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Compositional model checking approaches attempt to limit state space explosion by iter-
atively combining the behaviour of the components in a concurrent system and reducing 
the result modulo an appropriate equivalence relation. In this article, we consider Labelled 
Transition Systems (LTSs), in which transitions are labelled by actions, to describe compo-
nent behaviour, and LTS networks to combine the behaviour of all components in a system.
For an equivalence relation to be useful for the compositional model checking of LTS net-
works, it should be a congruence for the parallel composition operator that is used to 
combine component behaviour. Such an operator may define synchronisations between the 
actions of component transitions.
An equivalence relation preserving both safety and liveness properties is divergence-
preserving branching bisimilarity (DPBB). It has long been generally assumed that DPBB is a 
congruence for parallel composition. Fokkink, Van Glabbeek and Luttik recently proposed a 
congruence format that implies that this is the case. In parallel, we were the first to prove, 
by means of the Coq proof assistant, that DPBB is a congruence for the parallel composi-
tion of two LTS networks with synchronisation on transition labels. In the current article, 
we also consider an instance of our parallel composition operator that is both associative 
and commutative, which are two essential properties for the compositional construction of 
state spaces.
Furthermore, we show that DPBB is a congruence for LTS networks in which many LTSs are 
composed in parallel at once with support for multi-party synchronisation. Additionally, we 
discuss how to safely decompose an existing LTS network into components such that their 
recomposition is equivalent to the original LTS network.
Finally, to demonstrate the effectiveness of compositional model checking with intermedi-
ate DPBB reductions, we discuss the results we obtained after having conducted a number 
of experiments.
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1. Introduction

Model checking [1,2] is one of the most successful approaches for the analysis and verification of the behaviour of 
concurrent systems. However, a major issue is the so-called state space explosion problem: the state space of a concurrent 
system tends to increase exponentially as the number of parallel processes increases linearly. Often, it is difficult or infea-
sible to verify realistic large scale concurrent systems. Over time, several methods have been proposed to tackle the state 
space explosion problem. Prominent approaches are the application of some form of on-the-fly reduction, such as Partial 
Order Reduction [3] or Symmetry Reduction [4], and compositionally verifying the system, for instance using Compositional 
Reasoning [5] or Partial Model Checking [6,7].

The key operations in compositional approaches are the composition and decomposition of systems. First a system is 
decomposed into two or more components. Then, one or more of these components is manipulated (e.g., reduced). Finally, 
the components are re-composed. Comparison modulo an appropriate equivalence relation is applied to ensure that the 
manipulations preserve properties of interest (for instance, expressed in the modal μ-calculus [8]). These manipulations are 
sound if and only if the equivalence relation 1) is guaranteed to preserve the formalisations of the properties, and 2) is a 
congruence for the composition expression.

Labelled Transition Systems (LTSs) are often used to formalise the semantics of concurrent systems, and the semantics of 
the individual components in such a system. Two prominent equivalences for LTSs are branching bisimilarity and divergence-
preserving branching bisimilarity (DPBB) [9,10]. Branching bisimilarity preserves safety properties, while DPBB preserves 
both safety and liveness properties.

In [11], it is proven that DPBB preserves properties expressed in a particular fragment of the modal μ-calculus if the 
actions referred to in those properties are not abstracted away (renamed to τ , which represents internal actions).

In [12] it is proven that DPBB is a congruence for parallel composition without synchronisation between the parallel com-
ponents. However, in general, parallel composition involves some synchronisation mechanism, and compositional reasoning 
requires equivalences that are a congruence for parallel composition in which parallel components may synchronise their 
behaviour. Languages to model concurrent systems, such as the process algebras CCS [13], CSP [14], ACP [15], mCRL2 [16], 
and LOTOS [17], include a parallel composition operator that supports synchronisation. Therefore, in the following, when 
we refer to parallel composition, we imply, unless stated otherwise, that synchronisation is involved.

It is known that branching bisimilarity is a congruence for the parallel composition of LTSs. This follows from the fact 
that parallel composition of LTSs can be expressed in a so-called BB cool (Branching Bisimulation cool) language [18]. The 
authors of [19] have proposed a congruence format for DPBB, from which it follows that DPBB is a congruence for parallel 
composition of LTSs. We place such a congruence proof in the setting of networks of LTSs [20] (or LTS networks for short) and 
compositional model checking. The current article extends earlier work [21] that was conducted in parallel to [19]. Most of 
the proofs in the current article have been constructed using the Coq proof assistant [22]. Apart from our earlier work, no 
results obtained with the use of a proof assistant have been reported so far.

A popular toolbox that offers a selection of compositional approaches is Cadp [23]. Cadp offers both property-independent
approaches (e.g., compositional model generation, smart reduction, and compositional reasoning via behavioural interfaces) 
and property-dependent approaches (e.g., property-dependent reductions [11] and Partial Model Checking [6]). The formal 
semantics of concurrent systems are described using LTS networks. An LTS network consists of n LTSs representing the 
parallel processes. A set of synchronisation laws V is used to describe the possible communication, i.e., synchronisation, be-
tween the process LTSs. With this synchronisation mechanism, the usual parallel composition operators of standard process 
algebras, such as ACP, CCS, CSP, mCRL2, and LOTOS, can be encoded.

Contributions The current article considers parallel composition of LTS networks. First, given two LTS networks M and M′
of size n related via a DPBB relation B, another LTS network N of size m, and a parallel composition operator ‖σ with a 
partial function σ that specifies synchronisation between components, we show there is a DPBB relation C such that

M B M′ =⇒ M ‖σ N C M′ ‖σ N
In words, we prove that DPBB is a congruence for the parallel composition of two LTS networks. This result subsumes the 
composition of two individual LTSs via composition of LTS networks of size one.

Second, we present a method to safely decompose an LTS network in components such that the composition of the com-
ponents is equivalent to the original LTS network. All proofs for the first and second contribution have been mechanically 
verified using the Coq proof assistant and are available online.3

Third, we discuss the effectiveness of compositionally constructing state spaces with intermediate LTS minimisations 
modulo DPBB in comparison with the classical, non-compositional state space construction. The discussion is based on 
results we obtained after having conducted a number of experiments using the Cadp toolbox.

This article extends previous work [21], which originally presented the first three contributions, in a number of ways.
First, we prove for a particular definition of σ that the resulting parallel composition operator, which we refer to as ‖∩ , is 

both associative and commutative. That σ -definition defines that the transition labels in the LTSs that the components have 

3 http://www.win .tue .nl /mdse /composition /DPBB _is _a _congruence _for _synchronizing _LTSs .zip.

http://www.win.tue.nl/mdse/composition/DPBB_is_a_congruence_for_synchronizing_LTSs.zip
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in common need to synchronise, i.e., it defines synchronisation on the common alphabet of the components. Therefore, this 
parallel composition operator coincides with the CSP parallel composition operator ‖ [14]. Associativity and commutativity 
are desirable properties as they indicate that composition of more than two LTS networks may be done in any order. 
Synchronisation on the common alphabet is therefore often used in practice for compositional model checking (for instance, 
see [24–26]). In this article, we show that this can be done safely, by proving that DPBB is a congruence for LTS networks, 
as defined in [23], if parallel composition is performed with synchronisation on the common alphabet of the components.

Second, we prove that it is actually unnecessary to require synchronisation on the common alphabet for DPBB to be a 
congruence for LTS networks. This is a useful result, as that restriction excludes many LTS networks in practice. In this case, 
we generalise the congruence definition of [23].

Third, we have extended the number of test cases originally presented in [21] showing a higher variety in the effective-
ness of the approach. Crouzen and Lang [27] report on experiments comparing the run-time and memory performance of 
three compositional verification techniques. As opposed to these experiments, our experiments concern the comparison of 
compositional and classical, non-compositional state space construction.

Structure of the article Related work is discussed in Section 2. In Section 3, we discuss the notions of LTS, LTS network, 
so-called LTS network admissibility, and DPBB. Next, the formal composition of LTS networks is presented in Section 4. We 
prove that DPBB is a congruence for the composition of two LTS networks. Section 5 is on the decomposition of an LTS 
network. Decomposition allows the redefinition of a system as a set of components. Section 6 introduces an instance of the 
composition operator that is both associative and commutative. In Section 7, we prove that DPBB is a congruence for LTS 
networks, as defined in [23], if the set of synchronisation laws implements synchronisation on the common alphabet of the 
components. Furthermore, we prove that a generalisation of that definition holds as well, which demonstrates that synchro-
nisation on the common alphabet of the components is, in fact, not required. In Section 8, we apply the theoretical results 
to a set of use cases comparing a compositional construction approach with non-compositional state space construction. In 
Section 9 we present the conclusions and directions for future work.

2. Related work

Networks of LTSs are introduced in [28]. The authors mention that strong and branching bisimilarity are congruences 
for the operations supported by LTS networks. Among these operations is the parallel composition with synchronisation 
on equivalent labels. A congruence proof for branching bisimilarity has been verified in PVS by van de Pol and a textual 
proof was written, but both the textual proof and the PVS proof have not been made public [29]. An axiomatisation for 
a rooted version of divergence-preserving branching bisimulation has been performed in a Master graduation project [30]. 
However, the considered language does not include parallel composition. In this article, we formally show that DPBB is 
also a congruence for parallel composition with synchronisations between components. As DPBB is a branching bisimulation 
relation with an extra case for explicit divergence, the proof we present also formally shows that branching bisimilarity is a 
congruence for parallel composition with synchronisations between components.

Another approach supporting compositional verification is presented in [20]. Given an LTS network and a component 
selected from the network, the approach automatically generates an interface LTS from the remainder of the network. This 
remainder is called the environment. The interface LTS represents the synchronisation possibilities that are offered by the 
environment. This requires the construction and reduction of the system LTS of the environment. The advantage of this 
method is that transitions and states that do not contribute to the system LTS can be removed. In our approach only the 
system LTS of the considered component must be constructed. The environment is left out of scope until the components 
are composed.

Many process algebras support parallel composition with synchronisation on labels. Often a proof is given showing 
that some bisimilarity is a congruence for these operators [16,31–33]. To generalize the congruence proofs a series of 
meta-theories has been proposed for algebras with parallel composition [18,34,35]. In [35] the panth format is proposed. 
The authors show that strong bisimilarity is a congruence for algebras that adhere to the panth format. The focus of the 
work is on the expressiveness of the format. The author of [18] proposes so-called cool formats for four bisimilarities: 
weak bisimilarity, rooted weak bisimilarity, branching bisimilarity, and rooted branching bisimilarity. It is shown that these 
bisimilarities are congruences for the corresponding formats. In [34] similar formats are proposed for eager bisimilarity 
and branching bisimilarity. Eager bisimilarity is a kind of weak bisimilarity which is sensitive to divergence. The above 
mentioned formats do not consider DPBB.

Recently, the authors of [19] have proposed such a format for DPBB. In parallel to that work, we have proven that DPBB 
is a congruence for the parallel composition of two LTS networks with synchronisation on transition labels, using the Coq 
proof assistant [21]. In the current article, we additionally prove that DPBB is a congruence for LTS networks, as defined 
in [23]. Furthermore, we define how to compose and decompose LTS networks, and demonstrate the practical effectiveness 
of compositional model checking based on DPBB using a larger set of benchmarks than the one used previously in [21].

In earlier work, we presented decomposition for LTS transformation systems of LTS networks [36]. The work aims to 
verify the transformation of a component that may synchronise with other components. The paper proposes to calculate so 
called detaching laws which are similar to our interface laws. The approach can be modelled with our method. In fact, we 
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show that the derivation of these detaching laws does not amount to a desired decomposition, i.e., the re-composition of 
the decomposition is not equivalent to the original system (see Example 5.1 discussed in Section 5).

A projection of an LTS network given a set of indices is presented in [23]. Their projection operator is similar to the 
consistent decomposition of LTS networks that we propose. In fact, with a suitable operator for the reordering of LTS 
networks our decomposition operator is equivalent to their projection operator. The current article contributes to these 
results that admissibility properties of the LTS network are indeed preserved for such consistent decompositions.

3. Preliminaries

In this section, we introduce the notions of LTS, LTS network, and divergence-preserving branching bisimilarity of LTSs. 
The potential behaviour of processes is described by means of LTSs. The behaviour of a concurrent system is described 
by a network of LTSs [20], or LTS network for short. The semantics of an LTS network M is defined by an LTS GM , which 
describes the global behaviour of the network. To compare the behaviour of processes and systems, the notion of divergence-
preserving branching bisimilarity (DPBB) is used. DPBB is often used to reduce the state space of system specifications while 
preserving safety and liveness properties, or to compare the observable behaviour of two systems.

The semantics of a process, or a composition of several processes, can be formally expressed by an LTS as presented in 
Definition 3.1.

Definition 3.1 (Labelled transition system). An LTS G is a tuple (SG , AG , TG, IG), with

• SG a non-empty, finite set of states;
• AG a set of action labels;
• TG ⊆ SG ×AG × SG a transition relation;
• IG ⊆ SG a (non-empty) set of initial states.

Action labels in AG are denoted by a, b, c, etc. Additionally, there is a special action label τ ∈AG that represents internal, 
or hidden, system steps. A transition (s, a, s′) ∈ TG , or s a−→G s′ for short, denotes that LTS G can move from state s to state s′

by performing the a-action. The transitive reflexive closure of a−→G is denoted as a−→∗
G , and the transitive closure is denoted 

as a−→+
G .

LTS network An LTS network, presented in Definition 3.2, describes a system consisting of a finite number of concurrent 
process LTSs and a set of synchronisation laws that define the possible interaction between the processes. We write 1..n for 
the set of integers ranging from 1 to n. A vector v̄ of size n contains n elements indexed from 1 to n. For all i ∈ 1..n, v̄ i
represents the ith element of vector v̄ . The concatenation of two vectors v̄ and w̄ of size n and m, respectively, is denoted by 
v̄ ‖ w̄ . In the context of composition of LTS networks, this concatenation of vectors corresponds to the parallel composition 
of the behaviour referred to by the two vectors.

Definition 3.2 (LTS network). An LTS network M of size n is a pair (�, V), where

• � is a vector of n concurrent LTSs. For each i ∈ 1..n, we write �i = (Si, Ai, Ti, Ii).
• V is a finite set of synchronisation laws. A synchronisation law is a tuple (v̄, a), where v̄ is a vector of size n, called 

the synchronisation vector, containing synchronising action labels, and a is an action label representing the result of 
successful synchronisation. We have ∀i ∈ 1..n. v̄ i ∈ Ai ∪ {•}, where • is a special symbol denoting that �i performs no 
action. The set of result actions of a set of synchronisation laws V is defined as AV = {a | (v̄, a) ∈ V}.

The semantics of an LTS network M is defined by the LTS GM , which is obtained by combining the processes in �
according to the synchronisation laws in V as specified by Definition 3.3. The LTS network model subsumes most hiding, 
renaming, cutting, and parallel composition operators present in process algebras. For instance, hiding can be applied by 
replacing the a component in a law by τ .

Definition 3.3 (LTS network semantics). Given an LTS network M = (�, V), its semantics is defined by GM = (SM, AM , 
TM, IM), with

• IM = {〈s1, . . . , sn〉 | si ∈ Ii};
• TM and SM are the smallest relation and set, respectively, satisfying IM ⊆ SM and for all s̄ ∈ SM , a ∈ AV , we have 

s̄
a−→M s̄′ and s̄′ ∈ SM iff there exists (v̄, a) ∈ V such that for all i ∈ 1..n:{

s̄i = s̄′
i if v̄ i = •

s̄
v̄ i−→ s̄′ otherwise
i �i i
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Fig. 1. An LTS network M = (�,V) (left) and its system LTS GM (right).

• AM = {a | ∃s̄, ̄s′ ∈ SM.s̄
a−→M s̄′}.

In Fig. 1, an example of an LTS network M = (〈�1, �2〉, V) with four synchronisation laws is shown on the left, and its 
semantics in the form of an LTS GM is shown on the right. Initial states are indicated with an incoming arrow. The states of 
the system LTS GM are constructed by combining the states of �1 and �2. In this example, we have 〈1, 3〉, 〈1, 4〉, 〈2, 3〉 ∈
SM , of which 〈1, 3〉 is the single initial state of GM .

The transitions of GM in Fig. 1 are constructed by combining the transitions of �1 and �2 according to the set of 
synchronisation laws V . Law (〈c, c〉, c) specifies that the process LTSs can synchronise on their c-transitions, resulting in 
c-transitions in GM . Similarly, the process LTSs can synchronise on their d-transitions, resulting in a d-transition in GM . 
Furthermore, law (〈a, •〉, a) specifies that process �1 can perform an a-transition independently resulting in an a-transition 
in GM . Likewise, law (〈•, b〉, b) specifies that the b-transition can be fired independently by process �2. Because �1 does 
not participate in this law, it remains in state 〈1〉 in GM . The last law states that a- and e-transitions can synchronise, 
resulting in f -transitions, however, in this example the a- and e-transitions in �1 and �2 are never able to synchronise 
since state 〈2, 4〉 is unreachable.

An LTS network is called admissible iff the synchronisation laws of the network do not synchronise, rename, or cut τ -
transitions [20] as defined in Definition 3.4. The intuition behind this is that internal, i.e., hidden, behaviour should not 
be restricted by any operation. Partial model checking and compositional construction rely on LTS networks being admissi-
ble [23]. Hence, in this article, we also restrict ourselves to admissible LTS networks when presenting our composition and 
decomposition methods.

Definition 3.4 (LTS network admissibility). An LTS network M = (�, V) of size n is called admissible iff the following proper-
ties hold:

1. ∀(v̄, a) ∈ V .∃i ∈ 1..n. v̄ i = τ =⇒ ∀ j �= i. v̄ j = •; (no synchronisation of τ ’s)
2. ∀(v̄, a) ∈ V .∃i ∈ 1..n. v̄ i = τ =⇒ a = τ ; (no renaming of τ ’s)
3. ∀i ∈ 1..n. τ ∈Ai =⇒ ∃(v̄, a) ∈ V . v̄ i = τ . (no cutting of τ ’s)

Divergence-preserving branching bisimilarity To compare LTSs, we use DPBB, also called branching bisimilarity with explicit 
divergence [9,10]. DPBB supports abstraction from actions and preserves both safety and liveness properties. To simplify 
proofs we use DPBB with the weakest divergence condition (D4) presented in [10] as presented in Definition 3.5. This 
definition is equivalent to the standard definition of DPBB [10]. The smallest infinite ordinal is denoted by ω.

Definition 3.5 (Divergence-preserving branching bisimulation). A binary relation B between two LTSs G1 and G2 is a divergence-
preserving branching bisimulation iff for all s ∈ SG1 and t ∈ SG2 , s B t implies:

1. if s a−→G1 s′ then
(a) either a = τ with s′ B t;

(b) or t τ−→∗
G2

t̂
a−→G2 t′ with s B t̂ and s′ B t′ .

2. symmetric to 1.

3. if there is an infinite sequence of states (sk)k∈ω such that s = s0, sk τ−→G1 sk+1 and sk B t for all k ∈ ω, then there exists 
a state t′ such that t τ−→+

G2
t′ and sk B t′ for some k ∈ ω.

4. symmetric to 3.

Condition 3 (and its symmetric case) is illustrated in Fig. 2. For every state t that is related by B to an infinite number of 
states along an infinite path of τ -transitions, there exists at least one state t′ reachable from t via at least one τ -transition 
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Fig. 2. Condition 3 of Definition 3.5.

that is related by B to one of those states. In other words, the infinite sequence of τ -transitions cannot be simulated in t by 
zero τ -transitions. Van Glabbeek et al. [10] have proven that this condition coincides with the preservation of divergence.

Two states s ∈ SG1 and t ∈ SG2 are divergence-preserving branching bisimilar, denoted by s ↔ �
b t , iff there is a DPBB 

relation B such that s B t . We say that two LTSs G1 and G2 are divergence-preserving branching bisimilar, denoted by 
G1 ↔ �

b G2, iff ∀s1 ∈ IG1 .∃s2 ∈ IG2 . s1 ↔ �
b s2 and vice versa. Finally, we say that two LTS networks M, M′ are divergence-

preserving branching bisimilar, denoted by M ↔ �
b M′ , iff GM ↔ �

b GM′ .

4. Composition of LTS networks

This section introduces the compositional construction of LTS networks. Such a composition achieves the parallel com-
position of process LTSs, resulting in an LTS network M. For that network, GM tends to grow exponentially as processes 
are added.

An LTS network can be seen as being composed of several components, each of which consists of a number of individual 
processes in parallel composition, with intra-component synchronisation laws describing how the processes inside a compo-
nent should synchronise with each other. Furthermore, inter-component synchronisation laws define how the components 
as a whole should synchronise with each other. Compositional construction of a minimal version of the LTS defining the 
semantics of the LTS network may then be performed by first constructing the LTSs of the different components, subse-
quently minimising these, and finally combining their behaviour. Example 4.1 presents an example of a network with two 
components and an inter-component synchronisation law.

Example 4.1 (Component). Consider an LTS network M = (�, V) with processes � = 〈�1, �2, �3〉 and synchronisation 
laws V = {(〈a, •, •〉, a), (〈•, b, b〉, b), (〈c, c, c〉, c)}. We may split up the network in two components, say M1 = (〈�1〉, V1) and 
M{2,3} = (〈�2, �3〉, V{2,3}). Then, (〈c, c, c〉, c) is an inter-component law describing synchronisation between M1 and M{2,3} . 
The component M1 consists of process �1, and the set of intra-component synchronisation laws V1 = {(〈a, •, •〉, a)} op-
erating solely on �1. Similarly, component M{2,3} consists of �2 and �3, and the set of intra-component synchronisation 
laws V{2,3} = {(〈•, b, b〉, b)} operating solely on �2 and �3.

The challenge of compositional construction is to allow manipulation of the components while guaranteeing that the 
observable behaviour of the system as a whole remains equivalent modulo DPBB. Even though synchronisation laws of a 
component may be changed, we must somehow preserve synchronisations with the other components. Such a change of 
synchronisation laws occurs, for instance, when reordering the processes in a component, or renaming actions that are part 
of inter-component synchronisation laws.

In this and the following section, we limit ourselves to the composition of two components: a left and a right component. 
This simplifies notations and proofs. However, the approach can be generalised to splitting networks given two sets of 
indices indicating which processes are part of which component, i.e., a projection operator can be used to project distinct 
parts of a network into components.

In the remainder of this section, first, we formalise LTS networks composition. Then, we show that admissibility is 
preserved when two admissible networks are composed. Finally, we prove that DPBB is a congruence for composition of 
two LTS networks.

Composing LTS networks Before defining the composition of two networks, we introduce a partial function indicating how 
the inter-component laws should be constructed from the interfaces of the two networks. An inter-component law can then 
be constructed by combining the interface vectors of the components and adding a result action. This is achieved through a 
given interface function, presented in Definition 4.1, relating interface actions to result actions.

Definition 4.1 (Interface function). Consider two LTS networks M� = (�, V) and MP = (P, W) of size n and m, respectively. 
An interface function between M� and MP is a partial function σ : AV ∪ AW \ {τ } × AV ∪ AW \ {τ } � A describing 
how the interface actions of M� should be combined with interface actions of MP, and what the action label should be 
resulting from successful synchronisation. The set A is the set of actions resulting from successful synchronisation between 
� and P. The actions related by σ are considered the interface actions.
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The reason σ can be defined for pairs of actions from AV ∪AW , as opposed to an action from AV with an action from 
AW , is to allow for the cutting of actions, i.e., allowing to define that an action of one component has to synchronise with 
some action from the other component that can actually never be executed.

An interface function implicitly defines how inter-component synchronisation laws should be represented in the sepa-
rate components. These local representatives are called the interface synchronisation laws. An interface function σ for LTS 
networks M� = (�, V) and MP = (P, W) implies the following sets of interface synchronisation laws:

Vσ = {(v̄,a) ∈ V | ∃b ∈ AV ∪AW \ {τ }, c ∈ A.σ (a,b) = c}
Wσ = {(w̄,b) ∈ W | ∃a ∈ AV ∪AW \ {τ }, c ∈ A.σ (a,b) = c}

An interface synchronisation law makes a component’s potential to synchronise with other components explicit. An 
interface synchronisation law has a synchronisation vector, called the interface vector. The result action of an interface syn-
chronisation law is called an interface action. These notions are clarified further in Example 4.2.

Example 4.2 (Interface vector and interface law). Let M = (〈�1, �2, �3〉, V) be a network with inter-component synchroni-
sation law (〈a, a, b〉, c) ∈ V , a component M{1,2} = (〈�1, �2〉, V{1,2}), and a component M3 = (〈�3〉, V3). Then, 〈a, a〉 is an 
interface vector of M{1,2} , and given a corresponding interface action α for M{1,2} (α ∈ AM1 ∪ AM2 \ {τ }), an interface law
of M{1,2} is (〈a, a〉, α).

Together, the interface laws and interface function define the possible synchronisations between two components, i.e., 
the interface laws and interface function define inter-component synchronisation laws. Given two sets of laws V and W
and an interface function σ , the inter-component synchronisation laws are defined by the following function Lσ :

Lσ (V,W) = {(v̄ ‖ w̄,a) | ∃α,β.(v̄,α) ∈ V ∧ (w̄, β) ∈ W ∧ σ(α,β) = a}
The interface function σ partitions both V and W into two sets of synchronisation laws: the interface and non-interface 
synchronisation laws.

The application of the interface function, i.e., the formal composition of two LTS networks, is presented in Definition 4.2. 
We show that a component may be exchanged with a divergence-preserving branching bisimilar component iff the interface 
actions are not hidden. The interface between the component and the remainder of the network is respected when the 
interface actions remain observable.

Definition 4.2 (Composition of LTS networks). Consider LTS networks M� = (�, V) of size n and MP = (P, W) of size m. 
Let σ : AV ∪ AW \ {τ } × AV ∪ AW \ {τ } �A be an interface function describing the synchronisations between M� and 
MP. The composition of M� and MP, denoted by M� ‖σ MP, is defined as the LTS network (� ‖ P, V ‖ W), where 
V ‖ W = (V \ Vσ )• ∪ •(W \Wσ ) ∪Lσ (V, W) with (V \ Vσ )• = {(v̄ ‖ •m, a) | (v̄, a) ∈ V \ Vσ } and •(W \Wσ ) = {(•n ‖ w̄, a) |
(w̄, a) ∈W \Wσ } the sets of synchronisation laws V \Vσ postfixed with m •’s and W \Wσ prefixed with n •’s, respectively.

Our parallel composition operator ‖σ subsumes parallel composition operators from process algebras such as CCS, CSP, 
ACP, mCRL2 and LOTOS. For instance, consider the LOTOS parallel composition operator |[A]|, which defines that two com-
ponents have to synchronise on actions (or ‘gates’ in LOTOS) in A, while all other actions can be executed independently 
(with the rule that the internal action, similar to our τ , is not in A). For two LTS networks M� = (�, V), MP = (P, W), we 
can achieve the same by defining that σ(a, a) = a for all a ∈ A ∩ (AV ∪AW ), and leaving σ undefined for all other pairs of 
actions.

As presented in Proposition 4.1, LTS networks that are composed (according to Definition 4.2) from two admissible 
networks are admissible as well.

Proposition 4.1. Let M� = (�, V) and MP = (P, W) be admissible LTS networks of size n and m, respectively. Furthermore, let 
σ :AV ∪AW \ {τ } ×AV ∪AW \ {τ } �A be an interface function. Then, the network M =M� ‖σ MP is also admissible.

Proof. We show that M satisfies Definition 3.4:

• No synchronisation and renaming of τ ’s. Let (v̄, a) ∈ (V \ Vσ )• ∪ •(W \Wσ ) ∪ Lσ (V, W) be a synchronisation law with 
v̄ i = τ for some i ∈ 1..(n + m). We distinguish two cases:
∗ (v̄, a) ∈ (V \ Vσ )• ∪ •(W \Wσ ). By construction of (V \ Vσ )• and •(W \Wσ ), and admissibility of M� and MP, 

we have ∀ j ∈ 1..n. v̄ j �= • =⇒ i = j, ∀ j ∈ (n + 1)..(n + m). v̄ j �= • =⇒ i = j and a = τ . Hence, it holds that ∀ j ∈
1..(n + m). v̄ j �= • =⇒ i = j (no synchronisation of τ ’s) and a = τ (no renaming of τ ’s).

∗ (v̄, a) ∈ Lσ (V, W). By definition of Lσ (V, W), there are interface laws (v̄ ′, α) ∈ V and (v̄ ′′, β) ∈ W such that 
σ(α, β) = a. Hence, either 1 ≤ i ≤ n with v̄ ′

i = τ or n < i ≤ n + m with v̄ ′′
i−n = τ . Since M� and MP are admis-

sible, we must have α = τ or β = τ , respectively. However, the interface function does not allow τ as interface 
actions, therefore, the proof follows by contradiction.
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It follows that M does not allow synchronisation and renaming of τ ’s.
• No cutting of τ ’s. Let (� ‖ P)i be a process (i ∈ 1..(n + m)) with τ ∈ A(�‖P)i . We distinguish the two cases 1 ≤ i ≤ n and 

n < i ≤ n +m. It follows that τ ∈A�i for the former case and τ ∈APi−n for the latter case. Since both M� and MP are 
admissible and no actions are removed when constructing (V \ Vσ )• and •(W \Wσ ) from V and W , respectively, in 
both cases there exists a (v̄, a) ∈ (V \ Vσ )• ∪ •(W \Wσ ) ∪ Lσ (V, W) such that v̄ i = τ . Hence, the composite network 
M does not allow cutting of τ ’s.

Since the three admissibility properties hold, the composed network M satisfies Definition 3.4. �
DPBB is a congruence for the composition of two LTS networks Proposition 4.2 shows that DPBB is a congruence for the compo-
sition of two LTS networks according to Definition 4.2. It is worth noting that an interface function does not relate τ ’s, i.e., 
synchronisation of τ -actions is not allowed.

Note that Proposition 4.2 subsumes the composition of two LTSs, via composition of LTS networks of size one with trivial 
sets of intra-component synchronisation laws.

Proposition 4.2. Consider LTS networks M� = (�, V) and M�′ = (�′, V ′), both of size n, and MP = (P, W) of size m. Let σ be an 
interface function defining the synchronisation of actions in AV ∩AV ′ and AW . DPBB is a congruence for the composition of two LTS 
networks, i.e., it holds that

M� ↔ �
b M�′ =⇒ M� ‖σ MP ↔ �

b M�′ ‖σ MP

Proof. Intuitively, we have M� ‖σ MP ↔ �
b M�′ ‖σ MP because M� ↔ �

b M�′ and the interface with MP is respected. 
Since M� ↔ �

b M�′ , whenever a transition labelled with an interface action α in M� is able to perform a transition 
together with MP, then M�′ is able to simulate the interface α-transition, i.e., perform the transition, possibly after having 
performed a sequence of τ -transitions in which the visited states are all divergence-preserving branching bisimilar with 
each other, and synchronise with MP as well. It follows that the branching structure and divergence is preserved. For 
the sake of brevity we define the following shorthand notations: M = M� ‖σ MP and M′ = M�′ ‖σ MP. We show 
M� ↔ �

b M�′ =⇒ M ↔ �
b M′ .

Let B be a DPBB relation between the semantics of M� and M�′ , i.e., GM�
B GM�′ . By definition, we have M ↔ �

b M′
iff GM ↔ �

b GM′ , which holds iff there exists a DPBB relation C with IM C IM′ . We define C as follows, for states 
p̄ ∈ SM�

, q̄ ∈ SM�′ , r̄ ∈ SMP :

C = {(p̄ ‖ r̄, q̄ ‖ r̄) | p̄ B q̄}
Relation B relates the states of GM�

and GM�′ , addressing the component that is subject to change. The unchanged 
component of the network is related via the shared state vector r̄ , i.e., it relates the states of GMP to themselves.

To prove the proposition we have to show that C is a DPBB relation. This requires proving that C relates the initial states 
of GM and GM′ and that C satisfies the conditions of Definition 3.5.

Initial. C relates the initial states of GM and GM′ , i.e., IM C IM′ . We prove that ∀s̄ ∈ IM. ∃t̄ ∈ IM′ . s̄ C t̄ . The symmetric 
case can be proven similarly. Take an initial state s̄ = p̄ ‖ r̄ ∈ IM , with p̄ ∈ IM�

and r̄ ∈ IMP . Since IM�
B IM�′ and 

p̄ ∈ IM�
, there exists a t̄ ∈ IM�′ such that p̄ B t̄ . Therefore, we have p̄ ‖ r̄ C t̄ ‖ r̄. Since p̄ ‖ r̄ is an arbitrary initial state 

in IM the proof holds for all states in IM . Furthermore, since the other case is symmetrical it follows that IM C IM′ .

Def. 3.5, case 1. For s̄ ∈ SM and t̄ ∈ SM′ , if s̄ C t̄ and s̄ a−→M s̄′ then either a = τ ∧ s̄′ C t̄ , or t̄ τ−→∗
M′ ˆ̄t a−→M′ t̄′ ∧ s̄ C ˆ̄t ∧ s̄′ C t̄′ . To 

better distinguish between the two parts of the networks, we ‘unfold’ C and reformulate the proof obligation as follows, 
with s̄ = p̄ ‖ r̄ and t̄ = q̄ ‖ r̄: If p̄ B q̄ and p̄ ‖ r̄

a−→M p̄′ ‖ r̄′ then either a = τ ∧ p̄′ B q̄ ∧ r̄ = r̄′ , or q̄ ‖ r̄
τ−→∗
M′ ˆ̄q ‖ r̄

a−→M′ q̄′ ‖
r̄′ ∧ p̄ B ˆ̄q ∧ p̄′ B q̄′ . Consider synchronisation law (v̄ ‖ w̄, a) ∈ (V \Vσ )• ∪ •(W \Wσ )∪Lσ (V, W) enabling the transition 
p̄ ‖ r̄

a−→M p̄′ ‖ r̄′ . We distinguish three cases:
1. (v̄ ‖ w̄, a) ∈ (V \ Vσ )• . It follows that w̄ = •m , and thus, subsystem MP does not participate. Hence, we have r̄ = r̄′

and (v̄, a) ∈ V enables a transition p̄
a−→M�

p̄′ . Since p̄ B q̄, by Definition 3.5, we have:
∗ a = τ with p̄′ B q̄. Because p̄′ B q̄ and r̄ = r̄′ , the proof trivially follows.

∗ q̄
τ−→∗
M�′

ˆ̄q a−→M�′ q̄′ with p̄ B ˆ̄q and p̄′ B q̄′ . These transitions are enabled by laws in V ′ \ V ′
σ . The set of derived 

laws are of the form (v̄ ′ ‖ •m, τ ) ∈ (V ′ \V ′
σ )• enabling a τ -path from q̄ ‖ r̄ to ˆ̄q ‖ r̄, and there is a law (v̄ ′ ‖ •m, a) ∈

(V ′ \ V ′
σ )• enabling ˆ̄q ‖ r̄

a−→M′ q̄′ ‖ r̄. From this and r̄′ = r̄ it follows that the proof obligation is satisfied.
2. (v̄ ‖ w̄, a) ∈ •(W \Wσ ). It follows that v̄ = •n , and thus, subsystems M� and M�′ do not participate. We have 

p̄ = p̄′ and r̄ a−→MP r̄′ . We take q̄′ = q̄. Hence, we can conclude q̄ ‖ r̄
τ−→∗
M′ q̄ ‖ r̄

a−→M q̄′ ‖ r̄′ , p̄ B q̄, and p̄′ B q̄′ .
3. (v̄ ‖ w̄, a) ∈ Lσ (V, W). Both parts of the network participate in the transition p̄ ‖ r̄

a−→M p̄′ ‖ r̄′ . By definition of 
Lσ (V, W), there are (v̄, α) ∈ V , (w̄, β) ∈ W and σ(α, β) = a such that (v̄, α) enables a transition p̄

α−→M�
p̄′
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and (ū, β) enables a transition q̄
β−→ q̄′ . Since p̄ B q̄ and α ∈ AV \ {τ }, by Definition 3.5, we must have that 

q̄
τ−→∗
M′

�′
ˆ̄q α−→M′

�′ q̄′ with p̄ B ˆ̄q and p̄′ B q̄′ . Since τ actions are not related by the interface function, we must have a 

set of synchronisation laws of the form (v̄ ′ ‖ •m, τ ) ∈ (V ′ \ V ′
σ )• enabling a τ -path q̄ ‖ r̄

τ−→∗
M′ ˆ̄q ‖ r̄.

Let (v̄ ′, α) ∈ V ′ be the synchronisation law enabling the α-transition. Since σ(α, β) = a, α is an interface action and 
does not occur in V ′ \ V ′

σ . It follows that (v̄ ′, α) ∈ V ′
σ , and consequently (v̄ ′ ‖ w̄, a) ∈ Lσ (V ′, W). Law (v̄ ′ ‖ w̄, a)

enables the transition ˆ̄q ‖ r̄
a−→M′ q̄′ ‖ r̄′ , and the proof follows.

Def. 3.5, case 2. If ̄s C t̄ and ̄t a−→M′ t̄′ then either a = τ ∧ s̄′ C t̄ , or ̄s τ−→∗
M

ˆ̄s a−→M s̄′ ∧ s̄ C ˆ̄t ∧ s̄′ C t̄′ . This case is symmetric to the 
previous case.

Def. 3.5, case 3. If s̄ C t̄ and there is an infinite sequence of states (s̄k)k∈ω such that s̄ = s̄0 , s̄k τ−→M s̄k+1 and s̄k C t̄ for all k ∈ ω, 
then there exists a state ̄t′ such that ̄t τ−→+

M′ t̄′ and s̄k C t̄′ for some k ∈ ω. Again we reformulate the proof obligation to better 
distinguish between the two components, with s̄ = p̄ ‖ r̄ and t̄ = q̄ ‖ r̄: if p̄ ‖ r̄ C q̄ ‖ r̄ and there is an infinite sequence of 
states (p̄k ‖ r̄k)k∈ω such that p̄ ‖ r̄ = p̄0 ‖ r̄0 , p̄k ‖ r̄k τ−→M p̄k+1 ‖ r̄k+1 and p̄k B q̄ for all k ∈ ω, then there exist states q̄′ and r̄′

such that q̄ ‖ r̄
τ−→+
M′ q̄′ ‖ r̄′ and p̄k B q̄′ for some k ∈ ω.

We distinguish two cases:

1. All steps in the τ -sequence are enabled in M� , i.e., ∀k ∈ ω. p̄k τ−→M�
p̄k+1. Since p̄ B q̄, by condition 3 of Defini-

tion 3.5, it follows that there is a state q̄′ with q̄ τ−→+q̄′ and p̄k B q̄′ for some k ∈ ω. Since τ is not an interface action, 
the synchronisation laws enabling q̄

τ−→+q̄′ are also present in M′ . Hence, we have q̄ ‖ r̄
τ−→+q̄′ ‖ r̄ and p̄k B q̄′ for 

k ∈ ω.
2. There is a k ∈ ω with ¬p̄k τ−→M�

p̄k+1. We do have p̄k ‖ r̄k τ−→M p̄k+1 ‖ r̄k+1 with p̄k B q̄ (see the antecedent at the 
start of the ‘divergence’ case). Since the τ -transition is not enabled in M� the transition must be enabled by a 
synchronisation law (v̄ ‖ w̄, τ ) ∈ •(W \Wσ ) ∪Lσ (V, W). We distinguish two cases:

∗ (v̄ ‖ w̄, τ ) ∈ •(W \Wσ ). The transition p̄k ‖ r̄k τ−→M p̄k+1 ‖ r̄k+1 is enabled by (v̄ ‖ w̄, τ ) ∈ •(W \Wσ ). Therefore, 
there is a transition r̄k τ−→MP r̄k+1 enabled by (w̄, τ ) ∈ W \ Wσ . Since this transition is part of an infinite τ -

sequence, there is a path p̄ ‖ r̄
τ−→∗
M p̄k ‖ r̄k . Furthermore, condition 1b of Definition 3.5 holds for C, hence, there is 

a state q̄′ ∈ SM�′ and a transition q̄ ‖ r̄
τ−→∗
MP

q̄′ ‖ r̄k with p̄k ‖ r̄k C q̄′ ‖ r̄k . Therefore, we have q̄ ‖ r̄
τ−→+
M′ q̄′ ‖ r̄k+1. 

Finally, since p̄k ‖ r̄k C q̄′ ‖ r̄k , it follows that p̄k B q̄′ .
∗ (v̄ ‖ w̄, τ ) ∈Lσ (V, W). By definition of Lσ (V, W), there are two laws (v̄, α) ∈ V and (ū, β) ∈W with σ(α, β) = τ . 

The laws enable transitions p̄k α−→M�
p̄k+1 and r̄k β−→MP r̄k+1, respectively. Since p̄k B q̄ and α �= τ , by Defini-

tion 3.5, there are states ˆ̄q, ̄q′ ∈ SM�′ such that there is a sequence q̄ τ−→∗
M�′

ˆ̄q α−→M�′ q̄′ with p̄ B ˆ̄q and p̄k+1 B q̄′ . 
Let (v̄ ′, α) ∈ V ′ be the law enabling the α-transition. Since σ(α, β) = τ , and consequently (v̄ ′ ‖ w̄, τ ) ∈ σ(X ′, Y). 
Furthermore, the τ -path from q̄ to ˆ̄q is enabled by laws of the form (v̄ ′′, τ ) ∈ V ′ \ V ′

σ . Hence, there is a series of 
transitions q̄ ‖ r̄

τ−→∗
M′ ˆ̄q ‖ r̄k τ−→M′ q̄′ ‖ r̄k+1. Finally, recall that p̄k+1 B q̄′ . Hence, also in this case the proof obligation 

is satisfied.
Def. 3.5, case 4. If ̄s C t̄ and there is an infinite sequence of states (t̄k)k∈ω such that ̄t = t̄0 , ̄tk τ−→M′ t̄k+1 and ̄s C t̄k for all k ∈ ω, then 

there exists a state s̄′ such that s̄ τ−→+
M s̄′ and s̄′ C t̄k for some k ∈ ω. This case is symmetric to the previous case. �

5. Decomposition of LTS networks

In Section 4, we discussed the composition of LTS networks, in which a system is constructed by combining two sub-
networks. However, for compositional model checking approaches, it should also be possible to correctly decompose LTS 
networks. In this case the inter-component laws are already known. Therefore, we can derive a set of interface laws and an 
interface function specifying how the system is decomposed into components.

Consider the decomposition of an LTS network M = (� ‖ P, V) into components M� and MP according to some 
interface function σ . We denote the size of � by n and the size of P by m. First, the set of synchronisation laws Z is 
partitioned into three disjoint sets: 1) ll(V), the laws only applicable on the processes in � (the function ll selects the 
subset of laws in V that have a vector in which the last m entries are •, and); 2) rl(W), the laws only applicable on the 
processes in P (the function rl selects the subset of laws in W that have a vector in which the first n entries are •); and 
3) il(V), the inter-component laws (the laws not in ll(V) and rl(V)).

Next, consider two functions f , g : il(V) → A \ {τ } from inter-component laws to interface actions. Using those func-

tions, the inter-component laws can be decomposed into sets 
←−−−
il(V) = {(v̄, f (x)) | x = (v̄ ‖ w̄, a) ∈ il(V)} and 

−−−→
il(V) =

{(w̄, g(x)) | x = (v̄ ‖ w̄, a) ∈ il(V)} of interface laws over � and P, respectively. In a similar way, ll(V) and rl(V) can be 
decomposed into sets 

←−−−
ll(V) and 

−−−→
ll(V), and 

←−−−
rl(V) and 

−−−→
rl(V), respectively, with the vectors of 

−−−→
ll(V) and 

←−−−
rl(V) only 

consisting of • entries.

Finally, the components are defined as M� = (�, 
←−−−
ll(V) ∪ ←−−−

il(V)) and MP = (P, 
−−−→
rl(V) ∪ −−−→

il(V)).
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To be able to apply Proposition 4.2 for compositional state space construction, the composition of the decomposed LTS 
networks must be equivalent to the original system. If this holds we say a decomposition is consistent with respect to M.

Definition 5.1 (Consistent decomposition). Consider an LTS network M = (� ‖ P, V). Say LTS network M is decomposed into 
components M� = (�, 

←−−−
ll(V) ∪ ←−−−

il(V)) and MP = (P, 
−−−→
rl(V) ∪ −−−→

il(V)) according to some interface function σ . Such a 
decomposition of M into components M� and MP is called consistent with respect to M iff M =M� ‖σ MP.

To show that a decomposition is consistent with the original system it is sufficient to show that the set of inter-
component laws of the original system is equivalent to the set of inter-component laws generated by the interface function:

Lemma 5.1. Consider an LTS network M = (� ‖ P, V). A consistent decomposition of M into components M� = (�, 
←−−−
ll(V) ∪←−−−

il(V)) and MP = (P, 
−−−→
rl(V)∪−−−→

il(V)) with interface function σ = {( f (v̄, a), g(v̄, a), a) | (v̄, a) ∈ il(V)} is guaranteed if il(V) =
Lσ (

←−−−
il(V), 

−−−→
il(V)), A←−−−−

ll(V)
∩A←−−−−

il(V)
= ∅, and A−−−−→

rl(V)
∩A−−−−→

il(V)
= ∅.

Proof. The decomposition of M = (� ‖ P, V) into components M� = (�, 
←−−−
ll(V) ∪ ←−−−

il(V)) and MP = (P, 
−−−→
rl(V) ∪ −−−→

il(V))

is consistent iff M = M� ‖σ MP, which is the case iff V = ←−−−
ll(V) ∪ ←−−−

il(V) ‖ −−−→
rl(V) ∪ −−−→

il(V) (Definition 4.2). This means 
that we must have V = ((

←−−−
ll(V) ∪ ←−−−

il(V)) \ (
←−−−
ll(V) ∪ ←−−−

il(V))σ )• ∪ •((−−−→
rl(V) ∪ −−−→

il(V)) \ (
−−−→
rl(V) ∪ −−−→

il(V))σ ) ∪ Lσ (
←−−−
ll(V) ∪←−−−

il(V), 
−−−→
rl(V)∪−−−→

il(V)). Before we prove that this holds, let us number the antecedent propositions of the lemma: il(V) =
Lσ (

←−−−
il(V), 

−−−→
il(V)) (1), A←−−−−

ll(V)
∩ A←−−−−

il(V)
= ∅ (2), and A−−−−→

rl(V)
∩ A−−−−→

il(V)
= ∅ (3). As V consists of three disjoint sets ll(V), 

rl(V) and il(V), we show that ll(V) = ((
←−−−
ll(V) ∪ ←−−−

il(V)) \ (
←−−−
ll(V) ∪ ←−−−

il(V))σ )• , rl(V) = •((−−−→
rl(V) ∪ −−−→

il(V)) \ (
−−−→
rl(V) ∪−−−→

il(V))σ ), and il(V) =Lσ (
←−−−
ll(V) ∪ ←−−−

il(V), 
−−−→
rl(V) ∪ −−−→

il(V)).
By construction of 

←−−−
il(V) and the definition of Vσ and Wσ (see Section 4), we have A←−−−−

il(V)
= A

(
←−−−−
ll(V)∪←−−−−

il(V))σ
and 

A−−−−→
il(V)

= A
(
−−−−→
rl(V)∪−−−−→

il(V))σ
(4). Furthermore, from (2) and (3) it follows that 

←−−−
ll(V) and 

−−−→
rl(V) are disjoint from 

←−−−
il(V) and 

−−−→
il(V), respectively. Thus, 

←−−−
ll(V) and 

−−−→
rl(V) are disjoint from (

←−−−
ll(V) ∪ ←−−−

il(V))σ and (
−−−→
rl(V) ∪ −−−→

il(V))σ (5), respectively, 
implying that 

←−−−
il(V) = (

←−−−
ll(V) ∪ ←−−−

il(V))σ and 
−−−→
il(V) = (

−−−→
rl(V) ∪ −−−→

il(V))σ (6). It follows that ll(V) (5,6)= ((
←−−−
ll(V) ∪ ←−−−

il(V)) \←−−−
il(V))• (6)= ((

←−−−
ll(V) ∪ ←−−−

il(V)) \ (
←−−−
ll(V) ∪ ←−−−

il(V))σ )• and, symmetrically, rl(V) (5,6)= •((−−−→
rl(V) ∪ −−−→

il(V)) \ (
−−−→
rl(V) ∪ −−−→

il(V))σ ).

Recall that 
←−−−
ll(V) and 

−−−→
rl(V) do not have any result actions in common with 

←−−−
il(V) and 

−−−→
il(V), respectively (2,3), 

and that interface actions defined by σ are produced by the same functions f and g that are used to produce the re-

sult actions of sets 
←−−−
il(V) and 

−−−→
il(V), respectively. These two facts and Definition 4.2 (synchronisation via σ ) imply that 

Lσ (
←−−−
ll(V) ∪ ←−−−

il(V), 
−−−→
rl(V) ∪ −−−→

il(V)) (5,6,σ )= Lσ (
←−−−
il(V), 

−−−→
il(V)) (1)= il(V). Hence, the decomposition of M is consistent if 

il(V) =Lσ (
←−−−
il(V), 

−−−→
il(V)) (1), A←−−−−

ll(V)
∩A←−−−−

il(V)
= ∅ (2), and A−−−−→

rl(V)
∩A−−−−→

il(V)
= ∅ (3). �

Indeed, it is possible to derive an inconsistent decomposition as shown in Example 5.1.

Example 5.1 (Inconsistent decomposition). For an LTS network M = (� ‖ P, V), consider a set of inter-component laws 
il(V) = {(〈a, b〉, c), (〈b, a〉, c)}. To generate interface actions for a decomposition into LTS networks M� = (�, 

←−−−
ll(V) ∪←−−−

il(V)) and MP = (P, 
−−−→
rl(V) ∪ −−−→

il(V)), consider the functions f , g that relate inter-component laws with interface actions 
solely based on the result action of the input law, i.e., ∀(v̄, a), (w̄, b) ∈ il(V). a = b ⇐⇒ f ((v̄, a)) = f ((w̄, b)) ∨ g((v̄, a)) =
g((w̄, b)). We define that f ((a, b)) = f ((b, a)) = α and g((a, b)) = g((b, a)) = β , with α, β ∈ A \ {τ }. Partitioning the laws 
il(V) results in the sets of interface laws 

←−−−
il(V) = {(〈a〉, α), (〈b〉, α)} and 

−−−→
il(V) = {(〈b〉, β), (〈a〉, β)}. This system implies 

the interface function σ(α, β) = c. The derived set of inter-component laws is then Lσ (
←−−−
ll(V) ∪ ←−−−

il(V), 
−−−→
rl(V) ∪ −−−→

il(V)) =
{(〈a, a〉, c), (〈a, b〉, c), (〈b, a〉, c), (〈b, b〉, c)} �= il(V). Hence, this decomposition is not consistent with the original system.

However, a consistent decomposition can always be derived. Propositions 5.1 and 5.2 give functions f and g that guar-
antee a consistent decomposition. Consider a synchronisation law (v̄ ‖ w̄, a). The idea is to encode this synchronisation law 
directly in the interface function, by making sure that f and g are injections: for no two different interface vectors v̄ , v̄ ′ , 
we have f (v̄) = f (v̄ ′), and for no two different interface vectors w̄ , w̄ ′ , we have g(w̄) = g(w̄ ′). This way it is explicit which 
interface law corresponds to which inter-component law.

In Proposition 5.1, for each synchronisation law (v̄ ‖ w̄,a) ∈ il(V), we create unique interface actions αv̄ and αw̄ and 
define that σ(αv̄ , αw̄) = a.

Proposition 5.1. Consider an LTS network M = (� ‖ P, V). To decompose M into components M� = (�, 
←−−−
ll(V) ∪ ←−−−

il(V)) and 
MP = (P, 

−−−→
rl(V) ∪ −−−→

il(V)), first, we partition V into ll(V), rl(V) and il(V). For all (v̄ ‖ w̄, a) ∈ il(V), we define the functions 
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producing interface actions as f ((v̄ ‖ w̄, a)) = αv̄ and g((v̄ ‖ w̄, a)) = αw̄ , where αv̄ /∈ A←−−−−
ll(V)

∪ {τ } and αw̄ /∈ A−−−−→
rl(V)

∪ {τ } are 
unique interface actions identified by the corresponding interface law, that is, ∀(v̄ ‖ w̄, a), (v̄ ′ ‖ w̄ ′, b) ∈ il(V). v̄ = v̄ ′ ⇐⇒ αv̄ =
αv̄ ′ and ∀(v̄ ‖ w̄, a), (v̄ ′ ‖ w̄ ′, b) ∈ il(V). w̄ = w̄ ′ ⇐⇒ αw̄ = αw̄ ′ . The decomposition of M into M� = (�, 

←−−−
ll(V) ∪ ←−−−

il(V)) and 
MP = (P, 

−−−→
rl(V) ∪ −−−→

il(V)) given by f and g is consistent.

Proof. Functions f and g imply the interface function σ = {(αv̄ , αw̄ , a) | (v̄ ‖ w̄, a) ∈ il(V)}, and sets of interface laws ←−−−
il(V) = {(v̄, αv̄) | (v̄ ‖ w̄, a) ∈ il(V)} and 

−−−→
il(V) = {(w̄, αw̄) | (v̄ ‖ w̄, a) ∈ il(V)}.

By Lemma 5.1, we have to show:

• il(V) = Lσ (
←−−−
il(V), 

−−−→
il(V)): By (1) the definition of Lσ , (2) (

←−−−
ll(V) ∪ ←−−−

il(V))σ = ←−−−
il(V)σ , (3) (

−−−→
rl(V) ∪ −−−→

il(V))σ =−−−→
il(V)σ , and (4) the construction of 

←−−−
il(V), 

−−−→
il(V), and σ , it follows that Lσ (

←−−−
il(V), 

−−−→
il(V)) (1)= {(v̄ ‖ w̄, a) | (v̄, αv̄) ∈

(
←−−−
ll(V) ∪ ←−−−

il(V))σ ∧ (w̄, αw̄) ∈ (
−−−→
rl(V) ∪ −−−→

il(V))σ ∧ σ(αv̄ , αw̄) = a} (2,3)= {(v̄ ‖ w̄, a) | (v̄, αv̄) ∈ ←−−−
il(V)σ ∧ (w̄, αw̄) ∈−−−→

il(V)σ ∧ σ(αv̄ , αw̄) = a} (4)= {(v̄ ‖ w̄, a) | (v̄ ‖ w̄, a) ∈ il(V)} = il(V).
• A←−−−−

ll(V)
∩A←−−−−

il(V)
= ∅: Since for all αv̄ ∈A←−−−−

il(V)
, we have αv̄ /∈A←−−−−

ll(V)
∪ {τ }, A←−−−−

ll(V)
and A←−−−−

il(V)
are disjoint.

• A−−−−→
rl(V)

∩A−−−−→
il(V)

= ∅: Since for all αw̄ ∈A−−−−→
il(V)

, we have αw̄ /∈A−−−−→
rl(V)

∪ {τ }, A−−−−→
rl(V)

and A−−−−→
il(V)

are disjoint. �
Example 5.2. Consider an admissible LTS network with the following synchronisation laws:

V = {(〈a,•,a〉,a), (〈a,a,•〉,a), (〈b,b,b〉, τ ), (〈c,•, c〉, c)}
If we want to decompose the associated LTS network into a component containing the first two processes and a 
component containing the third process, we first partition V into ll(V) = {(〈a, a, •〉, a)}, rl(V) = ∅, and il(V) =
{(〈a, •, a〉, a), (〈b, b, b〉, τ ), (〈c, •, c〉, c)}. From these sets, along the lines of Proposition 5.1, we can derive the following sets 
of synchronisation laws:

←−−−
ll(V) = {(〈a,a〉,a)}
−−−→
rl(V) = ∅
←−−−
il(V) = {(〈a,•〉,α〈a,•〉), (〈b,b〉,α〈b,b〉), (〈c,•〉,α〈c,•〉)}−−−→
il(V) = {(〈a〉,α〈a〉), (〈b〉,α〈b〉), (〈c〉,α〈c〉)}
σ = {(α〈a,•〉,α〈a〉,a), (α〈b,b〉,α〈b〉, τ ), (α〈c,•〉,α〈c〉, c)}

Proposition 5.2 proposes an alternative decomposition that is implemented in Cadp’s smart reduction [15]. The idea is 
(1) to generate only interface synchronisation laws of the form (a, a, b), so that components always synchronise through 
a common label a, while (2) keeping a equal to b whenever possible, in which cases we avoid the introduction of new 
interface actions. Laws in this simple form make the decomposition more straightforward.

Proposition 5.2. Consider an LTS network M = (� ‖ P, V). To decompose M into components M� = (�, 
←−−−
ll(V) ∪ ←−−−

il(V)) and 
MP = (P, 

−−−→
rl(V) ∪ −−−→

il(V)), we can partition V into ll(V), rl(V) and il(V). For all (v̄, a) ∈ il(V), we define the functions f , g
producing interface actions as

f (v̄,a) = g(v̄,a) =
{

a if visible-unique(a)

α(v̄,a) otherwise

where each α(v̄,a) /∈ A←−−−−
ll(V)

∪ A−−−−→
rl(V)

∪ {τ } is a unique interface action identified by the corresponding inter-component synchro-

nisation law, that is, ∀(v̄, a), (w̄, b) ∈ il(V). v̄ = w̄ ⇐⇒ αv̄ = αw̄ , and where visible-unique(a) is defined as the following 
predicate:

visible-unique(a) � a �= τ ∧ ∀(v̄,a), (w̄,a) ∈ il(V). v̄ = w̄

The decomposition of M into M� = (�, 
←−−−
ll(V) ∪ ←−−−

il(V)) and MP = (P, 
−−−→
rl(V) ∪ −−−→

il(V)) using f and g is consistent.

The proof of Proposition 5.2 is similar to the proof of Proposition 5.1. The most relevant difference is the fact that 
σ(a, a) = a if (v̄ ‖ w̄, a) ∈ il(V) and a is unique in il(V), i.e., visible-unique(a) holds. In this case we must also have 
A←−−−− ∩A←−−−− = ∅ and A−−−−→ ∩A−−−−→ = ∅, otherwise a contradiction with visible-unique(a) can be derived.

ll(V) il(V) rl(V) il(V)
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The decomposition of Proposition 5.2 implies the interface function:

σ = {(αv̄‖w̄ ,αv̄‖w̄ ,a) | (v̄ ‖ w̄,a) ∈ il(V) ∧ ¬visible-unique(a)}
∪ {(a,a,a) | (v̄ ‖ w̄,a) ∈ il(V) ∧ visible-unique(a)}

Furthermore, it implies the following sets of interface synchronisation laws:
←−−−
il(V) = {(v̄,αv̄‖w̄) | (v̄ ‖ w̄,a) ∈ il(V) ∧ ¬visible-unique(a)}

∪ {(v̄,a) | (v̄ ‖ w̄,a) ∈ il(V) ∧ visible-unique(a)}
−−−→
il(V) = {(w̄,αv̄‖w̄) | (v̄ ‖ w̄,a) ∈ il(V) ∧ ¬visible-unique(a)}

∪ {(w̄,a) | (v̄ ‖ w̄,a) ∈ il(V) ∧ visible-unique(a)}

Example 5.3. Consider again the admissible LTS network of Example 5.2 and its intended decomposition. Its set of syn-
chronisation laws V can be decomposed along the lines of Proposition 5.2 as follows, using the same definitions of ll(V), 
rl(V) and il(V):

←−−−
il(V) = {(〈a,•〉,α〈a,•,a〉), (〈b,b〉,α〈b,b,b〉), (〈c,•〉, c)}
−−−→
il(V) = {(〈a〉,α〈a,•,a〉), (〈b〉,α〈b,b,b〉), (〈c〉, c)}
σ = {(α〈a,•,a〉,α〈a,•,a〉,a), (α〈b,b,b〉,α〈b,b,b〉, τ ), (c, c, c)}

Preservation of Admissibility Proposition 5.3 shows that LTS networks resulting from the consistent decomposition of an ad-
missible LTS network are also admissible. Hence, consistent decomposition is compatible with the compositional verification 
approaches presented in [23].

Proposition 5.3. Consider an admissible LTS network M = (� ‖ P, V), with � of size n and P of size m. If the decomposition (Propo-

sition 5.1 and Proposition 5.2) into components M� = (�, 
←−−−
ll(V) ∪ ←−−−

il(V)) and MP = (P, 
−−−→
rl(V) ∪ −−−→

il(V)) is consistent, then M�

and MP are also admissible.

Proof. We show that M� satisfies Definition 3.4. The proof for MP is similar.

No synchronisation and renaming of τ ’s. Let (v̄, a) ∈ ←−−−
ll(V)∪←−−−

il(V) be a synchronisation law such that v̄ i = τ for some i ∈ 1..n. 
We distinguish two cases:

• (v̄, a) ∈ ←−−−
il(V). Since (v̄, a) is an interface law and the decomposition is consistent, its result action a may not be 

τ . However, since M is admissible, no renaming of τ ’s is allowed. By contradiction it follows that (v̄, a) /∈ ←−−−
il(V), 

completing this case.

• (v̄, a) ∈ ←−−−
ll(V). By construction of 

←−−−
ll(V), there exists a law (v̄ ‖ •m, a) ∈ ll(V). Since ll(V) ⊆ V , by admissibility of 

M, we have ∀ j ∈ 1..n. v̄ j �= • =⇒ i = j (no synchronisation of τ ’s) and a = τ (no renaming of τ ’s).

No cutting of τ ’s. Let �i be a process with i ∈ 1..n such that τ ∈ A�i . Since M is admissible there exists a law (v̄ ‖ w̄, a) ∈
ll(V) ∪ rl(V) ∪ il(V) such that (v̄ ‖ ū)i = τ . We distinguish three cases:

• (v̄ ‖ w̄, a) ∈ ll(V). Since (v̄ ‖ w̄)i = τ and i ≤ n it follows that v̄ i = τ . By construction of 
←−−−
ll(V), there is a (v̄, a) ∈←−−−

ll(V) with v̄ i = τ .
• (v̄ ‖ w̄, a) ∈ rl(V). In this case we must have i > n which contradicts our assumption that i ∈ 1..n. The proof follows 

by contradiction.
• (v̄ ‖ w̄, a) ∈ il(V). Then, (v̄ ‖ w̄, a) is an inter-component law with at least one participating process for each compo-

nent. Hence, there exists a j ∈ (n + 1)..m such that (v̄ ‖ w̄) j �= •. Moreover, since M is admissible, no synchronisation 
of τ ’s is allowed. Therefore, since (v̄ ‖ w̄) j �= •, we must have j = i. However, this would mean j ∈ 1..n, contradicting 
j ∈ (n + 1)..m. By contradiction the proof follows.

We conclude that M� does not cut τ ’s.
All three admissibility properties hold for M� and MP. Hence, the LTS networks resulting from the decomposition satisfy 
Definition 3.4. �
6. Associative and commutative LTS network composition

In this section we create an instance of the composition operator that is commutative and associative. This operator uses 
an interface function that synchronises the actions of components that they have in common, i.e., their common alphabet. 
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It is desirable for a parallel composition operator to be both associative and commutative when used for partial model 
checking or compositional state space construction as then the composition order is irrelevant with respect to the resulting 
LTS. It allows users to select a composition order. In practice, often, the chosen composition order has a big impact on 
the effectiveness of compositional state space construction [27,37]. Hence, synchronisation on the common alphabet of 
components is frequently used in practice (for instance, see [24–26]).

Definition 6.1 (Composition with synchronisation on the common alphabet). Consider the LTS networks M� = (�, V) of size 
n and MP = (P, W) of size m. The composition with synchronisation on the common alphabet of M� and MP is defined as 
M� ‖∩ MP =M� ‖σ MP, with σ = {(a, a, a) | a ∈ (AV ∩AW ) \ {τ }}.

Associativity The intuition behind the associativity of LTS network composition is that vector concatenation is associative 
and synchronisation on the common alphabet is insensitive to the order of composition. Thus, the concatenation of process 
vectors and synchronisation vectors enjoy the associativity property. The challenge, however, is to show that the • operations 
and σ support the mathematical properties needed for associativity of the composition of sets of synchronisation laws.

Given two LTS networks M� = (�, V) and MP = (P, W), the composition of the set of synchronisation laws V ‖ W
consists of the union of three sets: two describing independent behaviour of each of the components, i.e., (V \ Vσ )• and 
•(W \ Wσ ), and one describing synchronising behaviour, i.e., Lσ (V, W) (Definition 4.2). When three LTS networks are 
composed one (inner) composition is performed before the other. The outer composition applies the • operators and σ on 
a union of sets. We show how these operators distribute over set union.

Lemma 6.1. Consider sets of synchronisation laws V and W with synchronisation vectors of the same size. Padding of •’s distributes 
over set union:

•(V ∪W) = •V ∪ •W , and (V ∪W)• = V• ∪W•.

Proof. The proof that (V ∪ W)• = V• ∪ W• is analog to the proof that •(V ∪ W) = •V ∪ •W . We only prove •(V ∪ W) =
•V ∪ •W here. The proof follows from (1) application of the definition of • and (2) splitting of the set V ∪ W into V and 
W :

•(V ∪W)
(1)= {(•n ‖ v̄,a) | (v̄,a) ∈ V ∪W}
(2)= {(•n ‖ v̄,a) | (v̄,a) ∈ V} ∪ {(•n ‖ v̄,a) | (v̄,a) ∈ W}
(1)= •V ∪ •W �

Lemma 6.2. Consider an interface function σ and sets of synchronisation laws V , W , and X . Application of Lσ distributes over set 
union as follows:

Lσ (V,W ∪X ) = Lσ (V,W) ∪Lσ (V,X )

Proof. The proof follows from (1) application of the definition of Lσ and (2) splitting of the set W ∪X into W and X :

Lσ (V,W ∪X )
(1)= {(v̄ ‖ w̄,a) | (v̄,α) ∈ V ∧ (w̄, β) ∈ W ∪X ∧ σ(α,β) = a}
(2)= {(v̄ ‖ w̄,a) | (v̄,α) ∈ V ∧ (w̄, β) ∈ W ∧ σ(α,β) = a} ∪

{(v̄ ‖ w̄,a) | (v̄,α) ∈ V ∧ (w̄, β) ∈ X ∧ σ(α,β) = a}
(1)= Lσ (V,W) ∪Lσ (V,X ) �

Next, we prove that the composition of LTS networks with synchronisation on the common alphabet is associative.

Proposition 6.1. For all LTS networks M� = (�, V), MP = (P, W), and M	 = (	, X ) of sizes n, m, and o, respectively, the compo-
sition of LTS networks following Definition 6.1 is associative, i.e., it holds that

(M� ‖∩ MP) ‖∩ M	 = M� ‖∩ (MP ‖∩ M	)

Proof. If the LTS networks (M� ‖∩ MP) ‖∩ M	 and M� ‖∩ (MP ‖∩ M	) are equivalent, then this means that their 
process vectors are equivalent and their sets of synchronisation laws are equivalent.



14 S. de Putter et al. / Science of Computer Programming 196 (2020) 102493
First of all, the process vectors are equivalent due to associativity of the vector concatenation operator ‖:

� ‖ (P ‖ 	) = (� ‖ P) ‖ 	

Second of all, we show that V ‖ (W ‖ X ) = (V ‖ W) ‖ X . Before we do so, for sets of synchronisation laws Y , Z , we 
introduce an alternative notation for Y \ Yσ in the context of composing Y with Z , i.e., Y ‖ Z . We write Y \ ZA to 
emphasise the relevance of the alphabet of Y that is in common with that of Z . We define Y \ZA = {( ȳ, a) ∈Y | a /∈AZ }. 
The set Y \ZA is equivalent to Y \Yσ :

Y \ZA = {( ȳ,a) ∈ Y | a /∈ AZ } = Y \ {( ȳ,a) ∈ Y | (a,a,a) ∈ σ } = Y \Yσ

The set Z \YA is defined similarly.
The associativity proof proceeds as follows. Following Definition 4.2, we partition both the set V ‖ (W ‖ X ) and the set 

(V ‖ W) ‖ X , each into seven subsets, and show that there is a one-to-one mapping of each of the seven subsets of one 
partition with one of the subsets of the other partition. Each of the rewrite equations consists of four steps:

(1) unfolding or applying the outer definition of • or σ , respectively;
(2) unfolding or applying the inner definition of • or σ , respectively;
(3) applying associativity of vector concatenation and the inner definition of • or σ ;
(4) applying the outer definition of • or σ .

Furthermore, in cases 2a and 3c below, the following property of composition of sets of laws is applied in steps (2) and (3), 
respectively: a /∈AW‖X = a /∈AW ∪AX = a /∈AW ∧ a /∈AX .

The partitioning and partition mapping proceed as follows.

1. Lσ (V, W ‖X ) =Lσ (V, (W \Wσ )• ∪ •(X \Xσ ) ∪Lσ (W, X )). According to Lemma 6.2, this can be partitioned into:
(a) Lσ (V, Lσ (W, X )), the set of laws specifying synchronisations involving all LTS networks.

Lσ (V,Lσ (W,X ))

(1)= {v̄ ‖ (w̄ ‖ x̄) | (v̄,a) ∈ V ∧ (w̄ ‖ x̄,a) ∈ Lσ (W,X )}
(2)= {v̄ ‖ (w̄ ‖ x̄) | (v̄,a) ∈ V ∧ (w̄,a) ∈ W ∧ (x̄,a) ∈ X }
(3)= {(v̄ ‖ w̄) ‖ x̄ | (v̄ ‖ w̄,a) ∈ Lσ (V,W) ∧ (x̄,a) ∈ X }
(4)= Lσ (Lσ (V,W),X ))

(b) Lσ (V, (W \XA)•), the set of laws synchronising only M� and MP.

σ(V, (W \XA)•)
(1)= {v̄ ‖ (w̄ ‖ •o) | (v̄,a) ∈ V ∧ (w̄ ‖ •o,a) ∈ (W \XA)•}
(2)= {v̄ ‖ (w̄ ‖ •o) | (v̄,a) ∈ V ∧ (w̄,a) ∈ W ∧ a /∈ AX }
(3)= {(v̄ ‖ w̄) ‖ •o | (v̄ ‖ w̄,a) ∈ Lσ (V,W) ∧ a /∈ AX }
(4)= (Lσ (V,W) \XA)•

(c) Lσ (V, •(X \WA)), the set of laws synchronising only M� and M	 .

σ(V, •(X \WA))

(1)= {v̄ ‖ (•m ‖ x̄) | (v̄,a) ∈ V ∧ (•m ‖ x̄,a) ∈ X \WA}
(2)= {v̄ ‖ (•m ‖ x̄) | (v̄,a) ∈ V ∧ (x̄,a) ∈ X ∧ a /∈ AW }
(3)= {(v̄ ‖ •m) ‖ x̄ | (v̄ ‖ •m) ∈ (V \WA)• ∧ (x̄,a) ∈ X }
(4)= Lσ ((V \WA)•,X )

2. (V \ (W ‖X )A )• requires no partitioning:
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(a) (V \ (W ‖X )A )• , the set of laws specifying the independent behaviour of M� .

(V \ (W ‖ X )A)•

(1)= {v̄ ‖ •m+o | (v̄,a) ∈ V ∧ a /∈ AW‖X }
(2)= {v̄ ‖ (•m ‖ •o) | (v̄,a) ∈ V ∧ a /∈ AW ∧ a /∈ AX }
(3)= {(v̄ ‖ •m) ‖ •o | (v̄ ‖ •m,a) ∈ (V \WA)• ∧ a /∈ AX }
(4)= ((V \WA)• \XA)•

3. •((W ‖X ) \ VA ) is partitioned, applying Lemma 6.1, into:
(a) •(σ (W, X ) \ VA ), the set of laws synchronising only MP and M	 .

•(σ (W,X ) \ VA)

(1)= {(•n ‖ (w̄ ‖ x̄),a) | (w̄ ‖ x̄,a) ∈ Lσ (W,X ) ∧ a /∈ AV }
(2)= {(•n ‖ (w̄ ‖ x̄),a) | (w̄,a) ∈ W ∧ (x̄,a) ∈ X ∧ a /∈ AV }
(3)= {((•n ‖ w̄) ‖ x̄,a) | (•n ‖ w̄,a) ∈ •(W \ VA) ∧ (x̄,a) ∈ X }
(4)= Lσ (•(W \ VA),X )

(b) •((W \XA )• \ VA ), the set of laws regarding independent behaviour of MP.

•((W \XA)• \ VA)

(1)= {(•n ‖ (w̄ ‖ •o),a) | (w̄ ‖ •o,a) ∈ (W \XA)• ∧ a /∈ AV }
(2)= {(•n ‖ (w̄ ‖ •o),a) | (w̄,a) ∈ W ∧ a /∈ AV ∧ a /∈ AX }
(3)= {((•n ‖ w̄) ‖ •o,a) | (•n ‖ w̄,a) ∈ •(W \ VA) ∧ a /∈ AX }
(4)= (•(W \ VA) \XA)•

(c) •(•(X \WA ) \ VA), the set of laws specifying independent behaviour of M	 .

•(•(X \WA) \ VA)

(1)= {(•n ‖ (•m ‖ x̄),a) | (•m ‖ x̄,a) ∈ •(X \WA) ∧ a /∈ AV }
(2)= {(•n ‖ (•m ‖ x̄),a) | (x̄,a) ∈ X ∧ a /∈ AW ∧ a /∈ AV }
(3)= {(•n+m ‖ x̄,a) | (x̄,a) ∈ X ∧ a /∈ AV‖W }
(4)= •(X \ (V ‖ W)A)

These equations constitute a one-to-one mapping between the subsets of the partition of V ‖ (W ‖ X ) and those of the 
partition of (V ‖W) ‖X . Therefore, we have V ‖ (W ‖X ) = (V ‖W) ‖X .

Since both � ‖ (P ‖ 	) = (� ‖ P) ‖ 	 and V ‖ (W ‖ X ) = (V ‖ W) ‖ X it follows that (M� ‖∩ MP) ‖∩ M	 = M� ‖∩
(MP ‖∩ M	). �
Commutativity It is clear that composition of LTS networks with synchronisation on the common alphabet of the compo-
nents is not commutative w.r.t. LTS network equivalence, as is indicated by Example 6.1.

Example 6.1. Let M� = (�, V) and MP = (P, W) be two LTS networks. Furthermore, consider compositions M1 =M� ‖∩
MP and M2 = MP ‖∩ M� . The LTS network M1 has process vector � ‖ P while M2 has process vector P ‖ �. Unless 
M� =MP, M1 and M2 are strictly not equivalent. Similarly, the synchronisation laws of both composite LTS networks are 
in a different order.

However, LTS network composition as defined in Definition 6.1 is commutative with respect to the semantics of the con-
structed LTS network. That is, for the semantics of the composition of LTS networks, it does not matter in which order the 
LTS networks are composed. We first prove that such a composition is commutative with respect to (strong) bisimulation [2]
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in Proposition 6.2. Afterwards, we propose an adaption of the definition of LTS network, fixing the ordering issue by replac-
ing vectors with indexed families gaining a commutative operator for composition of LTS networks with synchronisation on 
the common alphabet.

Proposition 6.2. Let M� = (�, V) and MP = (P, W) be LTS networks of sizes n and m respectively. Composition of LTS networks 
according to Definition 6.1 is commutative with respect to (strong) bisimulation, i.e., it holds that GM�‖∩MP ↔ GMP‖∩M�

.

Proof. Take the relation C = {(s̄ ‖ t̄, ̄t ‖ s̄) | s̄ ∈ GM�
∧ t̄ ∈ GMP }. The relation C is a (strong) bisimulation relation.

• C relates the initial states of M� and MP. Since every state s̄ ‖ t̄ ∈ IM�‖∩MP is related by C to state t̄ ‖ s̄ ∈ IMP‖∩M�

and vice versa.
• If s̄ ‖ t̄ C t̄ ‖ s̄ and s̄ ‖ t̄

a−→M�‖∩MP s̄′ ‖ t̄′ then t̄ ‖ s̄
a−→MP‖∩M�

t̄′′ ‖ s̄′′ ∧ s̄′ ‖ t̄′ C t̄′′ ‖ s̄′′ . Let (v̄ ‖ w̄, a) ∈ V ‖ W be the 
law enabling the transition s̄ ‖ t̄

a−→M�‖∩MP s̄′ ‖ t̄′ . It follows that there is a law (w̄ ‖ v̄, a) ∈ W ‖ V that enables the 
transition t̄ ‖ s̄

a−→MP‖∩M�
t̄′ ‖ s̄′ . As s̄′ ‖ t̄′ C t̄′ ‖ s̄′ , the proof follows by taking t̄′ for t̄′′ , and s̄′ for s̄′′ .

• If s̄ ‖ t̄ C t̄ ‖ s̄ and t̄ ‖ s̄
a−→MP‖∩M�

t̄′ ‖ s̄′ then s̄ ‖ t̄
a−→M�‖∩MP s̄′′ ‖ t̄′′ ∧ s̄′′ ‖ t̄′′ C t̄′ ‖ s̄′ . This case is symmetric to the 

previous case. �
To avoid the issues discussed in Example 6.1, an alternative definition of LTS network can be designed. Both process 

vectors and synchronisation vectors may be replaced by indexed families. An indexed family consists of a set of objects (the 
process LTSs or synchronisation vectors), an index set, and a surjective function mapping elements from the index set to 
elements of the set of objects. When the index sets of two LTS networks are disjoint, then the union of sets can be applied, 
where we previously would use vector concatenation, to compose the collections of process LTSs and synchronisation laws. 
The union of two indexed families is commutative, and as such, commutativity of composition of LTS networks with indexed 
families is also commutative.

7. Two more congruence results for DPBB and LTS networks

In this section we first prove that DPBB is a congruence for the parallel composition of an arbitrary number of LTS 
networks using the parallel composition operator with synchronisation on the common alphabet. After that, we prove that 
synchronisation on the common alphabet is actually not a requirement for DPBB to be a congruence for LTS networks. For 
this, we generalise the definition of congruence as given by [23].

That DPBB is a congruence for the parallel composition of multiple LTS networks using the parallel composition operator 
with synchronisation on the common alphabet of components (Definition 6.1) follows from the associativity and commuta-
tivity of that parallel composition operator:

Proposition 7.1. Consider two vectors of LTSs � and P, both of size n, where for some i ∈ 1..n, �i ↔ �
b Pi , and for all j ∈ 1..n \ {i}, 

� j = P j . Furthermore, consider a set of synchronisation laws V with vectors of size n. If V does not rename, cut, or synchronise 
τ -transitions, then we have

G(�,V) ↔ �
b G(P,V)

Proof. LTS network M� = (�, V) can be decomposed, by Proposition 5.2, into M0
� ‖∩ M1

� , with M0
� = (〈�0, . . . , �i−1〉,←−−−

ll(V) ∪ ←−−−
il(V)) and M1

� = (〈�i, . . . , �n〉, −−−→
rl(V) ∪ −−−→

il(V)), since the decomposition method described by Proposition 5.2
introduces for all inter-component synchronisation laws il(V) of M� common actions in the alphabets of M0

� and M1
�

to synchronise on. This follows from the fact that for all laws (v̄, a) ∈ il(V), f (v̄, a) = g(v̄, a).

In turn, M1
� can be decomposed into M2

� ‖∩ M3
� , with W = −−−→

rl(V) ∪ −−−→
il(V), M2

� = (〈�i〉, ←−−−−
ll(W) ∪ ←−−−−

il(W)), and 
M3

� = (〈�i+1, . . . , �n〉, −−−−→
rl(W) ∪ −−−−→

il(W)).
This decomposition leads to M0

� ‖∩ (M2
� ‖∩ M3

�). By associativity (Proposition 6.1) and commutativity w.r.t. DPBB 
(Proposition 6.2) of ‖∩ , we have M0

� ‖∩ (M2
� ‖∩ M3

�) = (M0
� ‖∩ M2

�) ‖∩ M3
� = (M2

� ‖∩ M0
�) ‖∩ M3

� .
Similarly to M� , we can decompose MP into M0

P ‖∩ (M2
P ‖∩ M3

P), which is equivalent to (M2
P ‖∩ M0

P) ‖∩ M3
P.

The fact that �i ↔ �
b Pi implies that M2

� ↔ �
b M2

P, since the sets of synchronisation laws of those LTS networks are 
equivalent (those sets have both been derived in the same way from V for the i-th element in their respective process 
vectors), and those laws do not rename, cut or synchronise τ ’s. Because of this, and the fact that ‖∩ is an instance of ‖σ , 
we have, by Proposition 4.2, that (M2

� ‖∩ M0
�) ↔ �

b (M2
P ‖∩ M0

P), and, in turn, that (M2
� ‖∩ M0

�) ‖∩ M3
� ↔ �

b (M2
P ‖∩

M0
P) ‖∩ M3

P. By definition of ↔ �
b for LTS networks, this means that G(M2

�‖∩M0
�)‖∩M3

�
↔ �

b G(M2
P‖∩M0

P)‖∩M3
P
. Again, due 

to the associativity and commutativity w.r.t. DPBB of ‖∩ , this is equal to GM0
�‖∩(M2

�‖∩M3
�) ↔ �

b GM0
P‖∩(M2

P‖∩M3
P) , which, 

because decomposition according to Proposition 5.2 is consistent, means that GM�
↔ � GMP = G(�,V) ↔ � G(P,V) . �
b b
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However, it is unnecessary to require that the set of synchronisation laws implements synchronisation on the common 
alphabet of the components. As this requirement excludes many LTS networks in practice, we discuss next an alternative 
proof, for a reformulated version of Proposition 7.1 in the form of Proposition 7.2. In this new proposition, each component 
is DPBB-related to another component. Note that Proposition 7.1 is a special case of Proposition 7.2, in which all but one 
component are DPBB related to themselves. The proof for Proposition 7.2 does not require synchronisation on the common 
alphabet.

Proposition 7.2. Consider two vectors of LTSs � and P, and a set of synchronisation laws V . Furthermore, assume that τ -transitions 
are not renamed, cut, or synchronised. It holds that

(∀i ∈ 1..n. �i ↔ �
b Pi) =⇒ G(�,V) ↔ �

b G(P,V)

Proof. Given two vectors of LTSs � and P such that for all i ∈ 1..n there is a DPBB relation Bi with �i Bi Pi . We define the 
bisimulation relation C as follows:

C = {(s̄, t̄) | s̄ ∈ S(�,V) ∧ t̄ ∈ S(P,V) ∧ ∀i ∈ 1..n. s̄i Bi t̄i}
We prove that C is a DPBB relation as defined in Definition 3.5. We will use Ac(v̄) = {i | i ∈ 1..n ∧ v̄ i �= •} as a shorthand for 
the set of indices of processes participating in a synchronisation law (v̄, a); e.g., Ac(〈c, b, •〉) = {1, 2}.

• C relates the initial states of M� and MP. Consider a state s̄ ∈ I(�,V) . For each i ∈ 1..n there is a state qi ∈ IPi such that 
s̄i Bi ti , since Bi is a DPBB relation between �i and Pi . Let t̄ be the state constructed from these qi , i.e., for all i ∈ 1..n, 
we have t̄i = qi . Then, t̄ ∈ I(P,V) and s̄ C t̄ . The symmetric case follows similarly.

• If s̄ C t̄ and s̄ a−→(�,V) s̄′ then either a = τ ∧ s̄′ C t̄ , or t̄ τ−→∗
(P,V)

ˆ̄t a−→(P,V) t̄′ ∧ s̄ C ˆ̄t ∧ s̄′ C t̄′ . Consider a law (v̄, a) ∈ V enabling 

transition s̄
a−→(�,V) s̄′ . We distinguish two cases:

1. There is a τ -action in synchronisation vector v̄ , i.e., ∃i ∈ 1..n. v̄ i = τ . Therefore, there is a transition s̄i
τ−→i s̄′

i . Since 
τ -transitions do not synchronise it follows that it is the only action in the synchronisation vector, i.e., Ac(v̄) = {i}. 
Hence, a = τ as renaming τ -transitions is not allowed. Furthermore, by Definition 3.3, for all j ∈ 1..n \ {i} it holds 
that s̄ j = s̄′

j . As we also have s̄ j B j t̄ j , it follows that s̄′
j B j t̄ j .

Because s̄i Bi t̄i and s̄i
τ−→i s̄′

i , by Definition 3.5, two cases can occur:
∗ a = τ with s̄′

i Bi t̄i . Hence, for all j ∈ 1..n we have s̄ j B j t̄ j . By definition of C, it follows that s̄′ C t̄ .

∗ t̄i
τ−→∗

i t̂
a−→i t′ with s̄i Bi t̂ and s̄′

i Bi t′ . Since no τ -transitions are cut, there also exists a path t̄ τ−→∗
(P,V)

ˆ̄t a−→(P,V) t̄′ with 
ˆ̄ti = t̂ , t̄′

i = t′ , and for all j ∈ 1..n \ {i} we have t̄′
j = ˆ̄t j = t̄ j . Therefore, from s̄i Bi t̂ , s̄′

i Bi t′ , and ∀ j ∈ 1..n \ {i}. ̄s j B j t̄ j

we deduce that s̄ C ˆ̄t and s̄′ C t̄′ .
2. There is no τ -action in synchronisation vector v̄ , i.e., ∀i ∈ 1..n. v̄ i �= τ . By Definition 3.3, for all j ∈ 1..n \ Ac(v̄) we 

have s̄′
j = s̄ j . Thus, since s̄ j B j t̄ j it follows that s̄′

j B j t̄ j . Furthermore, we have for all i ∈ Ac(v̄) a transition s̄i
v̄ i−→i s̄′

i . 

Hence, as v̄ i �= τ for all those i ∈ Ac(v̄), there exists a path t̄i
τ−→∗

i
ˆ̄ti

v̄ i−→ t̄′
i with s̄i Bi

ˆ̄ti and s̄′
i Bi t̄′

i (by Definition 3.5). 
From Definition 3.3 it follows that there also is a path t̄ τ−→∗

(P,V)
ˆ̄t a−→(P,V) t̄′ where for all j ∈ 1..n \ Ac(v̄), ˆ̄t j and t̄′

j are 

defined by t̄′
j = ˆ̄t j = t̄ j . Hence, from ∀i ∈ 1..n. ̄si Bi t̄i , ∀i ∈ Ac(v̄). ̄si Bi

ˆ̄ti , and ∀i ∈ Ac(v̄). ̄s′
i Bk t̄′

i we deduce that s̄ C ˆ̄t
and s̄′ C ˆ̄t′ .

• If s̄ C t̄ and t̄ a−→(P,V) t̄′ then either a = τ ∧ s̄′ C t̄ , or s̄ τ−→∗
(�,V)

ˆ̄s a−→(�,V) s̄′ ∧ s̄ C ˆ̄t ∧ s̄′ C t̄′ . This case is symmetric to the 
previous case.

• If s̄ C t̄ and there is an infinite sequence of states (s̄k)k∈ω such that s̄ = s̄0 , s̄k τ−→(�,V) s̄k+1 and s̄k C t̄ for all k ∈ ω, then there 
exists a state t̄′ such that t̄ τ−→+

(P,V)
t̄′ and s̄k C t̄′ for some k ∈ ω. For all k ∈ ω, let (v̄k, τ ) ∈ V be the synchronisation law 

enabling transition sk τ−→ sk+1.
We distinguish two cases:

∗ There is a k ∈ ω such that s̄k τ−→ s̄k+1 is the result of the synchronisation of multiple processes in �, i.e., ∃k ∈ ω, i ∈
1..n. {i} ⊂ Ac(v̄k). In the τ -sequence, we have s̄
 C t̄ for all 
 ∈ ω, hence, we have s̄k C t̄ . Furthermore, since C is a 
DPBB relation, it follows that there are states ˆ̄t, ̄t′ ∈ S(P,V) with a τ -path t̄ τ−→∗

(P,V)
ˆ̄t τ−→(P,V) t̄′ such that s̄k+1 B t̄′ . Thus, 

t̄
τ−→+

(P,V) t̄′ and for k + 1 ∈ ω it holds that s̄k+1 C t̄′ , thereby completing the case.
∗ The τ -sequence only consists of τ -transitions performed independently by the processes in �, i.e., ∀k ∈ ω. ∀i ∈

1..n. {i} �⊂ Ac(v̄k). Since all of the τ -transitions are performed independently, there has to be at least one process of 
which an infinite τ -sequence is embedded in the global infinite τ -sequence starting from s̄, otherwise the latter τ -
sequence would not be infinite. Suppose the ith process has such a τ -sequence, then globally, this τ -sequence starts 
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from state s̄i . The infinite τ -sequence of �i is embedded in the infinite τ -sequence of the LTS network, hence, for 
all k ∈ ω it holds that s̄k

i Bi t̄i . Since s̄i Bi t̄i , by Definition 3.5, there is a state t′ ∈ SPi with t̄i
τ−→+

Pi
t′ and some 
 ∈ ω

such that s̄

i Bi t′ . We construct state t̄′ such that for all j ∈ 1..n, if j = i, then t̄′

j = t′ , and otherwise t̄′
j = t̄ j . As local 

τ -transitions are not cut nor renamed, it follows that t̄ τ−→+
(P,V) t̄′ . Moreover, since s̄k C t̄ for all k ∈ ω, by definition of 

C, we have s̄

j B j t̄ j for all j ∈ 1..n. Finally, because s̄


i Bi t̄′
i and for all j ∈ 1..n \{i} it holds that s̄


j B j t̄ j , by construction 
of t̄′ it follows that s̄
 C t̄′ .

• If ̄s C t̄ and there is an infinite sequence of states (t̄k)k∈ω such that ̄t = t̄0 , ̄tk τ−→(P,V) t̄k+1 and ̄s C t̄k for all k ∈ ω, then there exists 
a state s̄′ such that s̄ τ−→+

(�,V)
s̄′ and s̄′ C t̄k for some k ∈ ω. This case is symmetric to the previous case. �

8. Application

In order to compare compositional approaches with the classical, non-compositional approach, we have employed Cadp

to minimise a set of test cases modulo DPBB.
Each test case consists of a model that is minimised with respect to a given liveness property. To achieve the best 

minimisation we applied maximal hiding [11] in all approaches. Intuitively, maximal hiding hides all actions except for the 
interface actions and actions relevant for the given liveness property. In general, one can also hide fewer actions, but this 
will decrease the impact of DPBB reduction, both in compositional and non-compositional model checking.

As composition strategy we have used the smart reduction approach described in [27]. In Cadp, the classical approach, where 
the full state space is constructed at once and no intermediate minimisations are applied, is the root reduction strategy.

We have measured the running time and the maximum number of states and transitions generated by the two methods.

Experimental setup To facilitate replication we briefly discuss the methods used for our experiments.
For compositional approaches, the running time and largest state space considered depend heavily on the composition 

order, i.e., the order in which the components are combined. The smart reduction approach uses a heuristic to determine 
the order in which to compose processes. In [27], it has been experimentally established that this heuristic frequently works 
very well. After each composition step the result is minimised.

We use the following expression from the scripting language SVL of Cadp to invoke the smart reduction modulo DPBB 
approach:

smart total divbranching reduction of (<m>)

where <m> is the test model.
In the classical approach the state space of the entire system is generated before minimisation is applied. This approach 

is invoked as follows

root total divbranching reduction of (<m>)

where <m> is the test model.
The experiments were run on the DAS-5 cluster [38] machines. They have an Intel Haswell E5-2630-v3 2.4 GHz CPU, 

64 GB memory, and run CentOS Linux 7.2. The running time of the two approaches was measured as the wall clock time 
(i.e., the real elapsed time) using the Unix time command:

/usr/bin/time -f "%e" svl <file>

The argument -f "%e" specifies that the time written as output should follow format "%e" where %e indicates the 
wall clock time. The svl <file> argument invokes the Svl-engine with script file <file>. The command measures the 
wall clock time of the execution of the Svl-script.

The maximum number of states and transitions that were generated were extracted from the Svl-log files after execution 
of the script.

The set of test cases To prevent source bias, studies were selected from four different sources. In total 19 case studies were 
selected: four mCRL2 [16] models distributed with its tool set, nine Cadp models, three from the Beem database [39], which 
consists of DVE models for the DiVinE model checker (version 3 and earlier) [40], and three from the Example Repository 
for Finite State Verification Tools [41]. The Cadp models are expressed in the EXP language, which is the language supported 
by Cadp to express LTS networks. All other models have been manually translated to EXP models.

The models stemming from the mCRL2 tool set distribution are the following:

1. The 1394 model, created by Luttik [42], specifies the 1394 or firewire protocol. Property: every PAreq action with 
parameter ‘immediate’ is eventually followed by a matching PAcon action with parameter ‘won’.
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2. The 1394’ model is the 1394 model scaled up with extra internal transitions. This model is our own adaptation of the 
1394 model and is therefore not distributed with the tool set. Property: the same one as for the 1394 model.

3. The ACS model describes the ACS Manager that is part of the ALMA project of the European Southern Observatory. The 
ACS Manager is part of a system controlling a large collection of radio telescopes. The model consists of a manager 
and some containers and components and was created by Ploeger [43]. Property: every time container MT1 is locked, 
eventually it is freed again.

4. Wafer Stepper models a wafer stepper used in the manufacturing of integrated circuits. Property: always, eventually, all 
wafers in the system will be exposed.

The following Cadp models were used:

1. Cache models a directory-based cache coherency protocol for a multi-processor architecture. The model was developed 
by Kahlouche et al. [44]. Property: there is no livelock.

2. The DES model describes an implementation of the data encryption standard, which allows to cipher and decipher 
64-bit vectors using a 64-bit key vector [45]. Property: the DES can always deliver outputs.

3. HAVi-LE describes the asynchronous Leader Election protocol used in the HAVi (Home Audio-Video) standard, involving 
three device control managers. The model is fully described by Romijn [46]. Property: always eventually a leader is 
selected.

4. HAVi-LE’ is an adaptation of the HAVi-LE model containing transitions denoting logging events. Since the model is our 
own adaptation it is not distributed with Cadp. Property: the same one as for the HAVi-LE model.

5. Le Lann models a distributed leader election algorithm for unidirectional ring networks. The CADP model was developed 
by Garavel and Mounier [47]. Property: process P0 is infinitely many times in the critical section.

6. ODP is a model of an open distributed processing trader [48]. Property: work is always executed eventually.
7. The Erat. Sieve model computes prime numbers implementing a distributed Eratosthenes Sieve; the model describes a 

pipeline of units, of which each unit blocks input numbers that are multiples of a given number. The model consists of 
four units. Property: if the number two is generated, then it is eventually reported as a prime number.

8. Erat. Sieve’ is a variant of Erat. Sieve consisting of seven units. Property: the same one as for the Erat. Sieve model.
9. The Transit model describes a transit-node. It models an abstraction of a routing component of a communication net-

work. The model was developed by Mounier [49]. Property: every time a message is receive, it is eventually either sent 
out by the node or buffered as faulty.

The following Beem models were used:

1. The Peterson model describes Peterson’s mutual exclusion algorithm [50] for seven processes. Property: every time pro-
cess P0 waits for access to the critical section, it will eventually enter it.

2. Anderson models Anderson’s queue lock mutual exclusion algorithm [51] for three processes. Property: Every time a 
process waits for access to the critical section, it will eventually enter it.

3. Anderson’ is a variant of the Anderson model considering four processes competing for a lock. Property: the same one 
as for the Anderson model.

From the Example Repository for Finite State Verification Tools we selected the following models:

1. The Chiron model describes a user interface development system with two clients. The system consists of the Chiron 
server, managing generic aspects of a user interface, and artists (the clients). This server is responsible for notifying 
artists when a user interface event occurs, while the clients listen for notifications from the server. The formal model 
was developed by Avrunin et al. [52]. Property: If an artist is registered for event e1, then it will eventually be notified 
for this event.

2. Chiron’ is a adapted version of the Chiron model in which an additional client has been added. In total, there are three 
clients. Property: the same one as for the Chiron model.

3. The Gas Station problem [53] simulates a self-serve gas station. The gas station consists of two pumps, an operator, and 
three customers. Property: A charge is made eventually after a customer has started pumping.

Measurement results The results of our experiments are shown in Table 1. The Test case column indicates the test case 
model corresponding to the measurements.

The smart and root sub-columns denote the measurement for the smart reduction and root reduction approaches, re-
spectively.

In the Running time (sec.) column the running time until completion of the experiment is shown in seconds. Indicated 
in bold are the shortest running times comparing the smart and root sub-columns. The maximum running time of an 
experiment was set to 80 hours, after which the experiment was discontinued (indicated with −).

The columns Max. #states and Max. #transitions show the largest number of states and transitions, respectively, generated 
during the experiment. The best result, comparing smart and root reduction, is indicated in bold.
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Table 1
Experiments: smart reduction vs. root reduction.

Test case Running time (sec.) Max. #states Max. #transitions Reduced 
#states

Reduced 
#transitionssmart root smart root smart root

1394 14.41 8.25 102,983 198,692 187,714 355,338 1 1
1394’ 47.51 460.53 2,832,074 36,855,184 5,578,078 96,553,318 1 1
ACS 70.87 11.22 1,854 4,764 4,760 14,760 29 61
Anderson 26.56 15.42 153,664 384,104 2,118,368 5,892,964 1 1
Anderson’ 373.56 1852.42 15,116,544 56,250,000 268,738,560 1,188,000,000 1 1
Cache 20,55 7.84 616 616 4,631 4,631 1 1
Chiron 22.76 13.66 317,115 481,140 2,563,650 3,456,675 216 1286
Chiron’ 1,171.06 1,236.06 49,076,280 56,293,380 467,536,860 513,857,520 2376 17,974
DES 54.61 948.66 1,404 64,498,297 3,510 518,438,860 1 1
Erat. Sieve 63.00 8.43 1,156,781 234 2,891,692 406 3 2
Erat. Sieve’ − 10.64 − 865 – 2,012 3 2
Gas Station 325.10 362.31 11,042,816 11,436,032 84,254,720 87,105,536 432 5616
HAVi-LE 114.27 493.01 970,772 15,688,570 5,803,552 80,686,289 131,873 644,695
HAVi-LE’ 93.08 5,255.56 453,124 190,208,728 2,534,371 876,008,628 159,318 849,227
Le Lann 96.35 5,599.15 12,083 160,025,986 701,916 944,322,648 83,502 501,573
ODP 32.90 9.97 10,397 91,394 87,936 641,226 432 2,268
Peterson 63.04 − 9 − 139 − 9 22
Transit 25.50 59.69 22,928 3,763,192 132,712 39,925,524 636 3,188
Wafer Stepper 74.18 57.54 962,122 3,772,753 4,537,240 16,977,692 905,955 4,095,389

The number of states and transitions after minimisation is shown in the Reduced #states and Reduced #transitions
columns, respectively.

Discussion In terms of running time smart reduction performs best for ten out of nineteen models, whereas root reduction 
performs best in eight of the models. For Wafer stepper and Transit smart reduction is only a few seconds to a minute 
faster than root reduction. The gain is a few minutes for 1394’, DES, and HAVi-LE. For HAVi-LE’, Le Lann, and Peterson smart 
reduction is several hours faster. In general, the smart reduction approach performs better for large models where the state 
space can be reduced significantly before the final composition.

Root reduction performs best in relatively small models; 1394, ACS, Anderson, Cache, Chiron and ODP. However, for these 
cases the difference in running times is negligible. Only the Erat. Sieve’ model is minimised significantly faster by root 
reduction. For smaller models the overhead of the smart reduction heuristic is too high to obtain any benefits from the 
nominated ordering.

In terms of state space, smart reduction is the clear winner in all cases, with the exception of the Erat. Sieve models. 
Indeed, smart reduction performs particularly badly for the Erat. Sieve’ model. The model consists of a pipeline where data 
is being pushed from one end to another. While the data domain considered by the nodes in the pipeline consists of 32 
elements, in the minimised state space only one element remains. As synchronising actions may not be hidden in the local 
process LTSs, incremental composition and minimisation leads to a state space that is several orders of magnitude larger 
than the final state space.

The efficiency of smart reduction seems to increase when it is more successful in keeping compositions small. For 
instance, Transit and Wafer stepper have a similar number of states before reduction. However, when minimising the Transit
model the smart reduction approach is able to reduce the number of states much more significantly than in the Wafer 
stepper model (see the Max. #states smart column).

Lessons learned In summary, the following lessons can be learned from this experiment:

• The overhead of applying its heuristics makes smart reduction less efficient in terms of running time when applied on 
small models.

• In general, smart reduction produces significantly smaller state spaces, especially for larger models, compared to other 
approaches.

• The data domain can have a significant impact on the effectiveness of smart reduction. In particular, this is the case 
when data can only be eliminated at a late stage of the compositional minimisation (as demonstrated by Erat. Sieve).

• The efficiency of smart reduction seems to increase when it is more successful in keeping compositions small.

Threats to validity The following threats to validity must be considered when interpreting the results:

• Only one tool has been involved to conduct the experiment, hence the results may be implementation specific. This 
only affects measured running times, as the state spaces produced during compositional minimisation is deterministic 
with respect to the composition order.
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• A more controlled experiment needs to be considered in order to extrapolate the results of this experiment. In par-
ticular, the effect of action hiding, number of processes, and the chosen composition order should be controlled to 
determine correlation of these aspects with running time and size of the state space.

• The study only considers the DPBB equivalence as minimisation relation. Results may vary depending on the chosen 
equivalence relation. The DPBB equivalence is the strongest equivalence relation offered by Cadp that still allows ab-
straction. Thus, the expectation is that other relations show equal or better performance improvements.

• The number and variety of case studies is still too limited for generalising claims on the effectiveness of smart reduction 
in comparison with root reduction.

9. Conclusions

In this article we have shown that DPBB is a congruence for parallel composition of LTS networks, in which there 
is synchronisation between LTSs on given label combinations. Because of this, DPBB may be used to reduce components 
in the compositional verification of LTS networks, and incrementally construct the state space of an LTS network. It had 
already been shown that compositional verification of LTS networks is adequate for safety properties, as this follows from 
the fact that branching bisimilarity is a congruence for the parallel composition of synchronising LTS networks [18]. As 
DPBB preserves both safety and liveness properties, this article proves that compositional verification can be used to verify 
liveness properties as well.

Furthermore, we have discussed how to safely decompose an LTS network in the case where verification has to start 
from the system as a whole. Both the composition and consistent decomposition of LTS networks preserve the admissi-
bility property of LTS networks. Hence, the composition operator remains compatible with the compositional verification 
approaches for LTS networks described by [23].

We have shown that parallel composition of LTS networks with synchronisation on the common alphabet of the compo-
nents is associative and commutative. From this it follows that DPBB is also a congruence for LTS networks as defined by 
Garavel, Lang, and Mateescu [23] if the set of synchronisation laws implements synchronisation on the common alphabet. 
Subsequently, we have shown that the requirement to synchronise on the common alphabet is unnecessarily restrictive. This 
has been shown in a direct proof of DPBB being a congruence for LTS networks.

All proofs in this work, except for the two in Section 7, have been mechanically verified using the Coq proof assistant4

and are available online.5

Although our work focuses on the composition of LTS networks, the results are also applicable on the composition of 
individual LTSs. Our parallel composition operator ‖σ subsumes the usual parallel composition operators of standard process 
algebra languages such as CCS [13], CSP [54], mCRL2 [16], and LOTOS [17].

Finally, we have run a set of experiments to compare compositional and traditional DPBB reduction. The compositional 
approach applies Cadp’s smart reduction employing a heuristic to determine an efficient compositional reduction order. The 
traditional reduction generates the complete state space before applying reduction. The compositional approach performed 
better in the medium when applied on large models for which the intermediate state space can be kept small.

Future work This work has been inspired by an approach for the compositional verification of transformations of LTS 
networks [55,36,56–58]. We would like to apply the results of this article to the improved transformation verification algo-
rithm [55], thus guaranteeing its correctness for the compositional verification of transformations of LTS networks.

In future experiments, we would like to involve recent advancements in the computation of branching bisimulation, 
and therefore also DPBB, both sequentially [59,60] and in parallel on graphics processors [61], and we may consider other 
equivalence relations, such as simulation equivalence [62]. It will be interesting to measure the effect of applying these 
algorithms to compositionally solve a model checking problem.

Finally, we can consider various extensions of the LTS network formalism. For instance, by encoding timing in the LTSs, 
it is possible to reason about timed system behaviour. Combining results such as those in [63–66] with our results would 
allow to compositionally reason about timed behaviour. Other possibilities are to distinguish must and may transitions, and 
explicitly involve data variables, for instance as is suggested in [67]. We plan to investigate this further.
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