
Modelling and Verification of an Application for

Managing Sensitive Health Data

Almo Cuci1, Umar Ozeer2, and Gwen Salaün1

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, F-38000 Grenoble France
2 Euris Cloud Santé, Paris, France

Abstract. The digitisation of personal health information (PHI)
through electronic health record (EHR) is now widely adopted due to
their efficiency in terms of cost, storage, processing, and the subsequent
quality of delivering patient care. However, security concerns remain one
of its major setback. In order to handle EHR, institutions need to com-
ply with their local government security regulations. These regulations
control to which extent health data can be processed, transmitted, and
stored as well as define how misuses are addressed. ϕ-comp has been pro-
posed as an industrial solution for monitoring, assessing, and evaluating
the compliance of health applications with respect to defined security
regulations. ϕ-comp is able to assess the level of security risk of an appli-
cation at runtime and to automatically perform the required mitigation
actions to recover a compliant environment. Since the risk associated to
sensitive health data is critical, there is a need of guarantees in terms
of correctness of the ϕ-comp approach. In this paper, we first present
a formal specification of ϕ-comp representing all the components of the
solution as well as their behaviour, that is, the way they all interact to-
gether to implement the whole approach from monitoring to mitigation.
In a second step, some important properties of interest are formalised
and analysed using model checking techniques on several realistic appli-
cations.

1 Introduction

An Electronic health record (EHR) consists of a digital version of a patient’s per-
sonal health information (PHI) such as medications and laboratory test results.
The digitisation of healthcare has revolutionised the efficiency of the industry
in terms of storage, transmission, and processing capabilities as well as in terms
of quality, cost, and time effectiveness of patient care. In order to host an envi-
ronment (infrastructure, application, services, solutions) that manipulates PHI
via EHR, institutions need to comply to the security regulations enforced by
the local regulating authorities. These regulations control to which extent per-
sonal health information can be processed, transmitted, shared, and stored. In
addition, control audits can take place at any given time to check whether the
hosted platforms respect the high security protocols imposed. In such a context,
all activities (system logs, application logs, user activities, operations performed,
etc.) should be logged and stored in a secure manner.



2 A. Cuci, U. Ozeer, G. Salaün

ϕ-comp [15, 16] is a security compliance monitoring and management so-
lution for sensitive health data environment, which respects existing security
regulations. It monitors, computes, and evaluates the security compliance of
health applications and their underlying infrastructures. The monitored data
are reported and classified with respect to four security areas (confidentiality,
integrity, availability, traceability). These data are analysed by security area and
further evaluated into three levels of risk (identified by colors), namely nominal
behaviour (blue), potential threat (orange), and non-compliant behaviour (red).
In the latter case, risk mitigation actions are automatically performed so as to
attenuate the level of risk and restore a compliant behaviour. System adminis-
trators are also notified in case of non-compliance, so that manual interventions
can be carried out if required. Monitored data as well as performed mitigation
actions are logged for a posteriori auditing. These logs are used for generation of
compliance reports for the hosting institution and for on-demand request from
supervising authorities.

Since health data and associated security risks are crucial, there is a need
of guarantees in terms of correctness of the ϕ-comp approach. In this paper, we
first present a formal specification of ϕ-comp representing all the components of
the solution’s architecture as well as the behaviour of all components including
the way they interact together. This specification step is achieved using the LNT
process algebraic specification language [2, 7]. In a second step, some important
properties of interest are formalised using the MCL logic [13] and analysed using
model checking techniques on several realistic applications. As far as analysis is
concerned, we rely on the CADP verification toolbox [6], which provides powerful
model checking tools for automating these analysis steps. The experiments we
carried out on these applications confirmed that all properties were satisfied, thus
convincing the protocol’s designers of the correctness of the ϕ-comp solution.

The rest of the paper is organized as follows. Section 2 presents the ϕ-comp
solution with more details. Section 3 describes the formal specification of the
ϕ-comp protocol. Section 4 introduces the definition of properties and their
verification using model checking techniques. Section 5 surveys related work
and Section 6 concludes the paper.

2 Presentation of ϕ-comp

ϕ-comp [15, 16] is a security compliance monitoring and management solution,
which was designed to target cloud computing environments that house sensitive
health data. In the rest of this section, we successively present the application
model, the architecture of the solution and we give a short description of the
components involved in the ϕ-comp approach.

2.1 Application Model

The application model provides an abstract view of the computing environment,
and consists of the infrastructure and the application.



                                   3

An infrastructure consists of a set of virtual machines (VM) and the physical
network connecting them. The infrastructure hosts the application. To do so,
it provides the physical resources (CPU, memory, disk, bandwidth, etc.) for
executing applicative entities. For illustration purposes, we give in Figure 1 an
example of application model consisting of three VMs and two physical networks
(net1 and net2) connecting them.

An application consists of a set of software entities and a set of bindings im-
plementing the communication between software entities. A binding is directed
according to the functional dependency between the entities and can be op-
tional or mandatory. A software entity is functional and compliant when all of
its mandatory bindings are satisfied, that is, connected to functional entities.
Consequently, when a software entity is non-compliant, this may impact other
entities depending on it. The compliance of a software entity only depends on
its mandatory dependencies. To ensure deployment of a compliant application,
cycles of (mandatory) dependencies are forbidden.

Figure 1 shows an example of application consisting of three software entities.
VM1 hosts a front-end HTTP server (e.g., Apache), VM2 hosts an application
server (e.g., Tomcat), and VM3 hosts a relational database system (e.g., Mari-
aDB). The front-end server is connected to the application server via binding b1
and the application server is connected to the database via binding b2. These
bindings allow communication between these entities and give the direction of
the functional dependencies.

Fig. 1: An Instance of an Application Model

2.2 Compliance Management Protocol

Figure 2 gives an overview of the architecture of the ϕ-comp solution. The com-
ponents involved in this architecture are first introduced. In a second step, we
describe how they interact together in order to fulfil the compliance manage-
ment’s goals.

Probes and Enforcers are deployed on the environment or application to be
managed whereas the other ones are part of the proposed solution and thus
deployed on a dedicated infrastructure. Probes monitor the application and re-
port observation data periodically. Enforcers perform actions on the environment
when asked, in order to apply mitigation actions and attenuate the level of risk.

The Preliminary Data Analyser (PDA) receives observation data reported by
Probes. The main goal of the PDA is to compute a preliminary security analysis
based on these data.



4 A. Cuci, U. Ozeer, G. Salaün

Fig. 2: Architecture of the Protocol

The role of the Analyser is to evaluate the level of risk and to check whether
all entities remain compliant. When the Analyser detects a problem or a non-
compliance, it computes the required mitigation actions to be applied on the
environment.

The Registry aims at storing all information received or computed by ϕ-comp,
that is the data reported by probes, the compliant/non-compliant behaviour of
the target environment and all the mitigation actions taken by the Analyser
in case of non-compliance. The data stored in the registry are preserved for a
determined period of time depending on the required regulations (e.g., one year
for HDS regulation).

The Graphical User Interface (GUI) displays information in real time about
the monitored application, particularly the current security risk and level of com-
pliance of each entity in the target environment. The GUI allows administrators
to work together for handling security issues and carrying out investigations
regarding the source of these problems.

The Audit component generates periodically or on demand security reports
based on the behaviour of the target application.

The Initialiser component is used for configuring ϕ-comp by defining the
placement and deployment of probes and enforcers on the target environment.
The Initialiser is also in charge of ensuring the consistent start up of the different
participants of ϕ-comp by considering their functional dependencies.

Let us now focus on how all these components work together to monitor
the application, analyse identified risks, and mitigate them in order to maintain
compliance. Figure 3 describes the way these components work together using
a workflow description. Probes monitor the application and report observation
data to the PDA. Several levels of security risks are computed from these data
and a preliminary analysis is established by the PDA for each security area.



                                   5

Assuming that a target environment is initially compliant, the Analyser is noti-
fied whenever there is risk identified in the preliminary analysis. The Analyser
then evaluates the current security risk relative to each security area for each
infrastructure and applicative entity into three levels represented as colors (blue,
orange, and red). If the risk is blue, no mitigation actions is taken. If the risk
is orange, there is a potential threat and mitigation actions are recommended
but not mandatory. If the risk is red, the Analyser carries out a deeper analysis
of the problem and its potential impact on other entities. If the risk concerns a
software entity, the impact is propagated to all mandatory dependent entities.
In the case of a red risk for a software entity all its dependent entities are also
assigned a red risk. A red risk systematically implies the execution of mitigation
actions in order to reduce the level of risk and recover a compliant environment.
The precise definition of mitigation actions are decided by the Analyser. In case
of changes in the compliance level, the GUI is updated and administrators are
notified. Mitigation actions are submitted to Enforcers which apply them on the
target environment.

Fig. 3: Overview of Compliance Management

3 Formal Specification

In this section, we introduce the LNT specification for the ϕ-comp solution.
We chose LNT [2, 7] as specification language because it is expressive enough
and adequate for formally describing communicating systems as the solution
presented beforehand in this paper. Moreover, it is equipped with CADP [6], a
rich toolbox for analysing LNT specifications using model checking techniques.
It is worth noting that other languages (and verification tools) with similar
specificities could have been used instead (e.g., Promela/Spin [8] or mCRL2 [1]).

LNT is an extension of LOTOS [9], an ISO standardised process algebra,
which allows the definition of data types, functions, and processes. Processes de-
fine actions (that can come with incoming or outgoing parameters) and these ac-
tions can be organised using several operators, among which: sequential composi-
tion (;), conditional statement (if-then-else), hiding (hide) that hides some ac-
tion in a behaviour, non-deterministic choice (select), parallel composition (par)



6 A. Cuci, U. Ozeer, G. Salaün

where the communication between the involved processes is carried out by ren-
dezvous on a list of synchronised actions, looping behaviours described using
process calls or explicit operators (while, for, loop), and assignment (:=) where
the variable should be defined beforehand (either in a var block or as a formal
parameter). LNT is formally defined using operational semantics based on La-
belled Transition Systems. Last but not least, it is worth saying that the default
communication model in LNT is synchronous communication (handshake com-
munication), which is fine since the implementation of ϕ-comp relies on TCP/IP.

In the rest of this section, we present how the different elements of the ϕ-
comp framework are specified using LNT. The specification consists of about
2000 lines of LNT.

3.1 Application Model

First of all, a model of the application is specified in LNT. Data types are used to
describe the application model, that is, VMs, software entities or components,
and bindings between components. More precisely, an application consists of
a set of VMs, a physical network connecting these VMs, and a set of bindings
connecting the components hosted on the VMs. Each binding also has a Boolean
parameter indicating whether this binding is mandatory (if not, it is optional).
A VM consists of an identifier and a set of components.

Figure 4 gives an excerpt of LNT specification describing the virtual machines
and bindings corresponding to the application shown in Figure 1. One can see
that each VM hosts a single component (C1, C2, and C3). This excerpt of LNT
also shows there are three bindings, there is for instance a binding between
C1 hosted on the front-end server and C2 hosted on the application server. The
physical network is not made explicit in this example for simplification purposes.
The final part of Figure 1 shows that the application consists of three parts: an
identifier, a set of VMs, and a set of bindings.

3.2 Management Protocol

This section presents successively the specification of each participant of the
management protocol, and the main process describing how all participants in-
teract together to model the whole management protocol. It is worth noting
that several components (Audit, Registry, GUI and Initialiser) are left outside
of the specification because their role does not impact the behaviour of the pro-
tocol. In contrast, the following entities are crucial and are made explicit in the
specification: Probes, PDA, Analyser and Enforcers.

Probe processes mostly capture observation messages obtained by monitoring
the application and are useful to identify problems for each security area. The
Probe acts as a listener mechanism. Every probe is identified by a unique iden-
tifier and has as parameter the unique identifier of the entity being monitored.
Every time a probe raises an alert, this observation comes with a timestamp and
a triple (obs, val, ra) corresponding respectively to the observation made by the
probe, its value, and the risk area associated with this observation.



                                   7

var C1 , C2 , C3 : COMPONENT,
ALLVM : VMs,
ALLBDN : BDNs,
APP : APPLICATION

in

C1 := COMPONENT(1) ;

C2 := COMPONENT(2) ;

C3 := COMPONENT(3) ;

ALLVM := VMs ( { VM( 1 , ”FRONT” , {C1}) ,
VM( 2 , ”SERVER” , {C2}) ,
VM( 3 , ”DBMS” , {C3}) } ) ;

ALLBDN := BDNs (
{ BINDING( VM( 1 , ”FRONT” , {C1}) , VM( 2 , ”SERVER” , {C2}) , TRUE) ,

BINDING( VM( 2 , ”SERVER” , {C2}) , VM( 3 , ”DBMS” , {C3}) , TRUE) ,
BINDING( VM( 1 , ”FRONT” , {C1}) , VM( 3 , ”DBMS” , {C3}) , FALSE) } ) ;

APP := APPLICATION( ”model−316” , ALLVM, ALLBDN ) ;

end var

Fig. 4: Example of Application Model in LNT

The PDA process receives observation messages issued by the Probe com-
ponent. Each message contains information about the security areas, the policy
used to evaluate the risk (optimistic or pessimistic) and an entity weight value
(low, medium, high). Based on these inputs, the PDA process computes a pre-
liminary risk level. This risk level is specified using multiple if-else conditions for
each parameter value observed in the respective messages. For the values out of
the normal scope, a warning or critical preliminary risk score is assigned as re-
sult. More precisely, the preliminary risk has four fields to store the score for each
security risk area, and three levels of criticity (information, warning, critical).
Once computed, this preliminary risk level is submitted to the next component
(Analyser) for a finer analysis, and this message contains the preliminary risk
score type, information about the security areas, the policy used for evaluation
and the entity weight.

The Analyser process can be seen like a decision-making mechanism. It re-
ceives a preliminary risk message from the PDA process, and goes further in its
evaluation of the risk and the compliance of the entity. Based on the informa-
tion received, the Analyser process can either decide to ignore the message or
to trigger a mitigation action by issuing a message to the enforcers with pre-
cise countermeasures to be initiated. The mechanism of taking mitigation action
relies on three inputs: the preliminary risk score of a single-dimension security
area, the policy used (pessimistic, optimistic) and the entity weight. The output
is a final risk label of the color blue, orange, or red. This output is computed
using the table given in Figure 5.

If the final score is blue, the Analyser process ignores it. If the compliance
score is orange, the Analyser process keeps monitoring the progress of the specific



8 A. Cuci, U. Ozeer, G. Salaün

Fig. 5: Compliance Evaluation Results

parameter in this security area. If it is red, then mitigation actions are required.
For each security area parameter of the entity that is violated, a countermeasure
is required in order to mitigate the risk and set the entity back to compliant
behaviour.

Mitigation actions are computed via a dedicated process (called ’mitigate’).
This process takes as input the decision issued by the Analyser process (with
all the aforementioned parameters), and compute the corresponding mitigation
action per security area. As a result, a mitigation action consists of the entity
identifier and the action to be taken (e.g., restart VM, add CPU, isolate from
internet, log modifications, restart probe, etc.).

These mitigation actions have as target the enforcers, which are in charge of
actually triggering these actions. Enforcers are able to access to the source of
the problem and implement the mitigation actions. Since the specification is ab-
stract, there is no real change of the application. Therefore, the specification can
issue and propose countermeasures but they are not actually exploited because
the application is not a real one, but just a model of the real one. However, this
is fine enough, because the main goal of the analysis steps is to show that the
decision process is correct (in case of detected issue, the right decision is taken).

In our model, there is one more process called pbinjector. This process is used
for issuing potential problems occuring on the application and thus for simulating
the execution of the ϕ-comp solution when examples of risks occur. To do so,
this process simulates different states of the software entities and particularly
abnormal values are of interest to us. The states of the entity represent the
compliance of the security areas. This process is very useful to simulate many
scenarios, that turn out to be interesting in terms of exhaustive verification as
we will see in Section 4.

Finally, the main process represents all processes (probes, PDA, analyser,
enforcers, and problem injector) in parallel as shown in Figure 6. Beyond putting
all processes in parallel, the main process also makes explicit how these processes
interact together, thus making explicit the architecture given in Figure 2. In the
parallel composition, we can see the names of the processes (e.g., ’probe’ or
’pda’). Before these names, there is an arrow preceded by a list of actions. These
actions correspond to the actions on which a process has to synchronize with the
other processes. As an example, one can see that the action ANALYSISEVENT
appears before the ’pda’ process and before the ’analyser’ process, meaning that



                                   9

both processes synchronize on this action and by doing so exchange information
of interest with respect to the analysis of the detected problem.

process MAIN [ PROBEVENT: any , ANALYSISEVENT: any , DECISION: any ,
COUNTERMEASURE: any ] i s

var app : APPLICATION in

app := app l i c a t i on ( ) ; use app ;

par

PROBEVENT −> pb in j e c t o r [PROBEVENT]
| |

PROBEVENT −> probe [PROBEVENT]
| |

PROBEVENT, ANALYSISEVENT −> pda [PROBEVENT , ANALYSISEVENT]
| |

ANALYSISEVENT , DECISION −> ana ly s e r [ANALYSISEVENT , DECISION]
| |

DECISION , COUNTERMEASURE −> mit i ga t e [DECISION , COUNTERMEASURE]
end par

end var

end process

Fig. 6: Main Process in LNT

4 Verification

In this section, we first explain how properties are verified. Then, we present the
list of properties to be ensured. Finally, we comment on the results of analysis
of these properties on realistic scenarios.

4.1 Model Checking

In this section, in a first step, we introduce the properties that must be pre-
served by the health management solution. These properties are then formally
specified using the MCL language and automatically analysed using the CADP
model checker. MCL [13] is an extension of the alternation-free µ-calculus with
regular expressions, data-based constructs, and fairness operators. CADP [6] is
a rich verification toolbox that implements the results of concurrency theory
and is used for the design of asynchronous concurrent systems, such as commu-
nication protocols, distributed systems, asynchronous circuits, multiprocessor
architectures or web services. It provides a wide set of functionalities, ranging
from step-by-step simulation to massively parallel model-checking. The toolbox
offers a compiler for several input formalisms, one of which is LNT. In this work,
we particularly rely on the Evaluator model checker, which takes as input an
LNT specification and an MCL formula, and returns a Boolean verdict and a
counterexample if the property is violated.



10 A. Cuci, U. Ozeer, G. Salaün

4.2 Properties

The main goal of the analysis steps is to ensure that the decision process is
performed correctly when a problem is detected, resulting at the end by the
right decision taken by the ϕ-comp solution for mitigating this problem. Keeping
this idea in mind, let us now introduce the properties, which were identified as
important for the approach, and are listed below:

– The solution systematically detects and handles every raised problem
(probe).

– Every problem corresponding to a non compliance is followed by a mitigation
action.

– A specific non-compliance problem of one entity should not affect the other
entities connected to that entity.

– Entities subject to mitigation actions can keep communicating normally with
the other connected entities.

– Mitigation actions are only performed when there is a non-compliance.
– The correct mitigation action is performed when there is a non-compliance.
– When a mitigation action is performed on an entity, the latter becomes

compliant.

In the rest of this section, we present with more details the two first properties,
which are the most important ones.

The first property (Figure 7) is specified as a liveness property (inevitable
property), and checks whether every probe raised by the environment is sys-
tematically detected. This is written in MCL as follows using the inevitable
pattern and indicating (using ”?any”) that any parameter can come with the
PROBEVENT action:

”MODEL−316. bcg” |= with eva luator4
INEVITABLE ({ PROBEVENT ?any . . . }) ;

expected TRUE;

Fig. 7: MCL Property for Probe Detection

The second property (Figure 8) states that every time an action is raised
by a probe indicating a non-compliant behaviour for a specific software entity,
there must be a reaction from ϕ-comp in the form of a mitigation action. This
reaction is actually justified only if the risk is assessed as critical (red) by the
analysis process.

The MCL property formalising this requirement relies on regular expres-
sions. These expressions are required to match the parameters coming with the
actions used in the LNT specification. As an example, PRELIMINARY RISK is
accompanied with several numbers (between 0 and 4) giving information about



                                   11

potential risks, and this is expressed using the regular expressions appearing in
Figure 8. Moreover, we use exclamation marks followed by a number to indicate
repetition of a same parameter. The number is used like an identifier (exclama-
tion marks with the same number indicate the same parameter).

More technically speaking now, the MCL property given in Figure 8 for il-
lustration purposes consists of two parts. The first part shows that a traceability
problem is detected (MESSAGE2 TRACEABILITY) and the decision is taken
of restarting the corresponding service (DECISION !RESTART SERVICE). The
second part of the property aims at checking whether the response to mitigate
the risk is the correct one. To do so, we check that the parameters appearing
in the ANALYSISEVENT action are the same as in the DECISION action. In
particular, the Probe identifier is extracted from the observation message and
we compare if it has the same value as the identifier issued with the mitiga-
tion action. If this is the case, it means that every non-compliant behaviour is
mitigated by the correct action.

”MODEL−316. bcg” = t o t a l rename
”ANALYSISEVENT !PRELIMINARY RISK (\ ( [0 −4 ]\ ) , \( [0 −4]\) , \( [0 −4]\) ,

\( [0 −4]\) )
!MESSAGE2 TRACEABILITY (\ ( [0 −4 ]\ ) , \( [0 −4]\) , . ∗ ) .∗”
−> ”ANALYSISEVENT !\1 !\2 !\3 !\4 !\5 !\6” ,

”DECISION !RESTART SERVICE ( \ ( [A−Z ]∗\ ) , . ∗ )
!MESSAGE2 TRACEABILITY (\ ( [0 −4 ]\ ) , \( [0 −4]\) , . ∗ ) , .∗”
−> ”DECISION !\1 !\2 !\3”

in gene ra t i on o f ”INSTANCE4. l n t ” ;

”MODEL−316. bcg” |= with eva luator4 [ t rue ∗ . { ANALYSISEVENT !3 ! 3 ! 3
! 4 ! 1 ! 1 } ]

< ( not ’PROBEVENT ! . ∗ ’ ) ∗ . { DECISION !TRUE !1 ! 1 } > t rue ;
expected TRUE;

Fig. 8: MCL Property for Systematic Mitigation Action

4.3 Results

In this section, we comment on the analysis of realistic scenarios using the CADP
model checker. The properties were analysed on a set of realistic applications
where we vary the number of virtual machines, software entities, and bindings.
In order to simulate real scenarios, we added a new process (pbinjector, see
Section 3) whose role is to inject problems of any kind to the application (confi-
dentiality, integrity, availability, traceability). In its current version, the ϕ-comp
approach can support several problems but not at the same time, it handles
them one after the other. Therefore, in our verification scenarios, we respected
this specific assumption as well.

As a result, all the properties were analysed and turn out to be satisfied
on the aforementioned concrete applications (with 4-5 virtual machines, which



12 A. Cuci, U. Ozeer, G. Salaün

is usually the number of machines handled by the ϕ-comp framework). More-
over, it is worth noting that this is not necessary to use large applications for
verification purposes, because most problems are usually found on small yet
pathological applications. It takes up to a few minutes to verify all properties
on a realistic application, which is reasonable because the model checking of the
ϕ-comp solution is executed off-line.

5 Related Work

In this section, we first present several works dedicated to the specification and
verification of management applications in cloud computing or Fog computing
/ IoT. At the end of the section, we compare our work with respect to these
related works.

In [4,5,18], the authors present a self-deployment protocol that was designed
to automatically configure cloud applications consisting of a set of software el-
ements to be deployed on different virtual machines. This protocol starts the
software elements in a certain order, using a decentralised algorithm. It works in
a decentralised way, i.e., there is no need for a centralised server. It also starts the
software elements in a certain order, respecting important architectural invari-
ants. This protocol supports virtual machine and network failures, and always
succeeds in deploying an application when faced with a finite number of fail-
ures. A formal specification of the protocol allowed the successful verification of
important properties to be preserved.

[11, 12] propose verification of IoT applications before deployment using
model checking techniques. [3] applies infinite-state model checking to formally
verify IoT protocols such as the Pub/Sub consistency protocol adopted by the
REDIS distributed file system. The verification method is based on a combi-
nation of SMT solvers and overapproximations as those implemented in the
Cubicle verification tool. This work focuses on the verification of the communi-
cation techniques used in IoT systems. Since these protocols involve infinite data
structures, the authors chose to use analysis techniques capable of reasoning on
infinite state spaces.

[14] focuses on large applications relying on widely distributed and replicated
storage of data for scalability, availability, and disaster tolerance. Maintaining
high degrees of data consistency requires costly communication across distant
sites, applications over such distributed and partially replicated data is complex.
This paper proposes to use rewriting logic and its associated Maude tool environ-
ment to formally model and analyze both the correctness and the performance
of state-of-the-art distributed transaction systems designs, as well as on how to
automatically obtain a correct-by-construction distributed implementation of a
promising design.

[10] proposes BiiMED, which is a Blockchain framework for Enhancing Data
Interoperability and Integrity regarding EHR-sharing. This solution consists of
an access management system allowing the exchange of EHRs between different
medical providers and a decentralized Trusted Third Party Auditor for ensuring



                                   13

data integrity. This work also introduces two validation techniques for enhancing
the quality and correctness of the proposed solution: Formal verification checks
the correctness of a mathematical model describing the behaviour of the system
whereas model-based testing derives test suites from the model and executes
them to validate its correctness.

[17] focus on a failure management protocol, which allows the supervision of
IoT applications and the management of failures. This protocol targets stateful
IoT applications in the sense that those applications handle and store data dur-
ing their execution. When a failure occurs, the protocol detects the failure and
restores a consistent pre-failure state of the application to make it functional
again. Since designing such distributed protocol is error-prone, it was specified
and analysed using formal specification techniques and model checking tools in
order to ensure that the protocol respects some important properties. These
analysis steps helped to detect several issues and clarify some subtle parts of the
protocol.

In this paper, we decided to rely on model checking techniques, as it was the
case in [5,17], because these techniques turn out to be effective in order to vali-
date the correctness of important properties on representative applications. It is
worth noting that this work was achieved in collaboration with a company (Eu-
ris), and that formal verification techniques were applied on a software solution
used in an industrial context. Last but not least, to the best of our knowledge,
this is the first time formal verification techniques are used for cloud platforms
dealing with healthcare.

6 Concluding Remarks

In this paper, we have focused on a health management framework, which al-
lows the storage, monitoring and supervision of health cloud applications. When
a problem is detected, it is analysed and, if necessary, a decision is taken to apply
a mitigation action. Since this solution targets health data and applications, it
makes it critical and it is therefore crucial that specific properties of correct-
ness are preserved by the solution. It was decided to rely on formal specification
techniques and verification tools in order to ensure that the solution respects
some important properties. In particular, we used a process algebraic specifi-
cation language and model checking techniques for verifying these properties.
The analysis of several applications and scenarios show that the aforementioned
properties were satisfied, thus showing that the approach works as expected.

The main perspective of this work is to improve the current management pro-
tocol by making use of blockchains in order to store the health data in a secure
way while providing traceability and transparency of the approach. Developing
such a solution consists first in designing a new solution for the distributed stor-
age of health data in the cloud by using blockchain technologies. Similarly to
what we have done in this paper, we will also make use of model checking tech-
niques for validating the solution. Beyond analysis and certification, we finally
plan to implement the proposal using cloud and blockchain technologies.



14 A. Cuci, U. Ozeer, G. Salaün

Acknowledgements. The authors would like to thank Frédéric Lang for his
help in the specification and verification of the ϕ-comp solution.

References

1. M. Atif and J. F. Groote. Understanding Behaviour of Distributed Systems Using

mCRL2, 1, volume 458. Springer, 2023.

2. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, F. Lang, C. McKinty,
V. Powazny, W. Serwe, and G. Smeding. Reference Manual of the LNT to LOTOS
Translator (Version 6.7). INRIA/VASY and INRIA/CONVECS, 153 pages, 2018.

3. G. Delzanno. Formal Verification of Internet of Things Protocols. In Proc. of

FRIDA’18, 2018.

4. X. Etchevers, G. Salaün, F. Boyer, T. Coupaye, and N. D. Palma. Reliable Self-
deployment of Cloud Applications. In Proc. of SAC’14, pages 1331–1338. ACM,
2014.

5. X. Etchevers, G. Salaün, F. Boyer, T. Coupaye, and N. D. Palma. Reliable Self-
deployment of Distributed Cloud Applications. Softw., Pract. Exper., 47(1):3–20,
2017.

6. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. STTT, 15(2):89–107, 2013.

7. H. Garavel, F. Lang, and W. Serwe. From LOTOS to LNT. In J.-P. Katoen,
R. Langerak, and A. Rensink, editors, ModelEd, TestEd, TrustEd – Essays Dedi-

cated to Ed Brinksma on the Occasion of His 60th Birthday, volume 10500, pages
3–26, Oct. 2017.

8. G. J. Holzmann. The SPIN Model Checker - primer and reference manual.
Addison-Wesley, 2004.

9. ISO. LOTOS — A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour. Technical Report 8807, ISO, 1989.

10. R. Jabbar, M. Krichen, N. Fetais, and K. Barkaoui. Adopting Formal Verification
and Model-Based Testing Techniques for Validating a Blockchain-based Healthcare
Records Sharing System. In Proc. of ICEIS’20, pages 261–268. SCITEPRESS,
2020.

11. A. Krishna, M. L. Pallec, R. Mateescu, L. Noirie, and G. Salaün. IoT Composer:
Composition and Deployment of IoT Applications. In Proc. of ICSE’19, pages
19–22. IEEE / ACM, 2019.

12. A. Krishna, M. L. Pallec, R. Mateescu, L. Noirie, and G. Salaün. Rigorous Design
and Deployment of IoT Applications. In Proc. of FormaliSE’19, pages 21–30, 2019.

13. R. Mateescu and D. Thivolle. A Model Checking Language for Concurrent Value-
Passing Systems. In Proc. of FM’08, volume 5014 of LNCS, pages 148–164.
Springer, 2008.

14. P. C. Ölveczky. Design and Validation of Cloud Storage Systems Using Rewriting
Logic. In Proc. of SYNASC’19, pages 17–21. IEEE, 2019.

15. U. Ozeer. ϕ comp: An architecture for monitoring and enforcing security com-
pliance in sensitive health data environment. In Proc. of ICSA’21, pages 70–77.
IEEE, 2021.

16. U. Ozeer and B. Pouye. Risk analysis based security compliance assessment and
management for sensitive health data environment. In Proc. of HealthCom’20,
pages 1–7. IEEE, 2020.



                                   15

17. U. Ozeer, G. Salaün, L. Letondeur, F. Ottogalli, and J. Vincent. Verification of a
Failure Management Protocol for Stateful IoT Applications. In Proc. of FMICS’20,
volume 12327 of LNCS, pages 272–287. Springer, 2020.

18. G. Salaün, X. Etchevers, N. D. Palma, F. Boyer, and T. Coupaye. Verification
of a Self-configuration Protocol for Distributed Applications in the Cloud. In
Assurances for Self-Adaptive Systems - Principles, Models, and Techniques, volume
7740 of LNCS, pages 60–79. Springer, 2013.


