madeira, Portugal, June
2007, INSTICC PRESS. pp. 126–137.

[32] Schömig, A.K., Rau, H., 1995. A Petri Net Approach for the Perfor-
mance Analysis of Business Processes. Technical Report 116. Universität
Würzburg. Würzburg, Germany.

[33] Sperl, S., Havur, G., Steyskal, S., Cabanillas, C., Polleres, A., Haselböck,
A., 2017. Resource utilization prediction in decision-intensive business pro-
cesses, in: Ceravolo, P., van Keulen, M., Stoffel, K. (Eds.), Proceedings
of the 7th International Symposium on Data-driven Process Discovery and
Analysis (SIMPDA 2017), Neuchâtel, Switzerland, December 6-8, 2017.,
CEUR-WS.org. pp. 128–141. URL: http://ceur-ws.org/Vol-2016/
paper10.pdf.

[34] Walck, C., 2007. Hand-Book on Statistical Distributions for Experimen-
talists. Technical Report SUF–PFY/96–01. Universitet Stockholms. Stock-
holm.

[35] Wong, P.Y.H., Gibbons, J., 2008a. A process semantics for BPMN, in: Liu,
S., Maibaum, T.S.E., Araki, K. (Eds.), Formal Methods and Software En-
gineering, 10th International Conference on Formal Engineering Methods,
ICFEM 2008, Kitakyushu-City, Japan, October 27-31, 2008. Proceedings,
Springer. pp. 355–374.

[36] Wong, P.Y.H., Gibbons, J., 2008b. Verifying business process compatibility
(short paper), in: Zhu, H. (Ed.), Proceedings of the Eighth International
Conference on Quality Software, QSIC 2008, 12-13 August 2008, Oxford,
UK, IEEE Computer Society. pp. 126–131.

[37] Wong, P.Y.H., Gibbons, J., 2009. A relative timed semantics for BPMN.
Electronic Notes in Theoretical Computer Science 229, 59–75.

32

