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Abstract

A business process is a set of structured activities that provide a certain ser-

vice or product. Business processes can be modeled using the BPMN standard,

and several industrial platforms have been developed for supporting their design,

modeling, and simulation. This paper presents a rewriting logic executable spec-

ification of BPMN with time and extended with probabilities. Duration times

and delays for tasks and flows can be specified as stochastic expressions, while

probabilities are associated to various forms of branching behavior in gateways.

These quantities enable discrete-event simulation and automatic stochastic verifi-

cation of properties such as expected processing time, expected synchronization

time at merge gateways, and domain-specific quantitative assertions. The mech-

anization of the stochastic analysis tasks is done with Maude’s statistical model

checker PVeStA. The approach is illustrated with a running example and further

experimental results encompass specifications from the literature.
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1. Introduction

In the last ten years, business process management has become a strategic

activity in organizations because streamlining the use of time and resources has

the potential to increase profit margins. A business process consists of a set of

structured tasks that together provide a certain service or product by guiding the

accomplishment through time of activities such as invoicing management, pro-

duction lines, after-sale services, and wage payments. BPMN, the Business Pro-

cess Model and Notation [28], is a workflow-based graphical language that has

emerged as the de-facto standard for business process definitions. State-of-the-art

tools for BPMN focus on the description, implementation, and simulation of busi-

ness processes. However, these tools provide very little support for understanding

the quantitative aspects in process design.

When modeling a BPMN process many crucial questions arise from a cor-

rectness and optimization point of view. For example: is the workflow precisely

modelling what it is intended? Is the workflow free of errors and bugs? Are certain

properties of interest preserved? What is the degree of parallelism of the process?

Are there bottlenecks and, if so, where? What is the average execution time of

the workflow? How long will the workflow wait at some specific synchronization

points? Formal verification and optimization of business processes aim at, respec-

tively, ensuring the correct behavior and improving these processes, by effectively

answering the above questions, with the final goal to reduce costs and augment

efficiency. Nonetheless, process correctness and optimization are far from being

simple questions to answer, particularly when modeling complex combinations

of tasks, nesting of gateways, cyclic behavior, and quantitative aspects such as

probabilities.

This paper presents modeling and automated analysis techniques for the quan-

titative evaluation of timing behavior in BPMN. Towards this goal, the BPMN

language – which provides a number of different building blocks – is enriched

with stochastic expressions for specifying time (duration and delay) and proba-

bilistic branching. A process specification makes use of probability distribution

functions for defining the execution time of tasks or flows, and of probabilities

for defining the likelihood of branching executions at split gateways. The idea

is that a process designer can use these constructs when defining a process and

then use the type of automatic verification presented in this paper to quantitatively

estimate its correctness and performance. The output of the verification task is

helpful for validating and optimizing a process design (e.g., structure, precision,

message buffer dimension, and use of resources), before it is deployed in a pro-
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duction environment.

The approach relies on an executable specification of BPMN in rewriting

logic [37], a logic of concurrency that naturally deals with states and concur-

rent transitions between them. This specification is formulated as a probabilistic

rewrite theory [3], parametric in a family of probability distribution functions,

that supports a broad class of BPMN constructs and stochastic expressions. When

executed, a probabilistic rewrite theory simulates discrete probabilistic choice as

found in discrete-time Markov chains and stochastic continuous-time as found in

continuous-time Markov chains [46]. The executable specification of BPMN in

rewriting logic supports: (i) tasks and flows whose times are constant values or

sampled from several probabilistic distribution functions, (ii) probabilistic inclu-

sive and exclusive gateways as well as parallel gateways, (iii) loops, and (iv) un-

balanced workflow structures.

The proposed automatic analysis of quantitative properties relies on the PVeStA

statistical model checker [5]. Given a probabilistic rewrite theory, such as the one

presented in this paper, PVeStA is used to simulate its execution while automat-

ically evaluating expected values of any numerical expression or path expression

encoded in the QuaTEx language [3]. This is achieved automatically by perform-

ing enough Monte Carlo simulations to meet an error threshold and still be mean-

ingful for statistical inference. This approach is used to compute several properties

of interest on a process such as the expected processing time (including variance,

minimum, and maximum processing times collected during the sampled runs) and

the synchronization times (i.e., waiting times) at merge gateways. Such capabili-

ties are illustrated in this paper with the help of a running example. The output of

the quantitative analysis is used as part of a discussion illustrating how the running

example can be improved by reducing expected times. Additional results on the

statistical model checking of real-world business processes from the literature are

also included.

To sum up, the main contributions of this paper are the following:

• an executable specification in rewriting logic of a subset of BPMN (includ-

ing inclusive splits, loops, and unbalanced gateways) extended with support

for stochastic specification of time and branching constructs;

• automated verification of stochastic properties of interest such as expected

processing time of a process and synchronization time at merge gateways

using statistical model checking; and

• validation of the approach by application to several real-world BPMN pro-

3



cesses.

The organization of the paper is as follows. Section 2 introduces BPMN ex-

tended with timing and branching probabilistic information. Section 3 presents

some preliminaries on probabilistic modeling and stochastic analysis in rewriting

logic. Section 4 gives a summary of the executable specification of the subset

of BPMN considered here. Section 5 presents how performance evaluation of

BPMN processes is achieved using the PVeStA tool and experiments on several

real-world examples. Section 6 surveys related work and Section 7 concludes the

paper.

Additional details on the specifications and examples presented throughout the

paper are available to the reader at the accompanying webpage [18].

2. BPMN with Time and Probabilities

This section introduces the subset of BPMN considered in this paper, which

focuses on behavioral aspects (start/end events, tasks, flows, gateways) enriched

with time and probabilities. A process modeling a business trip organization in

BPMN with timing and probability annotations is introduced with the purpose

of illustrating these concepts, and serving as a running example in the upcoming

sections.

2.1. BPMN Overview

A BPMN process is a directed graph with nodes as vertices and sequence

flows as directed edges. A node is a start or end event, a task, or a gateway. Start

and end events are used to initialize and terminate processes, respectively. A task

represents an atomic activity, and has exactly one incoming and one outgoing flow.

A gateway is used to control the split patterns (i.e., flow divergence) and merge

patterns (i.e., flow convergence) of execution in a process. In this paper, a process

is considered to have exactly one start event and at least one end event. The three

main gateways available in BPMN are considered, namely, exclusive, parallel, and

inclusive gateways. An exclusive gateway chooses one out of a set of mutually

exclusive alternative incoming or outgoing branches. A parallel gateway creates

concurrent flows for all its outgoing branches or synchronizes concurrent flows for

all its incoming branches. In an inclusive gateway, any number of branches among

all its incoming or outgoing branches may be taken. For any kind of gateway

considered here (exclusive, parallel, inclusive), there is a split and a corresponding

merge pattern. Figure 1 summarizes the syntax of BPMN supported in this work,
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Figure 1: BPMN syntax augmented with timing behavior and probabilities

including examples of the timing and probability constructs that are explained

later in this section.

The semantics of BPMN is described in official documents [28, 39] and some

attempts have been made to formalize its semantics (e.g., [17, 36, 42, 49]). The

execution semantics of BPMN is usually given by means of tokens representing

how the execution of the process evolves over time. At the beginning of the pro-

cess execution, there is exactly one token at the start event. A token can move

along a number of sequence flows. A token can also enter and leave a task by

following the flow associated to that task. When a token arrives at a gateway,

the execution behaves differently depending on the kind of gateway encountered.

When a token arrives at a parallel split gateway, the token is consumed and one

token is generated for every outgoing flow of the split gateway. When a token is

consumed at an exclusive split gateway, only one token is created and assigned

to one of its outgoing flows. In the case of an inclusive split gateway, when a

token is consumed, some new tokens are generated and assigned to the outgo-

ing flows (at least one, at most all). For exclusive and inclusive split gateways,

the choice of outgoing branches to be activated depends on data-based conditions

(e.g., “x > 50” is associated to one outgoing flow and “x ≤ 50” is associated

to the other flow) that can be evaluated to true or false. In our work, we model

such conditions as probabilistic choices. As for merge gateways, they usually act

as synchronization points and can be triggered when all expected tokens have ar-

rived at this merge gateway. A process finishes execution when all tokens have

reached an end event.
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2.2. Timing Behavior and Probabilities

The class of BPMN processes considered in this paper is parametric in a family

of probability distribution functions specifying the time of tasks and flows (dura-

tion). Stochastic expressions are assigned to a BPMN task or flow for specifying

its duration in time units. In the presence of timed tasks and flows, the execution

semantics of a BPMN process is as follows: a token has a run-to-completion time

at its current position and it needs to wait until this time becomes zero before

advancing in the flow. Probabilities offer a useful way of describing the behav-

ior of split gateways without explicitly associating data-based conditions to flows.

Probabilities can be associated to outgoing flows of exclusive and inclusive split

gateways, denoting how an associated flow is likely to be assigned a newly created

token during execution.

Specifically, a time value can either be a constant value (a non-negative real

number, possibly 0) or sampled from a probability distribution function according

to some parameters. The probability distribution functions available for the exe-

cutable specification of BPMN include the exponential, Weibull, normal/Gauss, Γ,

χ2, Erlang, F, geometric, Pascal, Pareto, binomial, and uniform functions [48]. In

Figure 1, normal and uniform distribution functions are associated to some tasks

and flows, respectively. The expression Norm(µ, σ) means that the time value for

the corresponding task or flow is to be sampled from the normal distribution func-

tion with mean µ and variance σ. Analogously, the expression Unif(x, y) means

that the time value for the corresponding task or flow is to be sampled uniformly

from the interval [x, y]. In the executable specification of BPMN presented in this

paper, there is a signature specifying the parameters required to sample values for

each one of the probability distribution functions listed above.

The probabilities associated to the outgoing flows of an exclusive split must

sum up to 1. However, each outgoing flow in an inclusive split can be equipped

with a probability between 0 and 1 without a restriction on their total sum, because

several branches can be triggered in the case of an inclusive split gateway (every

branch is independent of each other).

The timing behavior and the split probabilities introduced in this section are

treated as annotations in the BPMN process. On a wider scale, it is assumed that

BPMN processes are syntactically correct. This can be ensured by using tools

such as the Activiti BPM platform, Bonita BPM, or the Eclipse BPMN Designer.

BPMN processes are then automatically transformed to a Maude specification

using a a plugin implemented as an extension of the VBPMN platform [31] (see

Section 4).
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Figure 2: A business trip organization process in BPMN

2.3. Running Example

The running example, depicted in Figure 2, is a process detailing the steps

required to prepare a business trip within an organization. The process starts by

asking for an authorization to organize a trip. Three continuations are possible:

the process abruptly terminates, the authorization is to be requested again with,

e.g., additional information, or the trip is accepted and then the rest of the process

is triggered. In the latter case, the process continues by reserving flight tickets

and carrying out mission paperwork. Once the flight tickets are issued, accom-

modation reservation and other additional activities (e.g., insurance, vaccines) are

performed in parallel. The visa process is initiated only when all reservations (i.e.,

flights and hotels) are ready and when the paperwork is completed. When all the

prerequisites for the trip are satisfied, the mission details are stored in a specific

database.

Quantitative information is used in several parts of the business trip organiza-

tion process by associating: (i) timing behavior to tasks and flows, and (ii) proba-

bilities for triggering outgoing flows in case of choice (i.e., exclusive and inclusive

split gateways). These expressions can be defined by internal rules of the organi-

zation (e.g., authorization is delivered within a week) or by contextual information

(e.g., 50% of trips are authorized) at design time. To be able to refer to the paral-

lel and inclusive merge gateways in this process in Section 5, we have identified

them in Figure 2 with upper case letters (A, B, C). Note that exclusive, inclusive

and parallel gateways, looping behavior and unbalanced structure of workflows

are present in this process.
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3. Stochastic Analysis in Rewriting Logic: An Overview

dfe

Rewriting logic [37] is a semantic framework that unifies a wide range of mod-

els of concurrency. Specifications in rewriting logic are called rewrite theories and

they can be executed in the rewriting logic implementation Maude [14]. By being

executable, they benefit from a set of formal analysis tools available to Maude,

such as state-space exploration, automata-based LTL model checking, and theo-

rem proving.

A rewrite theory is a tuple R = (Σ, E ⊎ B,R) with: (i) (Σ, E ⊎ B) an order-

sorted equational theory with signature Σ, E a set of equations over the set TΣ of

Σ-terms, and B a set of structural axioms over TΣ for which there exists a finitary

matching algorithm (e.g., associativity, commutativity, and identity, or combina-

tions of them); and (ii) R a finite set of (possibly conditional) rewrite rules over

TΣ. Intuitively, R specifies a concurrent system where states are elements of the

set TΣ/E⊎B of Σ-terms modulo E ⊎ B and with concurrent transitions axiomatized

by the rewrite rules R [11]. For t, t′ ∈ TΣ representing states of the concurrent

system described by R, a transition from t to t′ is captured by a formula of the

form t →R t′. More precisely, the symbol→R denotes the binary rewrite relation

induced by R over TΣ/E⊎B.

In the Maude framework, object-oriented systems can be specified by object-

oriented modules in which classes and subclasses are declared. A class is declared

with syntax class C | a1:S 1, ..., an:S n, where C is the name of the class, ai are

attribute identifiers, and S i are the sorts of the corresponding attributes. Objects of

a class C are then record-like structures of the form < O : C | a1:v1, ..., an:vn >,

where O is the name of the object, and vi are the current values of its attributes.

Objects then evolve as result of the application of rewrite rules.

The executable specification of BPMN presented in Section 4 is a probabilistic

rewrite theory [3]. In a standard rewrite theory, a rewrite rule has the form

l(x)→ r(x) if φ(x)

where the condition φ(x) is assumed to be purely equational. Such a rule spec-

ifies a pattern l(x) that can match some fragment of the system’s state t if there

is a substitution θ for the variables x that makes θ(l(x)) equal modulo B to that

state fragment, changing it to the term θ(r(x)) in a local transition if the condition

θ(φ(x)) evaluates to true. In a probabilistic rewrite theory, however, rewrite rules

can have the more general form

l(x)→ r(x, y) if φ(x) with probability y := π(x)
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Because the pattern r(x, y) on the right-hand side may have new variables y, the

next state specified by such a rule is not uniquely determined: it depends on the

choice of an additional substitution ρ for the variables y. In this case, the choice

of ρ is made according to the family of probability functions πθ: one for each

matching substitution θ of the variables x. Therefore, a probabilistic rewrite theory

can express both deterministic and probabilistic behavior of a concurrent system.

At any given point of execution of a probabilistic rewrite theory many different

rules can be enabled. Once a matching substitution θ has been chosen for one of

these rules, the choice of the substitution ρ is made probabilistically according to

the probability distribution function πθ.

PMaude [3] is both a language for specifying probabilistic rewrite theories and

an extension of Maude supporting the execution of such theories by discrete-event

simulation. PMaude can capture the dynamics of various elements of a system by

stochastic real-time: computation and message-passing between entities of a sys-

tem may take some positive real-valued time that can be distributed according

to some continuous probability distribution function. Time associated to com-

putation and message passing can also be zero, indicating instant transitions and

synchronous communication. In general, PMaude supports discrete probabilistic

choice as found in discrete-time Markov chains and stochastic continuous-time as

found in continuous-time Markov chains.

A specification in PMaude without unquantified non-determinism is a key re-

quirement for the type of statistical analysis for BPMN described in Section 5.

Intuitively, non-existence of unquantified non-determinism means that non-deter-

ministic choice during the simulation of a probabilistic rewrite theory R is exclu-

sively due to probabilistic choice and not to concurrent transitions firing simul-

taneously at different parts of a system state. Under this assumption (and some

admissibility assumptions on R), a one-step computation with →R represents a

single step in a discrete-event simulation of a specification written in PMaude.

For details about the admissibility assumptions on rewrite theories such as sort-

decreasingness, operational termination, and confluence the reader is referred

to [14]. Similarly, for details about one-step computation and sufficient conditions

for absence of unquantified non-determinism in PMaude to [3]. The representa-

tion of BPMN processes in Section 4 satisfies these admissibility requirements

and is free of unquantified non-determinism for valid BPMN processes.

Once a probabilistic system has been modeled in PMaude, various quantita-

tive properties of the system can be specified by using the Quantitative Tempo-

ral Expressions language (QuaTEx) [3] and queried with the help of the PVeStA

statistical model checker [5]. The QuaTEx language implements a framework for
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parameterized recursive temporal operator definitions using a set of primitive non-

temporal operators and the ‘next’ (©) temporal operator. As an example, consider

the following query over the process in Figure 2 that computes the probability that

along a random path from a given state the insurance is bought within t days:

insuranceInTime(t)

= if currentExecTime() > t then 0

else if totalExecTime() > 0 then 0

else if insuranceScheduled() > 0 then

if insuranceScheduled() < t then 1

else 0

else © insuranceInTime(t);

This defines the recursive operator insuranceInTime(t), which returns 1 if

along the execution path the insurance is bought no later than t time units and 0

otherwise. The (state) function currentExecTime() returns the global time as-

sociated with the state. The (state) function totalExecTime() returns the total

final time of the simulation, or −1 if the simulation has not terminated. The (state)

function insuranceScheduled() returns the time at which the next insurance

buying task is scheduled; or −1 if none is scheduled. In this definition, the tempo-

ral operator© takes an expression at the next state and makes it an expression for

the current state. The following state query returns the expected number of times

an insurance is bought within t = 15 days:

eval E[ © insuranceInTime(15) ]

The expected value computed by this query is equal to the probability that along

a random path, from the given initial state, the insurance is bought within 15

days. Note that this quantity lies in the [0, 1] range because either the insurance

is bought or not. As a preview of the type of analysis that can be performed on

BPMN processes with the approach presented in this paper, this expression can be

automatically quantified with PVeStA to be 0.81, with an error margin less than

0.01%. That is, insurance is bought in 81% of the cases.

This section ends with some insights on the use of Maude for the specifica-

tion of PMaude systems (see, e.g., [3] for additional details). Maude’s random(n)

function provides a built-in purely functional pseudo-random number generator

that returns the n-th random number following a uniform distribution. PMaude

provides additional functions that build on this one to provide other random dis-

tributions. By default the seed 0 is used, but a different seed may be used by
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providing appropriate command line options to Maude (see [14]). For running

multiple executions, each of them is started with a different seed. Finally, instead

of keeping a counter as part of our states, one can alternatively use the Maude pre-

defined counter operator: “each time it has the opportunity to do a rule rewrite, it

rewrites to the next natural number, starting at 0” [14]. This operator can indeed be

used as implicit counter to generate consecutive random numbers. As explained in

more detail in Section 4, the eval(SE) function is used to compute a random value

relative to the stochastic expression SE. This function uses the counter operator to

obtain the required probabilistic values, keeping it purely functional.

The reader is referred to [3] for additional details about QuaTEx syntax and

semantics, how other logics such as the Probabilistic Computation Tree Logic

(PCTL) [26] can be encoded in it, and the mechanisms used by PVeStA for statis-

tical evaluation of QuaTEx expressions.

4. An Executable Specification in Rewriting Logic

This section presents an executable specification in rewriting logic for the frag-

ment of BPMN enriched with timing behavior and probabilities described in Sec-

tion 2. The focus in this section is twofold. On the one hand, it aims at helping the

reader gain a high-level idea of the main features of the specification. On the other

hand, it presents some rules and equations with some key features of the specifi-

cation. Also mentioned in Section 1, additional details about the specification and

examples can be found in the accompanying webpage [18].

The executable specification of BPMN is a probabilistic rewrite theory R =

(Σ, E ⊎ B,R). The equational subtheory (Σ, E ⊎ B) offers the infrastructure for

defining a process in the sublanguage of BPMN described in Section 2, including

the timing behavior for tasks and flows, and probabilities for outgoing flows of

split gateways. The probabilistic rewrite rules R axiomatize how time advances

and probabilistic choices are made in this infrastructure, in order for a given pro-

cess to transition from an initial to a final state.

A system state in R can be seen as a tuple (Proc,Toks, Sim), where Proc is

the set of nodes and sequence flows representing the graph structure of the pro-

cess, Toks is a scheduler implemented as a priority queue of tokens indicating

which token is to be processed next, and Sim is a collection of variables and maps

updated during the process execution with timing information. Overall, the pair

(Proc,Toks) defines the state of execution of a process Proc with tokens Toks, and

Sim includes auxiliary structures for timing simulation and stochastic analysis.
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A one-step computation in R has the form

(Proc,Toks, Sim)→R
(

Proc,Toks′, Sim′
)

where the set of nodes and flows Proc remains unchanged, the set of tokens tran-

sitions to Toks′, and Sim transitions to Sim′.

Following the usual aproach in Real-Time Maude [41], all the actions in the

system are instantaneous. Then time passing is modeled by a tick rule (see be-

low) that is fired when no other actions can be performed, and results in reaching

the next time at which further actions will become enabled. This is achieved by

providing each token in the system with its time to completion. The maximum

time elapse (mte) strategy advances time as much as possible so that no action is

missed. Time passing is modelled by reducing the time to completion of every

token in the same amount (using a delta function).

〈 Proc : Process | 〉

〈 PQ : Scheduler | tokens : Tks 〉

〈 Sim : Simulation | gtime : T 〉

→ 〈 Proc : Process | 〉

〈 PQ : Scheduler | tokens : delta(Tks,T1)〉

〈 Sim : Simulation | gtime : (T + T1) 〉

if T1 := mte(Tks) /\ T1 =/= 0

In Maude, it is not necessary to explicitly write all the objects’ attributes. Only

attributes that are used or modified need to appear in the left-hand side of the rule;

attributes not appearing in the right-hand side are considered to be left unmodified.

4.1. State Representation

The term that represents the component Proc in the tuple (Proc,Toks, Sim) de-

pends on the BPMN process under consideration and is automatically generated.

The process transformation, which takes a BPMN process and generates the cor-

responding Maude code, is achieved by a plugin (a Python script) implemented as

an extension of the VBPMN platform [31].

A process can abstractly be seen as a multiset of terms representing nodes and

sequence flows, each of which has a unique identifier and has a time duration. In

our proposal, a process is modeled as an object of class Process, with attributes
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nodes and flows storing, respectively, the nodes and flows of a process. More

precisely, there are five types of nodes (start, end, task, split and merge) and a

single flow constructor (flow). The following set of terms represent, in the syntax

of R, the description of some of the elements of the process depicted in Figure 2

(please, notice the ellipses):

〈 Proc : Process |

nodes :

(start(initial, sf01), merge(g00, exclusive, (sf01, sf05), sf02),

task(t0,“authorization”, sf02, sf03, Norm(7, 1)),

split(g01, exclusive, sf03, ((sf05, 0.4) (sf06, 0.1) (sf1, 0.5))), . . .)

flows :

(flow(sf01, 0), flow(sf02, 0), flow(sf03, 0), flow(sf05, Unif(2, 3)), . . . ) 〉

Figure 3 shows the process in Figure 2 labelled with the identifiers of tasks, gates

and flows used in the above codification to facilitate its understanding. These

terms represent the start event initial with outgoing flow sf01; the exclusive merge

g00 with incoming flows sf01 and sf05, and outgoing flow sf02; the task t0 with in-

coming flow sf02, outgoing flow sf03, and timing behavior Norm(7, 1); the exclu-

sive split g01 with incoming flow sf03, and outgoing flows sf05 with probability

0.4, sf06 with probability 0.1, and sf1 with probability 0.5; and flows sf01, sf02,

sf03, and sf05 with duration 0, except for sf05 whose duration is to be sampled

uniformly from the interval [2, 3].

In R, there is support for the family of probability distribution functions listed

in Section 2. Hence, time values can be computed using an eval function during

execution according to these probability distribution functions.

The term Toks is a set of pairs of the form token(u, t) with u the identifier of the

node/flow the token is at and t its run-to-completion time (a timer). Technically, it

is a scheduler implemented as a class Scheduler with a list of tokens which is han-

dled as a priority queue indicating which token is to be executed next depending

on all run-to-completion times in the process. Toks is a crucial component in the

executable specification R because it is used as the mechanism to avoid any form

of unquantified non-determinism, so that the quantitative analysis performed on
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Figure 3: Decorated version of the process in Figure 2

R has a stochastic meaning (see Section 3). 1

〈 PQ : Scheduler | tokens : (token(Id, T) . . . ) 〉

The key idea is that there is no reachable state of the system in which two rules,

or a same rule with two different matches, are applicable. The selection of the

next action to be performed is totally determined by the scheduler. The action

to be performed depends on the place of the token at the front of the scheduler.

E.g., if the token at the front of the scheduler is at task Id, the rule handling tasks

will be the only applicable rule for that task. It may happen that no action can be

performed. E.g., a parallel merge requires tokens on all its incoming flows which

may be not present yet. To avoid blocking situations in cases like this one, a

shifting mechanism implemented on the scheduler is invoked. The shift operation

is defined equationally, and, as we discuss below, the operation is invoked when a

token cannot fire an action. When the token at the front of the scheduler is blocked,

the shifting mechanism looks for the first non-blocking token in the queue and

moves it to the front. This happens in parallel and inclusive merge gateways,

where tokens for all or some of the incoming branches is expected. The combined

application of the tick rule and the shifting mechanism eventually leads to the

application of some action.

There are three key ingredients which ensure the specification to be free of un-

quantified non-determinism: (i) ensuring that the equational theory (Σ, E ⊎ B) is

sort-decreasing, operationally terminating, and confluent (see Section 3); (ii) hav-

1Similar schedulers have previously been used to get specifications with no unquantified non-

determinism in, e.g., [6, 21].
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ing a fixed order for the outgoing flows of all split gateways, and (iii) guaranteeing

that there is one single rule applicable at each time thanks to the scheduler that re-

leases one token at a time.

An object of class Simulation is provided as the last component of the system

state. It keeps information such as the global time of the simulation (gtime), time

stamps (tstamps) for tasks and merge gateways, synchronization times (syncs) for

each merge gateway, and sojourn times (trips) corresponding to the time it takes

to each task to be executed. In other words, it stores the different values necessary

for specific executions and for its real time analysis.

〈 Sim : Simulation | gtime : T, tstamps : . . . , syncs : . . . , trips : . . . 〉

4.2. State Transitions

The circulation of tokens along flows and tasks is modeled by the rules in

R. Each of the possible actions in a process is specified as a rewrite rule, with

equations to specify auxiliary calculations. Some rules of R are introduced in this

section to illustrate how state transitions are performed.

4.2.1. Beginning and End of Process Execution

A process is initiated when there is a token in its start node. When a process is

setup in the provided Maude infrastructure, the first and only task in the scheduler

is the start node of the process.

Given variables NId ranging over node identifiers, FId over flow identifiers,

Nodes over sets of nodes, Flows over sets of flows, Tks over lists of tokens, T

over time values, TSs over time stamps, i.e., maps from identifiers to time values,

and N over natural numbers, the rule below specifies the execution of a start node.

When a start node NId has a token with time zero at the front of the scheduler, the

token is moved to its outgoing flow FId with the time resulting from the evaluation

of the stochastic expression SE associated to that flow.

〈 Proc : Process | nodes : (start(NId, FId), Nodes),

flows : (flow(FId, SE), Flows) 〉

〈 PQ : Scheduler | tokens : (token(NId, 0) Tks) 〉

〈 Sim : Simulation | gtime : T, tstamps : TSs 〉

→ 〈 Proc : Process | 〉

〈 PQ : Scheduler | tokens : enqueue(Tks, token(FId, eval(SE)) 〉

〈 Sim : Simulation | tstamps : update(NId,T,TSs) 〉
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In the rule, a token is removed, another one is created, and the time stamps are

updated. The time stamp of the process’ initiation is the current global time T .

The newly created token is assigned with its run-to-completion time by evaluating

the stochastic expression SE associated to the chosen outgoing flow FId. The

eval operator takes a stochastic expression and returns a time value, a rational

number. If SE is a literal value, then this value is returned; otherwise, it is an

expression involving a probabilistic function that is evaluated according to the

given arguments. The enqueue operator inserts the new token in the priority queue

in accordance with its time to completion. The update operator associates T to NId

in the TSs map.

When a token reaches an end node, the execution time of the process is up-

dated with the time elapsed from the process’ initiation TSs[init] and the current

global time T . Such a behavior is specified by the following rule (operator ⊖

represents the ‘monus’ operation, i.e., subtraction over non-negative numbers):

〈 Proc : Process | nodes : (end(NId, FId), Nodes) 〉

〈 PQ : Scheduler | tokens : (token(FId, 0) Tks) 〉

〈 Sim : Simulation | gtime : T, tstamps : TSs, exec : T ′ 〉

→ 〈 Proc : Process | 〉

〈 PQ : Scheduler | tokens : Tks 〉

〈 Sim : Simulation | exec : T ⊖ TSs[init] 〉

Note that a process terminates when all tokens have reached an end event. This

is detected during the simulation stage when the token queue is empty.

4.2.2. Tasks

The execution of tasks is modeled with two rewrite rules: when its incoming

flow is completed, i.e., the flow has a token with time to completion 0, the token

is moved to the task with a duration; when this timer reaches zero, the token is

moved to the outgoing flow in a second rule.

The following rewrite rule specifies how tasks are initiated, where the variable

TName ranges over task names, FId1,FId2 over flow identifiers, and all other
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variables are as above.

〈 Proc : Process | nodes : (task(NId, TName, FId1, FId2, SE), Nodes) 〉

〈 PQ : Scheduler | tokens : token(FId1, 0) Tks 〉

〈 Sim : Simulation | gtime : T, tstamps : TSs 〉

→ 〈 Proc : Process | 〉

〈 PQ : Scheduler | tokens : enqueue(Tks, token(NId, eval(SE))) 〉

〈 Sim : Simulation | tstamps : update(NId, T, TSs) 〉

This rule is enabled when the incoming flow FId1 of task NId has been completed.

The process state is updated by initiating the execution of the task NId with the

time resulting from the evaluation of its stochastic expression SE (this is specified

by adding token(NId, eval(SE)) to the priority queue). The time stamp in the

simulation is updated with the time at which the task NId is initiated, i.e., the

current global time T .

The completion of a task is specified by the following rule, in which all vari-

ables are as above, and SE1, SE2 range over stochastic expressions:

〈 Proc : Process | nodes : (task(NId, TName, FId1, FId2, SE1), Nodes),

flows : (flow(FId2, SE2), Flows) 〉

〈 PQ : Scheduler | tokens : (token(NId, 0) Tks) 〉

〈 Sim : Simulation | gtime : T, tstamps : TSs, trips : TSs’ 〉

→ 〈 Proc : Process | 〉

〈 PQ : Scheduler | tokens : enqueue(Tks, token(FId2, eval(SE2))) 〉

〈 Sim : Simulation | trips : update(NId, T ⊖ TSs[NId], TSs’) 〉

Once enabled, this rule updates the state of the process by terminating the execu-

tion of the task NId and by initiating the execution of its outgoing flow FId2. The

attribute trips in Sim keeps track of the execution time (i.e., sojourn time) of each

task. This rule updates the execution time of the finishing task NId with the time

elapsed from its initiation TSs[NId] and the current global time T . The values T ′

and N′ are computed in the same way as in the previous rule.

4.2.3. Gateways

The scheduler-based execution semantics of the subset of BPMN under con-

sideration allows for unbalanced workflows, where there is not strict correspon-

dence between splits and merges, as well as for looping behavior. In the rest of
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this section, we present the encoding of the three kinds of gateways supported in

this work (exclusive, parallel and inclusive), and we illustrate with a couple of

rewrite rules (the reader interested in more details can consult the specification

available online [18]).

The semantics of exclusive gateways is encoded with two rules, one rule for

the split gateway and one rule for the merge gateway. The rule for the exclusive

split gateway fires when a token with time zero is available in the input flow and

generates a token for one of the output branches depending on the probabilities.

The exclusive merge gateway executes when there is one token for one of the

incoming flows. In that case, the token is consumed and a token is generated for

the merge outgoing flow.

The following probabilistic rewrite rule specifies the behavior of an exclusive

split gateway upon the arrival of a token. The variables NId range over node

identifiers, FId over flow identifiers, FIdPL over lists of pairs (flow identifier,

probability value), Nodes and Flows over sets of processes and flows, respectively,

Tk over tokens, Tks over lists of tokens, and Q over floating-point numbers:

〈 Proc : Process | nodes : (split(NId, exclusive, FId, FIdPL), Nodes),

flows : Flows 〉

〈 PQ : Scheduler | tokens : (token(FId, 0) Tks) 〉

→ 〈 Proc : Process | 〉

〈 PQ : Scheduler | tokens : enqueue(Tks, Tk) 〉

if Tk := genTokExcSplit(FIdPL, Flows, unif(0, 1))

This rule is enabled when the token at the incoming flow FId of the exclusive

split NId is next in the scheduler PQ with run-to-completion time 0. The state

of the process changes by updating the scheduler: such a token is consumed and

the newly created token Tk is placed in the queue (note the use of the matching

equation condition to assign to a fresh variable Tk the generated token). The

choice of which outgoing flow in the exclusive split to assign the newly created

token to is made by calling the auxiliary function genTokExcSplit with a uniformly

sampled probability. This function is defined by the following two equations:

genTokExcSplit(((FId, P) FIdPs), (flow(FId, SE), Flows), Q)

= if P > Q then token(FId, eval(SE))

else genTokExcSplit(FIdPs, Flows, Q − P)

genTokExcSplit(nil, Flows, Q) = nil
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Note that the first argument is a list and then the outgoing branches are always

considered in the same order. The second argument is a set and therefore the

stochastic expression of the chosen branch is selected by matching. By assuming

that the probabilities associated to the outgoing flows of an exclusive split add up

to 1, the function genTokExcSplit recursively selects the token with cumulative

probability (in the order of the outgoing flows, which is always fixed) greater than

Q.

The genTokExcSplit function iterates on each of the outgoing flows by evalu-

ating its corresponding expression. It stops when the corresponding flow is found.

As an example, consider the exclusive split g01, represented in Section 4.1 as

split(g01, exclusive, sf03, ((sf05, 0.4) (sf06, 0.1) (sf1, 0.5)))

Assuming that unif(0, 1) evaluates to 0.75, the following evaluation steps illus-

trate the behavior of function genTokExcSplit with the given arguments (note the

ellipsis for the set of flows):

genTokExcSplit(((sf05, 0.4) (sf06, 0.1) (sf1, 0.5)), (...), 0.75)

= genTokExcSplit(((sf06, 0.1) (sf1, 0.5)), (...), 0.35)

= genTokExcSplit(((sf1, 0.5)), (flow(sf01, SE), ...), 0.25)

= token(sf01, eval(SE))

Parallel gateways transform quite easily in Maude. Indeed, the parallel split

gateway rule is triggered when a token corresponding to the input flow is avail-

able. If so, the token is consumed and one token is added for each outgoing flow.

The merge rule for the parallel gateway is executed when there is a token for

each incoming branch. In that case, these tokens are removed and a new token is

generated for the outgoing flow.

The following rule specifies the execution of a parallel merge gateway. The

rule is fired when there is a token on some of the incoming branches of a parallel

merge gateway with timer 0 at the front of the scheduler. Depending on whether

tokens for all its branches are available or not (allTokensParallel operator), the

gate is executed, removing the tokens in the incoming branches (rmTks operator)

and adding a new token in the outgoing flow, or the shift operator is invoked. The

shift function just traverses the queue of tokens until it finds the first one that may

fire an action, moving it to the head of the queue, and thus enabling some other

rule in the system.
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〈 Proc : Process | nodes : (merge(NId, parallel, (FId1,FIds),FId),Nodes),

flows : (flow(FId, SE),Flows) 〉

〈 PQ : Scheduler | tokens : (token(FId1, 0) Tks) 〉

〈 Sim : Simulation | gtime : T, tstamps : TSs, syncs : TSs’ 〉

→ if allTokensParallel(FIds,Tks)

then 〈 PId : Process | 〉

〈 PQ : Scheduler |

tokens : enqueue(rmTks(FIds, Tks), token(FId, eval(SE))) 〉

〈 Sim : Simulation | syncs : update(NId, T ⊖ TSs[NId],TSs’)〉

else shift(〈 PId : Process | 〉

〈 PQ : Scheduler | 〉

〈 Sim : Simulation | 〉)

Inclusive gateways are the most complicated gateways to encode in Maude.

An inclusive split gateway can trigger any number of outgoing flows (at least

one). Similarly to the exclusive split gateway, we rely on a function that selects

the set of outgoing flows to be triggered using the probability associated to each

flow.

The semantics of inclusive merge gateways is quite intricate [13] and varies

between versions 1.0 and 2.0 of BPMN. In R, both versions of the inclusive

merge gateways are supported; they are specified by several rules and equations.

The following rule specifies the behavior of a merge gateway when used as a syn-

chronization point (BPMN 1.0 semantics): it requires a backwards search analysis

on the structure of the process and its current state of execution. In the follow-

ing, the variables NId range over node identifiers, FId1,FId2 over flow identifiers,

FIds over lists of flow identifiers, Nodes and Flows over sets of processes and

flows, respectively, SE over stochastic expressions, Tks over lists of tokens, T,T ′

over time values, TSs,TSs’ over maps from identifiers to time values, and N over
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natural numbers:

〈 Proc : Process | nodes : (merge(NId, inclusive, (FId1, FIds), FId2), Nodes),

flows : (flow(FId2, SE), Flows) 〉

〈 PQ : Scheduler | tokens : (token(FId1, 0) Tks) 〉

〈 Sim : Simulation | gtime : T, tstamps : TSs, syncs : TSs’ 〉

→ 〈 Proc : Process | 〉

〈 PQ : Scheduler | tokens : enqueue(rmTks(Tks,FIds), token(FId2, eval(SE))) 〉

〈 Sim : Simulation | syncs : update(NId,T,TSs’) 〉

if allTokensArrived(NId,Nodes,FIds,Tks)

This rule is enabled when all previously created tokens at the inclusive split gate-

way have arrived to the inclusive merge gateway: the function allTokensArrived

performs the above-mentioned backwards search analysis on the structure of the

process and its current state of execution. This rule updates a process state in

several ways. Although it is fired by the arrival of a token in one of its incoming

flows, when all tokens have arrived, it removes from the priority queue the tokens

associated to all incoming flows FIds of the inclusive merge gateway NId. This

queue is also updated with the newly created token for the outgoing flow FId2

with time the result of evaluating the stochastic expression SE associated to the

outgoing flow FId2. The attribute tstamps keeps the time stamps of tasks and gate-

ways that can later be used for stochastic analysis. The attribute sync keeps the

time stamps of merge gateways: in this case, it is updated with the final synchro-

nization time of the merge gateway NId. In the case in which not all necessary

tokens have arrived, the shifting mechanism is invoked.

5. Stochastic Analysis of BPMN

In this section, the verification of processes using reachability analysis and

model checking is presented. The focus then shifts to the stochastic analysis of

timing properties using PMaude and PVeStA, with a specific application of those

techniques to our running example. Finally, additional experiments on examples

found in the literature are presented.

5.1. Simulation, Reachability, and Model Checking

Recall from Section 4 that a state in the rewriting logic specification R is

a tuple of the form (Proc,Toks, Sim). While (Proc, , ) can be used to perform
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static analysis on the structure of a BPMN process, (Proc,Toks, ) can be used to

perform reachability analysis and more general LTL model checking [15, 22].

Simulation is very useful for exploring system executions. In Maude, simu-

lation relies on rewriting, which consists in successively applying equations and

rewrite rules on an initial term (a BPMN process here), with the possibility of us-

ing some strategy language to guide the execution. Since systems may be rewrit-

ten in many different ways, Maude also provides a search command, which allows

us to explore the reachable state space up to a certain depth. Thus, we can per-

form analysis on the reachability of states satisfying certain conditions, e.g., when

searching for deadlock states or other undesired situations. For example, given

our running example in Figure 2, and its corresponding Maude representation Init-

System introduced in Section 4.1, the following search command checks that there

is no reachable final state with tokens in it, which shows that there is no deadlock.

> search InitSystem =>! Conf such t h a t getNumToks ( Conf ) =/= 0 .

No solution .

Notice the use of ‘=>!’ to limit the check to final states. The search command

allows us to search for states with any given pattern satisfying any given conditions

on it. In this case we use the auxiliary function getNumToks(Conf) to search for

states with zero tokens.

Other analysis tools available in the Maude system can also be used. For in-

stance, Maude’s Linear Temporal Logic (LTL) explicit-state model checker [22]

can be used for analyzing LTL formulas on a business process. Maude’s model

checker allows one to check whether every possible behavior starting from a given

initial state (the start node in BPMN) satisfies a given LTL property. In gen-

eral, any safety and liveness property of a system can be decided with this model

checker when the set of states reachable from an initial state is finite. Full verifica-

tion of invariants in infinite-state systems can be accomplished by verifying them

on finite-state abstractions [38] of the original infinite-state system, that is, on an

appropriate quotient of the original system whose set of reachable states is finite.

In the context of this paper, beyond classic properties such as deadlock-freeness,

the properties that can be verified depend on the example and should be specified

by the developer, e.g., a certain task is always achieved after another specific task.

In order to make the property writing easier, the developer can rely on well-known

patterns as those presented in [25, 30] for timing properties.

For instance, given propositions FlightBooking and VisaProcess, which are true

in states in which the process is executing these respective tasks, i.e., there is

a token in the corresponding task, we can check that the visa request is always
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processed after a flight booking as follows:

> reduce modelCheck ( InitSystem ,

[ ] ( FlightBooking −> <> VisaProcess ) ) .

r e s u l t Bool : true

5.2. Timing Properties

This section explains how predictive performance evaluation of BPMN pro-

cesses can be achieved with stochastic analysis of timing properties by using

PMaude and PVeStA. To that goal, the Simulation object plays a key role. This

object has a multiset of variables and mappings with two main purposes: on the

one hand, it maintains the timing attributes of a process that are collected during

simulation; on the other hand, it records the values needed for the discrete-event

simulation of the process.

This subsection focuses on measuring two timing properties of a process,

namely, the expected processing time (or latency) and the expected synchroniza-

tion time for each one of the merge gateways. The expected processing time of

a process is the time it takes all the tokens to reach an end event from the initial

event. This measure is calculated for the entire process. The expected synchro-

nization time is the time between the arrival of the first token through one of the

incoming flows of a merge gateway and the activation of the gateway. The syn-

chronization time for exclusive merge gateways is always zero. This time is also

zero for inclusive gateways when only one of the flows is active. This measure

is calculated for each one of the merge gateways of a process. These quanti-

ties are computed using the statistical model checker PVeStA, which performs

Monte Carlo simulations and returns the expected value for each measure. That

is, PVeStA calculates the average of the values of each measure for all the execu-

tions. It also provides the variance and error of the results. Since all the values

are available, minimum and maximum values (relative to the simulations) are also

computed, providing a range of values for the expected values.

PVeStA offers two interesting ways of minimizing the time required for the

analysis when needed: (i) the possibility of specifying different parameters for the

analysis such as error bounds, and (ii) support for parallel processing of the Monte

Carlo simulations. Depending on the error bounds specified, PVeStA will need

more or less samples. Technically, (i) results in a trade-off between computational

time and precision, while (ii) results in a trade-off between computational time

and availability of nodes for performing the simulations. Tables 1 and 2 show

results on experiments using different error bounds and number of servers. Table 1
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Error bound Expected proc. time Samples Analysis time

(days) generated (seconds)

0.00001 25.43 19500 59.6

0.0001 25.67 14100 43.8

0.001 25.32 9000 28.0

0.01 25.63 3900 12.1

Table 1: Results for different error bounds

Number of Expected proc. time Samples Analysis time

servers (days) generated (seconds)

1 25.60 8700 67.0

2 25.41 8400 38.4

3 25.31 9000 31.2

4 25.57 9000 28.5

Table 2: Results for different numbers of servers

shows the expected processing times, number of required samples, and analysis

time of the case study for different error bounds. By increasing the error bound,

the expected time remains very similar. However, it takes much less samples to

obtain the result and the time for computing these results significantly decreases.

Notice that the expected processing times are non-monotonic, which is sound with

the algorithms implemented in PVeStA; please see [46] for details on how the

errors bounds and other parameters are used in the tool.

By using several nodes, the performance gains are also high. Table 2 shows

the results of the analysis using 1, 2, 3, and 4 servers working in parallel. The

tool does not make any assumption on the underlying architecture. In this case the

expected processing times are non-monotonic either. The same error was used in

all the experiments, all lying in the range of acceptable values.

Quantitative Analysis of the Running Example. Table 3 shows the minimum,

maximum, variance, and expected processing time for the running example (Fig-

ure 2). Table 4 shows the minimum, maximum, variance, and expected synchro-

nization times for each one of the merge gateways in the running example. In this

process, gateways are identified as A, B, and C in Figure 2. The analysis time is

just 7.8 seconds for Gate A. However, it takes more than 150 seconds for Gates

B and C. The greater variability in the results requires a much bigger number

of samples (46500 vs. 2100). By looking at the expected synchronization times

of merge gateways (Table 4), some interesting observations can be made. Note

that the maximum times recorded during the Monte Carlo simulations are much
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Figure 4: Re-designed version of the running example.

higher than the expected times, particularly for B and C, because of the duration

of the vaccination task (Norm(14, 2)). This observation can also explain why the

expected synchronization time for B is high. Furthermore, the difference between

expected and maximum synchronization times for A and C is also high. From this

information, this process can be improved by a simple re-design. For instance,

the hotel reservation and the flight booking can be done in parallel. The resulting

process is depicted in Figure 4.

Size Processing time (s) Samples Analysis

Tasks Flows Min Max Var Exp generated time (s)

9 24 2 4 2 4.81 104.07 81.69 25.39 8400 25.5

Table 3: Experimental results for the running example

Merge Synchronization times (days) Samples Analysis

gateway Min Max Var Exp generated time (s)

A 1,13 4,70 0.28 2.99 2100 7.8

B 0 19,89 23.15 4.96 46500 165.6

C 0,01 13,31 4.88 2.36 46500 156.2

Table 4: Synchronization times for the merge gateways in the running example

Table 5 compares the stochastic results for the two versions of the running

example. These results show that, for instance, the expected processing time de-

creases from 25.39 to 24.18 days in the re-designed process. This improvement

is confirmed by Table 6 because, despite the fact that the maximum and average

synchronization times for gateway C in the second version of the process increase,

all other times decrease. This means that completing the flight booking before
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Running Size Processing time

example Tasks Flows Min Max Var Exp

V1 (Fig. 2) 9 24 2 4 2 4.81 104.07 81.69 25.39

V2 (Fig. 4) 9 24 2 3 2 4.81 73.21 75.67 24.18

Table 5: Comparative sizes and processing times for the running examples

Merge Synchronization time V1 Synchronization time V2

gateway Min Max Var Exp Min Max Var Exp

A 1,13 4,70 0.28 2.99 0.34 4.01 0.29 2.09

B 0 19,89 23.15 4.96 0 19.69 22.95 4.95

C 0,01 13,31 4.88 2.36 0.01 15.31 5.68 3.56

Table 6: Comparative synchronization times for the running examples

starting the hotel reservation, insurance, local transportation, and vaccination was

penalizing the expected processing time. In other words, since the second version

of the process reduces the number of sequential dependencies by allowing more

parallelism, a slight decrease in expected processing time and synchronization

times can be observed.

5.3. Other Experiments

Table 7 summarizes experimental results on the stochastic analysis of tim-

ing properties of more than 30 BPMN processes. Our original motivation was to

only use in our experiments real-world processes found in the literature. How-

ever, most of them were quite small in size and exhibiting very simple patterns.

Therefore, we complemented these processes with other processes we designed

ourselves where we tried to cover the BPMN expressiveness supported in this

paper (different gateways possibly nested, loops, unbalanced structure, etc.) and

where some of these processes involved a significant number of nodes (40 tasks

and about 25 gateways for processes p0047-i and p0047-g). All these processes

are available online at [18]. Specifically, this table provides measures of the com-

plexity (in size), estimated processing time, and the analysis effort. Complexity

is measured by the number of tasks, gateways, flows, and loops in the processes.

The processing time calculated for each process are the minimum and maximum

times recorded during the simulations, and the expected processing time of the

process. For the analysis effort, the number of Monte Carlo runs and their total

computation time is provided.

First of all, the analysis time presented in this table is always reasonable go-

ing from a few seconds to a few minutes. Since those results are computed us-

26



BPMN Complexity Processing time Analysis effort

Processor Tasks Flows Loops Minimum Maximum Expected Samples Time (sec)

Account opening [43] 15 29 3 2 2 0 70 150 94 1200 11.23

Account opening 15 28 2 2 2 0 93 712 354 37800 132.70

Account opening V2 15 29 3 2 2 0 563 766 651 900 3,79

Account opening V3 16 32 4 2 2 1 539 1643 549 1200 4.91

Account opening V4 16 32 5 2 2 1 539 1430 765 7200 31.64

Account opening V5 16 33 5 2 2 1 481 1796 774 4800 21.49

Apartment lease [47] 8 17 0 5 0 0 3963 3963 3963 300 2.64

Booking sys. [42] 6 11 2 0 0 1 30 200 50 12000 35.39

Car assembling [44] 11 18 2 2 0 0 80 80 80 300 1.91

Citizen migration [10] 4 11 2 2 0 0 6317 6317 6317 300 1.66

f0001 3 10 4 0 0 0 4 6 4 2100 5.01

Incident management 7 16 5 0 0 0 398 585 453 1500 3.40

Incident management V2 8 22 8 0 0 0 394 745 506 3600 10.74

Inclusive retry 4 12 2 0 2 1 120 1946 375 42300 116.81

Leave management 4 7 1 0 0 0 259 290 275 300 0.75

Leave management V2 6 13 3 0 0 1 205 1175 293 11700 30.53

Lunch payment 6 24 8 0 0 3 194 1219 304 11400 29.72

Parallel retry 4 12 2 2 0 0 158 3056 363 42600 160.80

Publishing system 12 30 6 2 2 2 311 1676 550 9600 40.00

Publishing system V2 12 32 7 2 2 2 342 1200 562 5400 30.79

Publishing system V3 12 33 7 2 2 2 305 1335 551 5700 28.45

Publish whitepaper 6 16 2 2 0 2 0 259 64 46500 124.51

p0047-i 40 87 12 9 4 0 7230 9160 7885 300 5.44

p0047-g 40 87 10 9 6 0 7230 9160 7959 300 5.72

p0058-a 16 31 0 0 2 0 3006 3661 3457 300 2.33

Release baseline [23] 9 25 8 2 0 2 10 550 81 42000 194.82

Retry system 2 6 2 0 0 1 85 2260 230 46500 79.21

Retry system V2 2 8 3 0 0 1 141 907 210 13800 25.48

Shipment [34] 8 18 2 2 2 0 40 40 40 300 1.88

Shipment [9] 8 18 2 2 2 0 353 439 365 600 3.43

Software development [40] 6 19 7 0 0 1 175 2263 484 12300 41.84

Table 7: Other experimental results with processes found in the literature.

ing Monte Carlo simulations (and not exhaustive explorations), the number of

tasks/flows and the structure of the process (number of parallel and inclusive gate-

ways, presence of loops) does not impact the analysis time, see, e.g., examples

p0047-i and p0047-g. The main factor of increase of the analysis time comes

from the number of samples required to obtain the results, see for instance the ex-

ample ’parallel retry’, which deserves more than 40000 samples for obtaining the

processing time, then resulting in an analysis time of more than 2 minutes. The

reason for this is the way PVeStA works. It keeps running simulations until the

specified error bound is satisfied. In those cases in which the data shows a high

variance, more samples are needed to meet the error bound. The example ’apart-

ment lease’ exhibits the same minimum, maximum, and average times because it

involves only parallel gateways, and in that case, all behaviors are systematically
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executed.

Some other observations can be made on this data. Taking a look at the dif-

ferent variants of the account opening example, one can see how the number of

gates and loops, i.e., the complexity of the process, is the main factor determin-

ing the number of samples required and then justifying the analysis time. The

probabilities assigned to each of the branches in a split gateway are also relevant.

A loop that happens with a low probability may have an insignificant impact on

the computation. See, e.g., the “Lunch payment” case, where, in spite of its eight

exclusive gates and three loops, the computation time is quite low. One last obser-

vation is that most of the examples found in the literature have a low complexity,

and the most complicated cases have been artificially introduced by the authors in

order to evaluate the proposal.

6. Related Work

Several works propose extensions of BPMN with time constructs, see, e.g. [7,

24]. In [24], the authors present Time-BPMN, an extension of BPMN to repre-

sent various constraints and dependencies that may arise when modelling business

processes. The temporal constraints are used to control the beginning/end of an

activity, whereas temporal dependencies involve two activities and indicate the

relationship between their respective beginning/end. In [7], a metamodel-based

approach to integrate temporal constraints and dependencies is introduced. The

time aspects are specified using rules and OCL constraints capture the semantics

of these rules. [24] introduces time as a first class citizen to the BPMN standard

whereas [7] proposes an MDE-based approach that enrich the existing BPMN

control-flow graph model. In comparison, the goal in the present paper was not

to extend the BPMN notation to take expressive modeling of time constraints into

account, but to rely on usual time representation (duration of task and flow) and

concentrate on the analysis of key timing properties in these models.

Several authors have used rewriting logic and Maude to model and analyze

BPMN processes. El-Saber and Boronat [23] propose a translation of BPMN into

rewriting logic with a special focus on data-based decision gateways. They pro-

vide mechanisms to avoid structural issues in workflows such as flow divergence

by introducing the notion of “well-formed” BPMN process. Their approach aims

at avoiding incorrect patterns by syntactic analysis. [23] focuses on behavioral

constructs but does not support time features. Kheldoun et al. [29] propose high-

level Petri nets and to use Maude’s LTL model checker for, respectively, speci-

fying BPMN processes and analyzing behavioral properties. They also focus on
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handling exceptions and activity cancellation, but do not support any notion of

time. In our approach, compared to [23, 29], we chose to support probabilities

instead of data-based conditions. Corradini et al. present in [16] BProVe, a tool

for the verification of business processes modeled in BPMN. The tool accepts

BPMN processes in standard notation and can perform checks of soundness and

safeness on them, as defined in [52] and [17], respectively, using Maude’s LTL

model checker.

There is a significant effort aimed at providing formal semantics and verifi-

cation techniques for business processes using Petri nets (see, e.g., [10, 17, 44]).

[10] presents a business process monitoring platform that relies on the ProM min-

ing tool and Petri nets tools for verifying synchronization, sojourn and waiting

times. Raedts et al. [44] translate BPMN processes into Petri nets and use model

checkers to analyze invariants such as deadlock freedom. Compared to that line

of research, the executable specification in rewriting logic presented in Section 4

can be seen as a semantic framework for BPMN, yet it is not the primary goal of

this paper. The main difference with respect to those works is that the focus here

is in the formal specification and verification of quantitative aspects of processes.

Another research direction focuses on the use of process algebras for formal-

izing and verifying BPMN processes. The authors of [49] present a formal seman-

tics for BPMN by an encoding into the process algebra CSP. They show in [50]

how such a semantics can be used to verify compatibility between business par-

ticipants in a collaboration. There is a further extension in [51] to propose a timed

semantics of BPMN with delays. In [12, 35, 36], the focus is on the semantics

formalized in [49, 51] by proposing an automated transformation from BPMN to

timed CSP, as well as composition verification techniques for checking properties

using the FDR2 model checker. Poizat et al. [43] present an encoding of an un-

timed subset of BPMN into the LNT process algebra for supporting the analysis

of process evolution.

Herbert and Sharp [27] propose an algorithm for translating a BPMN subset

extended with probabilistic information into the guarded command language used

by PRISM. This enables model checking of quantitative properties of business

processes such as transient probabilities, occurrence of events, and best-/worst-

case scenarios. Oliveira et al. [40] present an approach based on Generalized

Stochastic Petri Nets (GSPN) for performance evaluation of business workflows.

That work has a particular focus on BPEL and provides a tool to transform BPEL

models to GSPN. The analysis techniques focus on processing times and costs,

which are computed by simulation (systems are assumed to be bounded) using

the TimeNET toolkit. Braghetto et al. [9] propose an approach for analytical per-
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formance evaluation of business processes using a conversion of BPMN diagrams

to Stochastic Automata Network (SAN) models. With their approach, processing

times can be analyzed, as well as how resources can be impacted by workload.

The work presented in this paper differs by the expressiveness of the supported

subset of BPMN (e.g., unbalanced workflows are not supported by [9] and inclu-

sive merge are not supported by [27]) and by the kind of properties that can be

analyzed.

The expected processing time, the expected synchronization time for merge

gateways, and other similar measures have been considered by some authors to

evaluate deployed processes by, e.g., collecting timestamps from logs (see, e.g.,

[1, 2, 10]). Task duration has been specified using literal values in [9, 10, 40]

and probabilities have been used to specify the likelihood of branching in [9, 40].

Inclusive gateways are only supported in [9, 34, 43] and loops only in [23, 40, 42].

The goal in most of these works is, however, quite different. Overall, Oliveira et

al. [40] possibly have the closest approach to the one presented in this paper: task

durations and probabilities for exclusive branching can be specified, and loops

and continuous time are considered. However, they cannot specify durations with

stochastic expressions.

The model checking problem for the stochastic extension of BPMN presented

in this paper has been approached by statistical model checking (SMC) (see [4] for

a recent survey). In particular, the BPMN extension has been specified as a purely

probabilistic rewrite system, in the PMaude language [3], that can be analyzed

by finitely many runs with the help of PVeStA [5]. In this approach, hypothe-

sis testing is used to infer whether these runs provide statistical evidence for the

satisfaction or violation of quantitative properties in terms of probabilistic guar-

antees (i.e., subject to some error threshold). Other frameworks for SMC such as

Prism [32] were considered for supporting the statistical analysis presented in this

work. However, due to the availability of PMaude and its tight integration with

PVeStA, and also because of the previous experience with algebraic specification,

the authors were inclined to use rewriting logic. In contrast to numerical model

checking algorithms that incrementally compute the exact/approximate measure

of paths satisfying a given property (see, e.g., [8]), the SMC approach enjoys

the advantage of avoiding the state explosion problem and thus can be applied to

larger classes of systems. A drawback of the SMC approach is that the required

sample size of runs grows quadratically with respect to the required confidence of

the result [33]. However, the experiments presented in this work have all executed

within reasonable time limits. The reader is referred to [4, 33] for a comprehensive

survey of approaches and tools for SMC.
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This paper is an extended version of a conference paper published in [20].

The key additions of this journal version are as follows: (i) the BPMN notation

is extended with probability distribution functions for specifying the duration of

tasks and flows, and with probabilities for describing the behavior of split gate-

ways; (ii) the Maude rewrite theory was enhanced to take these new elements into

account; (iii) due to the presence of probabilities, the PVeStA statistical model

checker was used instead of classic Maude analysis tools for computation of the

verification results; (iv) the approach was used on a large number of case studies;

and (v) the review of related work was updated and increased.

7. Concluding Remarks

This paper presents how stochastic analysis of BPMN timing properties can

be carried out using rewriting logic. In this approach, stochastic expressions for

specifying time (duration) and branching behavior are associated to a process. The

stochastic analysis offers support for processes with: tasks and flows whose times

can be constant values or sampled from several probabilistic distribution func-

tions; probabilistic inclusive and exclusive gateways as well as parallel gateways;

uniformly; looping behaviors; and unbalanced workflow structures. The specifi-

cation of BPMN is an executable rewrite theory in the Maude rewrite system and

statistical model checking is automatically performed with PVeStA. The approach

presented in this paper has been applied to more than 30 examples, with a high

number of them borrowed from the literature, by analyzing expected processing

times of processes and expected synchronization times at merge gateways. This

approach can be useful for refining designs with the ultimate goal of reducing

operational costs.

Future work is in two directions. One perspective is to allow BPMN specifi-

cations with resources and multiple instances of a process. This would enable a

more general type of stochastic verification for quantitative analysis of BPMN

processes. A second perspective is to extend the fragment of BPMN used in

this paper with data, supported by the newly developed rewriting modulo SMT

technique [45]. A first step towards this goal has been presented at [19], where

rewriting modulo SMT is used for the analysis of BPMN processes with data and

interacting with the environment. One interesting technical challenge is related to

the shifting mechanism. Although it has been extensively validated using reacha-

bility analysis and model checking, it is the authors’ aim to prove that the shifting

mechanism does not introduce deadlocks or livelocks for any non-blocking pro-

cess.
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