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Francisco Durán1, Ylìes Falcone2, Camilo Rocha3, Gwen Salaün2, and Ahang Zuo2

1ITIS Software, University of Málaga, Málaga, Spain
2Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, F-38000 Grenoble France

3Pontificia Universidad Javeriana, Cali, Colombia

Abstract. Business process optimisation is a strategic activity in organ-
isations because of its potential to increase profit margins and reduce
operational costs. One of the main challenges in this context is concerned
with the problem of optimising the allocation and sharing of resources. In
this work, processes are described using the BPMN notation extended with
an explicit description of execution time and resources associated with tasks,
and can be concurrently executed multiple times. First, a simulation-based
approach for computing certain metrics of interest, such as average execution
time or resource usage, is presented. This approach applies off-line and is
static in the sense that the number of resources does not evolve over the
time of the simulation. In a second step, an alternative approach is presented,
which works online, thus requiring the instrumentation of an existing
platform for retrieving information of interest during the processes’ execution.
This second approach is dynamic because the number of resource replicas is
updated over the time of the execution. This paper aims at stressing pros and
cons of both approaches, and at showing how they complement each other.

1 Introduction

Business process optimisation is a strategic activity in organisations because of its
potential to increase profit margins and reduce operational costs. Optimisation is, how-
ever, a difficult task to be achieved manually since several parameters should be taken
into account (e.g., execution times, resources, costs, etc.). One of the main challenges in
this context is concerned with the problem of optimising the allocation and sharing of
resources. Resource usage is crucial because it directly impacts the time it takes to ex-
ecute a process. Moreover, by associating a certain cost to each resource, the total cost
of executing a process a certain number of times can be computed. Optimising resource
usage reduces the process execution time and the costs associated with its execution.

In this work, we assume that a description of a business process is given using
the BPMN [24] workflow-based modelling language. BPMN has been standardised
by the International Organization for Standardization (ISO). It was first published
in 2013 and since then it has become the de facto notation for developing business
processes. The BPMN language defines the set of tasks involved in a process and the
order in which they should be executed. Beyond this description of the model, the
time it takes to execute each task is also needed, as well as an explicit description
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of the resources required for executing each task. This extended model is precise
enough for modelling both behavioural and quantitative aspects of processes.

This paper presents two ways to analyse BPMN processes with time and resources.
Both techniques assume that the process is executed multiple times and multiple
concurrent executions of a process compete for the shared resources. Such multiple
executions correspond to realistic scenarios where a process is not executed once
but several times (one execution per client or user for instance). Furthermore, both
approaches also aim at computing some metrics of interest such as average execution
times, resource usage, and costs. The first approach applies to design models, without
the need for an implementation of the system running on real resources. To compute
the previously mentioned metrics, off-line simulation techniques are used, assuming
that the allocation of resources is static (i.e., no update of the number of resources
during the simulation). This first approach relies on a specification of a subset of
BPMN in rewriting logic [21]. This specification is executable in Maude [6], and the
computation of metrics is achieved by using Maude’s rewriting tools.

The second approach applies at runtime or online, and works by instrumenting
an existing platform for executable BPMN (Activiti [2] in this work). In this case,
access to a database is used for storing information related to the execution of the
process. This information is particularly useful for computing the process execution
time, resource usage, and costs. This approach is also dynamic in the sense that
the number of replicas for each resource is not defined once and for all, but can be
updated by using the metrics computed during the process execution. In particular,
a strategy that relies on the resource usage values for dynamically updating the
number of replicas of each resource is presented.

The static approach applies to a model of the process, and additional information
is required such as the probability to execute exclusive branches. This approach is
useful for processes under development, or for potential changes that need to be
evaluated before being applied. The approach can help for instance to simulate several
scenarios and decide whether the number of required resources needs to be adjusted
before the deployment of the process in production. On the other hand, the dynamic
approach accepts as input an executable BPMN process and provides strategies
to update resources at execution time thus allowing a certain stabilisation of the
computed metrics over time (such as execution times and resource usage). However,
this dynamic change does not apply in all contexts since it is not systematically possible
to dynamically update the number of any kind of resources (such as human beings).

The organisation of the rest of this paper is as follows. Section 2 introduces
the BPMN notation used in this work. Section 3 overviews the static approach
for analysing resource usage. Section 4 surveys the main ideas of the dynamic
approach for the allocation of resources. Section 5 presents existing works on this
topic. Section 6 concludes by comparing both approaches.

2 BPMN with Time and Resources

BPMN 2.0 (BPMN, as a shorthand, in the rest of this paper) was published as an
ISO/IEC standard [17] in 2013 and is nowadays extensively used for modelling and
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developing business processes. In this paper, for the sake of simplicity, we focus on
activity diagrams including the BPMN constructs related to control-flow modelling
and behavioural aspects. Beyond those constructs, execution time and resources are
also associated with tasks, and probabilities are specified for exclusive and inclusive
split gateways. Figure 1 summarises some of the BPMN constructs used in this work,
with a focus on how time and resources are associated with flows and tasks.

Fig. 1. Extended BPMN Syntax

Specifically, the node types event, task, and gateway, and the edge type sequence
flow are considered. Start and end events are used, respectively, to initialise and
terminate processes. A task represents an atomic activity that has exactly one
incoming and one outgoing flow. A sequence flow describes two nodes executed one
after the other in a specific execution order. A task and a flow may have a duration or
delay. The timing information associated with tasks and flows is described as a literal
value (a non-negative real number, possibly 0). Resources are explicitly defined at
the task level. A task that requires resources can include, as part of its specification,
the name of the required resources. Thus, a task is specified with an amount of time
(its duration), and information on its required resources. Then, once the resources
required by a task are acquired, the task is going to execute for the defined duration.
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Gateways are used to control the divergence and convergence of the execution flow.
Three types of gateways are considered for the static analysis: exclusive, inclusive,
and parallel. Gateways with one incoming branch and multiple outgoing branches
are called splits, e.g., split inclusive gateway. Gateways with one outgoing branch
and multiple incoming branches are called merges, e.g., merge parallel gateway. An
exclusive gateway chooses one out of a set of mutually exclusive alternative incoming or
outgoing branches. For an inclusive gateway, any positive number of branches among
all its incoming or outgoing branches may be taken (both BPMN 1.0 and 2.0 semantics
for inclusive gateways are supported). A parallel gateway synchronises concurrent flows
for all its incoming branches, and creates concurrent flows for all its outgoing branches.

In the static approach, data-based conditions for split gateways are modelled
using probabilities associated with outgoing flows of exclusive and inclusive split
gateways. The probabilities of the outgoing flows in an exclusive split must sum
up to 1, while each outgoing flow in an inclusive split can be equipped with a
probability between 0 and 1 without a restriction on their total sum. We will see
that only the static approach presented in Section 3 does need such probabilities,
whereas the dynamic approach presented in Section 4 requires an executable BPMN
process as input (with real data-based conditions). Processes with looping behavior
are supported, as well as unbalanced workflows.

Running example. For illustration purposes, we present a simple example of a
process describing how clients can deliver goods via an external service (a mail office
for instance). This process is described in Figure 2. First of all, an employee collects
the goods brought by a client. Then, in parallel, the client pays for the delivery service
and an employee prepares a parcel. The company can deliver the parcel using a car or
using a drone (depending on the distance for example). Beyond the required resources
appearing in the figure, we can also see times (expressed as durations) associated
with tasks. As an example, the average duration for preparing a parcel is 5 units of
time (e.g., 5 minutes). We also assume that the probability of delivering by car or by
drone is the same (0.5).

Fig. 2. Goods Delivery Process
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3 Static Quantitative Analysis

In this section, we summarise the approach presented in [10] for analysing BPMN
processes with resources. More precisely, we first introduce the specification of
BPMN (syntax and semantics) in Maude’s rewriting logic. Second, we present the
quantitative properties of interest focusing on timing and resource-based properties.
To compute these properties, we leverage Maude’s rewriting capabilities to simulate
and extract analysis results on a given BPMN process.

3.1 Process Description

In the Maude specification of BPMN, a process is represented as an object with
sets of flows and nodes as attributes. Nodes can be of five different types: start, end,
task, split, or merge. The representation of each of these types of elements includes
the necessary information. A task node involves an identifier, a description, two flow
identifiers (input and output), a stochastic function or a value modelling its duration
(0 if there is no duration), and a set of resources required for its execution. A split
node includes a node identifier, a gateway type (exclusive, inclusive, or parallel), an
input flow identifier, and a set of output flow identifiers. A merge node includes a
node identifier, a gateway type, a set of input flow identifiers, and an output flow
identifier. The representation of a flow includes a probability distribution function
corresponding to the probability of executing that flow (1 by default).

3.2 Execution Semantics

The operational semantics of BPMN is defined using a rewrite theory, with rewrite
rules modeling how tokens evolve through a process. This rewrite theory is executable,
which allows us to simulate BPMN processes. In this specification, each action is
modeled as a rewrite rule. For instance, when a token arrives at a parallel split
gateway, the token corresponding to the incoming flow is removed, and one token is
added for each outgoing flow. Technically, rewrite rules operate on systems composed
of a process object and a simulation object.

Simulation object. While the process object introduced in Section 3.1 represents
the BPMN process and does not change during an execution, the simulation object
keeps information on the execution of the process. It stores a collection of tokens
(in a scheduler, see below), a global time (gtime), and a set of resources. It also keeps
track of the quantities being measured during the analysis of a process. Figure 3
presents the structure of the Simulation object.

Tokens. Tokens are used to represent the evolution of the workflow under execution.
When a process instance is triggered, a token is added to the start node. The tokens
move through nodes and flows of the process. When a token meets a split gateway
(e.g., parallel gateway), several tokens are generated on outgoing flows, depending
on the type of split gateway. On the contrary, when multiple tokens meet a merge
gateway (e.g., inclusive gateway), they are merged into a single token depending
on the type of merge gateway. A token is represented as a term token(TId, Id, T).
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< s : Simulation | tokens : ..., ---- scheduler
gtime : ..., ---- global time
resources : ..., ---- resource set
process-execs : ...., ---- execution times
sync-times : ..., ---- synchronisation times
task-times : ..., ---- task execution times
... >

Fig. 3. Representation of the Simulation Object

Since several executions may happen simultaneously, each execution has a unique
identifier, and tokens are identified by the execution instance TId they belong to, and
the flow or node Id they are attached to. The expression T represents a timer, of sort
Time, modelling a delay on the token. Once this timer becomes 0, the token may be
consumed.

Scheduling. Tokens are stored in a scheduler implemented as a priority queue,
so that they are kept according to their due time. However, even with its timer set
to 0, the token at the front of this queue may be not enough to fire some action.
Consider, for example, a task that requires some resource that is not available or
a parallel merge for which some incoming flow is not yet active. To avoid blocking
situations, the scheduler is provided with a shifting mechanism, which moves the first
active token to the front of the scheduler in case the current head cannot fire the
corresponding action. This scheduler is similar to those used in typical discrete event
simulations.

Resources. Each resource is represented with an identifier, the number of available
replicas (initially the total number), the total amount of time this resource has been
in use, and the intervals of time during which any replica of this resource was used.
These two last parameters are stored during the simulation, and are particularly
useful for analysis purposes. When a task requires several resources, it atomically
uses all of them at once, or waits for them to become available.

Workloads. Simulation-based analysis techniques are typically parameterized by
the workload that represents the way a system is used. They define the rate at which
new instances of a given process are executed. Currently, closed workloads can be
handled by specifying the number of executions and the rate at which executions
are started, that is, their inter-arrival time. The inter-arrival time is specified as a
stochastic expression.

Rewrite rules for BPMN constructs. Rewriting rules represent how tokens
evolve through the process and how nodes are executed, thus defining the execution
semantics of BPMN. Each action supported by the system is modelled as a rewrite
rule. These rules are overviewed in the rest of this section to gather an intuition
on the formal semantics (see [8] for the complete specification).

Start/end events. Figure 4 depicts the rule for the start event. When there is a
token in the execution TId in the start node NId with delay 0 (note the token at the
front of the scheduler in the Simulation object in line 5), then this rule generates a
new token on the outgoing flow of the selected node to initiate the execution of a
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1 crl [startProc] :
2 < PId : Process | nodes : (start(NId, FId), Nodes),
3 flows : (flow(FId, SE), Flows),
4 Atts >
5 < SId : Simulation | tokens : (token(TId, NId, 0) Tks), ... Atts1 >
6 < CId : Counter | counter : N >
7 => < PId : Process | nodes : (start(NId, FId), Nodes),
8 flows : (flow(FId, SE), Flows),
9 Atts >
10 < SId : Simulation | tokens : insert(Tks, token(TId, FId, T’)), ... Atts1 >
11 < CId : Counter | counter : N’ >
12 if {T’, N’} := eval(SE, N) .

Fig. 4. Start Event Processing

process instance (line 10). The insert function puts this token in the scheduler and
the eval function evaluates the stochastic expression SE specifying the delay of the
outgoing flow FId to be assigned to the new token. Details on the initialisation of
time stamps and recorded times for the initiated execution have been replaced by
ellipses. A termination rule, associated to stop events, consumes tokens when they
arrive at those events.

Tasks. A task execution is modelled with two rules. The first rule, the initTask rule
shown in Figure 5, represents the task initiation, which is applied when a token with
zero time is available for the incoming flow (line 5). If all the resources required by
this task are available, which is checked with the allResourcesAvailable function (line
8), then a new token is generated with the task identifier and the task duration
(line 12). Otherwise, the scheduler’s token shifting mechanism is invoked (line 20).
If available, all required resources are removed from the set of resources, and the
time those resources have been in use is updated (grabResources&updateTime function,
line 18). Since all auxiliary functions in the right-hand side of the initTask rule are
defined equationally, the checking and grabbing of resources are performed atomically,
without introducing any blocking issues. Note also that rules update the information
on execution times, task durations, etc. (see, e.g., the update of the task-tstamps

attribute, lines 13-16). This information is important for analysis purposes, as it will
be seen in Section 3.3.

A second rule, which models task completion, is triggered when there is a token
for that task with zero time. In that case, the token is consumed, a new one is
generated for the outgoing flow, and all resources are released.

Exclusive gateways. There are two rules for the exclusive gateways, namely, one for
the split and one for the merge. The rule for the split applies when a token with zero
time is available on its incoming flow. A uniformly sampled probability distribution
is used to choose the branch to be executed. The newly created token is assigned
with its run-to-completion time generated by evaluating the stochastic expression
associated with the chosen outgoing flow—this is actually the case every time a new
token is added for a flow. The exclusive merge gateway is triggered when one of its
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1 rl [initTask] :
2 < PId : Process |
3 nodes : (task(NId, TaskName, FId1, FId2, SE, RIds, SEI), Nodes), Atts >
4 < SId : Simulation |
5 tokens : (token(TId, FId1, 0) Tks),
6 task-tstamps : TTSs, gtime : T, resources : Rs, Atts1 >
7 < CId : Counter | counter : N >
8 => if allResourcesAvailable(RIds, Rs)
9 then < PId : Process |
10 nodes : (task(NId, TaskName, FId1, FId2, SE, RIds, SEI), Nodes), Atts >
11 < SId : Simulation |
12 tokens : insert(Tks, token(TId, NId, time(eval(SE, N)))),
13 task-tstamps : if TTSs[TId][NId] == undefined
14 then insert(TId, insert(NId, T, TTSs[TId]), TTSs)
15 else TTSs
16 fi, ---- for loops, stamps get overwritten
17 gtime : T,
18 resources : grabResources&updateTime(RIds, Rs, time(eval(SE, N)), T), Atts1 >
19 < CId : Counter | counter : int(eval(SE, N)) >
20 else ... ---- if necessary, the scheduler is updated
21 fi .

Fig. 5. Task Initiation Rule

incoming flows has a token with zero time. In that case, a new token is generated,
assigned to the outgoing flow, and added to the scheduler.

Parallel gateways. The parallel split gateway rule is triggered when a token with
zero time corresponding to the input flow is available. If so, the token is consumed
and one token is added to each of its outgoing flows. The merge rule for the parallel
gateway is executed when there is a token with zero time for each incoming branch.
In that case, these tokens are removed and a new token is generated for the outgoing
flow. In the merge rule, synchronisation times are also updated.

Inclusive gateways. The split rule applies when a token with zero time is available
at the incoming flow. Since all outgoing branches are equipped with probabilities, a
function in charge of computing the subset of branches to be triggered is invoked. For
each one of the selected branches, a new token is added to the scheduler. Regarding
merge gateways, both BPMN 1.0 and 2.0 semantics are supported in this research.
In BPMN 2.0, merge inclusive gateways behave like exclusive ones. The 1.0 version
of the semantics is more involved [5], since the merge rule for the inclusive gateway is
executed when all the expected tokens are available with zero time. This requires
a global analysis. To check whether all expected tokens have arrived, a backward
traversal that explores the process upstream and checks whether there are tokens
on their way to that merge is performed. In both cases, once the merge gateway is
triggered, the incoming tokens are removed, a new token is added to the scheduler for
the outgoing flow, and simulation information is updated with synchronisation times.

Loops and unbalanced workflows. The modelling of the BPMN execution semantics
using tokens and their circulation through the process structure supports intricate
constructs such as loops and unbalanced workflows. As far as looping behaviour
is concerned, a token may circulate back to an already visited flow without any
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additional treatment. Similarly, tokens can advance through flows that are part of
balanced or unbalanced gateways, independently of their structure.

3.3 Properties

Several kinds of properties or metrics can be computed, particularly timing and
resource-based properties. These properties are meaningful when executing multiple
instances of a process that compete for the shared resources. As for timing properties,
the approach presented in this paper allows the computation of average execution
times (AET) of a process, its variance (Var), and the average synchronisation time
(AST) for merge gateways, representing the time that elapse from the arrival of the
first token through one of its incoming flows to its activation. Synchronisation times
make sense only for parallel and BPMN 1.0 inclusive gateways, since there is no
waiting nor synchronisation time for the other gateways.

As far as resource-based properties are concerned, which is the main focus in this
work, the following properties are computed:

– The global time of usage of all instances of each resource R (GTUR). E.g., when
executing 10 instances of a process P , with an AET of 42, it is possible that the
two instances of a resource A are used for 56 time units and the three instances
of resource B for 60 time units.

– The expression GTU1

R
denotes the average GTU of resource R (i.e., the GTU

per instance of resource R). Thus, although in the previous example GTUB is
greater than GTUA, GTU1

A
is 28 and GTU1

B
is 20.

– The average usage percentage UPR for a resource R over the global execution
time. E.g., continuing with the running example, on average, an instance of
the resource A is used 24% of the global execution time when executing 200
instances of a process P .

To compute these metrics, Maude rewriting capabilities are used to simulate and ex-
tract analysis results on a given BPMN process. The simulation object presented in Sec-
tion 3.2 is used to accumulate information of synchronisation times, task durations, and
resource usages. At the end of all executions, these results are used for computing the
expected average times and resource usage percentages. Since the analysed processes
are assumed syntactically correct and processes that may lead to non-terminating
analysis are not considered (e.g., loops without end events), the verification process
always terminates. Indeed, all splits are probabilistic, and time duration and prob-
abilities assigned to the branches respect specific assumptions (e.g., all probabilities
are between 0 and 1, they sum up to 1 in exclusive branches, and times are positive).

Last but not least, if one can associate a cost (in euros for example) to each kind
of resource, we can compute the total cost of the simulation by using the collected
data on execution times and resource usage. We can even go farther by computing
the optimal allocation of resources. This is achieved by expressing this computation
as a multi-objective optimisation problem since we may not want to reduce costs but
also to reduce execution time for example. The solution to this optimisation problem
is computed by using heuristic-based search algorithms such as gradient descent [26].
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3.4 Example

Let us illustrate this approach with the running example presented in Section 2.
Table 1 shows a few experiments consisting of 1,000 tokens with an inter-arrival time
computed with an exponential probability distribution with 2 as the parameter. For
each row, there is a variation in the input in terms of the number of replicas of the
different resources. As a result, the table gives the total execution time for executing
1,000 times the process, the average execution time, and the total cost (assuming
a cost per hour of 40, 30, 35, and 25 euros for each resource, respectively).

Table 1. Experimental Results for the Delivery Process

Resources Total Average Total

Employee Car Driver Drone execution execution cost

Inst. Usage % Inst. Usage % Inst. Usage % Inst. Usage % time time

1 99.11 1 72.63 1 72.63 1 34.48 7063.00 2794.26 918190.00
2 99.18 2 69.85 2 69.85 2 35.92 3528.92 904.02 917519.74
3 81.42 2 90.37 2 90.37 1 84.09 2865.94 463.75 788133.61
4 85.24 3 84.42 3 84.42 2 58.45 2053.10 131.00 831508.77
4 86.75 4 57.88 4 57.88 4 33.04 2017.26 100.40 1048976.52

First of all, we can observe a clear correlation between the number of resources
and the execution time/costs. The more resources, the shorter it takes to execute
once the process (or all processes), but the more resources, the higher cost. Secondly,
we can see that the critical resource is the employee since whatever is the number
of replicas, this resource is always very busy (active more than 80% of his time). In
contrast, drones are less busy except if there is a single drone and several replicas for
the other resources. Finally, if we assume that we both want to reduce the average
execution time and the total cost with an equal weight (0.5 and 0.5), the optimal
resource allocation is 4, 3, 3, and 2 (before last row in Table 1).

4 Dynamic Quantitative Analysis

In this section, we will show how an existing platform (Activiti [2] in this work) can
be instrumented to extract the required information from its database and compute
properties periodically during the process execution. We will also show how we can
develop dynamic resource allocation strategies for varying the number of resource
replicas at runtime and thus impact the results of these properties. Note that in this
section, we do not have any restrictions on the BPMN syntax, we just need BPMN
processes to be executable. Moreover, there is no need to have probabilities associated
to split exclusive and inclusive gateways, since we have real data-based conditions.
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4.1 Instrumentation

In this section, we use Activiti as BPMN platform. Activiti is an open-source
workflow engine written in Java that can execute business processes described in
BPMN 2.0. We first require monitoring techniques [4, 13] for BPMN processes at
runtime. These techniques are useful because a process is usually not executed
only once. Instead, a process can be executed multiple times. Each execution of
the process is called an instance. An instance of the process can be in one of the
following states: initial means that the instance is ready to start (one token in the
start event), running means that the instance is currently executing and is not yet
completed, completed means that all tokens have reached end events. Tokens are used
to define the behaviour of a process. Similarly to the static approach, an identifier
is used to characterise a specific instance of process execution, and this identifier
is thus associated to all nodes (e.g., tasks) executed by this instance.

Monitoring techniques for BPMN executed using Activiti mostly aim at analysing
the information stored in a database, and extracting the information required for
computing the properties of interest (such as AET and resource usage percentage).
Figure 6 gives an overview of this data extraction. We first need to retrieve the
information regarding task execution and completion. This is what we can see in
Figure 6 (top right, (a)). For each task, we also extract the corresponding process
execution instance and the times of beginning and end. This information is useful
for determining which resources were in use and for what amount of time. Second,
we retrieve execution traces for each process instance as shown in Figure 6 (bottom
right, (b)). An execution trace corresponds to a list of tasks executed by this specific
instance. The tasks are not stored with a specific order in the database. Therefore, we
have to order these tasks by using time stamps, corresponding to the time at which
each task is executed. These time stamps are computed by the process execution
engine, which relies on a global clock. The execution trace corresponding to a specific
instance can be computed only when the instance is in its completed state.

Fig. 6. Runtime Monitoring of Multiple Executions of a BPMN Process
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4.2 Computation of Properties

Since new instances can execute at any time and possibly infinitely, the dynamic
approach requires extracting data and computing properties on time and resources pe-
riodically. There are several possible strategies to choose the period. It can be based on
a fixed amount of time (e.g., every 10 minutes) or it can apply when a certain number of
process instances have been completed. These two strategies can also be combined, e.g.,
we get data whenever 100 instances have been completed or every hour if after one hour
less than 100 instances have been completed. The choice of one of these strategies may
have a different impact on the actual results. Note that the choice of this strategy is a
parameter of the approach. In the rest of this section, we rely on a time-based strategy.

When the period completes, the data extraction is triggered. Then, we extract
the required information from these data to compute the properties presented in
Section 3.3 on execution times and resource usage. As an example, to compute the
resource usage percentage per resource replica, we analyse the tasks executed during
the last period of time. For these tasks, we look at the resources associated with each
task and sum up the durations each resource was active during that period. Then, we
divide this total time by the number of replica and compute a percentage out of these
numbers by using the time of activity for each replica out of the time of the period.

As we will see below, the results are represented using curves that show the
different property values (e.g., average execution time) along time.

4.3 Dynamic Resource Allocation

Several strategies can be defined for dynamically changing the number of replicas
for each resource. These strategies rely on the metrics computed before and thus
can vary in their choice and implementation. For instance, one strategy can aim at
reducing the average execution time whereas another one may maintain the resource
usage under a certain level, e.g., under 90%. We could also implement strategies that
take several criteria into account at the same time, e.g., reduce process execution
time while maintaining resource usage below a threshold. Another parameter of
the strategy is when to apply this change. A simple solution is to apply it when
we compute new values of the aforementioned properties. The strategy can rely on
this fresh information to decide to change the number of resource replicas. However,
we could decide to apply changes more or less often to avoid the classic oscillation
problem (add one, remove one, add one, remove one, etc.). As an example, one can
decide to change the number of replicas every three periods of time, every day, or
when a certain number of process instances complete (e.g., 100).

For illustration purposes, we will present an example of strategy in the rest of
this section. This strategy focuses on one specific property, namely the percentage of
resource usage per replica. The strategy aims at maintaining this percentage within
a certain interval, for instance, [70%,90%]. After completion of a period of time, all
properties are computed and the strategy then checks if the usage percentage for
each resource is still included in this interval. If, for a given resource, this percentage
goes above the highest value (e.g., 90% in our example), one replica of that resource
is added. If this percentage goes below the lowest value (e.g., 70% in our example),
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one replica of that resource is removed. Note that we choose in this strategy to follow
the same period of time as the one used for the computation of properties.

4.4 Example

Let us focus again on the goods delivery example introduced in Section 2. The only
difference in terms of the input BPMN process is that here we do not need to make
explicit the probabilities of executing the split exclusive gateway. This decision is taken
based on internal data belonging to the (executable) BPMN process. We use the same
workload as in Section 3.4, that is, 1000 tokens with exp(2) as inter-arrival time. There
are additional parameters that are required for the dynamic approach. We use as initial
allocation of resource one replica for each resource type. The targeted interval for
resource usage is [70%,90%]. The period for updating the metrics is fixed to 10 units of
time whereas the strategy for dynamic resource update applies every 60 units of time.

In the rest of this section, we will show three different figures to give different
insights on the results of the multiple process execution. Figure 7 describes the
evolution of the number of replicas for each kind of resource. The employee is
particularly important because every execution of the process requires an employee to
collect goods and prepare parcels whereas the other resources are not systematically
used for every process execution. One can see that this execution requires 2 or 3
employees to work properly. Cars and drivers take more time than drones to deliver
goods (10 units of times for cars and 5 units for drones), therefore more replicas
are required for allowing the delivery by car with driver.

Fig. 7. Goods Delivery Process: Evolution of the Number of Replicas

Figure 8 focuses on the usage percentage per replica for each type of resource. It
is worth reminding that the strategy used for these experiments aim at maintaining
the percentage in the interval [70%,90%]. We can see that from the beginning the
usage percentage for employees is higher than 90% thus explaining why several
replicas of employees were added at the beginning in Figure 7. After the addition
of these replicas for employee, the percentage remains lower. The usage percentage
for drones is the lower of all resources. We can observe important variations in all
these percentages because we use a short period for computing these numbers (10
units of time) and because the use of an exclusive gateway for the delivery induces
variations between the use of drones or cars.
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Fig. 8. Goods Delivery Process: Resource Usage

Figure 9 shows the evolution of the average execution time. The curve shows that
this time tends to increase at the beginning, but at some point stabilises (since new
executions occur on a periodic basis) and remains around 40 units of time. We can
see peaks at some points of the execution corresponding to an increase in the number
of delivery by car, which takes more time than drones. This increase in time can
be correlated with the addition in Figure 7 of additional replicas of cars and drivers.

Fig. 9. Goods Delivery Process: Average Execution Time

5 Related Work

Several works on the analysis and provisioning of resources can be found in the liter-
ature. Schmig and Rau [27] use coloured stochastic Petri nets to specify and analyse
business processes in the presence of dynamic routing, simultaneous resource allocation,
forking/joining of process-control threads, and priority-based queuing. In their work,
each resource is equipped with properties grouped in a role defining if the resource is
eligible to perform a certain activity. Li et al. [20] introduce multidimensional workflow
nets to model and analyse resource availability and workload. Oliveira et al. [23] use
generalised stochastic Petri nets for correctness verification and performance evaluation
of business processes. In their work, an activity can be associated with multiple roles
and the completion of an activity can use a portion of the resources available for a role.
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They also propose metrics for evaluating process performance such as: the minimum
number of resources needed for a role in order to complete a process, the expected num-
ber of activity instances when completing a process under the assumption of sufficient
resources, and the expected activity response time. Colored Petri Nets are used in [22]
for understanding how bounded resources can impact the behaviour of a process. They
introduce the notion of “flexible resource allocation” as a way to assign resources asso-
ciated with a given role based on priorities. In their approach, alternative strategies are
used to better allocate a fixed number of available resources. Havur et al. [15] study the
problem of resource allocation in business processes management systems where con-
straints can be assigned to resources (e.g., time of availability) and have dependencies.
Their technique is based on the answer set programming formalism and is capable of de-
riving optimal schedules. Sperl et al. [28] describe a stochastic method for quantifying
resource utilisation relative to structural properties of processes and past executions.

In [29], a solution is presented to optimise resource allocation by focusing on the
structure of the process, and more precisely on dependencies between resources and
tasks. The approach then proposes a solution to adapt the structure of the business
process to better fit the resources available in the enterprise. The authors in [7] focus
on the specification and verification of concurrently running processes, operating
in time-critical scenarios and having assigned a limited amount of resources. The
authors propose to use a fragment of first-order logic to capture process fragments
along the timeline and to combine them in a sound model, by observing constraints
defined on both activity durations and resource availability. In [25], a contribution
to the field of business process simulation is made by providing a new simulation
engine, which supports advanced resource specificities such as queuing mechanisms,
resource dependencies, or simulation parameters. A conceptual model supports these
features and a prototype implementation of this conceptual model are proposed.
Incorporating these features also allows for more accurate simulation of the processes
and obtaining more relevant performance metrics. Finally, [16] presents a framework
to integrate optimised resource allocation in business processes by adding a new
component called resource manager. It is responsible for maintaining all relevant
information concerning the availability of resources and for allocating resources to
a process instance. The process designer can specify resource requirements within
the business process model through dedicated resource-allocation activities.

There are many tools supporting the design and management of business
processes (e.g., Activiti, Bonita, Camunda, or Signavio), of which a subset supports
the analysis and optimisation of processes. For instance, this is the case of Signavio [1],
which packs tools such as the Signavio Process Intelligence for process optimisation.
It automatically mines process models from currently running systems and monitors
those processes with the purpose of collecting data that enables end-users to make
decisions for process improvement. The proposal here takes a different approach
since the idea is to compare the possibility to make the decision at design time or
at runtime, with static or dynamic allocation of resources.

This work is part of a long term project with the goal of developing different tools
for the analysis of BPMN processes. [18, 19] present an approach transforming BPMN
into the input language of the CADP model checker, thus allowing the automated ver-
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ification of functional properties and the comparison of BPMN processes. In [12], basic
BPMN processes were specified. This work provides operations for the estimation of
execution times, and uses model-checking techniques to verify reachability problems
and LTL properties. In [9], a model similar to the current one was proposed and was
used for stochastic analysis using the statistical model checker PVeStA [3]. In [10],
Maude is used to model and analyse the resource allocation of business processes. In
that work, optimal allocation is presented as a multi-objective optimisation problem,
where response time and resource usage are minimised. [11] proposes an automatic
analysis technique to evaluate and compare the execution time and resource occupancy
of a business process relative to a workload and a provisioning strategy. Four different
strategies were implemented and compared from an experimental perspective. [14]
presents an approach to perform probabilistic model checking of multiple executions
of a BPMN process (including time and resources) at runtime.

6 Concluding Remarks

In this paper, the focus is on business processes developed using the BPMN notation
extended with a description of time and resources. Processes are executed several
times and those multiple instances compete for the shared resources. In this context,
several metrics can be computed, such as average execution time or resource usage
percentage. These metrics are helpful to optimise processes by, for instance, increasing
the usage of resources or reducing the average execution time. Two different options
to compute these metrics have been presented. The first approach relies on off-line
simulation techniques and assumes that the allocation of resources is static (same
number of resources). The second approach applies at runtime, which requires the
instrumentation of an existing platform for executing BPMN processes. This latter
approach is dynamic and the number of replicas can be updated for each resource
during execution to adapt to a change in the resource usage. Both approaches are
fully automated and have been applied to realistic processes.

The static approach is useful for a process that is under development and thus
can be refined before being effectively deployed. This approach thus allows users
to better understand the process and improve it in the early stage of its development.
The static approach does not permit adjusting the resources to the workload, but
still corresponds to realistic scenarios. This is the case, for instance, when the number
of resources cannot be changed with simple or quick fixes. Complementarily, the
dynamic approach adjusts at runtime the number of resources, resulting in a more
stable resource usage in terms of occupancy percentages. However, this dynamic
change is not always possible since there are some specific kinds of resources (such
as human beings) that cannot be immediately or automatically updated. Another
difference of the dynamic approach is that it applies to any executable BPMN (no
restriction at the syntactic level), whereas the static approach works for a subset
of BPMN and also requires probabilities for split exclusive and inclusive gateways.

The main perspective of this work is to investigate how AI techniques could help
to develop new allocation strategies based on prediction analytics. More precisely,
such techniques could be used to predict the resource usage in the short future and
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the strategy would rely on these values in order to anticipate the change in the
number of resource replicas.
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