
Science of Computer Programming 196 (2020) 102493
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Compositional model checking with divergence preserving

branching bisimilarity is lively

Sander de Putter a,1, Frédéric Lang b, Anton Wijs a,∗
a Eindhoven University of Technology, PO BOX 513, 5600 MB, Eindhoven, the Netherlands
b Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP 2 , LIG, 38000 Grenoble, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 March 2018
Received in revised form 24 March 2020
Accepted 21 May 2020
Available online 27 May 2020

Keywords:
Divergence-preserving branching
bisimilarity
Congruence
Parallel composition
Synchronisation
Compositional model checking

Compositional model checking approaches attempt to limit state space explosion by iter-
atively combining the behaviour of the components in a concurrent system and reducing
the result modulo an appropriate equivalence relation. In this article, we consider Labelled
Transition Systems (LTSs), in which transitions are labelled by actions, to describe compo-
nent behaviour, and LTS networks to combine the behaviour of all components in a system.
For an equivalence relation to be useful for the compositional model checking of LTS net-
works, it should be a congruence for the parallel composition operator that is used to
combine component behaviour. Such an operator may define synchronisations between the
actions of component transitions.
An equivalence relation preserving both safety and liveness properties is divergence-
preserving branching bisimilarity (DPBB). It has long been generally assumed that DPBB is a
congruence for parallel composition. Fokkink, Van Glabbeek and Luttik recently proposed a
congruence format that implies that this is the case. In parallel, we were the first to prove,
by means of the Coq proof assistant, that DPBB is a congruence for the parallel composi-
tion of two LTS networks with synchronisation on transition labels. In the current article,
we also consider an instance of our parallel composition operator that is both associative
and commutative, which are two essential properties for the compositional construction of
state spaces.
Furthermore, we show that DPBB is a congruence for LTS networks in which many LTSs are
composed in parallel at once with support for multi-party synchronisation. Additionally, we
discuss how to safely decompose an existing LTS network into components such that their
recomposition is equivalent to the original LTS network.
Finally, to demonstrate the effectiveness of compositional model checking with intermedi-
ate DPBB reductions, we discuss the results we obtained after having conducted a number
of experiments.

© 2020 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail addresses: s.m.j.d.putter@tue.nl (S. de Putter), frederic.lang@inra.fr (F. Lang), a.j.wijs@tue.nl (A. Wijs).

1 This work is supported by ARTEMIS Joint Undertaking project EMC2 (grant nr. 621429).
2 Institute of Engineering Univ. Grenoble Alpes.
https://doi.org/10.1016/j.scico.2020.102493
0167-6423/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2020.102493
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2020.102493&domain=pdf
mailto:s.m.j.d.putter@tue.nl
mailto:frederic.lang@inra.fr
mailto:a.j.wijs@tue.nl
https://doi.org/10.1016/j.scico.2020.102493

2 S. de Putter et al. / Science of Computer Programming 196 (2020) 102493
1. Introduction

Model checking [1,2] is one of the most successful approaches for the analysis and verification of the behaviour of
concurrent systems. However, a major issue is the so-called state space explosion problem: the state space of a concurrent
system tends to increase exponentially as the number of parallel processes increases linearly. Often, it is difficult or infea-
sible to verify realistic large scale concurrent systems. Over time, several methods have been proposed to tackle the state
space explosion problem. Prominent approaches are the application of some form of on-the-fly reduction, such as Partial
Order Reduction [3] or Symmetry Reduction [4], and compositionally verifying the system, for instance using Compositional
Reasoning [5] or Partial Model Checking [6,7].

The key operations in compositional approaches are the composition and decomposition of systems. First a system is
decomposed into two or more components. Then, one or more of these components is manipulated (e.g., reduced). Finally,
the components are re-composed. Comparison modulo an appropriate equivalence relation is applied to ensure that the
manipulations preserve properties of interest (for instance, expressed in the modal μ-calculus [8]). These manipulations are
sound if and only if the equivalence relation 1) is guaranteed to preserve the formalisations of the properties, and 2) is a
congruence for the composition expression.

Labelled Transition Systems (LTSs) are often used to formalise the semantics of concurrent systems, and the semantics of
the individual components in such a system. Two prominent equivalences for LTSs are branching bisimilarity and divergence-
preserving branching bisimilarity (DPBB) [9,10]. Branching bisimilarity preserves safety properties, while DPBB preserves
both safety and liveness properties.

In [11], it is proven that DPBB preserves properties expressed in a particular fragment of the modal μ-calculus if the
actions referred to in those properties are not abstracted away (renamed to τ , which represents internal actions).

In [12] it is proven that DPBB is a congruence for parallel composition without synchronisation between the parallel com-
ponents. However, in general, parallel composition involves some synchronisation mechanism, and compositional reasoning
requires equivalences that are a congruence for parallel composition in which parallel components may synchronise their
behaviour. Languages to model concurrent systems, such as the process algebras CCS [13], CSP [14], ACP [15], mCRL2 [16],
and LOTOS [17], include a parallel composition operator that supports synchronisation. Therefore, in the following, when
we refer to parallel composition, we imply, unless stated otherwise, that synchronisation is involved.

It is known that branching bisimilarity is a congruence for the parallel composition of LTSs. This follows from the fact
that parallel composition of LTSs can be expressed in a so-called BB cool (Branching Bisimulation cool) language [18]. The
authors of [19] have proposed a congruence format for DPBB, from which it follows that DPBB is a congruence for parallel
composition of LTSs. We place such a congruence proof in the setting of networks of LTSs [20] (or LTS networks for short) and
compositional model checking. The current article extends earlier work [21] that was conducted in parallel to [19]. Most of
the proofs in the current article have been constructed using the Coq proof assistant [22]. Apart from our earlier work, no
results obtained with the use of a proof assistant have been reported so far.

A popular toolbox that offers a selection of compositional approaches is Cadp [23]. Cadp offers both property-independent
approaches (e.g., compositional model generation, smart reduction, and compositional reasoning via behavioural interfaces)
and property-dependent approaches (e.g., property-dependent reductions [11] and Partial Model Checking [6]). The formal
semantics of concurrent systems are described using LTS networks. An LTS network consists of n LTSs representing the
parallel processes. A set of synchronisation laws V is used to describe the possible communication, i.e., synchronisation, be-
tween the process LTSs. With this synchronisation mechanism, the usual parallel composition operators of standard process
algebras, such as ACP, CCS, CSP, mCRL2, and LOTOS, can be encoded.

Contributions The current article considers parallel composition of LTS networks. First, given two LTS networks M and M′
of size n related via a DPBB relation B, another LTS network N of size m, and a parallel composition operator ‖σ with a
partial function σ that specifies synchronisation between components, we show there is a DPBB relation C such that

M B M′ =⇒ M ‖σ N C M′ ‖σ N
In words, we prove that DPBB is a congruence for the parallel composition of two LTS networks. This result subsumes the
composition of two individual LTSs via composition of LTS networks of size one.

Second, we present a method to safely decompose an LTS network in components such that the composition of the com-
ponents is equivalent to the original LTS network. All proofs for the first and second contribution have been mechanically
verified using the Coq proof assistant and are available online.3

Third, we discuss the effectiveness of compositionally constructing state spaces with intermediate LTS minimisations
modulo DPBB in comparison with the classical, non-compositional state space construction. The discussion is based on
results we obtained after having conducted a number of experiments using the Cadp toolbox.

This article extends previous work [21], which originally presented the first three contributions, in a number of ways.
First, we prove for a particular definition of σ that the resulting parallel composition operator, which we refer to as ‖∩ , is

both associative and commutative. That σ -definition defines that the transition labels in the LTSs that the components have

3 http://www.win .tue .nl /mdse /composition /DPBB _is _a _congruence _for _synchronizing _LTSs .zip.

http://www.win.tue.nl/mdse/composition/DPBB_is_a_congruence_for_synchronizing_LTSs.zip

S. de Putter et al. / Science of Computer Programming 196 (2020) 102493 3
in common need to synchronise, i.e., it defines synchronisation on the common alphabet of the components. Therefore, this
parallel composition operator coincides with the CSP parallel composition operator ‖ [14]. Associativity and commutativity
are desirable properties as they indicate that composition of more than two LTS networks may be done in any order.
Synchronisation on the common alphabet is therefore often used in practice for compositional model checking (for instance,
see [24–26]). In this article, we show that this can be done safely, by proving that DPBB is a congruence for LTS networks,
as defined in [23], if parallel composition is performed with synchronisation on the common alphabet of the components.

Second, we prove that it is actually unnecessary to require synchronisation on the common alphabet for DPBB to be a
congruence for LTS networks. This is a useful result, as that restriction excludes many LTS networks in practice. In this case,
we generalise the congruence definition of [23].

Third, we have extended the number of test cases originally presented in [21] showing a higher variety in the effective-
ness of the approach. Crouzen and Lang [27] report on experiments comparing the run-time and memory performance of
three compositional verification techniques. As opposed to these experiments, our experiments concern the comparison of
compositional and classical, non-compositional state space construction.

Structure of the article Related work is discussed in Section 2. In Section 3, we discuss the notions of LTS, LTS network,
so-called LTS network admissibility, and DPBB. Next, the formal composition of LTS networks is presented in Section 4. We
prove that DPBB is a congruence for the composition of two LTS networks. Section 5 is on the decomposition of an LTS
network. Decomposition allows the redefinition of a system as a set of components. Section 6 introduces an instance of the
composition operator that is both associative and commutative. In Section 7, we prove that DPBB is a congruence for LTS
networks, as defined in [23], if the set of synchronisation laws implements synchronisation on the common alphabet of the
components. Furthermore, we prove that a generalisation of that definition holds as well, which demonstrates that synchro-
nisation on the common alphabet of the components is, in fact, not required. In Section 8, we apply the theoretical results
to a set of use cases comparing a compositional construction approach with non-compositional state space construction. In
Section 9 we present the conclusions and directions for future work.

2. Related work

Networks of LTSs are introduced in [28]. The authors mention that strong and branching bisimilarity are congruences
for the operations supported by LTS networks. Among these operations is the parallel composition with synchronisation
on equivalent labels. A congruence proof for branching bisimilarity has been verified in PVS by van de Pol and a textual
proof was written, but both the textual proof and the PVS proof have not been made public [29]. An axiomatisation for
a rooted version of divergence-preserving branching bisimulation has been performed in a Master graduation project [30].
However, the considered language does not include parallel composition. In this article, we formally show that DPBB is
also a congruence for parallel composition with synchronisations between components. As DPBB is a branching bisimulation
relation with an extra case for explicit divergence, the proof we present also formally shows that branching bisimilarity is a
congruence for parallel composition with synchronisations between components.

Another approach supporting compositional verification is presented in [20]. Given an LTS network and a component
selected from the network, the approach automatically generates an interface LTS from the remainder of the network. This
remainder is called the environment. The interface LTS represents the synchronisation possibilities that are offered by the
environment. This requires the construction and reduction of the system LTS of the environment. The advantage of this
method is that transitions and states that do not contribute to the system LTS can be removed. In our approach only the
system LTS of the considered component must be constructed. The environment is left out of scope until the components
are composed.

Many process algebras support parallel composition with synchronisation on labels. Often a proof is given showing
that some bisimilarity is a congruence for these operators [16,31–33]. To generalize the congruence proofs a series of
meta-theories has been proposed for algebras with parallel composition [18,34,35]. In [35] the panth format is proposed.
The authors show that strong bisimilarity is a congruence for algebras that adhere to the panth format. The focus of the
work is on the expressiveness of the format. The author of [18] proposes so-called cool formats for four bisimilarities:
weak bisimilarity, rooted weak bisimilarity, branching bisimilarity, and rooted branching bisimilarity. It is shown that these
bisimilarities are congruences for the corresponding formats. In [34] similar formats are proposed for eager bisimilarity
and branching bisimilarity. Eager bisimilarity is a kind of weak bisimilarity which is sensitive to divergence. The above
mentioned formats do not consider DPBB.

Recently, the authors of [19] have proposed such a format for DPBB. In parallel to that work, we have proven that DPBB
is a congruence for the parallel composition of two LTS networks with synchronisation on transition labels, using the Coq
proof assistant [21]. In the current article, we additionally prove that DPBB is a congruence for LTS networks, as defined
in [23]. Furthermore, we define how to compose and decompose LTS networks, and demonstrate the practical effectiveness
of compositional model checking based on DPBB using a larger set of benchmarks than the one used previously in [21].

In earlier work, we presented decomposition for LTS transformation systems of LTS networks [36]. The work aims to
verify the transformation of a component that may synchronise with other components. The paper proposes to calculate so
called detaching laws which are similar to our interface laws. The approach can be modelled with our method. In fact, we

4 S. de Putter et al. / Science of Computer Programming 196 (2020) 102493
show that the derivation of these detaching laws does not amount to a desired decomposition, i.e., the re-composition of
the decomposition is not equivalent to the original system (see Example 5.1 discussed in Section 5).

A projection of an LTS network given a set of indices is presented in [23]. Their projection operator is similar to the
consistent decomposition of LTS networks that we propose. In fact, with a suitable operator for the reordering of LTS
networks our decomposition operator is equivalent to their projection operator. The current article contributes to these
results that admissibility properties of the LTS network are indeed preserved for such consistent decompositions.

3. Preliminaries

In this section, we introduce the notions of LTS, LTS network, and divergence-preserving branching bisimilarity of LTSs.
The potential behaviour of processes is described by means of LTSs. The behaviour of a concurrent system is described
by a network of LTSs [20], or LTS network for short. The semantics of an LTS network M is defined by an LTS GM , which
describes the global behaviour of the network. To compare the behaviour of processes and systems, the notion of divergence-
preserving branching bisimilarity (DPBB) is used. DPBB is often used to reduce the state space of system specifications while
preserving safety and liveness properties, or to compare the observable behaviour of two systems.

The semantics of a process, or a composition of several processes, can be formally expressed by an LTS as presented in
Definition 3.1.

Definition 3.1 (Labelled transition system). An LTS G is a tuple (SG , AG , TG, IG), with

• SG a non-empty, finite set of states;
• AG a set of action labels;
• TG ⊆ SG ×AG × SG a transition relation;
• IG ⊆ SG a (non-empty) set of initial states.

Action labels in AG are denoted by a, b, c, etc. Additionally, there is a special action label τ ∈AG that represents internal,
or hidden, system steps. A transition (s, a, s′) ∈ TG , or s a−→G s′ for short, denotes that LTS G can move from state s to state s′

by performing the a-action. The transitive reflexive closure of a−→G is denoted as a−→∗
G , and the transitive closure is denoted

as a−→+
G .

LTS network An LTS network, presented in Definition 3.2, describes a system consisting of a finite number of concurrent
process LTSs and a set of synchronisation laws that define the possible interaction between the processes. We write 1..n for
the set of integers ranging from 1 to n. A vector v̄ of size n contains n elements indexed from 1 to n. For all i ∈ 1..n, v̄ i
represents the ith element of vector v̄ . The concatenation of two vectors v̄ and w̄ of size n and m, respectively, is denoted by
v̄ ‖ w̄ . In the context of composition of LTS networks, this concatenation of vectors corresponds to the parallel composition
of the behaviour referred to by the two vectors.

Definition 3.2 (LTS network). An LTS network M of size n is a pair (�, V), where

• � is a vector of n concurrent LTSs. For each i ∈ 1..n, we write �i = (Si, Ai, Ti, Ii).
• V is a finite set of synchronisation laws. A synchronisation law is a tuple (v̄, a), where v̄ is a vector of size n, called

the synchronisation vector, containing synchronising action labels, and a is an action label representing the result of
successful synchronisation. We have ∀i ∈ 1..n. v̄ i ∈ Ai ∪ {•}, where • is a special symbol denoting that �i performs no
action. The set of result actions of a set of synchronisation laws V is defined as AV = {a | (v̄, a) ∈ V}.

The semantics of an LTS network M is defined by the LTS GM , which is obtained by combining the processes in �
according to the synchronisation laws in V as specified by Definition 3.3. The LTS network model subsumes most hiding,
renaming, cutting, and parallel composition operators present in process algebras. For instance, hiding can be applied by
replacing the a component in a law by τ .

Definition 3.3 (LTS network semantics). Given an LTS network M = (�, V), its semantics is defined by GM = (SM, AM ,
TM, IM), with

• IM = {〈s1, . . . , sn〉 | si ∈ Ii};
• TM and SM are the smallest relation and set, respectively, satisfying IM ⊆ SM and for all s̄ ∈ SM , a ∈ AV , we have

s̄
a−→M s̄′ and s̄′ ∈ SM iff there exists (v̄, a) ∈ V such that for all i ∈ 1..n:{

s̄i = s̄′
i if v̄ i = •

s̄
v̄ i−→ s̄′ otherwise
i �i i

S. de Putter et al. / Science of Computer Programming 196 (2020) 102493 5
Fig. 1. An LTS network M = (�,V) (left) and its system LTS GM (right).

• AM = {a | ∃s̄, ̄s′ ∈ SM.s̄
a−→M s̄′}.

In Fig. 1, an example of an LTS network M = (〈�1, �2〉, V) with four synchronisation laws is shown on the left, and its
semantics in the form of an LTS GM is shown on the right. Initial states are indicated with an incoming arrow. The states of
the system LTS GM are constructed by combining the states of �1 and �2. In this example, we have 〈1, 3〉, 〈1, 4〉, 〈2, 3〉 ∈
SM , of which 〈1, 3〉 is the single initial state of GM .

The transitions of GM in Fig. 1 are constructed by combining the transitions of �1 and �2 according to the set of
synchronisation laws V . Law (〈c, c〉, c) specifies that the process LTSs can synchronise on their c-transitions, resulting in
c-transitions in GM . Similarly, the process LTSs can synchronise on their d-transitions, resulting in a d-transition in GM .
Furthermore, law (〈a, •〉, a) specifies that process �1 can perform an a-transition independently resulting in an a-transition
in GM . Likewise, law (〈•, b〉, b) specifies that the b-transition can be fired independently by process �2. Because �1 does
not participate in this law, it remains in state 〈1〉 in GM . The last law states that a- and e-transitions can synchronise,
resulting in f -transitions, however, in this example the a- and e-transitions in �1 and �2 are never able to synchronise
since state 〈2, 4〉 is unreachable.

An LTS network is called admissible iff the synchronisation laws of the network do not synchronise, rename, or cut τ -
transitions [20] as defined in Definition 3.4. The intuition behind this is that internal, i.e., hidden, behaviour should not
be restricted by any operation. Partial model checking and compositional construction rely on LTS networks being admissi-
ble [23]. Hence, in this article, we also restrict ourselves to admissible LTS networks when presenting our composition and
decomposition methods.

Definition 3.4 (LTS network admissibility). An LTS network M = (�, V) of size n is called admissible iff the following proper-
ties hold:

1. ∀(v̄, a) ∈ V .∃i ∈ 1..n. v̄ i = τ =⇒ ∀ j �= i. v̄ j = •; (no synchronisation of τ ’s)
2. ∀(v̄, a) ∈ V .∃i ∈ 1..n. v̄ i = τ =⇒ a = τ ; (no renaming of τ ’s)
3. ∀i ∈ 1..n. τ ∈Ai =⇒ ∃(v̄, a) ∈ V . v̄ i = τ . (no cutting of τ ’s)

Divergence-preserving branching bisimilarity To compare LTSs, we use DPBB, also called branching bisimilarity with explicit
divergence [9,10]. DPBB supports abstraction from actions and preserves both safety and liveness properties. To simplify
proofs we use DPBB with the weakest divergence condition (D4) presented in [10] as presented in Definition 3.5. This
definition is equivalent to the standard definition of DPBB [10]. The smallest infinite ordinal is denoted by ω.

Definition 3.5 (Divergence-preserving branching bisimulation). A binary relation B between two LTSs G1 and G2 is a divergence-
preserving branching bisimulation iff for all s ∈ SG1 and t ∈ SG2 , s B t implies:

1. if s a−→G1 s′ then
(a) either a = τ with s′ B t;

(b) or t τ−→∗
G2

t̂
a−→G2 t′ with s B t̂ and s′ B t′ .

2. symmetric to 1.

3. if there is an infinite sequence of states (sk)k∈ω such that s = s0, sk τ−→G1 sk+1 and sk B t for all k ∈ ω, then there exists
a state t′ such that t τ−→+

G2
t′ and sk B t′ for some k ∈ ω.

4. symmetric to 3.

Condition 3 (and its symmetric case) is illustrated in Fig. 2. For every state t that is related by B to an infinite number of
states along an infinite path of τ -transitions, there exists at least one state t′ reachable from t via at least one τ -transition

6 S. de Putter et al. / Science of Computer Programming 196 (2020) 102493
Fig. 2. Condition 3 of Definition 3.5.

that is related by B to one of those states. In other words, the infinite sequence of τ -transitions cannot be simulated in t by
zero τ -transitions. Van Glabbeek et al. [10] have proven that this condition coincides with the preservation of divergence.

Two states s ∈ SG1 and t ∈ SG2 are divergence-preserving branching bisimilar, denoted by s ↔ �
b t , iff there is a DPBB

relation B such that s B t . We say that two LTSs G1 and G2 are divergence-preserving branching bisimilar, denoted by
G1 ↔ �

b G2, iff ∀s1 ∈ IG1 .∃s2 ∈ IG2 . s1 ↔ �
b s2 and vice versa. Finally, we say that two LTS networks M, M′ are divergence-

preserving branching bisimilar, denoted by M ↔ �
b M′ , iff GM ↔ �

b GM′ .

4. Composition of LTS networks

This section introduces the compositional construction of LTS networks. Such a composition achieves the parallel com-
position of process LTSs, resulting in an LTS network M. For that network, GM tends to grow exponentially as processes
are added.

An LTS network can be seen as being composed of several components, each of which consists of a number of individual
processes in parallel composition, with intra-component synchronisation laws describing how the processes inside a compo-
nent should synchronise with each other. Furthermore, inter-component synchronisation laws define how the components
as a whole should synchronise with each other. Compositional construction of a minimal version of the LTS defining the
semantics of the LTS network may then be performed by first constructing the LTSs of the different components, subse-
quently minimising these, and finally combining their behaviour. Example 4.1 presents an example of a network with two
components and an inter-component synchronisation law.

Example 4.1 (Component). Consider an LTS network M = (�, V) with processes � = 〈�1, �2, �3〉 and synchronisation
laws V = {(〈a, •, •〉, a), (〈•, b, b〉, b), (〈c, c, c〉, c)}. We may split up the network in two components, say M1 = (〈�1〉, V1) and
M{2,3} = (〈�2, �3〉, V{2,3}). Then, (〈c, c, c〉, c) is an inter-component law describing synchronisation between M1 and M{2,3} .
The component M1 consists of process �1, and the set of intra-component synchronisation laws V1 = {(〈a, •, •〉, a)} op-
erating solely on �1. Similarly, component M{2,3} consists of �2 and �3, and the set of intra-component synchronisation
laws V{2,3} = {(〈•, b, b〉, b)} operating solely on �2 and �3.

The challenge of compositional construction is to allow manipulation of the components while guaranteeing that the
observable behaviour of the system as a whole remains equivalent modulo DPBB. Even though synchronisation laws of a
component may be changed, we must somehow preserve synchronisations with the other components. Such a change of
synchronisation laws occurs, for instance, when reordering the processes in a component, or renaming actions that are part
of inter-component synchronisation laws.

In this and the following section, we limit ourselves to the composition of two components: a left and a right component.
This simplifies notations and proofs. However, the approach can be generalised to splitting networks given two sets of
indices indicating which processes are part of which component, i.e., a projection operator can be used to project distinct
parts of a network into components.

In the remainder of this section, first, we formalise LTS networks composition. Then, we show that admissibility is
preserved when two admissible networks are composed. Finally, we prove that DPBB is a congruence for composition of
two LTS networks.

Composing LTS networks Before defining the composition of two networks, we introduce a partial function indicating how
the inter-component laws should be constructed from the interfaces of the two networks. An inter-component law can then
be constructed by combining the interface vectors of the components and adding a result action. This is achieved through a
given interface function, presented in Definition 4.1, relating interface actions to result actions.

Definition 4.1 (Interface function). Consider two LTS networks M� = (�, V) and MP = (P, W) of size n and m, respectively.
An interface function between M� and MP is a partial function σ : AV ∪ AW \ {τ } × AV ∪ AW \ {τ } � A describing
how the interface actions of M� should be combined with interface actions of MP, and what the action label should be
resulting from successful synchronisation. The set A is the set of actions resulting from successful synchronisation between
� and P. The actions related by σ are considered the interface actions.

S. de Putter et al. / Science of Computer Programming 196 (2020) 102493 7
The reason σ can be defined for pairs of actions from AV ∪AW , as opposed to an action from AV with an action from
AW , is to allow for the cutting of actions, i.e., allowing to define that an action of one component has to synchronise with
some action from the other component that can actually never be executed.

An interface function implicitly defines how inter-component synchronisation laws should be represented in the sepa-
rate components. These local representatives are called the interface synchronisation laws. An interface function σ for LTS
networks M� = (�, V) and MP = (P, W) implies the following sets of interface synchronisation laws:

Vσ = {(v̄,a) ∈ V | ∃b ∈ AV ∪AW \ {τ }, c ∈ A.σ (a,b) = c}
Wσ = {(w̄,b) ∈ W | ∃a ∈ AV ∪AW \ {τ }, c ∈ A.σ (a,b) = c}

An interface synchronisation law makes a component’s potential to synchronise with other components explicit. An
interface synchronisation law has a synchronisation vector, called the interface vector. The result action of an interface syn-
chronisation law is called an interface action. These notions are clarified further in Example 4.2.

Example 4.2 (Interface vector and interface law). Let M = (〈�1, �2, �3〉, V) be a network with inter-component synchroni-
sation law (〈a, a, b〉, c) ∈ V , a component M{1,2} = (〈�1, �2〉, V{1,2}), and a component M3 = (〈�3〉, V3). Then, 〈a, a〉 is an
interface vector of M{1,2} , and given a corresponding interface action α for M{1,2} (α ∈ AM1 ∪ AM2 \ {τ }), an interface law
of M{1,2} is (〈a, a〉, α).

Together, the interface laws and interface function define the possible synchronisations between two components, i.e.,
the interface laws and interface function define inter-component synchronisation laws. Given two sets of laws V and W
and an interface function σ , the inter-component synchronisation laws are defined by the following function Lσ :

Lσ (V,W) = {(v̄ ‖ w̄,a) | ∃α,β.(v̄,α) ∈ V ∧ (w̄, β) ∈ W ∧ σ(α,β) = a}
The interface function σ partitions both V and W into two sets of synchronisation laws: the interface and non-interface
synchronisation laws.

The application of the interface function, i.e., the formal composition of two LTS networks, is presented in Definition 4.2.
We show that a component may be exchanged with a divergence-preserving branching bisimilar component iff the interface
actions are not hidden. The interface between the component and the remainder of the network is respected when the
interface actions remain observable.

Definition 4.2 (Composition of LTS networks). Consider LTS networks M� = (�, V) of size n and MP = (P, W) of size m.
Let σ : AV ∪ AW \ {τ } × AV ∪ AW \ {τ } �A be an interface function describing the synchronisations between M� and
MP. The composition of M� and MP, denoted by M� ‖σ MP, is defined as the LTS network (� ‖ P, V ‖ W), where
V ‖ W = (V \ Vσ)• ∪ •(W \Wσ) ∪Lσ (V, W) with (V \ Vσ)• = {(v̄ ‖ •m, a) | (v̄, a) ∈ V \ Vσ } and •(W \Wσ) = {(•n ‖ w̄, a) |
(w̄, a) ∈W \Wσ } the sets of synchronisation laws V \Vσ postfixed with m •’s and W \Wσ prefixed with n •’s, respectively.

Our parallel composition operator ‖σ subsumes parallel composition operators from process algebras such as CCS, CSP,
ACP, mCRL2 and LOTOS. For instance, consider the LOTOS parallel composition operator |[A]|, which defines that two com-
ponents have to synchronise on actions (or ‘gates’ in LOTOS) in A, while all other actions can be executed independently
(with the rule that the internal action, similar to our τ , is not in A). For two LTS networks M� = (�, V), MP = (P, W), we
can achieve the same by defining that σ(a, a) = a for all a ∈ A ∩ (AV ∪AW), and leaving σ undefined for all other pairs of
actions.

As presented in Proposition 4.1, LTS networks that are composed (according to Definition 4.2) from two admissible
networks are admissible as well.

Proposition 4.1. Let M� = (�, V) and MP = (P, W) be admissible LTS networks of size n and m, respectively. Furthermore, let
σ :AV ∪AW \ {τ } ×AV ∪AW \ {τ } �A be an interface function. Then, the network M =M� ‖σ MP is also admissible.

Proof. We show that M satisfies Definition 3.4:

• No synchronisation and renaming of τ ’s. Let (v̄, a) ∈ (V \ Vσ)• ∪ •(W \Wσ) ∪ Lσ (V, W) be a synchronisation law with
v̄ i = τ for some i ∈ 1..(n + m). We distinguish two cases:
∗ (v̄, a) ∈ (V \ Vσ)• ∪ •(W \Wσ). By construction of (V \ Vσ)• and •(W \Wσ), and admissibility of M� and MP,

we have ∀ j ∈ 1..n. v̄ j �= • =⇒ i = j, ∀ j ∈ (n + 1)..(n + m). v̄ j �= • =⇒ i = j and a = τ . Hence, it holds that ∀ j ∈
1..(n + m). v̄ j �= • =⇒ i = j (no synchronisation of τ ’s) and a = τ (no renaming of τ ’s).

∗ (v̄, a) ∈ Lσ (V, W). By definition of Lσ (V, W), there are interface laws (v̄ ′, α) ∈ V and (v̄ ′′, β) ∈ W such that
σ(α, β) = a. Hence, either 1 ≤ i ≤ n with v̄ ′

i = τ or n < i ≤ n + m with v̄ ′′
i−n = τ . Since M� and MP are admis-

sible, we must have α = τ or β = τ , respectively. However, the interface function does not allow τ as interface
actions, therefore, the proof follows by contradiction.

8 S. de Putter et al. / Science of Computer Programming 196 (2020) 102493
It follows that M does not allow synchronisation and renaming of τ ’s.
• No cutting of τ ’s. Let (� ‖ P)i be a process (i ∈ 1..(n + m)) with τ ∈ A(�‖P)i . We distinguish the two cases 1 ≤ i ≤ n and

n < i ≤ n +m. It follows that τ ∈A�i for the former case and τ ∈APi−n for the latter case. Since both M� and MP are
admissible and no actions are removed when constructing (V \ Vσ)• and •(W \Wσ) from V and W , respectively, in
both cases there exists a (v̄, a) ∈ (V \ Vσ)• ∪ •(W \Wσ) ∪ Lσ (V, W) such that v̄ i = τ . Hence, the composite network
M does not allow cutting of τ ’s.

Since the three admissibility properties hold, the composed network M satisfies Definition 3.4. �
DPBB is a congruence for the composition of two LTS networks Proposition 4.2 shows that DPBB is a congruence for the compo-
sition of two LTS networks according to Definition 4.2. It is worth noting that an interface function does not relate τ ’s, i.e.,
synchronisation of τ -actions is not allowed.

Note that Proposition 4.2 subsumes the composition of two LTSs, via composition of LTS networks of size one with trivial
sets of intra-component synchronisation laws.

Proposition 4.2. Consider LTS networks M� = (�, V) and M�′ = (�′, V ′), both of size n, and MP = (P, W) of size m. Let σ be an
interface function defining the synchronisation of actions in AV ∩AV ′ and AW . DPBB is a congruence for the composition of two LTS
networks, i.e., it holds that

M� ↔ �
b M�′ =⇒ M� ‖σ MP ↔ �

b M�′ ‖σ MP

Proof. Intuitively, we have M� ‖σ MP ↔ �
b M�′ ‖σ MP because M� ↔ �

b M�′ and the interface with MP is respected.
Since M� ↔ �

b M�′ , whenever a transition labelled with an interface action α in M� is able to perform a transition
together with MP, then M�′ is able to simulate the interface α-transition, i.e., perform the transition, possibly after having
performed a sequence of τ -transitions in which the visited states are all divergence-preserving branching bisimilar with
each other, and synchronise with MP as well. It follows that the branching structure and divergence is preserved. For
the sake of brevity we define the following shorthand notations: M = M� ‖σ MP and M′ = M�′ ‖σ MP. We show
M� ↔ �

b M�′ =⇒ M ↔ �
b M′ .

Let B be a DPBB relation between the semantics of M� and M�′ , i.e., GM�
B GM�′ . By definition, we have M ↔ �

b M′
iff GM ↔ �

b GM′ , which holds iff there exists a DPBB relation C with IM C IM′ . We define C as follows, for states
p̄ ∈ SM�

, q̄ ∈ SM�′ , r̄ ∈ SMP :

C = {(p̄ ‖ r̄, q̄ ‖ r̄) | p̄ B q̄}
Relation B relates the states of GM�

and GM�′ , addressing the component that is subject to change. The unchanged
component of the network is related via the shared state vector r̄ , i.e., it relates the states of GMP to themselves.

To prove the proposition we have to show that C is a DPBB relation. This requires proving that C relates the initial states
of GM and GM′ and that C satisfies the conditions of Definition 3.5.

Initial. C relates the initial states of GM and GM′ , i.e., IM C IM′ . We prove that ∀s̄ ∈ IM. ∃t̄ ∈ IM′ . s̄ C t̄ . The symmetric
case can be proven similarly. Take an initial state s̄ = p̄ ‖ r̄ ∈ IM , with p̄ ∈ IM�

and r̄ ∈ IMP . Since IM�
B IM�′ and

p̄ ∈ IM�
, there exists a t̄ ∈ IM�′ such that p̄ B t̄ . Therefore, we have p̄ ‖ r̄ C t̄ ‖ r̄. Since p̄ ‖ r̄ is an arbitrary initial state

in IM the proof holds for all states in IM . Furthermore, since the other case is symmetrical it follows that IM C IM′ .

Def. 3.5, case 1. For s̄ ∈ SM and t̄ ∈ SM′ , if s̄ C t̄ and s̄ a−→M s̄′ then either a = τ ∧ s̄′ C t̄ , or t̄ τ−→∗
M′ ˆ̄t a−→M′ t̄′ ∧ s̄ C ˆ̄t ∧ s̄′ C t̄′ . To

better distinguish between the two parts of the networks, we ‘unfold’ C and reformulate the proof obligation as follows,
with s̄ = p̄ ‖ r̄ and t̄ = q̄ ‖ r̄: If p̄ B q̄ and p̄ ‖ r̄

a−→M p̄′ ‖ r̄′ then either a = τ ∧ p̄′ B q̄ ∧ r̄ = r̄′ , or q̄ ‖ r̄
τ−→∗
M′ ˆ̄q ‖ r̄

a−→M′ q̄′ ‖
r̄′ ∧ p̄ B ˆ̄q ∧ p̄′ B q̄′ . Consider synchronisation law (v̄ ‖ w̄, a) ∈ (V \Vσ)• ∪ •(W \Wσ)∪Lσ (V, W) enabling the transition
p̄ ‖ r̄

a−→M p̄′ ‖ r̄′ . We distinguish three cases:
1. (v̄ ‖ w̄, a) ∈ (V \ Vσ)• . It follows that w̄ = •m , and thus, subsystem MP does not participate. Hence, we have r̄ = r̄′

and (v̄, a) ∈ V enables a transition p̄
a−→M�

p̄′ . Since p̄ B q̄, by Definition 3.5, we have:
∗ a = τ with p̄′ B q̄. Because p̄′ B q̄ and r̄ = r̄′ , the proof trivially follows.

∗ q̄
τ−→∗
M�′

ˆ̄q a−→M�′ q̄′ with p̄ B ˆ̄q and p̄′ B q̄′ . These transitions are enabled by laws in V ′ \ V ′
σ . The set of derived

laws are of the form (v̄ ′ ‖ •m, τ) ∈ (V ′ \V ′
σ)• enabling a τ -path from q̄ ‖ r̄ to ˆ̄q ‖ r̄, and there is a law (v̄ ′ ‖ •m, a) ∈

(V ′ \ V ′
σ)• enabling ˆ̄q ‖ r̄

a−→M′ q̄′ ‖ r̄. From this and r̄′ = r̄ it follows that the proof obligation is satisfied.
2. (v̄ ‖ w̄, a) ∈ •(W \Wσ). It follows that v̄ = •n , and thus, subsystems M� and M�′ do not participate. We have

p̄ = p̄′ and r̄ a−→MP r̄′ . We take q̄′ = q̄. Hence, we can conclude q̄ ‖ r̄
τ−→∗
M′ q̄ ‖ r̄

a−→M q̄′ ‖ r̄′ , p̄ B q̄, and p̄′ B q̄′ .
3. (v̄ ‖ w̄, a) ∈ Lσ (V, W). Both parts of the network participate in the transition p̄ ‖ r̄

a−→M p̄′ ‖ r̄′ . By definition of
Lσ (V, W), there are (v̄, α) ∈ V , (w̄, β) ∈ W and σ(α, β) = a such that (v̄, α) enables a transition p̄

α−→M�
p̄′

S. de Putter et al. / Science of Computer Programming 196 (2020) 102493 9
and (ū, β) enables a transition q̄
β−→ q̄′ . Since p̄ B q̄ and α ∈ AV \ {τ }, by Definition 3.5, we must have that

q̄
τ−→∗
M′

�′
ˆ̄q α−→M′

�′ q̄′ with p̄ B ˆ̄q and p̄′ B q̄′ . Since τ actions are not related by the interface function, we must have a

set of synchronisation laws of the form (v̄ ′ ‖ •m, τ) ∈ (V ′ \ V ′
σ)• enabling a τ -path q̄ ‖ r̄

τ−→∗
M′ ˆ̄q ‖ r̄.

Let (v̄ ′, α) ∈ V ′ be the synchronisation law enabling the α-transition. Since σ(α, β) = a, α is an interface action and
does not occur in V ′ \ V ′

σ . It follows that (v̄ ′, α) ∈ V ′
σ , and consequently (v̄ ′ ‖ w̄, a) ∈ Lσ (V ′, W). Law (v̄ ′ ‖ w̄, a)

enables the transition ˆ̄q ‖ r̄
a−→M′ q̄′ ‖ r̄′ , and the proof follows.

Def. 3.5, case 2. If ̄s C t̄ and ̄t a−→M′ t̄′ then either a = τ ∧ s̄′ C t̄ , or ̄s τ−→∗
M

ˆ̄s a−→M s̄′ ∧ s̄ C ˆ̄t ∧ s̄′ C t̄′ . This case is symmetric to the
previous case.

Def. 3.5, case 3. If s̄ C t̄ and there is an infinite sequence of states (s̄k)k∈ω such that s̄ = s̄0 , s̄k τ−→M s̄k+1 and s̄k C t̄ for all k ∈ ω,
then there exists a state ̄t′ such that ̄t τ−→+

M′ t̄′ and s̄k C t̄′ for some k ∈ ω. Again we reformulate the proof obligation to better
distinguish between the two components, with s̄ = p̄ ‖ r̄ and t̄ = q̄ ‖ r̄: if p̄ ‖ r̄ C q̄ ‖ r̄ and there is an infinite sequence of
states (p̄k ‖ r̄k)k∈ω such that p̄ ‖ r̄ = p̄0 ‖ r̄0 , p̄k ‖ r̄k τ−→M p̄k+1 ‖ r̄k+1 and p̄k B q̄ for all k ∈ ω, then there exist states q̄′ and r̄′

such that q̄ ‖ r̄
τ−→+
M′ q̄′ ‖ r̄′ and p̄k B q̄′ for some k ∈ ω.

We distinguish two cases:

1. All steps in the τ -sequence are enabled in M� , i.e., ∀k ∈ ω. p̄k τ−→M�
p̄k+1. Since p̄ B q̄, by condition 3 of Defini-

tion 3.5, it follows that there is a state q̄′ with q̄ τ−→+q̄′ and p̄k B q̄′ for some k ∈ ω. Since τ is not an interface action,
the synchronisation laws enabling q̄

τ−→+q̄′ are also present in M′ . Hence, we have q̄ ‖ r̄
τ−→+q̄′ ‖ r̄ and p̄k B q̄′ for

k ∈ ω.
2. There is a k ∈ ω with ¬p̄k τ−→M�

p̄k+1. We do have p̄k ‖ r̄k τ−→M p̄k+1 ‖ r̄k+1 with p̄k B q̄ (see the antecedent at the
start of the ‘divergence’ case). Since the τ -transition is not enabled in M� the transition must be enabled by a
synchronisation law (v̄ ‖ w̄, τ) ∈ •(W \Wσ) ∪Lσ (V, W). We distinguish two cases:

∗ (v̄ ‖ w̄, τ) ∈ •(W \Wσ). The transition p̄k ‖ r̄k τ−→M p̄k+1 ‖ r̄k+1 is enabled by (v̄ ‖ w̄, τ) ∈ •(W \Wσ). Therefore,
there is a transition r̄k τ−→MP r̄k+1 enabled by (w̄, τ) ∈ W \ Wσ . Since this transition is part of an infinite τ -

sequence, there is a path p̄ ‖ r̄
τ−→∗
M p̄k ‖ r̄k . Furthermore, condition 1b of Definition 3.5 holds for C, hence, there is

a state q̄′ ∈ SM�′ and a transition q̄ ‖ r̄
τ−→∗
MP

q̄′ ‖ r̄k with p̄k ‖ r̄k C q̄′ ‖ r̄k . Therefore, we have q̄ ‖ r̄
τ−→+
M′ q̄′ ‖ r̄k+1.

Finally, since p̄k ‖ r̄k C q̄′ ‖ r̄k , it follows that p̄k B q̄′ .
∗ (v̄ ‖ w̄, τ) ∈Lσ (V, W). By definition of Lσ (V, W), there are two laws (v̄, α) ∈ V and (ū, β) ∈W with σ(α, β) = τ .

The laws enable transitions p̄k α−→M�
p̄k+1 and r̄k β−→MP r̄k+1, respectively. Since p̄k B q̄ and α �= τ , by Defini-

tion 3.5, there are states ˆ̄q, ̄q′ ∈ SM�′ such that there is a sequence q̄ τ−→∗
M�′

ˆ̄q α−→M�′ q̄′ with p̄ B ˆ̄q and p̄k+1 B q̄′ .
Let (v̄ ′, α) ∈ V ′ be the law enabling the α-transition. Since σ(α, β) = τ , and consequently (v̄ ′ ‖ w̄, τ) ∈ σ(X ′, Y).
Furthermore, the τ -path from q̄ to ˆ̄q is enabled by laws of the form (v̄ ′′, τ) ∈ V ′ \ V ′

σ . Hence, there is a series of
transitions q̄ ‖ r̄

τ−→∗
M′ ˆ̄q ‖ r̄k τ−→M′ q̄′ ‖ r̄k+1. Finally, recall that p̄k+1 B q̄′ . Hence, also in this case the proof obligation

is satisfied.
Def. 3.5, case 4. If ̄s C t̄ and there is an infinite sequence of states (t̄k)k∈ω such that ̄t = t̄0 , ̄tk τ−→M′ t̄k+1 and ̄s C t̄k for all k ∈ ω, then

there exists a state s̄′ such that s̄ τ−→+
M s̄′ and s̄′ C t̄k for some k ∈ ω. This case is symmetric to the previous case. �

5. Decomposition of LTS networks

In Section 4, we discussed the composition of LTS networks, in which a system is constructed by combining two sub-
networks. However, for compositional model checking approaches, it should also be possible to correctly decompose LTS
networks. In this case the inter-component laws are already known. Therefore, we can derive a set of interface laws and an
interface function specifying how the system is decomposed into components.

Consider the decomposition of an LTS network M = (� ‖ P, V) into components M� and MP according to some
interface function σ . We denote the size of � by n and the size of P by m. First, the set of synchronisation laws Z is
partitioned into three disjoint sets: 1) ll(V), the laws only applicable on the processes in � (the function ll selects the
subset of laws in V that have a vector in which the last m entries are •, and); 2) rl(W), the laws only applicable on the
processes in P (the function rl selects the subset of laws in W that have a vector in which the first n entries are •); and
3) il(V), the inter-component laws (the laws not in ll(V) and rl(V)).

Next, consider two functions f , g : il(V) → A \ {τ } from inter-component laws to interface actions. Using those func-

tions, the inter-component laws can be decomposed into sets
←−−−
il(V) = {(v̄, f (x)) | x = (v̄ ‖ w̄, a) ∈ il(V)} and

−−−→
il(V) =

{(w̄, g(x)) | x = (v̄ ‖ w̄, a) ∈ il(V)} of interface laws over � and P, respectively. In a similar way, ll(V) and rl(V) can be
decomposed into sets

←−−−
ll(V) and

−−−→
ll(V), and

←−−−
rl(V) and

−−−→
rl(V), respectively, with the vectors of

−−−→
ll(V) and

←−−−
rl(V) only

consisting of • entries.

Finally, the components are defined as M� = (�,
←−−−
ll(V) ∪ ←−−−

il(V)) and MP = (P,
−−−→
rl(V) ∪ −−−→

il(V)).

10 S. de Putter et al. / Science of Computer Programming 196 (2020) 102493
To be able to apply Proposition 4.2 for compositional state space construction, the composition of the decomposed LTS
networks must be equivalent to the original system. If this holds we say a decomposition is consistent with respect to M.

Definition 5.1 (Consistent decomposition). Consider an LTS network M = (� ‖ P, V). Say LTS network M is decomposed into
components M� = (�,

←−−−
ll(V) ∪ ←−−−

il(V)) and MP = (P,
−−−→
rl(V) ∪ −−−→

il(V)) according to some interface function σ . Such a
decomposition of M into components M� and MP is called consistent with respect to M iff M =M� ‖σ MP.

To show that a decomposition is consistent with the original system it is sufficient to show that the set of inter-
component laws of the original system is equivalent to the set of inter-component laws generated by the interface function:

Lemma 5.1. Consider an LTS network M = (� ‖ P, V). A consistent decomposition of M into components M� = (�,
←−−−
ll(V) ∪←−−−

il(V)) and MP = (P,
−−−→
rl(V)∪−−−→

il(V)) with interface function σ = {(f (v̄, a), g(v̄, a), a) | (v̄, a) ∈ il(V)} is guaranteed if il(V) =
Lσ (

←−−−
il(V),

−−−→
il(V)), A←−−−−

ll(V)
∩A←−−−−

il(V)
= ∅, and A−−−−→

rl(V)
∩A−−−−→

il(V)
= ∅.

Proof. The decomposition of M = (� ‖ P, V) into components M� = (�,
←−−−
ll(V) ∪ ←−−−

il(V)) and MP = (P,
−−−→
rl(V) ∪ −−−→

il(V))

is consistent iff M = M� ‖σ MP, which is the case iff V = ←−−−
ll(V) ∪ ←−−−

il(V) ‖ −−−→
rl(V) ∪ −−−→

il(V) (Definition 4.2). This means
that we must have V = ((

←−−−
ll(V) ∪ ←−−−

il(V)) \ (
←−−−
ll(V) ∪ ←−−−

il(V))σ)• ∪ •((−−−→
rl(V) ∪ −−−→

il(V)) \ (
−−−→
rl(V) ∪ −−−→

il(V))σ) ∪ Lσ (
←−−−
ll(V) ∪←−−−

il(V),
−−−→
rl(V)∪−−−→

il(V)). Before we prove that this holds, let us number the antecedent propositions of the lemma: il(V) =
Lσ (

←−−−
il(V),

−−−→
il(V)) (1), A←−−−−

ll(V)
∩ A←−−−−

il(V)
= ∅ (2), and A−−−−→

rl(V)
∩ A−−−−→

il(V)
= ∅ (3). As V consists of three disjoint sets ll(V),

rl(V) and il(V), we show that ll(V) = ((
←−−−
ll(V) ∪ ←−−−

il(V)) \ (
←−−−
ll(V) ∪ ←−−−

il(V))σ)• , rl(V) = •((−−−→
rl(V) ∪ −−−→

il(V)) \ (
−−−→
rl(V) ∪−−−→

il(V))σ), and il(V) =Lσ (
←−−−
ll(V) ∪ ←−−−

il(V),
−−−→
rl(V) ∪ −−−→

il(V)).
By construction of

←−−−
il(V) and the definition of Vσ and Wσ (see Section 4), we have A←−−−−

il(V)
= A

(
←−−−−
ll(V)∪←−−−−

il(V))σ
and

A−−−−→
il(V)

= A
(
−−−−→
rl(V)∪−−−−→

il(V))σ
(4). Furthermore, from (2) and (3) it follows that

←−−−
ll(V) and

−−−→
rl(V) are disjoint from

←−−−
il(V) and

−−−→
il(V), respectively. Thus,

←−−−
ll(V) and

−−−→
rl(V) are disjoint from (

←−−−
ll(V) ∪ ←−−−

il(V))σ and (
−−−→
rl(V) ∪ −−−→

il(V))σ (5), respectively,
implying that

←−−−
il(V) = (

←−−−
ll(V) ∪ ←−−−

il(V))σ and
−−−→
il(V) = (

−−−→
rl(V) ∪ −−−→

il(V))σ (6). It follows that ll(V) (5,6)= ((
←−−−
ll(V) ∪ ←−−−

il(V)) \←−−−
il(V))• (6)= ((

←−−−
ll(V) ∪ ←−−−

il(V)) \ (
←−−−
ll(V) ∪ ←−−−

il(V))σ)• and, symmetrically, rl(V) (5,6)= •((−−−→
rl(V) ∪ −−−→

il(V)) \ (
−−−→
rl(V) ∪ −−−→

il(V))σ).

Recall that
←−−−
ll(V) and

−−−→
rl(V) do not have any result actions in common with

←−−−
il(V) and

−−−→
il(V), respectively (2,3),

and that interface actions defined by σ are produced by the same functions f and g that are used to produce the re-

sult actions of sets
←−−−
il(V) and

−−−→
il(V), respectively. These two facts and Definition 4.2 (synchronisation via σ) imply that

Lσ (
←−−−
ll(V) ∪ ←−−−

il(V),
−−−→
rl(V) ∪ −−−→

il(V)) (5,6,σ)= Lσ (
←−−−
il(V),

−−−→
il(V)) (1)= il(V). Hence, the decomposition of M is consistent if

il(V) =Lσ (
←−−−
il(V),

−−−→
il(V)) (1), A←−−−−

ll(V)
∩A←−−−−

il(V)
= ∅ (2), and A−−−−→

rl(V)
∩A−−−−→

il(V)
= ∅ (3). �

Indeed, it is possible to derive an inconsistent decomposition as shown in Example 5.1.

Example 5.1 (Inconsistent decomposition). For an LTS network M = (� ‖ P, V), consider a set of inter-component laws
il(V) = {(〈a, b〉, c), (〈b, a〉, c)}. To generate interface actions for a decomposition into LTS networks M� = (�,

←−−−
ll(V) ∪←−−−

il(V)) and MP = (P,
−−−→
rl(V) ∪ −−−→

il(V)), consider the functions f , g that relate inter-component laws with interface actions
solely based on the result action of the input law, i.e., ∀(v̄, a), (w̄, b) ∈ il(V). a = b ⇐⇒ f ((v̄, a)) = f ((w̄, b)) ∨ g((v̄, a)) =
g((w̄, b)). We define that f ((a, b)) = f ((b, a)) = α and g((a, b)) = g((b, a)) = β , with α, β ∈ A \ {τ }. Partitioning the laws
il(V) results in the sets of interface laws

←−−−
il(V) = {(〈a〉, α), (〈b〉, α)} and

−−−→
il(V) = {(〈b〉, β), (〈a〉, β)}. This system implies

the interface function σ(α, β) = c. The derived set of inter-component laws is then Lσ (
←−−−
ll(V) ∪ ←−−−

il(V),
−−−→
rl(V) ∪ −−−→

il(V)) =
{(〈a, a〉, c), (〈a, b〉, c), (〈b, a〉, c), (〈b, b〉, c)} �= il(V). Hence, this decomposition is not consistent with the original system.

However, a consistent decomposition can always be derived. Propositions 5.1 and 5.2 give functions f and g that guar-
antee a consistent decomposition. Consider a synchronisation law (v̄ ‖ w̄, a). The idea is to encode this synchronisation law
directly in the interface function, by making sure that f and g are injections: for no two different interface vectors v̄ , v̄ ′ ,
we have f (v̄) = f (v̄ ′), and for no two different interface vectors w̄ , w̄ ′ , we have g(w̄) = g(w̄ ′). This way it is explicit which
interface law corresponds to which inter-component law.

In Proposition 5.1, for each synchronisation law (v̄ ‖ w̄,a) ∈ il(V), we create unique interface actions αv̄ and αw̄ and
define that σ(αv̄ , αw̄) = a.

Proposition 5.1. Consider an LTS network M = (� ‖ P, V). To decompose M into components M� = (�,
←−−−
ll(V) ∪ ←−−−

il(V)) and
MP = (P,

−−−→
rl(V) ∪ −−−→

il(V)), first, we partition V into ll(V), rl(V) and il(V). For all (v̄ ‖ w̄, a) ∈ il(V), we define the functions

S. de Putter et al. / Science of Computer Programming 196 (2020) 102493 11
producing interface actions as f ((v̄ ‖ w̄, a)) = αv̄ and g((v̄ ‖ w̄, a)) = αw̄ , where αv̄ /∈ A←−−−−
ll(V)

∪ {τ } and αw̄ /∈ A−−−−→
rl(V)

∪ {τ } are
unique interface actions identified by the corresponding interface law, that is, ∀(v̄ ‖ w̄, a), (v̄ ′ ‖ w̄ ′, b) ∈ il(V). v̄ = v̄ ′ ⇐⇒ αv̄ =
αv̄ ′ and ∀(v̄ ‖ w̄, a), (v̄ ′ ‖ w̄ ′, b) ∈ il(V). w̄ = w̄ ′ ⇐⇒ αw̄ = αw̄ ′ . The decomposition of M into M� = (�,

←−−−
ll(V) ∪ ←−−−

il(V)) and
MP = (P,

−−−→
rl(V) ∪ −−−→

il(V)) given by f and g is consistent.

Proof. Functions f and g imply the interface function σ = {(αv̄ , αw̄ , a) | (v̄ ‖ w̄, a) ∈ il(V)}, and sets of interface laws ←−−−
il(V) = {(v̄, αv̄) | (v̄ ‖ w̄, a) ∈ il(V)} and

−−−→
il(V) = {(w̄, αw̄) | (v̄ ‖ w̄, a) ∈ il(V)}.

By Lemma 5.1, we have to show:

• il(V) = Lσ (
←−−−
il(V),

−−−→
il(V)): By (1) the definition of Lσ , (2) (

←−−−
ll(V) ∪ ←−−−

il(V))σ = ←−−−
il(V)σ , (3) (

−−−→
rl(V) ∪ −−−→

il(V))σ =−−−→
il(V)σ , and (4) the construction of

←−−−
il(V),

−−−→
il(V), and σ , it follows that Lσ (

←−−−
il(V),

−−−→
il(V)) (1)= {(v̄ ‖ w̄, a) | (v̄, αv̄) ∈

(
←−−−
ll(V) ∪ ←−−−

il(V))σ ∧ (w̄, αw̄) ∈ (
−−−→
rl(V) ∪ −−−→

il(V))σ ∧ σ(αv̄ , αw̄) = a} (2,3)= {(v̄ ‖ w̄, a) | (v̄, αv̄) ∈ ←−−−
il(V)σ ∧ (w̄, αw̄) ∈−−−→

il(V)σ ∧ σ(αv̄ , αw̄) = a} (4)= {(v̄ ‖ w̄, a) | (v̄ ‖ w̄, a) ∈ il(V)} = il(V).
• A←−−−−

ll(V)
∩A←−−−−

il(V)
= ∅: Since for all αv̄ ∈A←−−−−

il(V)
, we have αv̄ /∈A←−−−−

ll(V)
∪ {τ }, A←−−−−

ll(V)
and A←−−−−

il(V)
are disjoint.

• A−−−−→
rl(V)

∩A−−−−→
il(V)

= ∅: Since for all αw̄ ∈A−−−−→
il(V)

, we have αw̄ /∈A−−−−→
rl(V)

∪ {τ }, A−−−−→
rl(V)

and A−−−−→
il(V)

are disjoint. �
Example 5.2. Consider an admissible LTS network with the following synchronisation laws:

V = {(〈a,•,a〉,a), (〈a,a,•〉,a), (〈b,b,b〉, τ), (〈c,•, c〉, c)}
If we want to decompose the associated LTS network into a component containing the first two processes and a
component containing the third process, we first partition V into ll(V) = {(〈a, a, •〉, a)}, rl(V) = ∅, and il(V) =
{(〈a, •, a〉, a), (〈b, b, b〉, τ), (〈c, •, c〉, c)}. From these sets, along the lines of Proposition 5.1, we can derive the following sets
of synchronisation laws:

←−−−
ll(V) = {(〈a,a〉,a)}
−−−→
rl(V) = ∅
←−−−
il(V) = {(〈a,•〉,α〈a,•〉), (〈b,b〉,α〈b,b〉), (〈c,•〉,α〈c,•〉)}−−−→
il(V) = {(〈a〉,α〈a〉), (〈b〉,α〈b〉), (〈c〉,α〈c〉)}
σ = {(α〈a,•〉,α〈a〉,a), (α〈b,b〉,α〈b〉, τ), (α〈c,•〉,α〈c〉, c)}

Proposition 5.2 proposes an alternative decomposition that is implemented in Cadp’s smart reduction [15]. The idea is
(1) to generate only interface synchronisation laws of the form (a, a, b), so that components always synchronise through
a common label a, while (2) keeping a equal to b whenever possible, in which cases we avoid the introduction of new
interface actions. Laws in this simple form make the decomposition more straightforward.

Proposition 5.2. Consider an LTS network M = (� ‖ P, V). To decompose M into components M� = (�,
←−−−
ll(V) ∪ ←−−−

il(V)) and
MP = (P,

−−−→
rl(V) ∪ −−−→

il(V)), we can partition V into ll(V), rl(V) and il(V). For all (v̄, a) ∈ il(V), we define the functions f , g
producing interface actions as

f (v̄,a) = g(v̄,a) =
{

a if visible-unique(a)

α(v̄,a) otherwise

where each α(v̄,a) /∈ A←−−−−
ll(V)

∪ A−−−−→
rl(V)

∪ {τ } is a unique interface action identified by the corresponding inter-component synchro-

nisation law, that is, ∀(v̄, a), (w̄, b) ∈ il(V). v̄ = w̄ ⇐⇒ αv̄ = αw̄ , and where visible-unique(a) is defined as the following
predicate:

visible-unique(a) � a �= τ ∧ ∀(v̄,a), (w̄,a) ∈ il(V). v̄ = w̄

The decomposition of M into M� = (�,
←−−−
ll(V) ∪ ←−−−

il(V)) and MP = (P,
−−−→
rl(V) ∪ −−−→

il(V)) using f and g is consistent.

The proof of Proposition 5.2 is similar to the proof of Proposition 5.1. The most relevant difference is the fact that
σ(a, a) = a if (v̄ ‖ w̄, a) ∈ il(V) and a is unique in il(V), i.e., visible-unique(a) holds. In this case we must also have
A←−−−− ∩A←−−−− = ∅ and A−−−−→ ∩A−−−−→ = ∅, otherwise a contradiction with visible-unique(a) can be derived.

ll(V) il(V) rl(V) il(V)

12 S. de Putter et al. / Science of Computer Programming 196 (2020) 102493
The decomposition of Proposition 5.2 implies the interface function:

σ = {(αv̄‖w̄ ,αv̄‖w̄ ,a) | (v̄ ‖ w̄,a) ∈ il(V) ∧ ¬visible-unique(a)}
∪ {(a,a,a) | (v̄ ‖ w̄,a) ∈ il(V) ∧ visible-unique(a)}

Furthermore, it implies the following sets of interface synchronisation laws:
←−−−
il(V) = {(v̄,αv̄‖w̄) | (v̄ ‖ w̄,a) ∈ il(V) ∧ ¬visible-unique(a)}

∪ {(v̄,a) | (v̄ ‖ w̄,a) ∈ il(V) ∧ visible-unique(a)}
−−−→
il(V) = {(w̄,αv̄‖w̄) | (v̄ ‖ w̄,a) ∈ il(V) ∧ ¬visible-unique(a)}

∪ {(w̄,a) | (v̄ ‖ w̄,a) ∈ il(V) ∧ visible-unique(a)}

Example 5.3. Consider again the admissible LTS network of Example 5.2 and its intended decomposition. Its set of syn-
chronisation laws V can be decomposed along the lines of Proposition 5.2 as follows, using the same definitions of ll(V),
rl(V) and il(V):

←−−−
il(V) = {(〈a,•〉,α〈a,•,a〉), (〈b,b〉,α〈b,b,b〉), (〈c,•〉, c)}
−−−→
il(V) = {(〈a〉,α〈a,•,a〉), (〈b〉,α〈b,b,b〉), (〈c〉, c)}
σ = {(α〈a,•,a〉,α〈a,•,a〉,a), (α〈b,b,b〉,α〈b,b,b〉, τ), (c, c, c)}

Preservation of Admissibility Proposition 5.3 shows that LTS networks resulting from the consistent decomposition of an ad-
missible LTS network are also admissible. Hence, consistent decomposition is compatible with the compositional verification
approaches presented in [23].

Proposition 5.3. Consider an admissible LTS network M = (� ‖ P, V), with � of size n and P of size m. If the decomposition (Propo-

sition 5.1 and Proposition 5.2) into components M� = (�,
←−−−
ll(V) ∪ ←−−−

il(V)) and MP = (P,
−−−→
rl(V) ∪ −−−→

il(V)) is consistent, then M�

and MP are also admissible.

Proof. We show that M� satisfies Definition 3.4. The proof for MP is similar.

No synchronisation and renaming of τ ’s. Let (v̄, a) ∈ ←−−−
ll(V)∪←−−−

il(V) be a synchronisation law such that v̄ i = τ for some i ∈ 1..n.
We distinguish two cases:

• (v̄, a) ∈ ←−−−
il(V). Since (v̄, a) is an interface law and the decomposition is consistent, its result action a may not be

τ . However, since M is admissible, no renaming of τ ’s is allowed. By contradiction it follows that (v̄, a) /∈ ←−−−
il(V),

completing this case.

• (v̄, a) ∈ ←−−−
ll(V). By construction of

←−−−
ll(V), there exists a law (v̄ ‖ •m, a) ∈ ll(V). Since ll(V) ⊆ V , by admissibility of

M, we have ∀ j ∈ 1..n. v̄ j �= • =⇒ i = j (no synchronisation of τ ’s) and a = τ (no renaming of τ ’s).

No cutting of τ ’s. Let �i be a process with i ∈ 1..n such that τ ∈ A�i . Since M is admissible there exists a law (v̄ ‖ w̄, a) ∈
ll(V) ∪ rl(V) ∪ il(V) such that (v̄ ‖ ū)i = τ . We distinguish three cases:

• (v̄ ‖ w̄, a) ∈ ll(V). Since (v̄ ‖ w̄)i = τ and i ≤ n it follows that v̄ i = τ . By construction of
←−−−
ll(V), there is a (v̄, a) ∈←−−−

ll(V) with v̄ i = τ .
• (v̄ ‖ w̄, a) ∈ rl(V). In this case we must have i > n which contradicts our assumption that i ∈ 1..n. The proof follows

by contradiction.
• (v̄ ‖ w̄, a) ∈ il(V). Then, (v̄ ‖ w̄, a) is an inter-component law with at least one participating process for each compo-

nent. Hence, there exists a j ∈ (n + 1)..m such that (v̄ ‖ w̄) j �= •. Moreover, since M is admissible, no synchronisation
of τ ’s is allowed. Therefore, since (v̄ ‖ w̄) j �= •, we must have j = i. However, this would mean j ∈ 1..n, contradicting
j ∈ (n + 1)..m. By contradiction the proof follows.

We conclude that M� does not cut τ ’s.
All three admissibility properties hold for M� and MP. Hence, the LTS networks resulting from the decomposition satisfy
Definition 3.4. �
6. Associative and commutative LTS network composition

In this section we create an instance of the composition operator that is commutative and associative. This operator uses
an interface function that synchronises the actions of components that they have in common, i.e., their common alphabet.

S. de Putter et al. / Science of Computer Programming 196 (2020) 102493 13
It is desirable for a parallel composition operator to be both associative and commutative when used for partial model
checking or compositional state space construction as then the composition order is irrelevant with respect to the resulting
LTS. It allows users to select a composition order. In practice, often, the chosen composition order has a big impact on
the effectiveness of compositional state space construction [27,37]. Hence, synchronisation on the common alphabet of
components is frequently used in practice (for instance, see [24–26]).

Definition 6.1 (Composition with synchronisation on the common alphabet). Consider the LTS networks M� = (�, V) of size
n and MP = (P, W) of size m. The composition with synchronisation on the common alphabet of M� and MP is defined as
M� ‖∩ MP =M� ‖σ MP, with σ = {(a, a, a) | a ∈ (AV ∩AW) \ {τ }}.

Associativity The intuition behind the associativity of LTS network composition is that vector concatenation is associative
and synchronisation on the common alphabet is insensitive to the order of composition. Thus, the concatenation of process
vectors and synchronisation vectors enjoy the associativity property. The challenge, however, is to show that the • operations
and σ support the mathematical properties needed for associativity of the composition of sets of synchronisation laws.

Given two LTS networks M� = (�, V) and MP = (P, W), the composition of the set of synchronisation laws V ‖ W
consists of the union of three sets: two describing independent behaviour of each of the components, i.e., (V \ Vσ)• and
•(W \ Wσ), and one describing synchronising behaviour, i.e., Lσ (V, W) (Definition 4.2). When three LTS networks are
composed one (inner) composition is performed before the other. The outer composition applies the • operators and σ on
a union of sets. We show how these operators distribute over set union.

Lemma 6.1. Consider sets of synchronisation laws V and W with synchronisation vectors of the same size. Padding of •’s distributes
over set union:

•(V ∪W) = •V ∪ •W , and (V ∪W)• = V• ∪W•.

Proof. The proof that (V ∪ W)• = V• ∪ W• is analog to the proof that •(V ∪ W) = •V ∪ •W . We only prove •(V ∪ W) =
•V ∪ •W here. The proof follows from (1) application of the definition of • and (2) splitting of the set V ∪ W into V and
W :

•(V ∪W)
(1)= {(•n ‖ v̄,a) | (v̄,a) ∈ V ∪W}
(2)= {(•n ‖ v̄,a) | (v̄,a) ∈ V} ∪ {(•n ‖ v̄,a) | (v̄,a) ∈ W}
(1)= •V ∪ •W �

Lemma 6.2. Consider an interface function σ and sets of synchronisation laws V , W , and X . Application of Lσ distributes over set
union as follows:

Lσ (V,W ∪X) = Lσ (V,W) ∪Lσ (V,X)

Proof. The proof follows from (1) application of the definition of Lσ and (2) splitting of the set W ∪X into W and X :

Lσ (V,W ∪X)
(1)= {(v̄ ‖ w̄,a) | (v̄,α) ∈ V ∧ (w̄, β) ∈ W ∪X ∧ σ(α,β) = a}
(2)= {(v̄ ‖ w̄,a) | (v̄,α) ∈ V ∧ (w̄, β) ∈ W ∧ σ(α,β) = a} ∪

{(v̄ ‖ w̄,a) | (v̄,α) ∈ V ∧ (w̄, β) ∈ X ∧ σ(α,β) = a}
(1)= Lσ (V,W) ∪Lσ (V,X) �

Next, we prove that the composition of LTS networks with synchronisation on the common alphabet is associative.

Proposition 6.1. For all LTS networks M� = (�, V), MP = (P, W), and M	 = (, X) of sizes n, m, and o, respectively, the compo-
sition of LTS networks following Definition 6.1 is associative, i.e., it holds that

(M� ‖∩ MP) ‖∩ M	 = M� ‖∩ (MP ‖∩ M)

Proof. If the LTS networks (M� ‖∩ MP) ‖∩ M	 and M� ‖∩ (MP ‖∩ M) are equivalent, then this means that their
process vectors are equivalent and their sets of synchronisation laws are equivalent.

14 S. de Putter et al. / Science of Computer Programming 196 (2020) 102493
First of all, the process vectors are equivalent due to associativity of the vector concatenation operator ‖:

� ‖ (P ‖) = (� ‖ P) ‖ 	

Second of all, we show that V ‖ (W ‖ X) = (V ‖ W) ‖ X . Before we do so, for sets of synchronisation laws Y , Z , we
introduce an alternative notation for Y \ Yσ in the context of composing Y with Z , i.e., Y ‖ Z . We write Y \ ZA to
emphasise the relevance of the alphabet of Y that is in common with that of Z . We define Y \ZA = {(ȳ, a) ∈Y | a /∈AZ }.
The set Y \ZA is equivalent to Y \Yσ :

Y \ZA = {(ȳ,a) ∈ Y | a /∈ AZ } = Y \ {(ȳ,a) ∈ Y | (a,a,a) ∈ σ } = Y \Yσ

The set Z \YA is defined similarly.
The associativity proof proceeds as follows. Following Definition 4.2, we partition both the set V ‖ (W ‖ X) and the set

(V ‖ W) ‖ X , each into seven subsets, and show that there is a one-to-one mapping of each of the seven subsets of one
partition with one of the subsets of the other partition. Each of the rewrite equations consists of four steps:

(1) unfolding or applying the outer definition of • or σ , respectively;
(2) unfolding or applying the inner definition of • or σ , respectively;
(3) applying associativity of vector concatenation and the inner definition of • or σ ;
(4) applying the outer definition of • or σ .

Furthermore, in cases 2a and 3c below, the following property of composition of sets of laws is applied in steps (2) and (3),
respectively: a /∈AW‖X = a /∈AW ∪AX = a /∈AW ∧ a /∈AX .

The partitioning and partition mapping proceed as follows.

1. Lσ (V, W ‖X) =Lσ (V, (W \Wσ)• ∪ •(X \Xσ) ∪Lσ (W, X)). According to Lemma 6.2, this can be partitioned into:
(a) Lσ (V, Lσ (W, X)), the set of laws specifying synchronisations involving all LTS networks.

Lσ (V,Lσ (W,X))

(1)= {v̄ ‖ (w̄ ‖ x̄) | (v̄,a) ∈ V ∧ (w̄ ‖ x̄,a) ∈ Lσ (W,X)}
(2)= {v̄ ‖ (w̄ ‖ x̄) | (v̄,a) ∈ V ∧ (w̄,a) ∈ W ∧ (x̄,a) ∈ X }
(3)= {(v̄ ‖ w̄) ‖ x̄ | (v̄ ‖ w̄,a) ∈ Lσ (V,W) ∧ (x̄,a) ∈ X }
(4)= Lσ (Lσ (V,W),X))

(b) Lσ (V, (W \XA)•), the set of laws synchronising only M� and MP.

σ(V, (W \XA)•)
(1)= {v̄ ‖ (w̄ ‖ •o) | (v̄,a) ∈ V ∧ (w̄ ‖ •o,a) ∈ (W \XA)•}
(2)= {v̄ ‖ (w̄ ‖ •o) | (v̄,a) ∈ V ∧ (w̄,a) ∈ W ∧ a /∈ AX }
(3)= {(v̄ ‖ w̄) ‖ •o | (v̄ ‖ w̄,a) ∈ Lσ (V,W) ∧ a /∈ AX }
(4)= (Lσ (V,W) \XA)•

(c) Lσ (V, •(X \WA)), the set of laws synchronising only M� and M	 .

σ(V, •(X \WA))

(1)= {v̄ ‖ (•m ‖ x̄) | (v̄,a) ∈ V ∧ (•m ‖ x̄,a) ∈ X \WA}
(2)= {v̄ ‖ (•m ‖ x̄) | (v̄,a) ∈ V ∧ (x̄,a) ∈ X ∧ a /∈ AW }
(3)= {(v̄ ‖ •m) ‖ x̄ | (v̄ ‖ •m) ∈ (V \WA)• ∧ (x̄,a) ∈ X }
(4)= Lσ ((V \WA)•,X)

2. (V \ (W ‖X)A)• requires no partitioning:

S. de Putter et al. / Science of Computer Programming 196 (2020) 102493 15
(a) (V \ (W ‖X)A)• , the set of laws specifying the independent behaviour of M� .

(V \ (W ‖ X)A)•

(1)= {v̄ ‖ •m+o | (v̄,a) ∈ V ∧ a /∈ AW‖X }
(2)= {v̄ ‖ (•m ‖ •o) | (v̄,a) ∈ V ∧ a /∈ AW ∧ a /∈ AX }
(3)= {(v̄ ‖ •m) ‖ •o | (v̄ ‖ •m,a) ∈ (V \WA)• ∧ a /∈ AX }
(4)= ((V \WA)• \XA)•

3. •((W ‖X) \ VA) is partitioned, applying Lemma 6.1, into:
(a) •(σ (W, X) \ VA), the set of laws synchronising only MP and M	 .

•(σ (W,X) \ VA)

(1)= {(•n ‖ (w̄ ‖ x̄),a) | (w̄ ‖ x̄,a) ∈ Lσ (W,X) ∧ a /∈ AV }
(2)= {(•n ‖ (w̄ ‖ x̄),a) | (w̄,a) ∈ W ∧ (x̄,a) ∈ X ∧ a /∈ AV }
(3)= {((•n ‖ w̄) ‖ x̄,a) | (•n ‖ w̄,a) ∈ •(W \ VA) ∧ (x̄,a) ∈ X }
(4)= Lσ (•(W \ VA),X)

(b) •((W \XA)• \ VA), the set of laws regarding independent behaviour of MP.

•((W \XA)• \ VA)

(1)= {(•n ‖ (w̄ ‖ •o),a) | (w̄ ‖ •o,a) ∈ (W \XA)• ∧ a /∈ AV }
(2)= {(•n ‖ (w̄ ‖ •o),a) | (w̄,a) ∈ W ∧ a /∈ AV ∧ a /∈ AX }
(3)= {((•n ‖ w̄) ‖ •o,a) | (•n ‖ w̄,a) ∈ •(W \ VA) ∧ a /∈ AX }
(4)= (•(W \ VA) \XA)•

(c) •(•(X \WA) \ VA), the set of laws specifying independent behaviour of M	 .

•(•(X \WA) \ VA)

(1)= {(•n ‖ (•m ‖ x̄),a) | (•m ‖ x̄,a) ∈ •(X \WA) ∧ a /∈ AV }
(2)= {(•n ‖ (•m ‖ x̄),a) | (x̄,a) ∈ X ∧ a /∈ AW ∧ a /∈ AV }
(3)= {(•n+m ‖ x̄,a) | (x̄,a) ∈ X ∧ a /∈ AV‖W }
(4)= •(X \ (V ‖ W)A)

These equations constitute a one-to-one mapping between the subsets of the partition of V ‖ (W ‖ X) and those of the
partition of (V ‖W) ‖X . Therefore, we have V ‖ (W ‖X) = (V ‖W) ‖X .

Since both � ‖ (P ‖) = (� ‖ P) ‖ 	 and V ‖ (W ‖ X) = (V ‖ W) ‖ X it follows that (M� ‖∩ MP) ‖∩ M	 = M� ‖∩
(MP ‖∩ M). �
Commutativity It is clear that composition of LTS networks with synchronisation on the common alphabet of the compo-
nents is not commutative w.r.t. LTS network equivalence, as is indicated by Example 6.1.

Example 6.1. Let M� = (�, V) and MP = (P, W) be two LTS networks. Furthermore, consider compositions M1 =M� ‖∩
MP and M2 = MP ‖∩ M� . The LTS network M1 has process vector � ‖ P while M2 has process vector P ‖ �. Unless
M� =MP, M1 and M2 are strictly not equivalent. Similarly, the synchronisation laws of both composite LTS networks are
in a different order.

However, LTS network composition as defined in Definition 6.1 is commutative with respect to the semantics of the con-
structed LTS network. That is, for the semantics of the composition of LTS networks, it does not matter in which order the
LTS networks are composed. We first prove that such a composition is commutative with respect to (strong) bisimulation [2]

16 S. de Putter et al. / Science of Computer Programming 196 (2020) 102493
in Proposition 6.2. Afterwards, we propose an adaption of the definition of LTS network, fixing the ordering issue by replac-
ing vectors with indexed families gaining a commutative operator for composition of LTS networks with synchronisation on
the common alphabet.

Proposition 6.2. Let M� = (�, V) and MP = (P, W) be LTS networks of sizes n and m respectively. Composition of LTS networks
according to Definition 6.1 is commutative with respect to (strong) bisimulation, i.e., it holds that GM�‖∩MP ↔ GMP‖∩M�

.

Proof. Take the relation C = {(s̄ ‖ t̄, ̄t ‖ s̄) | s̄ ∈ GM�
∧ t̄ ∈ GMP }. The relation C is a (strong) bisimulation relation.

• C relates the initial states of M� and MP. Since every state s̄ ‖ t̄ ∈ IM�‖∩MP is related by C to state t̄ ‖ s̄ ∈ IMP‖∩M�

and vice versa.
• If s̄ ‖ t̄ C t̄ ‖ s̄ and s̄ ‖ t̄

a−→M�‖∩MP s̄′ ‖ t̄′ then t̄ ‖ s̄
a−→MP‖∩M�

t̄′′ ‖ s̄′′ ∧ s̄′ ‖ t̄′ C t̄′′ ‖ s̄′′ . Let (v̄ ‖ w̄, a) ∈ V ‖ W be the
law enabling the transition s̄ ‖ t̄

a−→M�‖∩MP s̄′ ‖ t̄′ . It follows that there is a law (w̄ ‖ v̄, a) ∈ W ‖ V that enables the
transition t̄ ‖ s̄

a−→MP‖∩M�
t̄′ ‖ s̄′ . As s̄′ ‖ t̄′ C t̄′ ‖ s̄′ , the proof follows by taking t̄′ for t̄′′ , and s̄′ for s̄′′ .

• If s̄ ‖ t̄ C t̄ ‖ s̄ and t̄ ‖ s̄
a−→MP‖∩M�

t̄′ ‖ s̄′ then s̄ ‖ t̄
a−→M�‖∩MP s̄′′ ‖ t̄′′ ∧ s̄′′ ‖ t̄′′ C t̄′ ‖ s̄′ . This case is symmetric to the

previous case. �
To avoid the issues discussed in Example 6.1, an alternative definition of LTS network can be designed. Both process

vectors and synchronisation vectors may be replaced by indexed families. An indexed family consists of a set of objects (the
process LTSs or synchronisation vectors), an index set, and a surjective function mapping elements from the index set to
elements of the set of objects. When the index sets of two LTS networks are disjoint, then the union of sets can be applied,
where we previously would use vector concatenation, to compose the collections of process LTSs and synchronisation laws.
The union of two indexed families is commutative, and as such, commutativity of composition of LTS networks with indexed
families is also commutative.

7. Two more congruence results for DPBB and LTS networks

In this section we first prove that DPBB is a congruence for the parallel composition of an arbitrary number of LTS
networks using the parallel composition operator with synchronisation on the common alphabet. After that, we prove that
synchronisation on the common alphabet is actually not a requirement for DPBB to be a congruence for LTS networks. For
this, we generalise the definition of congruence as given by [23].

That DPBB is a congruence for the parallel composition of multiple LTS networks using the parallel composition operator
with synchronisation on the common alphabet of components (Definition 6.1) follows from the associativity and commuta-
tivity of that parallel composition operator:

Proposition 7.1. Consider two vectors of LTSs � and P, both of size n, where for some i ∈ 1..n, �i ↔ �
b Pi , and for all j ∈ 1..n \ {i},

� j = P j . Furthermore, consider a set of synchronisation laws V with vectors of size n. If V does not rename, cut, or synchronise
τ -transitions, then we have

G(�,V) ↔ �
b G(P,V)

Proof. LTS network M� = (�, V) can be decomposed, by Proposition 5.2, into M0
� ‖∩ M1

� , with M0
� = (〈�0, . . . , �i−1〉,←−−−

ll(V) ∪ ←−−−
il(V)) and M1

� = (〈�i, . . . , �n〉, −−−→
rl(V) ∪ −−−→

il(V)), since the decomposition method described by Proposition 5.2
introduces for all inter-component synchronisation laws il(V) of M� common actions in the alphabets of M0

� and M1
�

to synchronise on. This follows from the fact that for all laws (v̄, a) ∈ il(V), f (v̄, a) = g(v̄, a).

In turn, M1
� can be decomposed into M2

� ‖∩ M3
� , with W = −−−→

rl(V) ∪ −−−→
il(V), M2

� = (〈�i〉, ←−−−−
ll(W) ∪ ←−−−−

il(W)), and
M3

� = (〈�i+1, . . . , �n〉, −−−−→
rl(W) ∪ −−−−→

il(W)).
This decomposition leads to M0

� ‖∩ (M2
� ‖∩ M3

�). By associativity (Proposition 6.1) and commutativity w.r.t. DPBB
(Proposition 6.2) of ‖∩ , we have M0

� ‖∩ (M2
� ‖∩ M3

�) = (M0
� ‖∩ M2

�) ‖∩ M3
� = (M2

� ‖∩ M0
�) ‖∩ M3

� .
Similarly to M� , we can decompose MP into M0

P ‖∩ (M2
P ‖∩ M3

P), which is equivalent to (M2
P ‖∩ M0

P) ‖∩ M3
P.

The fact that �i ↔ �
b Pi implies that M2

� ↔ �
b M2

P, since the sets of synchronisation laws of those LTS networks are
equivalent (those sets have both been derived in the same way from V for the i-th element in their respective process
vectors), and those laws do not rename, cut or synchronise τ ’s. Because of this, and the fact that ‖∩ is an instance of ‖σ ,
we have, by Proposition 4.2, that (M2

� ‖∩ M0
�) ↔ �

b (M2
P ‖∩ M0

P), and, in turn, that (M2
� ‖∩ M0

�) ‖∩ M3
� ↔ �

b (M2
P ‖∩

M0
P) ‖∩ M3

P. By definition of ↔ �
b for LTS networks, this means that G(M2

�‖∩M0
�)‖∩M3

�
↔ �

b G(M2
P‖∩M0

P)‖∩M3
P
. Again, due

to the associativity and commutativity w.r.t. DPBB of ‖∩ , this is equal to GM0
�‖∩(M2

�‖∩M3
�) ↔ �

b GM0
P‖∩(M2

P‖∩M3
P) , which,

because decomposition according to Proposition 5.2 is consistent, means that GM�
↔ � GMP = G(�,V) ↔ � G(P,V) . �
b b

S. de Putter et al. / Science of Computer Programming 196 (2020) 102493 17
However, it is unnecessary to require that the set of synchronisation laws implements synchronisation on the common
alphabet of the components. As this requirement excludes many LTS networks in practice, we discuss next an alternative
proof, for a reformulated version of Proposition 7.1 in the form of Proposition 7.2. In this new proposition, each component
is DPBB-related to another component. Note that Proposition 7.1 is a special case of Proposition 7.2, in which all but one
component are DPBB related to themselves. The proof for Proposition 7.2 does not require synchronisation on the common
alphabet.

Proposition 7.2. Consider two vectors of LTSs � and P, and a set of synchronisation laws V . Furthermore, assume that τ -transitions
are not renamed, cut, or synchronised. It holds that

(∀i ∈ 1..n. �i ↔ �
b Pi) =⇒ G(�,V) ↔ �

b G(P,V)

Proof. Given two vectors of LTSs � and P such that for all i ∈ 1..n there is a DPBB relation Bi with �i Bi Pi . We define the
bisimulation relation C as follows:

C = {(s̄, t̄) | s̄ ∈ S(�,V) ∧ t̄ ∈ S(P,V) ∧ ∀i ∈ 1..n. s̄i Bi t̄i}
We prove that C is a DPBB relation as defined in Definition 3.5. We will use Ac(v̄) = {i | i ∈ 1..n ∧ v̄ i �= •} as a shorthand for
the set of indices of processes participating in a synchronisation law (v̄, a); e.g., Ac(〈c, b, •〉) = {1, 2}.

• C relates the initial states of M� and MP. Consider a state s̄ ∈ I(�,V) . For each i ∈ 1..n there is a state qi ∈ IPi such that
s̄i Bi ti , since Bi is a DPBB relation between �i and Pi . Let t̄ be the state constructed from these qi , i.e., for all i ∈ 1..n,
we have t̄i = qi . Then, t̄ ∈ I(P,V) and s̄ C t̄ . The symmetric case follows similarly.

• If s̄ C t̄ and s̄ a−→(�,V) s̄′ then either a = τ ∧ s̄′ C t̄ , or t̄ τ−→∗
(P,V)

ˆ̄t a−→(P,V) t̄′ ∧ s̄ C ˆ̄t ∧ s̄′ C t̄′ . Consider a law (v̄, a) ∈ V enabling

transition s̄
a−→(�,V) s̄′ . We distinguish two cases:

1. There is a τ -action in synchronisation vector v̄ , i.e., ∃i ∈ 1..n. v̄ i = τ . Therefore, there is a transition s̄i
τ−→i s̄′

i . Since
τ -transitions do not synchronise it follows that it is the only action in the synchronisation vector, i.e., Ac(v̄) = {i}.
Hence, a = τ as renaming τ -transitions is not allowed. Furthermore, by Definition 3.3, for all j ∈ 1..n \ {i} it holds
that s̄ j = s̄′

j . As we also have s̄ j B j t̄ j , it follows that s̄′
j B j t̄ j .

Because s̄i Bi t̄i and s̄i
τ−→i s̄′

i , by Definition 3.5, two cases can occur:
∗ a = τ with s̄′

i Bi t̄i . Hence, for all j ∈ 1..n we have s̄ j B j t̄ j . By definition of C, it follows that s̄′ C t̄ .

∗ t̄i
τ−→∗

i t̂
a−→i t′ with s̄i Bi t̂ and s̄′

i Bi t′ . Since no τ -transitions are cut, there also exists a path t̄ τ−→∗
(P,V)

ˆ̄t a−→(P,V) t̄′ with
ˆ̄ti = t̂ , t̄′

i = t′ , and for all j ∈ 1..n \ {i} we have t̄′
j = ˆ̄t j = t̄ j . Therefore, from s̄i Bi t̂ , s̄′

i Bi t′ , and ∀ j ∈ 1..n \ {i}. ̄s j B j t̄ j

we deduce that s̄ C ˆ̄t and s̄′ C t̄′ .
2. There is no τ -action in synchronisation vector v̄ , i.e., ∀i ∈ 1..n. v̄ i �= τ . By Definition 3.3, for all j ∈ 1..n \ Ac(v̄) we

have s̄′
j = s̄ j . Thus, since s̄ j B j t̄ j it follows that s̄′

j B j t̄ j . Furthermore, we have for all i ∈ Ac(v̄) a transition s̄i
v̄ i−→i s̄′

i .

Hence, as v̄ i �= τ for all those i ∈ Ac(v̄), there exists a path t̄i
τ−→∗

i
ˆ̄ti

v̄ i−→ t̄′
i with s̄i Bi

ˆ̄ti and s̄′
i Bi t̄′

i (by Definition 3.5).
From Definition 3.3 it follows that there also is a path t̄ τ−→∗

(P,V)
ˆ̄t a−→(P,V) t̄′ where for all j ∈ 1..n \ Ac(v̄), ˆ̄t j and t̄′

j are

defined by t̄′
j = ˆ̄t j = t̄ j . Hence, from ∀i ∈ 1..n. ̄si Bi t̄i , ∀i ∈ Ac(v̄). ̄si Bi

ˆ̄ti , and ∀i ∈ Ac(v̄). ̄s′
i Bk t̄′

i we deduce that s̄ C ˆ̄t
and s̄′ C ˆ̄t′ .

• If s̄ C t̄ and t̄ a−→(P,V) t̄′ then either a = τ ∧ s̄′ C t̄ , or s̄ τ−→∗
(�,V)

ˆ̄s a−→(�,V) s̄′ ∧ s̄ C ˆ̄t ∧ s̄′ C t̄′ . This case is symmetric to the
previous case.

• If s̄ C t̄ and there is an infinite sequence of states (s̄k)k∈ω such that s̄ = s̄0 , s̄k τ−→(�,V) s̄k+1 and s̄k C t̄ for all k ∈ ω, then there
exists a state t̄′ such that t̄ τ−→+

(P,V)
t̄′ and s̄k C t̄′ for some k ∈ ω. For all k ∈ ω, let (v̄k, τ) ∈ V be the synchronisation law

enabling transition sk τ−→ sk+1.
We distinguish two cases:

∗ There is a k ∈ ω such that s̄k τ−→ s̄k+1 is the result of the synchronisation of multiple processes in �, i.e., ∃k ∈ ω, i ∈
1..n. {i} ⊂ Ac(v̄k). In the τ -sequence, we have s̄
 C t̄ for all
 ∈ ω, hence, we have s̄k C t̄ . Furthermore, since C is a
DPBB relation, it follows that there are states ˆ̄t, ̄t′ ∈ S(P,V) with a τ -path t̄ τ−→∗

(P,V)
ˆ̄t τ−→(P,V) t̄′ such that s̄k+1 B t̄′ . Thus,

t̄
τ−→+

(P,V) t̄′ and for k + 1 ∈ ω it holds that s̄k+1 C t̄′ , thereby completing the case.
∗ The τ -sequence only consists of τ -transitions performed independently by the processes in �, i.e., ∀k ∈ ω. ∀i ∈

1..n. {i} �⊂ Ac(v̄k). Since all of the τ -transitions are performed independently, there has to be at least one process of
which an infinite τ -sequence is embedded in the global infinite τ -sequence starting from s̄, otherwise the latter τ -
sequence would not be infinite. Suppose the ith process has such a τ -sequence, then globally, this τ -sequence starts

18 S. de Putter et al. / Science of Computer Programming 196 (2020) 102493
from state s̄i . The infinite τ -sequence of �i is embedded in the infinite τ -sequence of the LTS network, hence, for
all k ∈ ω it holds that s̄k

i Bi t̄i . Since s̄i Bi t̄i , by Definition 3.5, there is a state t′ ∈ SPi with t̄i
τ−→+

Pi
t′ and some
 ∈ ω

such that s̄

i Bi t′ . We construct state t̄′ such that for all j ∈ 1..n, if j = i, then t̄′

j = t′ , and otherwise t̄′
j = t̄ j . As local

τ -transitions are not cut nor renamed, it follows that t̄ τ−→+
(P,V) t̄′ . Moreover, since s̄k C t̄ for all k ∈ ω, by definition of

C, we have s̄

j B j t̄ j for all j ∈ 1..n. Finally, because s̄

i Bi t̄′
i and for all j ∈ 1..n \{i} it holds that s̄

j B j t̄ j , by construction
of t̄′ it follows that s̄
 C t̄′ .

• If ̄s C t̄ and there is an infinite sequence of states (t̄k)k∈ω such that ̄t = t̄0 , ̄tk τ−→(P,V) t̄k+1 and ̄s C t̄k for all k ∈ ω, then there exists
a state s̄′ such that s̄ τ−→+

(�,V)
s̄′ and s̄′ C t̄k for some k ∈ ω. This case is symmetric to the previous case. �

8. Application

In order to compare compositional approaches with the classical, non-compositional approach, we have employed Cadp

to minimise a set of test cases modulo DPBB.
Each test case consists of a model that is minimised with respect to a given liveness property. To achieve the best

minimisation we applied maximal hiding [11] in all approaches. Intuitively, maximal hiding hides all actions except for the
interface actions and actions relevant for the given liveness property. In general, one can also hide fewer actions, but this
will decrease the impact of DPBB reduction, both in compositional and non-compositional model checking.

As composition strategy we have used the smart reduction approach described in [27]. In Cadp, the classical approach, where
the full state space is constructed at once and no intermediate minimisations are applied, is the root reduction strategy.

We have measured the running time and the maximum number of states and transitions generated by the two methods.

Experimental setup To facilitate replication we briefly discuss the methods used for our experiments.
For compositional approaches, the running time and largest state space considered depend heavily on the composition

order, i.e., the order in which the components are combined. The smart reduction approach uses a heuristic to determine
the order in which to compose processes. In [27], it has been experimentally established that this heuristic frequently works
very well. After each composition step the result is minimised.

We use the following expression from the scripting language SVL of Cadp to invoke the smart reduction modulo DPBB
approach:

smart total divbranching reduction of (<m>)

where <m> is the test model.
In the classical approach the state space of the entire system is generated before minimisation is applied. This approach

is invoked as follows

root total divbranching reduction of (<m>)

where <m> is the test model.
The experiments were run on the DAS-5 cluster [38] machines. They have an Intel Haswell E5-2630-v3 2.4 GHz CPU,

64 GB memory, and run CentOS Linux 7.2. The running time of the two approaches was measured as the wall clock time
(i.e., the real elapsed time) using the Unix time command:

/usr/bin/time -f "%e" svl <file>

The argument -f "%e" specifies that the time written as output should follow format "%e" where %e indicates the
wall clock time. The svl <file> argument invokes the Svl-engine with script file <file>. The command measures the
wall clock time of the execution of the Svl-script.

The maximum number of states and transitions that were generated were extracted from the Svl-log files after execution
of the script.

The set of test cases To prevent source bias, studies were selected from four different sources. In total 19 case studies were
selected: four mCRL2 [16] models distributed with its tool set, nine Cadp models, three from the Beem database [39], which
consists of DVE models for the DiVinE model checker (version 3 and earlier) [40], and three from the Example Repository
for Finite State Verification Tools [41]. The Cadp models are expressed in the EXP language, which is the language supported
by Cadp to express LTS networks. All other models have been manually translated to EXP models.

The models stemming from the mCRL2 tool set distribution are the following:

1. The 1394 model, created by Luttik [42], specifies the 1394 or firewire protocol. Property: every PAreq action with
parameter ‘immediate’ is eventually followed by a matching PAcon action with parameter ‘won’.

S. de Putter et al. / Science of Computer Programming 196 (2020) 102493 19
2. The 1394’ model is the 1394 model scaled up with extra internal transitions. This model is our own adaptation of the
1394 model and is therefore not distributed with the tool set. Property: the same one as for the 1394 model.

3. The ACS model describes the ACS Manager that is part of the ALMA project of the European Southern Observatory. The
ACS Manager is part of a system controlling a large collection of radio telescopes. The model consists of a manager
and some containers and components and was created by Ploeger [43]. Property: every time container MT1 is locked,
eventually it is freed again.

4. Wafer Stepper models a wafer stepper used in the manufacturing of integrated circuits. Property: always, eventually, all
wafers in the system will be exposed.

The following Cadp models were used:

1. Cache models a directory-based cache coherency protocol for a multi-processor architecture. The model was developed
by Kahlouche et al. [44]. Property: there is no livelock.

2. The DES model describes an implementation of the data encryption standard, which allows to cipher and decipher
64-bit vectors using a 64-bit key vector [45]. Property: the DES can always deliver outputs.

3. HAVi-LE describes the asynchronous Leader Election protocol used in the HAVi (Home Audio-Video) standard, involving
three device control managers. The model is fully described by Romijn [46]. Property: always eventually a leader is
selected.

4. HAVi-LE’ is an adaptation of the HAVi-LE model containing transitions denoting logging events. Since the model is our
own adaptation it is not distributed with Cadp. Property: the same one as for the HAVi-LE model.

5. Le Lann models a distributed leader election algorithm for unidirectional ring networks. The CADP model was developed
by Garavel and Mounier [47]. Property: process P0 is infinitely many times in the critical section.

6. ODP is a model of an open distributed processing trader [48]. Property: work is always executed eventually.
7. The Erat. Sieve model computes prime numbers implementing a distributed Eratosthenes Sieve; the model describes a

pipeline of units, of which each unit blocks input numbers that are multiples of a given number. The model consists of
four units. Property: if the number two is generated, then it is eventually reported as a prime number.

8. Erat. Sieve’ is a variant of Erat. Sieve consisting of seven units. Property: the same one as for the Erat. Sieve model.
9. The Transit model describes a transit-node. It models an abstraction of a routing component of a communication net-

work. The model was developed by Mounier [49]. Property: every time a message is receive, it is eventually either sent
out by the node or buffered as faulty.

The following Beem models were used:

1. The Peterson model describes Peterson’s mutual exclusion algorithm [50] for seven processes. Property: every time pro-
cess P0 waits for access to the critical section, it will eventually enter it.

2. Anderson models Anderson’s queue lock mutual exclusion algorithm [51] for three processes. Property: Every time a
process waits for access to the critical section, it will eventually enter it.

3. Anderson’ is a variant of the Anderson model considering four processes competing for a lock. Property: the same one
as for the Anderson model.

From the Example Repository for Finite State Verification Tools we selected the following models:

1. The Chiron model describes a user interface development system with two clients. The system consists of the Chiron
server, managing generic aspects of a user interface, and artists (the clients). This server is responsible for notifying
artists when a user interface event occurs, while the clients listen for notifications from the server. The formal model
was developed by Avrunin et al. [52]. Property: If an artist is registered for event e1, then it will eventually be notified
for this event.

2. Chiron’ is a adapted version of the Chiron model in which an additional client has been added. In total, there are three
clients. Property: the same one as for the Chiron model.

3. The Gas Station problem [53] simulates a self-serve gas station. The gas station consists of two pumps, an operator, and
three customers. Property: A charge is made eventually after a customer has started pumping.

Measurement results The results of our experiments are shown in Table 1. The Test case column indicates the test case
model corresponding to the measurements.

The smart and root sub-columns denote the measurement for the smart reduction and root reduction approaches, re-
spectively.

In the Running time (sec.) column the running time until completion of the experiment is shown in seconds. Indicated
in bold are the shortest running times comparing the smart and root sub-columns. The maximum running time of an
experiment was set to 80 hours, after which the experiment was discontinued (indicated with −).

The columns Max. #states and Max. #transitions show the largest number of states and transitions, respectively, generated
during the experiment. The best result, comparing smart and root reduction, is indicated in bold.

20 S. de Putter et al. / Science of Computer Programming 196 (2020) 102493
Table 1
Experiments: smart reduction vs. root reduction.

Test case Running time (sec.) Max. #states Max. #transitions Reduced
#states

Reduced
#transitionssmart root smart root smart root

1394 14.41 8.25 102,983 198,692 187,714 355,338 1 1
1394’ 47.51 460.53 2,832,074 36,855,184 5,578,078 96,553,318 1 1
ACS 70.87 11.22 1,854 4,764 4,760 14,760 29 61
Anderson 26.56 15.42 153,664 384,104 2,118,368 5,892,964 1 1
Anderson’ 373.56 1852.42 15,116,544 56,250,000 268,738,560 1,188,000,000 1 1
Cache 20,55 7.84 616 616 4,631 4,631 1 1
Chiron 22.76 13.66 317,115 481,140 2,563,650 3,456,675 216 1286
Chiron’ 1,171.06 1,236.06 49,076,280 56,293,380 467,536,860 513,857,520 2376 17,974
DES 54.61 948.66 1,404 64,498,297 3,510 518,438,860 1 1
Erat. Sieve 63.00 8.43 1,156,781 234 2,891,692 406 3 2
Erat. Sieve’ − 10.64 − 865 – 2,012 3 2
Gas Station 325.10 362.31 11,042,816 11,436,032 84,254,720 87,105,536 432 5616
HAVi-LE 114.27 493.01 970,772 15,688,570 5,803,552 80,686,289 131,873 644,695
HAVi-LE’ 93.08 5,255.56 453,124 190,208,728 2,534,371 876,008,628 159,318 849,227
Le Lann 96.35 5,599.15 12,083 160,025,986 701,916 944,322,648 83,502 501,573
ODP 32.90 9.97 10,397 91,394 87,936 641,226 432 2,268
Peterson 63.04 − 9 − 139 − 9 22
Transit 25.50 59.69 22,928 3,763,192 132,712 39,925,524 636 3,188
Wafer Stepper 74.18 57.54 962,122 3,772,753 4,537,240 16,977,692 905,955 4,095,389

The number of states and transitions after minimisation is shown in the Reduced #states and Reduced #transitions
columns, respectively.

Discussion In terms of running time smart reduction performs best for ten out of nineteen models, whereas root reduction
performs best in eight of the models. For Wafer stepper and Transit smart reduction is only a few seconds to a minute
faster than root reduction. The gain is a few minutes for 1394’, DES, and HAVi-LE. For HAVi-LE’, Le Lann, and Peterson smart
reduction is several hours faster. In general, the smart reduction approach performs better for large models where the state
space can be reduced significantly before the final composition.

Root reduction performs best in relatively small models; 1394, ACS, Anderson, Cache, Chiron and ODP. However, for these
cases the difference in running times is negligible. Only the Erat. Sieve’ model is minimised significantly faster by root
reduction. For smaller models the overhead of the smart reduction heuristic is too high to obtain any benefits from the
nominated ordering.

In terms of state space, smart reduction is the clear winner in all cases, with the exception of the Erat. Sieve models.
Indeed, smart reduction performs particularly badly for the Erat. Sieve’ model. The model consists of a pipeline where data
is being pushed from one end to another. While the data domain considered by the nodes in the pipeline consists of 32
elements, in the minimised state space only one element remains. As synchronising actions may not be hidden in the local
process LTSs, incremental composition and minimisation leads to a state space that is several orders of magnitude larger
than the final state space.

The efficiency of smart reduction seems to increase when it is more successful in keeping compositions small. For
instance, Transit and Wafer stepper have a similar number of states before reduction. However, when minimising the Transit
model the smart reduction approach is able to reduce the number of states much more significantly than in the Wafer
stepper model (see the Max. #states smart column).

Lessons learned In summary, the following lessons can be learned from this experiment:

• The overhead of applying its heuristics makes smart reduction less efficient in terms of running time when applied on
small models.

• In general, smart reduction produces significantly smaller state spaces, especially for larger models, compared to other
approaches.

• The data domain can have a significant impact on the effectiveness of smart reduction. In particular, this is the case
when data can only be eliminated at a late stage of the compositional minimisation (as demonstrated by Erat. Sieve).

• The efficiency of smart reduction seems to increase when it is more successful in keeping compositions small.

Threats to validity The following threats to validity must be considered when interpreting the results:

• Only one tool has been involved to conduct the experiment, hence the results may be implementation specific. This
only affects measured running times, as the state spaces produced during compositional minimisation is deterministic
with respect to the composition order.

S. de Putter et al. / Science of Computer Programming 196 (2020) 102493 21
• A more controlled experiment needs to be considered in order to extrapolate the results of this experiment. In par-
ticular, the effect of action hiding, number of processes, and the chosen composition order should be controlled to
determine correlation of these aspects with running time and size of the state space.

• The study only considers the DPBB equivalence as minimisation relation. Results may vary depending on the chosen
equivalence relation. The DPBB equivalence is the strongest equivalence relation offered by Cadp that still allows ab-
straction. Thus, the expectation is that other relations show equal or better performance improvements.

• The number and variety of case studies is still too limited for generalising claims on the effectiveness of smart reduction
in comparison with root reduction.

9. Conclusions

In this article we have shown that DPBB is a congruence for parallel composition of LTS networks, in which there
is synchronisation between LTSs on given label combinations. Because of this, DPBB may be used to reduce components
in the compositional verification of LTS networks, and incrementally construct the state space of an LTS network. It had
already been shown that compositional verification of LTS networks is adequate for safety properties, as this follows from
the fact that branching bisimilarity is a congruence for the parallel composition of synchronising LTS networks [18]. As
DPBB preserves both safety and liveness properties, this article proves that compositional verification can be used to verify
liveness properties as well.

Furthermore, we have discussed how to safely decompose an LTS network in the case where verification has to start
from the system as a whole. Both the composition and consistent decomposition of LTS networks preserve the admissi-
bility property of LTS networks. Hence, the composition operator remains compatible with the compositional verification
approaches for LTS networks described by [23].

We have shown that parallel composition of LTS networks with synchronisation on the common alphabet of the compo-
nents is associative and commutative. From this it follows that DPBB is also a congruence for LTS networks as defined by
Garavel, Lang, and Mateescu [23] if the set of synchronisation laws implements synchronisation on the common alphabet.
Subsequently, we have shown that the requirement to synchronise on the common alphabet is unnecessarily restrictive. This
has been shown in a direct proof of DPBB being a congruence for LTS networks.

All proofs in this work, except for the two in Section 7, have been mechanically verified using the Coq proof assistant4

and are available online.5

Although our work focuses on the composition of LTS networks, the results are also applicable on the composition of
individual LTSs. Our parallel composition operator ‖σ subsumes the usual parallel composition operators of standard process
algebra languages such as CCS [13], CSP [54], mCRL2 [16], and LOTOS [17].

Finally, we have run a set of experiments to compare compositional and traditional DPBB reduction. The compositional
approach applies Cadp’s smart reduction employing a heuristic to determine an efficient compositional reduction order. The
traditional reduction generates the complete state space before applying reduction. The compositional approach performed
better in the medium when applied on large models for which the intermediate state space can be kept small.

Future work This work has been inspired by an approach for the compositional verification of transformations of LTS
networks [55,36,56–58]. We would like to apply the results of this article to the improved transformation verification algo-
rithm [55], thus guaranteeing its correctness for the compositional verification of transformations of LTS networks.

In future experiments, we would like to involve recent advancements in the computation of branching bisimulation,
and therefore also DPBB, both sequentially [59,60] and in parallel on graphics processors [61], and we may consider other
equivalence relations, such as simulation equivalence [62]. It will be interesting to measure the effect of applying these
algorithms to compositionally solve a model checking problem.

Finally, we can consider various extensions of the LTS network formalism. For instance, by encoding timing in the LTSs,
it is possible to reason about timed system behaviour. Combining results such as those in [63–66] with our results would
allow to compositionally reason about timed behaviour. Other possibilities are to distinguish must and may transitions, and
explicitly involve data variables, for instance as is suggested in [67]. We plan to investigate this further.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] E.M. Clarke, O. Grumberg, D. Peled, Model Checking, The MIT Press, 1999.

4 https://coq .inria .fr.
5 http://www.win .tue .nl /mdse /composition /DPBB _is _a _congruence _for _synchronizing _LTSs .zip.

http://refhub.elsevier.com/S0167-6423(18)30078-9/bibD6FD0924E324F50669AE0295ADF59567s1
https://coq.inria.fr
http://www.win.tue.nl/mdse/composition/DPBB_is_a_congruence_for_synchronizing_LTSs.zip

22 S. de Putter et al. / Science of Computer Programming 196 (2020) 102493
[2] C. Baier, J.-P. Katoen, Principles of Model Checking, The MIT Press, 2008.
[3] D. Peled, Ten years of partial order reduction, in: CAV, vol. 1427, Springer, Berlin, Heidelberg, 1998, pp. 17–28.
[4] E.M. Clarke, E.A. Emerson, S. Jha, A.P. Sistla, Symmetry reductions in model checking, in: CAV, vol. 1427, Springer, Berlin, Heidelberg, 1998, pp. 147–158.
[5] E.M. Clarke, D.E. Long, K.L. McMillan, Compositional model checking, in: LICS, IEEE Computer Society Press, 1989, pp. 353–362.
[6] H.R. Andersen, Partial model checking, in: LICS, IEEE Computer Society Press, 1995, pp. 398–407.
[7] H.R. Andersen, Partial model checking of modal equations: a survey, Int. J. Softw. Tools Technol. Transf. 2 (3) (1999) 242–259.
[8] D. Kozen, Results on the propositional μ-calculus, Theor. Comput. Sci. 27 (1983) 333–354.
[9] R.J. van Glabbeek, W.P. Weijland, Branching time and abstraction in bisimulation semantics, J. ACM 43 (3) (1996) 555–600.

[10] R.J. van Glabbeek, S.P. Luttik, N. Trčka, Branching bisimilarity with explicit divergence, Fundam. Inform. 93 (4) (2009) 371–392.
[11] R. Mateescu, A.J. Wijs, Property-dependent reductions adequate with divergence-sensitive branching bisimilarity, Sci. Comput. Program. 96 (3) (2014)

354–376.
[12] R.J. van Glabbeek, S.P. Luttik, N. Trc̆ka, Computation tree logic with deadlock detection, Log. Methods Comput. Sci. 5 (4) (2009) 1–24.
[13] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.
[14] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
[15] J.A. Bergstra, J.W. Klop, Process algebra for synchronous communication, Inf. Control 60 (1/3) (1984) 109–137.
[16] O. Bunte, J. Groote, J. Keiren, M. Laveaux, T. Neele, E. de Vink, W. Wesselink, A. Wijs, T. Willemse, The mCRL2 toolset for analysing concurrent systems:

improvements in expressivity and usability, in: TACAS, Part II, in: LNCS, vol. 11428, Springer, 2019, pp. 21–39.
[17] ISO/IEC, LOTOS — a formal description technique based on the temporal ordering of observational behaviour, in: International Standard 8807, Interna-

tional Organization for Standardization — Information Processing Systems — Open Systems Interconnection, 1989.
[18] B. Bloom, Structural operational semantics for weak bisimulations, Theor. Comput. Sci. 146 (1) (1995) 25–68.
[19] W. Fokkink, R.J. van Glabbeek, S.P. Luttik, Divide and congruence III: stability & divergence, in: CONCUR, in: LIPIcs, vol. 85, Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik, 2017, 15.
[20] F. Lang, Refined interfaces for compositional verification, in: FORTE, in: LNCS, vol. 4229, Springer, 2006, pp. 159–174.
[21] S. de Putter, A.J. Wijs, Compositional model checking is lively, in: FACS, in: LNCS, vol. 10487, Springer, 2017, pp. 117–136.
[22] Y. Bertot, P. Castéran, Interactive Theorem Proving and Program Development, Coq’ Art: The Calculus of Inductive Constructions, Texts in Theoretical

Computer Science, Springer, 2004.
[23] H. Garavel, F. Lang, R. Mateescu, Compositional verification of asynchronous concurrent systems using CADP, Acta Inform. 52 (4–5) (2015) 337–392.
[24] S. Cheung, D. Giannakopoulou, J. Kramer, Verification of liveness properties using compositional reachability analysis, in: ESEC/FSE, in: LNCS, vol. 1301,

Springer, 1997, pp. 227–243.
[25] K. Elkader, O. Grumberg, C. Pǎsǎreanu, S. Shoham, Automated circular assume-guarantee reasoning with N-way decomposition and alphabet refinement,

in: CAV, Part I, in: LNCS, vol. 9779, Springer, 2016, pp. 329–351.
[26] A. Wijs, T. Neele, Compositional model checking with incremental counter-example construction, in: CAV, Part I, in: LNCS, vol. 10426, Springer, 2017,

pp. 570–590.
[27] P. Crouzen, F. Lang, Smart reduction, in: FASE, in: LNCS, vol. 6603, Springer, 2011, pp. 111–126.
[28] F. Lang, Exp.open 2.0: a flexible tool integrating partial order, compositional, and on-the-fly verification methods, in: IFM, in: LNCS, vol. 3771, Springer,

2005, pp. 70–88.
[29] F. Lang, Unpublished PVS proof (by Jaco van de Pol) and textual proof showing that branching bisimulation is a congruence for networks of LTSs. This

proof does not consider DPBB, Personal communication, 2016.
[30] L. Spaninks, An Axiomatisation for Rooted Branching Bisimulation with Explicit Divergence, Master’s thesis, Eindhoven University of Technology, 2013.
[31] J.-P. Krimm, L. Mounier, Compositional state space generation from LOTOS programs, in: TACAS, vol. 1217, Springer, Berlin, Heidelberg, 1997,

pp. 239–258.
[32] F. Maraninchi, Operational and compositional semantics of synchronous automaton compositions, in: CONCUR, in: LNCS, vol. 630, Springer, 1992,

pp. 550–564.
[33] M. Mazzara, I. Lanese, Towards a unifying theory for web services composition, in: WS-FM’06, in: LNCS, vol. 4184, Springer, 2006, pp. 257–272.
[34] I. Ulidowski, I. Phillips, Ordered SOS process languages for branching and eager bisimulations, Inf. Comput. 178 (1) (2002) 180–213.
[35] C. Verhoef, A congruence theorem for structured operational semantics with predicates and negative premises, in: CONCUR, vol. 836, Springer, Berlin,

Heidelberg, 1994, pp. 433–448.
[36] A.J. Wijs, Define, verify, refine: correct composition and transformation of concurrent system semantics, in: FACS, in: LNCS, vol. 8348, Springer, 2013,

pp. 348–368.
[37] S. de Putter, A. Wijs, To compose, or not the compose, that is the question: an analysis of compositional state space generation, in: FM, in: LNCS,

vol. 10951, Springer, 2018, pp. 485–504.
[38] H. Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra, C. Snoek, H. Wijshoff, A medium-scale distributed system for computer science

research: infrastructure for the long term, IEEE Comput. 49 (5) (2016) 54–63.
[39] R. Pelánek, BEEM: benchmarks for explicit model checkers, in: SPIN’07, in: LNCS, vol. 4595, Springer, 2007, pp. 263–267.
[40] J. Barnat, L. Brim, V. Havel, J. Havliček, J. Kriho, M. Lenčo, P. Ročkai, V. Štill, J. Weiser, DiVinE 3.0 - an explicit-state model checker for multithreaded C

& C++ programs, in: CAV, in: LNCS, vol. 8044, Springer, 2013, pp. 863–868.
[41] Laboratory for Advanced Software Engineering Research, Example repository for finite state verification tools, http://laser.cs .umass .edu /verification -

examples/, 8 Jan. 2003, last accessed 20 Dec. 2017.
[42] S.P. Luttik, Description and Formal Specification of the Link Layer of P1394, Tech. Rep. SEN-R9706, CWI, 1997.
[43] B. Ploeger, Analysis of ACS Using mCRL2, Tech. Rep. 09-11, Eindhoven University of Technology, 2009.
[44] H. Kahlouche, C. Viho, M. Zendri, An industrial experiment in automatic generation of executable test suites for a cache coherency protocol, in: IWTCS,

Kluwer, B.V., 1998, pp. 211–226.
[45] National Institute of Standards and Technology, Data Encryption Standard (DES), Federal Information Processing Standards 46-3, 1999.
[46] J. Romijn, Model Checking a HAVi Leader Election Protocol, Tech. Rep. SEN-R9915, CWI, 1999.
[47] H. Garavel, L. Mounier, Specification and Verification of Various Distributed Leader Election Algorithm for Unidirectional Ring Networks, Research

Report RR-2986, INRIA, 1996.
[48] H. Garavel, M. Sighireanu, A graphical parallel composition operator for process algebras, in: FORTE/PSTV, in: IFIP Conference Proceedings, vol. 156,

Kluwer, 1999, pp. 185–202.
[49] L. Mounier, A LOTOS specification of a “transit-node”, Tech. Rep. SPECTRE 94-8, VERIMAG, 1994.
[50] G.L. Peterson, Myths about the mutual exclusion problem, Inf. Process. Lett. 12 (1981) 115–116.
[51] J.H. Anderson, Y.-J. Kim, T. Herman, Shared-memory mutual exclusion: major research trends since 1986, Distrib. Comput. 16 (2–3) (2003) 75–110.
[52] G.S. Avrunin, J.C. Corbett, M.B. Dwyer, C.S. Pasareanu, S.F. Siegel, Comparing finite-state verification techniques for concurrent software, Technical Report

UM-CS-1999-069, University of Massachusetts, 1999.
[53] D. Heimbold, D. Luckham, Debugging Ada tasking programs, IEEE Softw. 2 (2) (1985) 47–57.

http://refhub.elsevier.com/S0167-6423(18)30078-9/bib58CE164BFE5E2E8107A9989176B97BAAs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibC86334168956F27790316B962011B520s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibF7F3E66D30CD618ADDF0E2042187F9D7s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib5505304DDB4138E735A5E32FCBA495A0s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibC0B53054FFEFC149B8AFD8A35DDCEFC2s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib3F46CFD6384AF5EE3B3FEC59D17ECD5Ds1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib8EBC13DDA5C0B01FB544157D15F0857Fs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib24F40177F3CE25606ED94CDBEE0FE783s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibE3E57C23E3CC198443FD6C1BD448CC8Fs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibA2E7D6F305A5B479E5048FCD09D28437s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibA2E7D6F305A5B479E5048FCD09D28437s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib29F6A5AEA8CF8160D430A5613C71579As1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib3D235A372DFA64720545B68BE461157Es1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib3C2F5DECDE47940C8BAF3B80DEA449BDs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibF95D29E3A61357A0478842F035873446s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibA1F0548BDABB40977029B18450B50B88s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibA1F0548BDABB40977029B18450B50B88s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibB86FD7316737B54187A82C094EFA2E1Cs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibB86FD7316737B54187A82C094EFA2E1Cs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib46DA564E26AAE93AA5FBA2C7BEC7FB32s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib558AB35CA86BC089FA5E7B0508E0101Ds1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib558AB35CA86BC089FA5E7B0508E0101Ds1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib9D4D11DCD5EA79B23EAE518D2502B75Es1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib43F35A064D84C1D26F91007BE4CE30E1s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibBDFAEA1FA6E3462CE4CBA4DE302D0D1Ds1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibBDFAEA1FA6E3462CE4CBA4DE302D0D1Ds1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib73D28BA452C719107C020AC39350151Cs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibB1CF28C6B1B984D8D0DBA13E9D518E39s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibB1CF28C6B1B984D8D0DBA13E9D518E39s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibABB5ED3C6DFDB88D1152DA8CF7FEBCAAs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibABB5ED3C6DFDB88D1152DA8CF7FEBCAAs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibA87C68A857BC5EC5362391A49D3A37A6s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibA87C68A857BC5EC5362391A49D3A37A6s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib0B293E2BB6AAD4B57681556580481D61s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibEA766A7E7A03921324FFB689B468782Cs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibEA766A7E7A03921324FFB689B468782Cs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibF640D6F005F163B275796E957140C406s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibBFD0A5711E06C14CE110D11E7CEF6F4Ds1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibBFD0A5711E06C14CE110D11E7CEF6F4Ds1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib14481D74CB6008FFE43E6E4C7A8C8BE6s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib14481D74CB6008FFE43E6E4C7A8C8BE6s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib6F87E3194400CB72F68FA85C28A933C9s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib3292EB594B24BDBAA60ABC86E6784177s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib90286F87B422AFD143D73E5EE5A0CE44s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib90286F87B422AFD143D73E5EE5A0CE44s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib4340404265256FF00FCA1072BA027ECAs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib4340404265256FF00FCA1072BA027ECAs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib5451719E8D3316BA9655AC3F3762950Bs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib5451719E8D3316BA9655AC3F3762950Bs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib3EAD8199EFFF58FD1B814319F68CCEE3s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib3EAD8199EFFF58FD1B814319F68CCEE3s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib0F7DC83E2E0CDD9D343C46DE9A1437CBs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib67D46EC7D84BA284982E634970C5B7DFs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib67D46EC7D84BA284982E634970C5B7DFs1
http://laser.cs.umass.edu/verification-examples/
http://laser.cs.umass.edu/verification-examples/
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibF016E59C7AD8B1D72903BB1AA5720D53s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib77C1FDD80C91593FF851E71AE3865FCBs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib0FEA6A13C52B4D4725368F24B045CA84s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib0FEA6A13C52B4D4725368F24B045CA84s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib4B50894227E1717BB52AD6DE60876EBCs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibCDCA581945A1EDA8D0D56DD9F660C0CAs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibCDCA581945A1EDA8D0D56DD9F660C0CAs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibDCE46EEB80FC87BFD1881A81F0FC3AFEs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibDCE46EEB80FC87BFD1881A81F0FC3AFEs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibDCEF234A574FA354C82127C50B83174As1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib3E6F31D8C5F341A9C1B16DCF607E1ACEs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib99FB405678A49972031CA147F1B1B930s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibE879CA079262F3546F7F2788219CE483s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibE879CA079262F3546F7F2788219CE483s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibFEE74EAC0728A1BB5FF7D4666F8C4A88s1

S. de Putter et al. / Science of Computer Programming 196 (2020) 102493 23
[54] A. Roscoe, The Theory and Practice of Concurrency, Prentice-Hall, 1998.
[55] S. de Putter, A.J. Wijs, Verifying a verifier: on the formal correctness of an LTS transformation verification technique, in: FASE, in: LNCS, vol. 9633,

Springer, 2016, pp. 383–400.
[56] A.J. Wijs, Confluence detection for transformations of labelled transition systems, in: Proceedings of the 2nd Graphs as Models Workshop (GaM 2015),

in: EPTCS, vol. 181, Open Publishing Association, 2015, pp. 1–15.
[57] A.J. Wijs, L.J.P. Engelen, Efficient property preservation checking of model refinements, in: TACAS, in: LNCS, vol. 7795, Springer, 2013, pp. 565–579.
[58] A.J. Wijs, L.J.P. Engelen, Refiner: towards formal verification of model transformations, in: NFM, in: LNCS, vol. 8430, Springer, 2014, pp. 258–263.
[59] J.F. Groote, A.J. Wijs, An O (m logn) algorithm for stuttering equivalence and branching bisimulation, in: TACAS, in: LNCS, vol. 9636, Springer, 2016,

pp. 607–624.
[60] J.F. Groote, D.N. Jansen, J.J.A. Keiren, A.J. Wijs, An O (m logn) algorithm for computing stuttering equivalence and branching bisimulation, ACM Trans.

Comput. Log. 18 (2) (2017) 13.
[61] A.J. Wijs, GPU accelerated strong and branching bisimilarity checking, in: TACAS, in: LNCS, vol. 9035, Springer, 2015, pp. 368–383.
[62] G. Cécé, Foundation for a series of efficient simulation algorithms, in: LICS, IEEE, 2017, pp. 1–12.
[63] A.J. Wijs, Achieving discrete relative timing with untimed process algebra, in: ICECCS, IEEE Computer Society Press, 2007, pp. 35–44.
[64] A.J. Wijs, W.J. Fokkink, From χt to μCRL: combining performance and functional analysis, in: ICECCS, IEEE Computer Society Press, 2005, pp. 184–193.
[65] W.J. Fokkink, J. Pang, A.J. Wijs, Is timed branching bisimilarity a congruence indeed?, Fundam. Inform. 87 (3–4) (2008) 287–311.
[66] A.J. Wijs, What to do next? Analysing and optimising system behaviour in time, Ph.D. thesis, Vrije Universiteit Amsterdam, 2007.
[67] S.S. Bauer, K.G. Larsen, A. Legay, U. Nyman, A. Wąsowski, A model specification theory for components with data, in: FACS, in: LNCS, vol. 7253, Springer,

2011, pp. 61–78.

http://refhub.elsevier.com/S0167-6423(18)30078-9/bibDD4B87623189F26DEE873C46F593EE6Bs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibB64CD67295DAC85BFD7BC77F9FAFADF4s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibB64CD67295DAC85BFD7BC77F9FAFADF4s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib62202944F816C07941C98055DDEC938As1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib62202944F816C07941C98055DDEC938As1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib48AE5B72283031B17F515AB8ADA5947Ds1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib3D765808900FF5C6B441932F205BEEF2s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibF08385EE61A1A985FB81A6BC203BEC68s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibF08385EE61A1A985FB81A6BC203BEC68s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibD4AAD2234D721DAFA96F7875414C58F7s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibD4AAD2234D721DAFA96F7875414C58F7s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib67A014640671C25572AE43DF3C1661AEs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib351382254C676F9BBD5F7C041BEEA876s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib02E864819F62829053809C6E59364E15s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bibFBCE6D59D54D0BBF4C90BED1D7C4126Ds1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib9C8C65308D7C902E8C0112C179BF6849s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib4FEEA5224D7FF2C75AA689A4CE1700FEs1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib0A58E479B66026D76B14750AA16529F0s1
http://refhub.elsevier.com/S0167-6423(18)30078-9/bib0A58E479B66026D76B14750AA16529F0s1

	Compositional model checking with divergence preserving branching bisimilarity is lively
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Composition of LTS networks
	5 Decomposition of LTS networks
	6 Associative and commutative LTS network composition
	7 Two more congruence results for DPBB and LTS networks
	8 Application
	9 Conclusions
	References

