
Seamless Reconfiguration of Rule-based IoT
Applications

Francisco Durán∗, Ajay Krishna†, Michel Le Pallec‡, Radu Mateescu† and Gwen Salaün§
∗ITIS Software, University of Málaga, Spain

†Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG 38000 Grenoble, France
‡Nokia Bell Labs 91620 Nozay, France

§Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG 38000 Grenoble, France

Abstract—The Internet of Things (IoT) consists of devices
and software interacting altogether in order to build powerful
and added-value services. One of the main challenges in this
context is to support end-users with simple, user-friendly, and
automated techniques to design such applications. Given the
dynamicity of IoT applications, these techniques should consider
that these applications are in most cases not built once and for
all. They can evolve over time and objects may be added or
removed for several reasons (replacement, loss of connectivity,
upgrade, failure, etc.). In this paper, we propose new techniques
for supporting the reconfiguration of running IoT applications.
These techniques compare two versions of the application (before
and after reconfiguration) to check if several properties of interest
from a reconfiguration perspective are preserved. The analysis
techniques have been implemented using the Maude framework
and integrated into the WebThings platform.

I. Introduction

Designing IoT applications by selecting a set of candidate
objects and defining how they interact with one another is a
difficult and error-prone task. Indeed, several kinds of mis-
match can arise, or the overall objective may not be fulfilled
due to wrong design, resulting in an erroneous application.
Moreover, IoT applications are not monolithic applications
built once and for all. In contrast, they are constantly modified
due to removal, replacement, or addition of new objects
during the application lifetime. In this paper, we propose
new techniques for supporting the reconfiguration of IoT
applications. Updating an IoT application should be carried out
with specific care because this may induce incorrect behaviour
or inconsistencies in the application. Such problems must
be avoided during the reconfiguration process because they
can induce additional costs or hazardous situations. As an
example, in the context of IoT applications for smart homes
and buildings, simply switching off lights, heaters or closing
doors unexpectedly upon reconfiguration may cause harm to
humans.

This paper presents an approach for analysing the proposed
reconfiguration to check if it preserves the consistency of the
application, i.e., the application can resume after reconfigu-
ration from where it was before interruption. More precisely,
an IoT application is described in this work using a set of
objects and a rule-based composition expression that specifies
how the objects interact together. Given a current and a
new IoT application as well as a global state of the current

application, the main reconfiguration property (called seam-
less reconfiguration) determines if the given global state is
reachable for objects remaining in the new application. If this
is the case, it means that replacing the current application by
the new application can be achieved seamlessly from the user
perspective. We also define two additional properties called
conservative reconfiguration and impactful reconfiguration to
check whether all former behaviours can still be executed
in the new application, and whether all newly introduced
behaviours can be executed after reconfiguration, respectively.
These three properties focus on the reconfiguration of the
application taking into account its global state. Complementary
to these properties, functional properties of interest can be veri-
fied on the new application only. These properties are analysed
for all possible executions of the application independently of
any global state.

As far as tool support is concerned, R-Mozart is presented
in a companion paper [1]. It consists of three components
for supporting the reconfiguration of IoT applications. At the
design level, a new UI allows the user to specify the new ap-
plication. Once the new application is specified, a verification
component checks whether the reconfiguration properties are
satisfied. To check these properties, we provide an encoding
into the rewriting logic of the Maude framework [2], and
we rely on Maude tools to generate and traverse all possible
executions of both applications. Finally, deployment of the
new configuration is achieved preserving the consistency of
the remaining objects. Note that we take a human-in-the-loop
approach, where reconfiguration is defined by users, and the
steps of verification and deployment are automated through the
components we implemented. This setup has been validated on
several examples.

The rest of this paper is organised as follows. Section II
introduces the model of objects and the rule-based compo-
sition language. Section III defines properties of interest for
reconfiguration of ruled-based IoT applications. Section IV
presents the encoding of IoT applications into rewriting logic
and the verification of properties using Maude. Section V
surveys related work and Section VI concludes the paper.

II. IoT Models

An IoT application consists of a set of IoT objects or
things interacting all together to fulfil a certain overall goal.

In this work, we rely on an abstract model of objects. An IoT
object is defined by a set of properties (a property is a pair
(identifier, value)) and by a behavioural model. For the sake of
simplicity, an IoT object is represented only by its behavioural
model in the rest of this paper. The objects can indicate and
change their states using events and actions, respectively. The
behavioural model, defined in terms of a Labelled Transition
System (LTS), represents the ordering of events/actions in an
object. A question mark (?) and an exclamation mark (!) are
used to indicate that the object is receiving or emitting a value
from/to its environment, respectively.

Definition 1 (IoT Object): An IoT Object O is modelled
as a Labelled Transition System LTS = (S , A, T, s0), where
S is a set of states, A is a set of events/actions associated
with transitions, T ⊆ S × A × D × S is the transition relation
where D = {!, ?}, and s0 ∈ S is the initial state. A transition
(s1, e, d, s2) ∈ T (also noted s1

ed−→ s2) indicates that the
system can move from state s1 to state s2 by performing an
event/action named e in a certain direction (! for sending, ?
for receiving).

An IoT application in this work is described by a set
of objects and a composition expression, which acts like
an orchestrator indicating how the involved objects interact
together. A simple rule-based composition language is used to
specify the expression. It assumes "if event(s) then action(s)"
rules as basic elements. A rule is triggered when one or several
events are issued by specific objects and, as a reaction, one
or several actions are issued to other objects defined as target.
Each event or action is accompanied by its object identifier.

Definition 2 (Rule): Given a set of objects {O1, . . . ,On}, Oi =

(S i, Ai, Ti, s0
i), a rule R is defined as “IF EVT THEN ACT”

with
EVT ::= event (Oid) | EVT1 and EVT2 | EVT1 or EVT2,
ACT ::= action (Oid) | ACT1 and ACT2,

where the terminal symbols are event, action ∈ �n
i=1 Ai, and

Oid ∈ {1, . . . , n} is an object identifier.
These rules can be composed to build more complex ex-

pressions, using basic operators such as sequence, choice,
concurrent execution or repetition of rules. Note that the com-
position language is a regular language. Thus, any composition
expression C written with this language can be transformed
into an LTS with rules as labels. In the rest of this paper,
we use interchangeably the terms composition expression and
composition LTS.

Definition 3 (Composition Language): A composition C is
an expression built over a set of rules R using the following
operators:

C ::= R | C1 ; C2 | C1 + C2 | C1 || C2 | Ck
1

where C1 ; C2 represents a composition followed by another
composition, C1 + C2 represents a choice between two
composition expressions, C1 || C2 represents the concurrent
execution of a two composition expressions, and Ck

1 represents
the execution k times of a composition expression (if k = ∗,
C1 executes a finite, unspecified number of times).

Let us now explain how an IoT application, consisting

of a set of objects and a composition expression, executes.
The communication model being asynchronous, each object is
equipped with an input message buffer (FIFO). The composi-
tion expression and all objects start their execution from their
initial states. Then, an application can evolve in two cases:
execution of a rule or buffer consumption. In the first case, let
us assume a basic rule with one event and one action. If the
event appearing in the left part of the rule has been issued,
the rule can be triggered and the action appearing in the right
part of the rule is pushed to the corresponding object’s buffer.
The event can occur as a result of changes in the physical
environment (e.g., change in temperature) or by interacting
directly with the objects (e.g., a user toggling a switch). In
the second case, one object can individually consume from its
input buffer if there is something in its buffer and the object
can consume according to its LTS model. In both bases, the
global state of the application changes. A global state consists
of the current state of all objects involved in the application
and the current state of the composition expression/LTS.

Definition 4 (One-step Execution Semantics): Given an IoT
application ({O1, . . . ,On},C) defined by a set of objects Oi =

(S i, Ai, Ti, s0
i), i = 1, . . . , n (with Bi the input buffer for object

Oi) and by a composition LTS C = (S , A,T, s0), and given its
current global state (((s1, B1), . . . , (sn, Bn)), s), the application
can evolve as follows:

• (rule execution)
(((s1, B1), . . . , (s j, Bj), . . . , (sk, Bk), . . . , (sn, Bn)), s) m!−−−→
(((s1, B1), . . . , (s�j, Bj), . . . , (sk, Bkm�), . . . , (sn, Bn)), s�)
if ∃ j, k ∈ {1, . . . , n}, j � k, s j

m!−−−→ s�j ∈ T j, and
s i f m (j) then m� (k)−−−−−−−−−−−−−−−−−→ s� ∈ T .

• (buffer consumption)
(((s1, B1), . . . , (s j,mBj), . . . , (sn, Bn)), s) m?−−−→
(((s1, B1), . . . , (s�j, Bj), . . . , (sn, Bn)), s)
if ∃ j ∈ {1, . . . , n}, s j

m?−−−→ s�j ∈ T j.

At a given global state, several executions may be possible
due to the use of choice and interleaving operators in the
composition expression. By applying the one-step execution
semantics whenever it is possible, we can cover all executions
of the IoT application and thus give an LTS-based semantics
to such applications. In the former definition, we use a basic
rule for simplicity. It could easily be extended to all kinds of
rules presented in Def. 2. In the rest of this paper, we need to
guide the execution of an IoT application by a given trace. A
trace is a sequence of couples (object identifier, action), where
an action is either an occurrence of the event associated with a
rule or a buffer consumption as shown in the former definition.

Definition 5 (Trace): Given an application A =

((O1 . . .On), (S , A, T, s0)), a trace t is an ordered sequence of
pairs < (oid1, a1), . . . , (oidm, am) >, where, for each pair, oid
is the identifier of an object Oi, and a is either an event m!
that triggers a rule or an action m? consumed from a buffer.
Assuming that the LTSs of the objects and of the composition
expression are deterministic, the execution is deterministic and
it is defined by the actions appearing in that trace. In our
work, we also use the notion of filtered trace, which consists

Figure 1. Several versions of a shop access control

of selected pairs from the original trace, belonging to the
remaining objects in a reconfigured application.

Definition 6 (Filtered Trace): Given an application Acurr

consisting of objects Ocurr, its reconfigured version Anew

consisting of objects Onew, and a trace t corresponding to the
sequence of actions executed in Acurr, the filtered trace t f

consists of pairs from t appearing in the same order, and for
each pair telem = (oid, a) of t, telem also belongs to t f iff oid is
the identifier of an object Oi ∈ Ocurr ∩ Onew.

Example. Application1 given in Figure 1 consists of two
motion sensors and a bell. This application can be used
to notify the entry and exit of customers in a shop. The
composition expression (right hand side in Figure 1) consists
of two rules: when the motion sensor detects someone entering
the shop it rings the bell, and when the second motion sensor
detects someone leaving the shop it again rings the bell. The
composition can execute these rules at any time by using a
choice (+) and an iteration construct (*). Application2 and
Application3 in Figure 1 are the reconfigured versions of
Application1 and Application2, respectively.

III. Reconfiguration Properties

In this section, we present several properties that can be
checked before replacing the current application by a new
application. First, we present three properties that take as input
two applications, the current and the new one, as well as the
global state of the current application before reconfiguration.
These properties are called seamless, conservative, and im-
pactful reconfiguration, and assess the impact of replacing the
current application by the new one in its current global state.
At the end of the section, we show how other properties of
interest could be verified on the new application without start-
ing from a specific global state, but considering all possible
executions of this new application.

A. Seamless Reconfiguration

To check the seamless reconfiguration property, we need
the following inputs: the current application, a new application
(both defined by their respective set of objects and composi-
tion expressions), and the current global state of the current
application (i.e., the application before reconfiguration). The
seamless reconfiguration property checks whether this state
can be reached again in the new application. This is important
because it means that the deployment of the new application
is possible without starting again this application from the
beginning, thus seamlessly replacing the current application
by the new application from the perspective of the user.

When reconfiguring an application, one can remove objects,
add new objects, and change the composition expression. In
this work, we consider that an application can be seamlessly
reconfigured if all the remaining objects (i.e., common to the
current and new applications) can reach again the state where
they were before initiating the reconfiguration, according to the
new composition expression. We focus on remaining objects
because the states of removed objects do not need to be
restored and new objects can start their behaviour from any
state (they do not have an execution history). Since each re-
maining object must reach again the state where it was before
reconfiguration, we also need the trace executed by the current
application from its initial state up to the current global state.
This trace is useful to check whether there is one execution of
the new composition expression where all remaining objects
can reach their former states repeating the same behaviour.
This trace is obtained by instrumenting the IoT platform (WoT
in this work) to capture all the events/actions issued by the
objects involved in the application.

When simulating the new application execution, guided by
a trace which was executed on the current application, the
remaining objects have to repeat the same actions. As far as
the new objects are concerned, they evolve with respect to the
new composition expression whose evolution is guided by the
trace. The states in which the new objects would have to start
on deploying the new application are obtained by executing
the trace on the new application.

Definition 7 (Seamless Reconfiguration): Given two appli-
cations Acurr = (Ocurr,Ccurr) and Anew = (Onew,Cnew), each
defined by a set of objects and a composition expression,
given the current global state (((s1, B1), . . . , (sn, Bn)), s) of
application Acurr and the trace t to reach that state consisting
of a sequence of couples (object identifier, action), the seam-
less reconfiguration property is satisfied if, when executing
application Anew guided by the trace t, each remaining object
Oi ∈ Ocurr ∩ Onew starting from s0

i can execute the actions in
t and reach its current state si.

Example. Let us consider again the simple shop application
used previously in this paper (Figure 1). Suppose we want
to replace Application1 by Application2. In Application2, the
entrance is controlled in order to limit the number of people
in the shop (e.g., to 10 people). This situation has become
quite usual in many places since the Coronavirus outbreak.

To do so, we keep both sensors, and add an access control
and a door. The access control is a software-based counter
that counts the presence of customers, detects when the shop
is full, and accordingly authorises or restricts the entry of
new customers. The rules are configured so that the entry
door is kept open when the number of customers inside is
below a certain threshold value and the door is closed when
the shop is full. Replacing the first application by the second
one corresponds to a seamless reconfiguration because the two
remaining objects (sensorin and sensorout) have a single state,
which is reachable in the new composition expression for any
execution trace.

Suppose now that we want to add a coloured light to
Application2, thus becoming Application3 (Figure 1). When
the access is possible to the shop, the door is opened and
the light is green, whereas when the access is prohibited,
the door is closed and the light is red. This reconfiguration
(from Application2 to Application3) is seamless as well,
irrespective of the previous execution. Indeed, all remaining
objects (sensorin, sensorout, control and door) can repeat
their former behaviours since the composition expression for
Application3 is an extension of the composition expression for
Application2, so all former behaviours are still possible in the
new application. Notice that it is important that the seamless
property is satisfied because we want to keep the application
in a consistent state during the reconfiguration process, i.e.,
maintain the state of the door either open or closed depending
on the number of customers in the shop.

B. Conservative and Impactful Reconfigurations

The seamless reconfiguration definition indicates whether
the remaining objects can reach again their former states
in the new application. We can go further than this initial
check by comparing more precisely both applications in terms
of preserved behaviours and new behaviours. Therefore, we
propose a couple of additional properties that could be helpful
in order to better characterise the intended reconfiguration
before applying it in practice.

A reconfiguration is called conservative if the seamless
property is preserved and if, from the global state in which
the reconfiguration is applied, all behaviours that could be
executed in the current application (objects and composition
expression) are still executable in the new application. Thus,
everything that was possible before is still possible in the new
application from that state (each trace that can be executed in
the current application is still executable in the new one). This
check is useful when one wants an application to provide more
services or features still preserving exactly what was possible
before. Note that the global state of the current application
cannot be used as a starting point in the new application
because some objects may have been removed or added. To
obtain the "equivalent" global state in the new application, we
use the trace executed by the current application in the new
application: remaining objects replay the same events/actions
and new objects evolve following the new composition expres-
sion. In this way, we are able to compute a global state in the

new application (the one computed to check that the seamless
property is satisfied), and we use that state as starting point
for checking conservative reconfiguration.

Definition 8 (Conservative Reconfiguration): Given two
applications Acurr = (Ocurr,Ccurr) and Anew = (Onew,Cnew),
given the current global state (((s1, B1), . . . , (sn, Bn)), s) of
application Acurr and the trace t that was executed to reach
that global state, the conservative reconfiguration property
is satisfied if the seamless reconfiguration property is sat-
isfied and if each trace t� that can be executed in Acurr

from (((s1, B1), . . . , (sn, Bn)), s) can also be executed (af-
ter filtering it on the remaining objects Ocurr ∩ Onew) in
Anew from (((s�1, B

�
1), . . . , (s�m, B

�
m)), s�) where the global state

(((s�1, B
�
1), . . . , (s�m, B

�
m)), s�) is obtained by executing Anew

guided by t.

A reconfiguration is called impactful if the seamless prop-
erty is preserved and if the whole behaviour of each new
object can be entirely executed in the new application. To
check that, we first execute the former trace to obtain the
global state in the new application. Then, we compute all
behaviours that are reachable from that global state according
to the new composition expression. The entire behaviour of
each new object must be covered to say that the reconfiguration
is impactful. This property allows one to verify whether the
newly introduced behaviours are fully utilised in the new
application.

Definition 9 (Impactful Reconfiguration): Given two ap-
plications Acurr = (Ocurr,Ccurr) and Anew = (Onew,Cnew),
given the current global state (((s1, B1), . . . , (sn, Bn)), s) of
application Acurr and the trace t that was executed to reach
that state, the impactful reconfiguration property is satisfied if
the seamless reconfiguration property is satisfied and if each
new object Oi ∈ Onew\Ocurr has its entire behaviour appearing
in {t}∪ Tr (i.e., for each Oi, for each s1

ed−→ s2 ∈ Ti, e appears
at least once in {t} ∪ Tr), where (((s�1, B

�
1), . . . , (s�m, B

�
m)), s�) is

the global state obtained by executing Anew guided by t and
Tr is the set of all traces that can be executed in Anew from
(((s�1, B

�
1), . . . , (s�m, B

�
m)), s�).

Note that conservative and impactful reconfiguration prop-
erties are independent of each other. If all the objects and the
composition expression are in their respective initial states,
the conservative property is not systematically preserved, but
the impactful property may be not preserved either because the
new composition expression may prevent some new behaviour
to be executed.

Example. Let us focus first on the replacement of Applica-
tion1 by Application2 (Figure 1). For simplification purposes,
we assume that the execution trace makes all LTSs (for
objects and composition expression) come back to their initial
states, which is thus considered as the starting global state
for analysing these properties. This reconfiguration is not
conservative as the bell has been removed and this behaviour
(ring) cannot be executed any more. This reconfiguration is
impactful because the entire behaviour of the new objects
(control and door) can be executed according to the new

composition expression C�. As far as the reconfiguration from
Application2 to Application3 is concerned, we assume again
that the reconfiguration takes place when all the object and
composition LTSs are in their initial states for simplicity. This
reconfiguration is conservative because the behaviour that can
be executed in the current application can be executed in
the new application too. This reconfiguration is not impactful
because a part of the new object (clight) is not reachable with
respect to the composition expression C�� as there are no rules
executing the actions on and off.

C. Additional Properties

Beyond the reconfiguration properties introduced previously
in this section, it is also possible to check classic safety and
liveness properties on the new application (only) using model
checking techniques. In this case, this additional verification
does not focus on a specific global state, but it allows the
analysis of all the possible executions of the new application.
Deadlock freeness for instance can be checked on the new
application. This property is generic in the sense that it does
not depend on the application. In contrast, other properties
may depend on the application. For instance, if we go back
to our example (Application3), we could verify that the door
is eventually closed (when the number of customers is more
than the threshold).

IV. Specification and Verification inMaude

This section shows how the different properties presented
in the former section can be automatically checked via an en-
coding into rewriting logic and the use of Maude’s verification
tools [2]. Reconfiguration analysis mainly involves simulation
and traversal of execution paths of an IoT application that
are easily expressed using equational logic and efficiently
computed using term rewriting in Maude. The code is available
online [3] with examples.

A. Formal Specification

Maude is a high-level language and a high-performance sys-
tem that supports membership equational logic, and rewriting
logic specification and programming of systems, see [2] for a
detailed introduction of Maude. The implementation in Maude
of an IoT application consists of four steps, which aim at
specifying successively IoT objects or devices, rules, compo-
sition expressions, and applications. As stated in Section II,
an object (Listing 1) is described by an LTS consisting of
an initial state and a set of transitions (the alphabet and the
set of states can be deduced from the set of transitions). A
rule is defined as a single event or a set of events (and/or) in
the left part, and as a single action or a set of actions in the
right part. A composition (Listing 1) can make use of all the
operators introduced in Section II (sequence, choice, parallel,
iteration). Finally, an application consists of a set of objects
and a composition expression.

1 fmod LTS i s
2 pr STATE .
3 pr SET{Transition} .
4

5 s o r t LTS .
6 op model : State Set{Transition} −> LTS .
7 endfm
8

9 fmod DEVICE i s
10 pr LTS .
11

12 s o r t Device .
13 op dev : Id LTS −> Device .
14 endfm
15

16 fmod COMPOSITION i s
17 pr RULE .
18 pr INT .
19

20 s o r t Composition .
21 s u b s o r t Rule < Composition .
22 op seq : Composition Composition −> Composition [assoc

�→right id : none] .
23 op ch : Composition Composition −> Composition [comm] .
24 op par : Composition Composition −> Composition [comm] .
25 op iter : Composition Int −> Composition .
26 op none : −> Composition .
27 endfm

Listing 1. Definition of the composition language

B. Automated Analysis

The seamless reconfiguration property is encoded as an op-
eration in Maude which takes as input the current application,
the new application, the global state reached by the current
application, and the trace executed by the current application
to reach that state. It returns a Boolean response indicating
whether the current global state for the remaining objects is
reachable by executing that trace. New objects can be involved
in order to reach that state, but whatever state they reach, it
does not impact the seamless reconfiguration property.

This property is checked by first executing the trace in the
new application and returning the reached global state. This
state is unique because the LTS models of the new application
are deterministic and the execution is guided by the given
trace. Then, we check whether both global states coincide for
the set of remaining objects. Note that the Maude specification
precisely encodes the execution semantics of the models de-
scribed in Section II. In particular, each object is equipped with
an input buffer for modelling the communication model used
in our IoT application model. Listing 2 shows a few operations
used for computing the seamless reconfiguration property. The
first operation (checkSeamlessReconfiguration) takes as input
all required elements (two applications, one trace and one
global state) and filters out all events/actions in the trace that
do not belong to the set of remaining objects. The second
operation (checkSeamlessReconfigurationAux) takes as input
two applications, one global state, the trace (filtered to keep
only actions executed by the remaining objects) and the set
of remaining objects. This operation calls the auxiliary func-
tion runTrace to execute the second application guiding this
execution by the trace. If an object is not available anymore
(removed in the second application), any object can be run
instead (yet according to the new composition expression). The

1 op checkSeamlessReconfiguration :
2 Application Application Set{Tuple{Id , State}} List{

�→Tuple{Id , Label}} −> Bool .
3 op checkSeamlessReconfigurationAux :
4 Application Application Set{Tuple{Id , State}} List{

�→Tuple{Id , Label}} Set{Id}
5 −> Bool .
6

7 ---- filters the trace to keep only labels belonging to
�→remaining objects

8 eq checkSeamlessReconfiguration (App1 , App2 , GS , Tr)
9 = checkSeamlessReconfigurationAux (
10 App1 , App2 , GS ,
11 filterTrace (Tr , computeCommonObjects (App1 , App2)) ,
12 computeCommonObjects (App1 , App2)) .
13

14 ---- runs the trace in the new application until it is
�→possible

15 eq checkSeamlessReconfigurationAux (App1 , App2 , GS , Tr , Ids)
16 = compareGS (
17 App1 , App2 , GS ,
18 getGlobalState (runTrace (App2 , Tr , Ids)))
19 and
20 getBoolRes (runTrace (App2 , Tr , Ids)) .

Listing 2. Specification of the seamless reconfiguration property

operation compareGS checks that the remaining objects have
reached the same state in both global states. The operation
runTrace also returns a Boolean value indicating whether the
whole trace was executed for the remaining objects.

As far as the conservative property is concerned, we first
check that seamless reconfiguration is preserved. Then, we
start from the computed global state in the new application.
We execute all possible behaviours in the new application,
and we check that there is a match in the current application
for each possible trace. We stop when we have traversed all
behaviours and they all match, or when there is a mismatch.

The impactful property checks that all new behaviours can
be executed in the new application. First, seamless reconfig-
uration is verified and we start from the global state returned
by this initial check. Second, we focus only on the second
application and we compute and store all observable events
for each device (input and output) from that state following
the new composition expression. Finally, we check that all
events have been traversed, for new devices only, from their
respective initial states.

The analysis of classic safety and liveness properties is
achieved by using the object-oriented and rule-based capa-
bilities of Maude. Given an application (a set of objects and
a composition expression), we define a class called Simulation
with four attributes: the current global state, the current trace,
the current state of the composition expression, and a set of
buffers (one input buffer per object). Then, we define six rules
corresponding to all possible evolutions of our system. There
are five rules corresponding to the evolution of the composition
expression (one rule for sequence, choice, interleaving, and
two rules for iteration), and one rule corresponding to the
consumption by one object from its buffer.

To conclude this section, let us comment on the performance
of the reconfiguration analysis with Maude. Our experiments
show that it takes only a few milliseconds to check the
reconfiguration properties introduced in this paper (seamless,

conservative or impactful) on simple examples (less than 10
objects). This is because the check just compares the traces
from the global state. However, a comprehensive traversal
of the behaviour is required for checking classic safety and
liveness properties.

V. RelatedWork

Dynamic reconfiguration is one of the main problems in
software architectures, where several formal frameworks such
as Darwin [4] or Wright [5] were proposed in order to specify
dynamic reconfiguration of component-based systems whose
architectures can evolve at runtime (by adding or removing
components and connections). Seamless reconfiguration is not
a new notion and was used in several works focusing on
dynamic reconfiguration, e.g., [6], [7]. As an example, [7]
presents a flexible approach to seamless reconfiguration of
EJB-based enterprise applications. As far as reconfiguration
of component assemblies is concerned, the authors present
in [8], [9] a reconfiguration protocol applying changes to
a set of connected components for transforming a current
assembly to a target one given as input. In [10], the authors
propose a reconfiguration protocol for dynamically updating
a cloud application consisting of components deployed on
virtual machines. [11], [12] present modelling and verification
techniques for supporting the design of IoT applications. The
approach presented in [13] extends semantic application de-
scriptions (called recipes) with constraints to enable dynamic
and automatic reconfiguration of IoT applications. Using
recipes, dynamic choreographies can be created that self-adapt
to changing device states without human intervention. [14]
introduces the OpenPnP reference architecture, which allows
a significant reduction of configuration and integration efforts
during industrial plant commissioning. Our focus here is not
only on the design of IoT applications but also on their
analysis in order to assess the impact of reconfiguration on the
application from a consistency and correctness perspective.

VI. Conclusion

In this paper, we have focused on IoT applications con-
sisting of devices interacting as described in a composition
expression of rules. These applications are not built once and
for all any more. This work gives the possibility to change
these applications (addition or removal of objects, update of
the composition expression) and provides formal guarantees
during the reconfiguration process. We have defined several
properties that characterise the consistency and correctness
of the application to be reconfigured. We have also proposed
verification techniques that allow one to analyse not only the
update of an application with respect to a certain global state
of the application, but also to analyse all possible executions
of the new application to check whether it preserves certain
functional properties. All these checks are fully automated
using an encoding into rewriting logic, and Maude’s simu-
lation and model checking tools. R-Mozart [1] implements
the ideas presented in this paper and thus supports the design,
verification and deployment of a new IoT application.

References
[1] F. Duran, A. Krishna, M. L. Pallec, R. Mateescu, and G. Salaün, “R-

MOZART: A Reconfiguration Tool for WebThings Applications,” in
Proc. of the 43rd International Conference on Software Engineering:
Companion Proceedings, ICSE 2021, Virtual Event. IEEE / ACM,
2021.

[2] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer,
and C. L. Talcott, Eds., All About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify Systems in Rewriting
Logic, ser. LNCS. Springer, 2007, vol. 4350.

[3] F. Durán, A. Krishna, M. L. Pallec, R. Mateescu, and G. Salaün,
“Seamless Reconfiguration of Rule-based IoT Applications,” https://
github.com/ajaykrishna/rmozart/tree/main/maude, January 2021.

[4] J. Magee and J. Kramer, “Dynamic Structure in Software Architectures,”
in Proc. of SIGSOFT FSE’96, 1996, pp. 3–14.

[5] R. Allen, R. Douence, and D. Garlan, “Specifying and analyzing
dynamic software architectures,” in Proceedings of the Fundamental
Approaches to Software Engineering, FASE’98, ser. Lecture Notes in
Computer Science, E. Astesiano, Ed., vol. 1382. Springer, 1998, pp.
21–37. [Online]. Available: https://doi.org/10.1007/BFb0053581

[6] L. Rosa, L. E. T. Rodrigues, and A. Lopes, “A framework
to support multiple reconfiguration strategies,” in Proceedings of
the 1st International Conference on Autonomic Computing and
Communication Systems, Autonomics 2007, 28-30 October 2007, Rome,
Italy, ser. ACM International Conference Proceeding Series, vol. 302.
ACM, 2007, p. 15. [Online]. Available: https://doi.org/10.4108/ICST.
AUTONOMICS2007.2113

[7] T. Vogel, J. Bruhn, and G. Wirtz, “Autonomous reconfiguration pro-
cedures for EJB-based enterprise applications,” in Proceedings of the
Twentieth International Conference on Software Engineering & Knowl-
edge Engineering (SEKE’2008), San Francisco, CA, USA, July 1-3,
2008. Knowledge Systems Institute Graduate School, 2008, pp. 48–53.

[8] F. Boyer, O. Gruber, and G. Salaün, “Specifying and verifying the
SYNERGY reconfiguration protocol with LOTOS NT and CADP,” in
FM 2011: Formal Methods - 17th International Symposium on Formal
Methods, Limerick, Ireland, June 20-24, 2011. Proceedings, ser. Lecture
Notes in Computer Science, vol. 6664. Springer, 2011, pp. 103–117.
[Online]. Available: https://doi.org/10.1007/978-3-642-21437-0_10

[9] F. Boyer, O. Gruber, and D. Pous, “Robust reconfigurations of
component assemblies,” in 35th International Conference on Software
Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26,
2013. IEEE Computer Society, 2013, pp. 13–22. [Online]. Available:
https://doi.org/10.1109/ICSE.2013.6606547

[10] F. Durán and G. Salaün, “Robust and reliable reconfiguration of cloud
applications,” J. Syst. Softw., vol. 122, pp. 524–537, 2016. [Online].
Available: https://doi.org/10.1016/j.jss.2015.09.020

[11] A. Krishna, M. L. Pallec, R. Mateescu, L. Noirie, and G. Salaün,
“Rigorous Design and Deployment of IoT Applications,” in Proc. of
FormaliSE’19. ACM, 2019.

[12] A. Krishna, M. L. Pallec, R. Mateescu, L. Noirie, and G. Salaün, “IoT
Composer: Composition and Deployment of IoT Applications,” in Pro-
ceedings of the 41st International Conference on Software Engineering:
Companion Proceedings, ICSE 2019, Montreal, Canada. IEEE / ACM,
2019, pp. 19–22.

[13] J. Seeger, R. A. Deshmukh, V. Sarafov, and A. Bröring, “Dynamic IoT
choreographies,” IEEE Pervasive Comput., vol. 18, no. 1, pp. 19–27,
2019. [Online]. Available: https://doi.org/10.1109/MPRV.2019.2907003

[14] H. Koziolek, A. Burger, M. Platenius-Mohr, J. Rückert, and
G. Stomberg, “OpenPnP: a plug-and-produce architecture for the
industrial internet of things,” in Proceedings of the 41st International
Conference on Software Engineering: Software Engineering in
Practice, ICSE (SEIP) 2019, Montreal, QC, Canada, May 25-31,
2019. IEEE / ACM, 2019, pp. 131–140. [Online]. Available:
https://doi.org/10.1109/ICSE-SEIP.2019.00022

