
Interactive Specification and Verification of Behavioural Adaptation
Contracts

Javier Cámara
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Abstract

Context: Adaptation is a crucial issue when building new applications by reusing existing software services
which were not initially designed to interoperate with each other. Adaptation contracts describe composition
constraints and adaptation requirements among these services. The writing of this specification by a designer
is a difficult and error-prone task, especially when interaction protocols are considered in service interfaces.
Objective: In this article, we propose a tool-based, interactive approach to support the contract design pro-
cess.
Method: Our approach includes: (i) a graphical notation to define port bindings, and an interface compatibil-
ity measure to compare protocols and suggest some port connections to the designer, (ii) compositional and
hierarchical techniques to facilitate the specification of adaptation contracts by building them incrementally,
(iii) validation and verification techniques to check that the contract will make the involved services work
correctly and as expected by the designer.
Results: Our results show a reduction both in the amount of effort that the designer has to put into building
the contract, as well as in the number of errors present in the final result (noticeably higher in the case of
manual specification).
Conclusion: We conclude that it is important to provide integrated tool support for the specification and
verification of adaptation contracts, since their incorrect specification induces erroneous executions of the
system. To the best of our knowledge, such tool support has not been provided by any other approach so
far, and hence we consider the techniques described in this paper as an important contribution to the area of
behavioural software adaptation.
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1. Introduction

Services can be accessed and used to fulfill basic
requirements, or can be composed with other ser-
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Figure 1: Contract-based adaptation process

vices in order to build bigger systems which aim
at working out complex tasks. These services must
be equipped with rich interfaces to ease their reuse
and enable their automatic composition. We can
distinguish several interoperability levels for the de-
scription of service interfaces (i.e., signature, inter-
action protocol/behaviour, quality of service, and se-
mantics [1]). Composition of services is seldom
achieved seamlessly because mismatch may occur
at the different interoperability levels and must be
solved. Software adaptation [2, 1] is a recent dis-
cipline which aims at generating, as automatically as
possible, adaptors used to solve mismatches among
services in a non-intrusive way. So far, most adap-
tation approaches have assumed interfaces described
by signatures (operation names and types) and be-
haviours (interaction protocols). Describing proto-
cols in service interfaces is essential because erro-
neous executions or deadlock situations may occur if
the designer does not consider them while building
composite services.
A first class of existing works dedicated to model-

based behavioural adaptation (see for instance [3, 4,
5]) are those which favour the full automation of the
composition process, and try to solve interoperability
issues by pruning behaviours that may lead to mis-
match. This restricts in general the functionality of
the services involved. A second class of solutions
(see for instance [6, 7, 1]) aim at avoiding the restric-
tion of service behaviour, supporting the specifica-
tion of advanced adaptation scenarios. These solu-
tions build adaptors automatically from an abstract
specification, namely an adaptation contract, of how
mismatch cases must be solved. However, this clas-

sification is not strict, since different approaches ex-
hibit features that make their classification in one of
the two categories difficult. Take for instance the
case of [5], which solves automatically some kinds
of mismatch, but requires user input to solve dead-
lock situations, or [4], which enables the restriction
of service behaviour according to user-defined prop-
erties, which can be considered as a particular kind
of adaptation contract.
Although approaches that use adaptation contracts

result in a more general and satisfactory solution
while composing and adapting services, writing the
contract is a difficult and error-prone task. Incor-
rect correspondences between operations in service
interfaces, or syntactic mistakes are common, espe-
cially in cases where the contract has to be specified
using cumbersome textual notations [6]. Contracts
should also describe in an abstract way the different
execution scenarios of the system, which may not be
easily envisioned by the designer. Moreover, con-
tracts must avoid undesirable system behaviour such
as deadlocks or incorrect order of the messages ex-
changed, and this is difficult when interaction proto-
cols are taken into account in interface descriptions.
In this article, we advocate interactive techniques

to help the designer in the adaptation contract speci-
fication process (see Figure 1 for an overview of the
whole adaptation process). For this purpose, we:

• propose a graphical notation to visualize service
protocols and define port bindings;

• propose a measure of compatibility between
protocols, integrated with our graphical nota-
tion, that the designer can use to detect parts of
service protocols which turn out to be compati-
ble, and then connect them;

• formalise compositional and hierarchical tech-
niques in order to build the system incremen-
tally, simplifying the process; and

• propose validation and verification techniques
which allow to simulate visually the execution
of the system step-by-step, and find out which
parts of the system lead to erroneous behaviour
(deadlock, infinite loops, safety and liveness
properties).
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Contract construction is an incremental process
where understanding the reasons behind incorrect
behaviour of the composition is fundamental in or-
der to obtain a correct result. Our choice of taking an
interactive approach to adaptation contract construc-
tion aims at improving the development process, en-
abling the user to perform interactive simulation of
the system behaviour in order to understand the prob-
lem, and correct the specification, all from within the
same environment. This results in a more agile de-
velopment cycle compared to alternatives such as en-
coding the contract and service protocols into the in-
put language of an existing verification tool, which
may result in a tiresome trial-and-error process.
Our approach is fully implemented in a prototype

tool, ACIDE, which has been applied to many case
studies.
A preliminary version of this work has been pub-

lished in [8], and is improved here in several aspects.
In this article, (i) we extend the textual and graphi-
cal contract language to consider data consumption
and data synthesis, (ii) we extend the adaptor pro-
tocol synthesis techniques described in [9] to take
these new contract operators into account, (iii) we
present a new simulation algorithm which consid-
ers the aforementioned extensions and allows mes-
sage reordering, (iv) we propose new techniques to
measure the compatibility degree of two service in-
terfaces using propagation algorithms, (v) we extend
our contract verification techniques with trace-based
checking of temporal logic formulas, (vi) we illus-
trate the different parts of our approach on a revised
case study, and (vii) all along the article, we add de-
tailed explanations and comments; for instance we
present an extended discussion comparing our ap-
proach with related works.
The rest of this paper is structured as follows: Sec-

tion 2 presents our service model. Section 3 intro-
duces our contract specification language and pro-
vides an overview of adaptation techniques that can
be used to generate adaptor protocols from such con-
tracts. Section 4 presents a compositional and hier-
archical approach to ease the specification of adap-
tation contracts. Section 5 describes our graphical
environment that supports contract design, as well
as our compatibility measure between service pro-
tocols. In Section 6, we propose verification tech-

niques to check contracts. Section 7 introduces our
prototype tool (ACIDE), and some experimental re-
sults. Finally, Section 8 compares our approach with
related works, and Section 9 concludes the paper.

2. Interface Model

This section describes the interface model that we
use throughout our proposal and its relation with ex-
isting implementation platforms. In particular, since
we intend to tackle mismatch both at the signature
and behavioural levels, we assume that interfaces are
equipped both with a signature (representing the set
of required and provided operations), and a protocol
specifying the interactive behaviour followed by the
component or service in terms of communication ac-
tions. These actions correspond to the invocations
of operations described in the signature. In our ap-
proach, protocols are represented by Symbolic Tran-
sition Systems (STS).

2.1. Signature
Definition 1 (Signature). A signature Σ is a set of
provided and required operation profiles. An opera-
tion profile is the name of an operation, along with its
argument types (possibly none), and its return types
(possibly none):

op : ti1 ∗ . . . ∗ tin → to1 ∗ . . . ∗ tom

Provided operations implement the functionality
of the component and are thus offered to other com-
ponents in the environment for invocation, whereas
required operations are those that the service needs
to invoke in order to fulfill its purpose.
Signatures are usually described as a set of oper-

ation profiles in component-based frameworks (e.g.,
J2EE) using an Interface Definition Language (IDL),
or with WSDL descriptions in the field of Web ser-
vices. Specifically, in the case ofWSDL, services are
defined as collections of ports. A port includes the
set of operation profiles supported. Moreover, each
operation may contain a specific set of input and out-
put messages carrying the arguments and return val-
ues of the operation, respectively.

Example. Consider a simple Web service (named
MedDB) within the context of a health care organiza-
tion. MedDB receives requests for information about
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<?xml version="1.0" encoding="UTF-8"?>
<definitions name="MedDb">
    <types/>
    <message name="availabilityRequest">
        <part name="d" type="xsd:string"/>

  <part name="hash" type="xsd:string"/>                
  <part name="correlation" type="xsd:token"/>

    </message>
    <message name="availabilityResponse">
        <part name="tkt" type="xsd:int"/>
        <part name="correlation" type="xsd:token"/>
    </message>
    <portType name="MedDbPortType">
        <operation name="availability">
            <input name="input1" message="tns:availabilityRequest"/>
            <output name="output1" message="tns:availabilityResponse"/>
        </operation>
    </portType>
</definitions>

Figure 2: WSDL specification for the MedDB service.

the availability of a specialist doctor for a given date
(supplied in the request), and responds to them with
a token or ticket identifier for an appointment (or an
error code if there are no available specialist doctors
for the given date). To be valid, the request also re-
quires a hash parameter obtained from the informa-
tion of a valid user (username and password). The
specification of the single operation available on the
interface, given as a WSDL description (Figure 2),
corresponds to the following signature:

availability : string, string→ int

In this case, availability is the name of the opera-
tion, whereas string and int are the types of the inputs
(date and a hash parameter) and output token of the
operation, respectively. It is worth observing that at
the signature level, we are only interested in which
argument types are required as input, or returned by
the operation as output. Argument names will be in-
cluded at the behavioural interface level.

2.2. Protocol

In our approach, the protocol of a component or
service is represented on its interface by a Symbolic
Transition System (STS). In an STS, communica-
tion between services is represented using events rel-
ative to the emission and reception of messages cor-
responding to operation calls. Events may come with
a list of parameters whose types respect the operation
signatures. In our model, a label in a transition repre-
sents either the internal action τ, or a communication
event.

Definition 2 (Communication Event). A Commu-
nication Event is a tuple (M ,D ,PL), where:

• M is a message name.

• D ∈ {!, ?} stands for the communication direc-
tion (! for emission, and ? for reception).

• PL = [p1, . . . , pn] is either a list of expressions
if the message corresponds to an emission, or a
list of variables local to the service if the mes-
sage is a reception.

Definition 3 (STS). A Symbolic Transition System is
a tuple (A, S , I ,F ,T ) where: given a set of commu-
nication events C , A = C ∪ {τ} is an alphabet which
corresponds to the set of labels associated to transi-
tions, S is a set of states, I ∈ S is the initial state,
F ⊆ S are final states, and T : S × A → S is the
transition function.

Our STS is a reduced version of STG (Symbolic
Transition Graph) introduced in [10]. Here, guards
are abstracted as τ transitions, which denote inter-
nal (unobservable) activities of the service.The op-
erational semantics of a STS (−→b) is defined in Fig-
ure 3. A couple 〈s ,E 〉 is composed by an active state
s ∈ S and a data environment E . A data environment
is a set of pairs 〈x , v〉 where x is a variable and v a
ground value. We use a function type which returns
the type of a variable or a value, and we define the
environment update “	”, and the evaluation function
ev as follows:

E 	 〈x , v〉 � E (x ) = v

ev (E , x ) � E (x )
ev (E , f (v1, . . . , vn)) � f (ev (E , v1), . . . , ev (E , vn))

Specifically, the three rules in Figure Figure 3
model: (i) transitions internal to the service (TAU);
and (ii) transitions where the STS evolves through an
emission or a reception (EM and REC, respectively).
It is worth observing that no environment updates are
included in these rules.
The operational semantics of n (n > 1) STSs (−→c)

is formalised using a synchronous communication
rule (COM, Figure 4) in which value-passing and
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(s
τ−−→ s ′) ∈ T

〈s ,E 〉 τ−−→b 〈s ′,E 〉
(TAU)

(s
a!v−−−−→ s ′) ∈ T v ′ = ev (E , v )

〈s ,E 〉 a!v ′−−−−→b 〈s ′,E 〉
(EM)

(s
a?x−−−−→ s ′) ∈ T

〈s ,E 〉 a?x−−−−→b 〈s ′,E 〉
(REC)

Figure 3: Operational Semantics of one STS

i , j ∈ {1..n} i � j

〈si ,Ei 〉 a!v−−−−→b 〈s ′i ,Ei 〉 〈sj ,Ej 〉 a?x−−−−→b 〈s ′j ,Ej 〉
type(x ) = type(v ) E ′

j = Ej 	 〈x , v〉
{as1, .., 〈si ,Ei 〉, .., 〈sj ,Ej 〉, .., asn } a!v−−−−→c {as1, .., 〈s ′i ,Ei 〉, .., 〈s ′j ,E ′

j 〉, .., asn }
(COM)

i ∈ {1..n} 〈si ,Ei 〉 τ−−→b 〈s ′i ,Ei 〉
{as1, .., 〈si ,Ei 〉, .., asn } τ−−→c {as1, .., 〈s ′i ,Ei 〉, .., asn }

(INEτ)

Figure 4: Operational Semantics of n STSs

<?xml version="1.0" encoding="UTF-8"?>
<process name="MedDB"/>
    <partnerLinks>
        <partnerLink name="DB" partnerLinkType="tns:MedDb" 
         myRole="MedDbPortTypeRole"/>
    </partnerLinks>
    ...
    <sequence>
        <receive name="availability_REC_1" partnerLink="DB" 
                 operation="availability"
                 portType="tns:MedDbPortType">
        </receive>
        ...
        <reply name="availability_INV_1" partnerLink="DB" 
               operation="availability" 
               portType="tns:MedDbPortType">
        </reply>
    </sequence>
</process>

Final state Initial state

MedDB

availability!tkt:int

availability?d:string
             hash :stringd0

d1

d2

Figure 5: Simplified BPEL specification and STS for the
MedDB service.

variable substitutions rely on a late binding seman-
tics [11], and an independent evolution rule (INEτ,
Figure 4).
Example. Figure 5 shows a simplified Abstract
BPEL specification and its corresponding STS de-

scribing our MedDB service. The STS contains two
labels: availability?d,hash and availability!tkt which
receive the request for availability along with a date
and a hash validation parameter, and respond with a
token to the request, respectively.
For the sake of conciseness, in the rest of this pa-

per we will describe service interfaces only with their
STS, making explicit argument types in STS labels.
�

The STS formal model has been chosen because
it is simple, graphical, and it can be easily derived
from existing implementation languages (see for in-
stance [12, 13, 14, 15] where such abstractions for
Web services were used for verification, composi-
tion or adaptation purposes). In particular, signa-
ture information can be obtained for our models us-
ing the information available in WSDL descriptions,
whereas STS information is derived from the speci-
fication of a service expressed in a behavioural IDL
such as Abstract BPEL or Abstract Windows Work-
flows (see Figure 6). Moreover, this formalism is
very convenient for the development of algorithms
that rely on the traversal of the different states of pro-
tocols, and the transition function available in STS
descriptions makes the access to the set of states and
their connections straightforward.
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If we compare our model to other automata-based
formalisms, we may emphasize that transitions in
STSs are data-dependent, unlike in interface au-
tomata [16], or I/O automata [17], where transitions
are labelled exclusively with actions with no data
parameters. Data-dependent transitions are required
to appropriately model stateful interaction and data
exchange among services. Furthermore, other for-
malisms such as port automata [18] include data-
dependent transitions, but similarly to the aforemen-
tioned I/O automata, they assume input enabled-
ness, therefore the automaton is receptive towards
every possible input action at every state and does
not accept certain inputs under the assumption that
the environment never generates them. On the con-
trary, constraint automata [19] are variants of La-
beled Transition Systems featuring transitions which
include data constraints and do not assume input-
enabledness. Although constraint automata have also
been used to formalizeWeb service composition [20]
and provide a generic operational model that sup-
ports any kind of synchronous and asynchronous
peer-to-peer communication, in this work we chose
to use STSs, in line with other works in behavioural
adaptation of services. In particular, this has allowed
us to take advantage of existing implementations of
BPEL-STS translation mechanisms.

WSDL

Abstract BPEL

Abstract Workflow
...

Signature

STS

Interface ModelService Interface

Figure 6: Interface model extraction from existing higher-level
interface description languages.

Example. Figure 7 shows the XML description of
MedDB’s interface, containing a description of its
signature (top) and protocol STS (bottom) including
labels, states, and transitions. It is worth observing
that labels on the STS and operation names can be

related through the name attribute included in labels.

<?xml version="1.0" ?>
<interface name="MedDB">

<signatures>
<signature name="availability">

<inputs>
<dataItem name="string"/>
<dataItem name="string"/>

</inputs>
<outputs>

<dataItem name="int"/>
</outputs>

</signature>
</signatures>

<protocol>
<labels>

<label id="availability_EM" name="availability" type="OUT">
<dataItem name="tkt"/>

</label>
<label id="availability_REC" name="availability" type="IN">

<dataItem name="d"/>
<dataItem name="hash"/>

</label>
</labels>

<states>
<state id="2" final="True"/>
<state id="1"/>
<state id="0" initial="True"/>

</states>

<transitions>
<transition label="availability_REC" source="0" target="1"/>
<transition label="availability_EM" source="1" target="2"/>

</transitions>

</protocol>
</interface>

Signature

STS

Figure 7: STS-based XML description for the MedDB service.

2.3. Mismatch Detection

Most of the time, services cannot be reused as they
are because interactions among them would lead to
an erroneous execution, namely a mismatch. In prac-
tice, mismatch situations may be caused when mes-
sage names do not correspond, the assumed order
of messages is not respected, a message in one ser-
vice has no counterpart, or a message matches with
several other messages. Furthermore, mismatch may
also appear when the number and/or type of parame-
ters do not match.
More formally, cases of mismatch may lead the

whole system to a deadlock. A system deadlocks
when all its constituent services are blocked because
none of them meet the condition to move to a differ-
ent state. Accordingly, mismatch detection is per-
formed by exploring all the interactions of the set
of service STSs obtained by application of the COM
and INEτ rules.
However, this method does not extract all the mis-

match cases but only those that can be reached as-
suming that the involved services can interact using
the same set of message names. This test can then
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be used as a first step to start the construction of the
adaptation contract (presented in Section 3) that de-
scribes how mismatch situations are resolved. While
building the adaptation contract, the designer can in-
crementally build and correct it in subsequent steps
by applying the aforedescribed test until the compo-
sition is deadlock-free.

Example. In order to illustrate different mismatch
situations that may arise, we describe an on-line
medical management system which handles patient
appointments within a health care institution, either
with general practitioners, or specialist doctors.
As it can be observed in Figure 8, we reuse three

services in this new system, and we give an example
of user requirements implemented in a client:

• The Client can first log on to a server by sending
respectively his/her user name (user!) and pass-
word (password!). Then, depending on his/her
preferences (internal choice specified with τ
transitions in the client protocol), the client can
stop at this point, or ask for an appointment ei-
ther with a general practitioner (reqDoc!) or a
specialist doctor (reqSpec!), and then receive
an appointment identifier.

• Service ServerDoc first receives the client user
name and password (id?). Next, this ser-
vice receives a request for an appointment with
a general practitioner (reqDoc?) and replies
(reqDoc!).

• Service ServerEsp first receives a request
for an appointment with a specialist doctor
(reqSpec?), followed by the client user name
and password (id?). After checking doctor
availability for the given date, an appointment
identifier is returned (reqSpec!) to the client.

• Service MedDB can receive and reply to re-
quests for a specialist doctor’s availability for
a given date (availability?/availability!).

We intend to compose these services into a work-
ing system where the client can request an appoint-
ment either with a general practitioner or a specialist
doctor. It is worth observing that in order to pro-
vide appointments with specialist doctors, service

ServerEspmust check their availability using an ex-
ternal service (in this case, MedDB provides that
functionality).

Client
user!usr:string

password!pwd:string

τ τ

reqDoc!d:string reqSpec!d:string

replyS?tkt:intreplyD?tkt:int

c0

c1

c3

c2

c6

c5

c4

id?
usr:string
pwd:string

reqDoc?d:string

reqDoc!tkt:ints0

s1

s2

ServerDocMedDB

availability!tkt:int

availability?d:string
             hash :stringd0

d1

ServerEsp

Final state Initial state

s3

τ

c7

d2

id?usr:string
     pwd :stringreqSpec!tkt:int

reqSpec?
d:string

availability?tkt:int availability!d:string

s0
s1

s2

s3

s4s5

Figure 8: Behavioural interfaces for the online medical man-
agement system.

The composition of the different services in our
example is subject to different mismatch situations:

• Name mismatch occurs if a service expects
a particular message, while its counterpart is
willing to send one with a different name (e.g.,
service ServerDoc sends reqDoc!, whereas the
client is expecting replyD?). Thus there is a sin-
gle, one-to-one, conceptual correspondence be-
tween a pair of messages in both services, but
their names are different.

• N to M correspondence appears for instance if
a message on a particular interface corresponds
to several in its counterpart’s interface (or sim-
ilarly, a message has no correspondence at all).
In Figure 8 it can be observed that while the
client intends to perform authentication on a
service sending user! and password! subse-
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quently, service ServerDoc expects only mes-
sage id? for authentication. This would be a
case of 1-to-N correspondence between mes-
sage names, and we could consider M-to-N cor-
respondences as the general case, where a group
of messages in one of the service corresponds
with several others in the counterpart services.

• Incompatible order of messages. The relative
order of operation invocations among the dif-
ferent protocols involved is different. We may
observe this in our example when the client first
sends its authentication information and then re-
quests an appointment with a specialist doctor,
whereas the ServerEsp service expects these
messages in the inverse order.

• Argument mismatch may occur when the
number and/or type of arguments either be-
ing sent or received do not match between the
events on the different interfaces. This can be
observed in ServerDoc, when id? expects both
a username (usr) and a password (pwd). The
first data term corresponds to user! on the client
interface, whereas the second belongs to pass-
word!. Moreover, parameter correspondences
on the different interfaces may not always be
one-to-one. Thus, in some cases a specific pa-
rameter value has to be synthesized from several
other values that correspond to parameters sent
from one or more services. In our example, we
may mention that the value of the hash param-
eter required byMedDB has to be generated us-
ing the values of the user’s name and password
sent from the client.

The interested reader can refer to [7, 5, 21] for fur-
ther classifications of mismatch situations made by
other authors. In the upcoming section, we describe
how to specify the resolution of the mismatch situ-
ations presented above by making use of adaptation
contracts.

3. Contract Specification and Adaptor Genera-
tion

In this section, we present the specification lan-
guage for adaptation contracts. Although the genera-
tion of adaptor protocols from such specifications is

not a part of this work, we briefly discuss this process
in order to illustrate the basic principles upon which
our adaptation approach works.

3.1. Contract Specification Language

Adaptors can be automatically built from an ab-
stract description, called adaptation contract, of how
mismatch situations can be solved. An adaptation
contract specifies how messages and data exchanged
between services are related. Consequently, this
specification indicates how some cases of mismatch
can be solved (e.g., making explicit that two mes-
sages with two different names correspond to each
other). Some other cases (reordering of messages or
data) will be worked out by our adaptor generation
algorithms (presented in Section 3.2), which use as
input an adaptation contract but also the service in-
terfaces. In this work, we use compositional vectors
(inspired from synchronous vectors [22]) and a vec-
tor LTS (VLTS) as adaptation contract specification
language [23, 1, 9]. A compositional vector (or vec-
tor, for short) contains a set of event specifications
(message, direction, set of parameters). Each event
specified in the vector is executed by one service,
and the overall result corresponds to one or several
interactions between the involved services and the
adaptor. Vectors express correspondences between
messages, like bindings between ports, or connectors
in architectural descriptions. In particular, we con-
sider a binary communication model, therefore our
vectors are always reduced to one event specifica-
tion (when a service evolves independently) or two
(when services communicate indirectly through the
adaptor). Furthermore, variables local to the adap-
tor are used as placeholders in message parameters
when these appear in vectors. The same placeholder
variable names appearing in different event specifi-
cations (possibly in different vectors in the contract)
relate sent and received arguments in the messages.
It is worth noticing that placeholders are only used in
event specifications included in the contract (specif-
ically, in vectors), and not in actual communication
events on the different STSs.

Definition 4 (Parameter Substitution). We define
a parameter substitution function psub which subti-
tutes parameters in communication events by place-
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1 <id> ::= <alphabetic_char> | <id> <alphabetic_char> | <id> <digit>

2 <ph_id> ::= <id> | <id>"#"

3 <id_set> ::= <id> | <id> "," <id_set>

4 <ph_id_set> ::= <ph_id> | <ph_id> "," <ph_id_set>

5 <event_spec> ::= <id> ":" <id> <dir> | <id> ":" <id> <dir> <ph_id_set>

6 <dir> ::= "?" | "!"

7 <vector_prefix> ::= "o" | "c"

8 <event_spec_set> ::= <event_spec> | <event_spec> ";" <event_spec>

9 <vector> ::= <id> "=" <vector_prefix> ":" "<" <event_spec_set> ">"

10 <vector_definitions> ::= <id> "=" "{" <vector_set> "}"

11 <vector_set> ::= <vector> | <vector> "," <vector_set>

12 <param_definition> ::= "(" <id> "," "{" <id_set> "}" "," <id> ")"

13 <param_definitions> ::= <id> "=" "{" <param_definition_set> "}"

14 <param_definition_set> ::= <param_definition> | <param_definition> "," <param_definition_set>

15 <transition> ::= "(" <id> "," <id> "," <id> ")"

16 <transition_set> ::= <transition> | <transition> "," <transition_set>

17 <vlts> ::= "(" <id_set> ";" <id_set> ";" <id> ";" <id_set> ";" <transition_set> ")"

18 <contract> ::= "(" <vector_definitions> "," <param_definitions> "," <vlts> ")"

Figure 9: BNF Grammar for adaptation contracts.

holders defined in a set of names F as:
psub((M ,D ,PL),F ) = (M ,D ,PL′),
where | PL |=| PL′ | and ∀ p′ ∈ PL′, p′ ∈ F .
Let us remind that a communication event is a tuple
(M ,D ,PL) where M is a message name, D stands
for communication direction, and PL is a list of ex-
pressions/variables (please refer to Definition 2 for
more details). Moreover, we assume that valid place-
holder names in F and valid names in PL belong to
disjoint sets.

Definition 5 ((Compositional) Vector). A (compo-
sitional) vector v for a set of service STSs
(Ai , Si , Ii ,Fi ,Ti ), i ∈ {1, . . . , n} is an element of
id × {{{o, c} ×A′

j } ∪ {{c} ×A′
k ×A′

m}}, with j , k ,m ∈
{1, . . . , n} and k � m. ∀Ai = {l0, . . . , lq },A′

i =

{psub(l0,F ), . . . , psub(lq ,F )}, F being a set of fresh
names. The BNF grammar presented in Figure 9 de-
tails the syntax of vectors (lines 5-9).

Let us remark that function psub substitutes pa-
rameter names by placeholder names for a single
event specification. When applied to several event
specifications in the same (or different) vectors,
placeholder names are reused for subsequent event
specifications when the specific argument value that
the placeholder refers to is involved in different

points of service interaction 1. In any case, it is worth
observing that the association between placeholders
and operation arguments is determined by the de-
signer of the adaptation contract, as it is described
in Section 5.
According to Definition 5, vectors may be prefixed

by o or c (referred to as open and closed vectors,
respectively). In this section, we will consider only
the use of closed vectors. The use of open vectors is
related to the hierarchical compositional aspects of
our approach which will be discussed in Section 4.
Parameter correspondences on the different inter-

faces may not always be one-to-one. Thus, in some
cases, specific parameter values have to be synthe-
sized from several ones that are received from one or
more services. In order to specify how these values
can be obtained, we include in our contract notation
an additional construct that enables the definition of
new placeholders, based on the values of the place-
holders already described in vectors.

Definition 6 (Synthetic Parameter). A synthetic
parameter is a tuple (nph, {iph1, . . . , iphn}, f ), where
nph is the placeholder name for the synthesized

1For further details about placeholder reuse, please refer to
Appendix A.
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parameter, and {iph1, . . . , iphn} is the set of input
parameters required to synthesize the value of
nph. Function f specifies how the new value is
computed from parameters {iph1, . . . , iphn}. Please
refer to line 12 in the BNF grammar presented in
Figure 9 for the syntax of the definition of synthetic
parameters.

Furthermore, specifying that a value to be received
by a service is to be consumed once read is also
possible in our contract notation. This is indicated
by the “#” tag in the correspoding placeholder vari-
able identifier (e.g., in vector vreqdoc = c : 〈c :
reqDoc!D; sd : reqDoc?D#〉 , we indicate that the
value sent by the client, represented by placeholder
variable D, is to be eliminated from the adaptor store
or consumed when received by the counterpart ser-
vice, and therefore, it will not be available to other
services after its consumption).

In addition, the contract notation includes an LTS
with vectors on transitions (that we call vector LTS
or VLTS).

Definition 7 (VLTS). A vector LTS is a tuple
(A, S , I ,F ,T ), where given a set of vectors V built
over a set of n STS, A is an alphabet which corre-
sponds to the set of vector identifiers in V . S is a set
of states, I ∈ S is the initial state, F ⊆ S are final
states, and T : S ×A → S is the transition function.
Please refer to lines 15-17 in the BNF grammar pre-
sented in Figure 9 for the specific syntax of a VLTS.

This vector LTS is used as a guide in the ap-
plication order of interactions specified by vectors.
VLTSs go beyond port and parameter bindings, and
express more advanced adaptation properties (such
as imposing a sequential execution of vectors or a
choice between some of them). If the application or-
der of vectors does not matter, the vector LTS con-
tains a single state and all transitions looping on it.

Definition 8 (Adaptation Contract). An adapta-
tion contract for a set of services STSi , i ∈ {1, .., n},
is a tuple (D ,V ,VLTS ) where:

• D is a set of synthetic parameters defined over
the set of placeholders in event specifications in
V.

• V is a set of vectors built over the set of services
STSi .

• VLTS is a vector LTS, whose alphabet is de-
fined in V .

Example. Let us recall our on-line medical man-
agement system described in Section 2 which han-
dles patient appointments within a health care insti-
tution, either with general practitioners, or specialist
doctors (Figure 8). We intend to compose these ser-
vices into a working system where the client can re-
quest an appointment with a general practitioner, or
also request an appointment with a specialist doctor,
provided that there is a previous appointment with
a general practitioner (i.e., the client cannot directly
schedule an appointment with the specialist).
Figure 10 displays the adaptation contract used to

solve mismatch among the services. On the left-
hand side of the figure, we have the set of vectors
(Definition 5). It is worth observing that all vec-
tors in this contract are closed (prefix c) 2. For il-
lustration purposes, we focus on the initial part of
the composition, where we want to connect the gen-
eral practitioner server (ServerDoc) with the client,
and make authentication work correctly. For this,
we need three vectors, respectively vuser , vpwd and
vviddoc, in which we solve existing mismatches by re-
lating different message names (sd:id is related with
c:user and c:password). Concretely, we specify the
independent evolution of c:user! and c:password!
(in vectors vuser and vpwd , respectively), and specify
how parameter values are to be exchanged by sub-
stituting parameters usr and pwd with placeholders
U and P in the events specified in the three vectors,
making use of the psub function (Definition 4). In
particular, it is worth noting that the order in which
placeholders appear in vectors respect the order in
which parameters are expected by the services ( e.g.,
U appears before P in vviddoc, since sd:id is expect-
ing usr before pwd). Figure 11 further explains how
placeholders connect parameters.
The rest of the vectors in the contract work in a

similar fashion, relating the remaining parts of the

2The use of open vectors for hierarchical composition will
be introduced in Section 4.
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interfaces. Furthermore, if we focus on the bottom-
left part of Figure 10, it can be observed that the
contract also includes a synthetic parameter (Defi-
nition 6), where the placeholder name is H, its input
parameters are U and P, and its value is obtained by
applying a function that is the message digest (md5
algorithm) of the concatenation of the input parame-
ters.

Regarding the specification of additional con-
straints on the composition, we can observe in the
right-hand side of Figure 10 that the Vector LTS
(Definition 7) for the contract constrains the inter-
action of the Client, ServerDoc, and ServerEsp in-
terfaces by imposing the request for an appointment
with a general practitioner (vreqdoc1) always before
the request of an appointment with a specialist doctor
(vreqesp1). This is achieved by excluding vreqesp1 from
the possible transitions in state 0, and including the
transition (0, vreqdoc1, 1). It is worth observing that
by default, all vectors available in the contract (V )
are executable in both states of the VLTS, and only
specific vectors are removed in order to constrain the
composition. Building the VLTS in such an abstract
way simplifies its specification since transitions for
all vectors do not have to be specified one by one.

3.2. Generation of Adaptor Protocols

Given a set of service interfaces, and an adaptation
contract, an adaptor protocol can be generated using
automatic techniques as those presented in [1, 9]. An
adaptor is a third-party component that is in charge
of coordinating the services involved in the system
with respect to the set of constraints defined in the
contract. Consequently, all the services communi-
cate through the adaptor, which is able to compen-
sate mismatches by making required connections as
specified in the contract. All protocols (adaptor and
services) interact with respect to the COM and INEτ

rules presented in Figure 4.
Here, we have extended the techniques presented

in [9] to take into account the two enhancements we
made on the contract language, namely data synthe-
sis and data consumption. To do so, we have modi-
fied the Compositor tool which is in charge of gen-
erating the LOTOS code used in a second step as in-
put to Scrutator, a tool which generates the adaptor

protocol corresponding to the LOTOS specification
(see [9] for more details). The first extension (data
synthesis), at the LOTOS specification level, consists
of checking the availability of variables (placehold-
ers in contract specifications) involved in the synthe-
sis. Suppose for example that we want to compute
the addition of two variables x and y previously re-
ceived, and send the result to another service. In or-
der to be able to compute this result (x + y), we need
to check the availability of these variables in the LO-
TOS process Store which contains all the variables
received by the adaptor at any point in its behaviour.
As far as the data consumption is concerned, there
are now two possible behaviours in the LOTOS spec-
ification when some variables are sent along with
messages: either the variable does not need to be
consumed (no “#” tag for this variable in the con-
tract) and every time this variable is sent by the adap-
tor, no modification is done on the store, or this vari-
able is tagged in the contract and can be used only
once; in such a case the variable is removed from
the store. In this sense, the piece of data received
by the adaptor from a sender which corresponds to
a placeholder tagged with “#”, is destroyed from the
store by the adaptor itself, and this does not affect the
sending nor the receiving services in any way.
From adaptor protocols, either a central adaptor

can be implemented, or several service wrappers can
be generated to distribute the adaptation. In the for-
mer case, the implementation of executable adaptors
from adaptor protocols can be achieved for instance
using Pi4SOA technologies [24], or techniques pre-
sented in [9] and [15] for BPEL and Windows Work-
flow Foundation, respectively. In the latter case, each
wrapper constrains the functionality of its service
to make it respect the adaptation contract specifica-
tion [25].
Example. Figure 11 shows a small portion of the
adaptor protocol generated from the three vectors
vuser = c : 〈c : user!U〉, vpwd = c : 〈c : password!P〉
and vviddoc = c : 〈sd : id?U,P〉 given in Figure 10.
This makes service ServerDoc and the Client inter-
act correctly. We emphasize that the adaptor syn-
chronizes with the services using the same name of
messages but the reversed directions, e.g., commu-
nication between id? in ServerDoc and id! in the
adaptor. Furthermore, when a vector includes more
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V = {vuser = c : 〈c :user!U〉,
vpwd = c : 〈c :password!P〉,
vvidesp = c : 〈se : id?U,P〉,
vreqesp1 = c : 〈c : reqSpec!DATE; se : reqSpec?DATE#〉,
vreqesp2 = c : 〈c : replyS?RES1; se : reqSpec!RES1〉,
vviddoc = c : 〈sd : id?U,P〉,
vreqdoc1 = c : 〈c : reqDoc!DATE; sd : reqDoc?DATE#〉,
vreqdoc2 = c : 〈c : replyD?RES2; sd : reqDoc!RES2〉,
vavail1 = c : 〈se :availability!DATE; d :availability?DATE#,H〉,
vavail2 = c : 〈se :availability?RES1; d :availability!RES1〉 }

D = {(H, {U,P},md5(concat(U,P)))}

0 1
vreqdoc1

V \{vvreqesp1,vreqdoc1} V \{vreqdoc1}

Figure 10: Adaptation contract for our example: vectors and synthetic parameters (left) and vector LTS (right). In this article we
use a graphical notation for VLTSs, instead of the actual notation in contracts presented in Figure 9 for the sake of clarity.

login?usr,pwd

SERVERDOC

user!usr

CLIENT

password!pwd

user?U

ADAPTOR

password?P

login!U,P

login?usr,pwd

login!U,P

user!usr

password!pwd

user?U

password?P

related by placeholder U

related by placeholder P

Figure 11: Example of adaptation for authentication mis-
matches.

than one communication action, the adaptor always
starts the set of interactions formalised in the vector
with the receptions (which correspond to emissions
on service interfaces), and next handles the emis-
sions. In line with these considerations, the devel-
opment of events in Figure 11 is the following: (i)
the adaptor receives the value of the username (pa-
rameter usr) sent by the client in in emission c:user!,
which is stored in the data environment of the adap-
tor under the name U; (ii) the adaptor receives the
value of the password (parameter pwd) sent by the
client in emission c:password!, and stores it in its
data environment as P; and (iii) the adaptor can now
perform the emission that corresponds to login!U,P,
since ServerDoc is ready to receive, and the values
of U and P are already available in the adaptor’s data
environment.
Figure 12 displays the adaptor protocol generated

using the adaptation contract shown in Figure 10
where only vectors are considered (the VLTS con-

sists of a single state with all vector transitions loop-
ing on it). Interaction starts by receiving the user
and password messages sent by the Client. Next,
the adaptor can alternatively (i) receive reqDoc from
the Client; (ii) login to ServerDoc (id); or (iii) re-
ceive reqSpec from the Client. It is worth observing
that the adaptor consists of two main parts: on the
left-hand side, the client successively interacts with
the doctor and with the specialist; on the right-hand
side, the client first interacts with the specialist and
afterwards with the doctor. The left part is quite se-
quential, whereas the right one contains more inter-
leavings corresponding to all possible (correct) inter-
action scenarios.
The full adaptor protocol for our example contains

49 states and 60 transitions. This adaptor has a mod-
erate size and complexity. If we consider the adapta-
tion contract with the vector LTS given in Figure 10
and the same set of bindings, the adaptor protocol
consists of 20 states and 20 transitions. This reduc-
tion in the number of states and transitions occurs
in this case because the addition of the VLTS con-
strains the composition by imposing sequentiality on
the different actions (interactions first with the doctor
and in a second step with the specialist), thus reduc-
ing interleaving.

4. Hierarchical Service Composition and Adap-
tation

Real scenarios for service reuse and adaptation
often involve several interacting services. This in-
creases the complexity of adaptation, hindering the
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0

1

CLIENT:USER ?U

2

CLIENT:PASSWORD ?P

3

CLIENT:REQDOC ?DATE

4

CLIENT:REQSPEC ?DATE

5

SERVERDOC:ID !U,P

6

SERVERDOC:ID !U,P

7

SERVERDOC:ID !U,P

8

SERVERESP :REQSPEC !DATE

9

CLIENT:REQDOC ?DATE

10

CLIENT:REQSPEC ?DATE

11

SERVERDOC:REQDOC !DATE

12

SERVERESP :REQSPEC !DATESERVERDOC:ID !U,P

13

SERVERESP :ID !U,PSERVERDOC:REQDOC !DATE SERVERESP :REQSPEC !DATE

14

SERVERDOC:REQDOC ?RES 2

15

SERVERESP :ID !U,P SERVERDOC:ID !U,P

16

SERVERESP :AVAILABIL ITY ?DATE

17

CLIENT:REPLYD !RES2

18

SERVERESP :AVAILABILITY ?DATE

19

DB:AVAILABILITY !DATE,H

20

SERVERDOC:ID !U,P

21

CLIENT:REQSPEC ?DATE

22

DB:AVAILABIL ITY !DATE,H SERVERDOC:ID !U,P

23

DB:AVAILABIL ITY ?RES1 DB:AVAILABILITY !DATE,H

24

SERVERESP :REQSPEC !DATE

25

DB:AVAILABILITY ?RES1

26

SERVERDOC:ID !U,P

27

SERVERESP :AVAILABILITY !RES1

28

SERVERESP :ID !U,P

29

SERVERESP :AVAILABILITY !RES1SERVERESP :AVAILABIL ITY !RES1SERVERDOC:ID !U,P

30

SERVERESP :REQSPEC ?RES1

31

SERVERESP :AVAILABIL ITY ?DATE

32

SERVERESP:REQSPEC ?RES1

33

CLIENT:REPLYS !RES1

34

SERVERDOC:ID !U,P

35

DB:AVAILABILITY !DATE,H

36

CLIENT:REPLYS !RES1

37

CLIENT:REQDOC ?DATE

38

SERVERDOC:ID !U,PCLIENT:REPLYS !RES1

39

DB:AVAILABIL ITY ?RES1

40

CLIENT:REQDOC ?DATE

41

SERVERDOC:ID !U,PCLIENT:REQDOC ?DATE

42

SERVERESP :AVAILABIL ITY !RES1

43

SERVERDOC:REQDOC !DATE SERVERDOC:REQDOC !DATE

44

SERVERESP :REQSPEC ?RES1

45

SERVERDOC:REQDOC ?RES2

46

CLIENT:REPLYS !RES1

47

CLIENT:REPLYD !RES2

48

FINAL FINAL

49

FINAL

Figure 12: Adaptor protocol generated for the Online Medical System example

task of the developer. In this section, we present
a divide-and-conquer approach that simplifies the

adaptation process by building contracts incremen-
tally. This approach is used as foundation for the
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graphical notation for service hierarchy and contracts
presented in Section 5. Hence, in addition to being
able to specify the system incrementally, the com-
plexity of the approach described in this section is
hidden from the designer since in our approach con-
tracts are automatically obtained from their graphical
description.

In particular, our incremental approach is based on
the notion of composite service, which corresponds
to a hierarchy of connected services. By encapsulat-
ing interactions through composite hierarchical ser-
vices, the developer can focus on the construction of
a contract for a particular adaptation sub-problem at
a time. This encapsulation has important advantages
in terms of design, development and debugging. In
particular, composite services may be independently
developed, tested, and modularly replaced by new el-
ements as requirements change.

Definition 9 (Composite Service). A composite
service is a pair (SI ,C ) where:

• SI is a set of (composite or basic) service in-
terfaces (i.e., an Id-indexed set of STSs Si , i ∈
1..n).

• C = (D ,V = Vint ∪ Vext ,LTSv ) is an adapta-
tion contract for the set of services in SI :

– D is a set of synthetic parameters.

– Vint is a set of vectors of the form c :
〈li , lj 〉, i , j ∈ 1..n, i � j , where li ∈ Ai
and lj ∈ Aj are messages which belong to
the alphabets of two different STSs in SI .
It represents internal bindings between the
composite sub-services. We refer to this
kind of vector as closed (or c-vector) in the
remainder of this article.

– Vext is a set of vectors of the form o : 〈l〉,
where l is a message which belongs to
the alphabets of a STSs in SI . It repre-
sents ports on the composite subservices
which remain open to the environment and
therefore are exposed through the compos-
ite public interface. We refer to this kind
of vectors as open (or o-vector) in the re-
mainder of this article.

– LTSv is a vector LTS with its alphabet de-
fined on V .

Example. In our online medical system, services
ServerDoc, ServerEsp, and MedDB are bundled
within a composite MedService, which interacts
with the Client (Figure 13, top). In the remainder
of this paper, we will informally refer in our exam-
ple to the scope of the MedService composite as the
bottom level of the hierarchy, and to the global scope
of the system which contains the Client and theMed-
Service as top level:

MedService=({ServerDoc,ServerEsp,MedDB},
(∅,Vbot ,LTSvbot ))

ServerEspServerDoc c

o o

MedService

Clientc c

MedDB
vviddocO

vreqdoc1O
vreqdoc2O

vvidespO
vreqesp1O
vreqesp2O

vavail1
vavail2

vuser
vpwd

vviddoc
vreqdoc1
vreqdoc2

vvidesp
vreqesp1
vreqesp2

ServerEspServerDoc

Client

MedDB

vavail1
vavail2

vuser
vpwd

vviddoc
vreqdoc1
vreqdoc2

vvidesp
vreqesp1
vreqesp2

Figure 13: Service hierarchy and bindings (top) and flattened
structure and bindings (bottom).

The set of vectors in the bottom level (Vbot , in-
ternal to theMedService composite interface) repre-
sents both bindings internal to the scope of the com-
posite, as well as open ports (which correspond to
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closed and open vectors, respectively). The former
allow the interaction of ServerEsp and MedDB ser-
vices (closed vectors vavail1, vavail2), whereas the lat-
ter (open vectors) enable us to export the rest of the
ports in ServerDoc and ServerEsp for external in-
teraction with the client:

Vbot={ vviddocO = o : 〈sd : id?U,P〉,
vreqdoc1O = o : 〈sd : reqDoc?DATE#〉,
vreqdoc2O = o : 〈sd : reqDoc!RES2〉,
vvidespO = o : 〈se : id?U,P〉,
vreqesp1O = o : 〈se : reqSpec?DATE#〉,
vreqesp2O = o : 〈se : reqSpec!RES1〉,
vavail1 = c : 〈se :availability!DATE,H;

d :availability?DATE#,H〉,
vavail2 = c : 〈se :availability?RES1;

d :availability!RES1〉 }
At the top level, we define the interaction of the

Client with the MedService composite interface. It
is worth observing that the highest level of any hier-
archy consists of an implicit composite which con-
tains all the interfaces on the global scope of the sys-
tem and a contract relating them where all bindings
are represented by closed vectors, since no ports have
to be exported to an upper level.

System=({Client,MedService},
({(H, {U,P},md5(concat(U,P)))},Vtop ,LTSvtop))

Vtop={ vuser = c : 〈c :user!U〉,
vpwd = c : 〈c :password!P〉,
vviddoc = c : 〈s : id?U,P〉,
vreqdoc1 = c : 〈c : reqDoc!DATE;

s : reqDoc?DATE#〉,
vreqdoc2 = c : 〈c : replyD?RES2;

s : reqDoc!RES2〉,
vvidesp = c : 〈s : id?U,P〉,
vreqesp1 = c : 〈c : reqSpec!DATE;

s : reqSpec?DATE#〉,
vreqesp2 = c : 〈c : replyS?RES1;

s : reqSpec!RES1〉 }
Regarding the specification of additional con-

straints on the composition we can observe in Fig-
ure 14 that the vector LTS in the bottom level con-
tract only contains one state with a transition for all
vectors specified in the contract looping on it (it does

not impose any constraints on the composition). In
contrast, the top-level VLTS constrains the interac-
tion of the Client and the MedService just like the
VLTS described in Section 3 did.

0 10

Vtop\{vreqdoc1,vreqesp1}Vbot

vreqdoc1

Vtop\{vreqdoc1}

Figure 14: Vector LTSs for the bottom (MedService composite
–left) and top level contracts (right).

Both vector and VLTS specifications are automat-
ically generated in our approach from the graphical
description of the system that will be presented in
Section 5. �

Expressing hierarchical relationships among inter-
faces in composites is not enough to achieve compos-
ability. Particularly, if we want to replace a part of a
service hierarchy (composite service) by a black-box
service (thus making its implementation transparent
to the rest of the system), we must provide:

1. An internal implementation for the composite
service. This is obtained by generating an adap-
tor from c-vectors using the techniques refer-
enced in Section 3. Adding this adaptor enables
the involved services to interoperate while leav-
ing ports corresponding to o-vectors open to the
environment.

2. A behavioural interface for the composite ser-
vice. An STS behavioural interface can be ob-
tained for a composite service by generating the
interleaving of the parts of service protocols in
SI where labels correspond to open ports (those
ports contained in open vectors).

As an alternative to generating the implementation
of composite services and composing them incre-
mentally with the rest of the system, in some cases
it is interesting to generate a centralized adaptor for
a service hierarchy, since this reduces the number of
adaptors (and therefore messages exchanged) in the
system (Figure 15, right). In order to enable the gen-
eration of centralized adaptors, we propose an algo-
rithm to automatically merge all the partial contracts
at different levels of a service hierarchy, returning a
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single or flat adaptation contract which involves all
the interacting services in the hierarchy. A hybrid
approach can also be taken by applying the flattening
process to a restricted part of a service hierarchy, re-
ducing the overall number of adaptors in the system
without compromising parallelism in parts where its
preservation must be enforced.

Example. Figure 15 shows two alternative sys-
tem architectures: (left) an adaptor which leaves o-
vectors open to the environment (A1) is first gen-
erated for service composite MedService, and an-
other adaptor (A2) is generated in a second step
to enable interoperability between MedService and
Client and; (right) a centralized adaptor enables the
interaction of all the services after applying contract
flattening. �

ServerEspServerDoc

MedService

Client

A1

A2

MedDB ServerDoc

Client

A

MedDB ServerEsp

Figure 15: Alternative architectures.

The obtaining of a flat adaptation contract is
achieved by recursively merging contracts of adja-
cent levels n and n+1 in the service hierarchy (Algo-
rithm 1). This contract merging process implements
a depth-first traversal, since the contracts inside of
any particular sub-composite of the hierarchy must
be merged before proceeding to an upper level. The
algorithm returns a single adaptation contract involv-
ing all the services in the hierarchy.
We define now the two functions used in Algo-

rithm 1:

• Function is composite(i ) returns True if i is a
composite service.

• Function merge contracts merges two con-
tracts Cint = (Dint ,Vint ,LTSvi ) and Cext =
(Dext ,Vext ,LTSve) of adjacent levels in the hi-
erarchy, returning a single contract C for both
levels:

Algorithm 1 flat contract
Returns a single contract for a composite service.
inputs Composite service CI = (SI ,C )
output Flat adaptation contract FC

1: FC = C
2: for all i ∈SI do
3: if is composite(i ) then
4: FC = merge contracts(flat contract(i ),FC )
5: end if
6: end for
7: return FC

merge contracts(Cint ,Cext ) =
(Dint ∪ Dext ,merge vectors(Vint ,Vext ),
free product(LTSvi ,LTSve))

Specifically, two contracts are merged by:
1. Merging the sets of vectors in the two contracts
of levels n and n + 1 in the hierarchy (Algorithm 2).
This algorithm first adds to V all the c-vectors from
Vint (bottom level), and in a second step, a set of
vectors which results from merging o-vectors in Vint
with vectors in Vext (top level) which overlap in one
(open or observable) label. Finally, the rest of the
unmatched (not merged) vectors in Vext are added to
V .
2. The resulting VLTS for the merged contract is ob-
tained by computing the free product [22] of the bot-
tom and top level VLTSs (LTSvi and LTSve , respec-
tively), where transitions containing merged vectors
(Algorithm 2, lines 7, 11, and 15) have been previ-
ously relabeled.
Now, we define more formally the different func-

tions we use in Algorithm 2:

• Function id (e!(v1 . . . vn)) = e!,
id (r?(x1 . . . xn)) = r?, returns a unique
identifier for each label (by using its name and
direction).

• Function ids({l1, . . . , ln}) = {id (l1)} ∪ · · · ∪
{id (ln)} extends function id to obtain a set of
unique label identifiers from a label set.

• Function obs(e : 〈ll , lr 〉) = e is used to deter-
mine if a vector is observable from outside the
scope of its composite or not (i.e., if it is open or
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Algorithm 2 merge vectors
Merges two sets of vectors of adjacent hierarchical
levels.
inputs Bottom level vector set Vint , Top level vector
set Vext
output Vector set V

1: Observable := {v ∈ Vint | obs(v ) � c}
2: V := Vint\Observable
3: Vauxext := Vext

4: for all vo = o : 〈so : lo〉 ∈ Observable do
5: if ∃ vext = c : 〈sext1 : lext1, sext2 : lext2〉 ∈

Vext , id (lo) ∈ ids({lext1, lext2}) then
6: (ln , sn ) := (l , s) ∈

{(sext1, lext1), (sext2, lext2)}, id (l ) � id (lo)
7: vn := c : 〈so : lo , sn : ln 〉
8: Vauxext := Vauxext\{vext }
9: V := V ∪ {vn }

10: else if ∃ vext = o : 〈sext : lext 〉 ∈ Vext , id (lo) =
id (lext ) then

11: vn := o : 〈so : lo〉
12: Vauxext := Vauxext\{vext }
13: V := V ∪ {vn }
14: else if ∃ vext = c : 〈sext : lext 〉 ∈ Vext , id (lo) =

id (lext ) then
15: vn := c : 〈so : lo〉
16: Vauxext := Vauxext\{vext }
17: V := V ∪ {vn }
18: end if
19: end for
20: V := V ∪Vauxext
21: return V

closed). This is achieved by returning the prefix
of the vector (o or c for open and closed vectors,
respectively).

Example. After applying the aforedescribed con-
tract merging process to the service hierarchy in our
example, we obtain the flat contract described in Sec-
tion 3 (Figure 10). All bindings in a flat contract
are always represented by closed vectors. Figure 13
(bottom) shows a simplified graphical representation
of the bindings in the flat contract. Figure 10 also de-
picts the VLTS for the flat contract obtained by per-
forming the free product of the two input VLTSs. It is
worth observing that before this free product is per-
formed, transitions on the input VLTSs are relabeled
with the names of merged vectors.

5. Interactive Contract Specification

In order to make the contract design as simple
and user-friendly as possible, we advocate interac-
tive specification techniques to support the designer
through this process. Hence, in our approach the
designer can perform the specification of a contract
through a graphical user interface, and receive at the
same time both suggestions and feedback about the
inputs that (s)he is providing to the process. For this
purpose, we propose: (i) a notation to graphically
make explicit bindings between ports; and (ii) a com-
patibility measure which aims at pointing out mis-
matches between two protocols, but also at detecting
parts of them which turn out to be compatible.

5.1. Graphical Notation

The graphical notation for a service interface in-
cludes a representation of its protocol (STS) and a
collection of ports. Each label on the STS corre-
sponds to a port in the graphical description of the
interface. Ports include a data port for each parame-
ter contained in the parameter list of the label. Cor-
respondences between the different service interfaces
are represented as port bindings (c-vectors) and data
port bindings (solid and dashed connector lines, re-
spectively). Starting from the graphical representa-
tion of the interfaces, the designer builds a contract
by successively connecting ports and data ports. This
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results in the creation of bindings which specify how
the interactions should be carried out. It is also possi-
ble to add a T-shaped port cap (c-vector with a single
label) on a port in order to indicate that it does not
have to be connected anywhere. Our graphical no-
tation considers hierarchical relations among inter-
faces as well (see Section 4 for the underlying prin-
ciples). Thus, a port can be open (o-vector), and it
will appear in the external interface of the composite
service to which it belongs. Figure 16 summarizes
ports and bindings used in our notation.

OUT Port

IN Port

Open Port

Port Cap

Data Binding

Port Binding

Data Port

Figure 16: Graphical notation: ports and bindings

Example. Let us focus on the graphical representa-
tion of theMedDB service in our example (Figure 17
gives a graphical description of the service hierar-
chy). It can be observed that it contains a port for
the reception of the availability request with a data
port attached representing the date (d), and another
port for the emission of the availability response with
a data port attached representing the ticket identifier
issued for the given date. There is also an additional
independent data port that represents the synthetic
parameter H created for the hash that has to be in-
cluded in the availability request. Moreover, the fig-
ure depicts the hierarchy of services in our exam-
ple, where the ServerDoc, ServerEsp and MedDB
interfaces are placed inside a composite interface
(MedService) and interact on a set of bindings de-
fined between their ports. It is worth noticing that
the ServerDoc and ServerEsp interfaces have sev-
eral open ports connected to the external interface of
MedService. �
In our approach, the vector LTS imposing an order

on the application of the bindings is built implicitly
as new bindings are created. Initially, the VLTS has
a single state and no transitions. Each time a new
connection is made, the VLTS can be extended in
three different ways:

• Abstract mode. No order on the application of
the bindings is imposed. Let s be the current

state of the VLTS. Creating a binding labeled as
b in this mode results in the creation of a transi-
tion (s ,b,s) looping on the current state.

• Sequential mode. Bindings created in this
mode must be executed one after the other. This
results in the extension of the VLTS with a fresh
state s ′ and a transition (s , b, s ′). Once this tran-
sition is added, the current VLTS state is up-
dated to s ′. A subsequent binding creation in
this mode will extend the VLTS with a state s ′′

and a transition (s ′, b, s ′′).

• Branching mode. Bindings created in this
mode are mutually exclusive. The VLTS is ex-
tended in this case with a fresh state s ′ and a
transition (s , b, s ′). Unlike in sequential mode,
the current state is not updated. Thus, a subse-
quent binding creation in this mode will corre-
spond to the creation of a new state s ′′, and a
transition (s , b, s ′′).

By proceeding this way, it is possible to build a
VLTS for most contracts. However, in some cases
the designer may have to adjust the specification to
describe situations which cannot be represented us-
ing the VLTS extension modes mentioned above.
Consider for instance a binding which has to be ex-
ecuted more than once in different parts of the spec-
ification. For this purpose, the user should be able
to explicitly create a transition between two states in
the VLTS, and assign to it a binding (vector) which
has been previously created using one of the afore-
described extension methods. In order to do this,
the environment includes an explicit representation
of the VLTS which can be manipulated by the user
performing operations such as changing the current
state, deleting transitions, or creating transitions as-
signed to previously created bindings.

5.2. Protocol Compatibility Measure
Comparing two protocols helps to build adaptation

contracts by suggesting the best possible interface
matches to the user. To do so, we compute the be-
havioural compatibility degree which aims at detect-
ing parts of both protocols which turn out to be com-
patible. Our measure accepts as input two service
protocols STS1 = (A1, S1, I1,F1,T1) and STS2 =
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Figure 17: Graphical contract specification for the online medical management system.

(A2, S2, I2,F2,T2) and computes a compatibility de-
gree for each global state, i.e., each couple of states
(si , sj ) with si ∈ S1 and sj ∈ S2. All compatibility
scores range between 0 and 1, where 1 means a per-
fect compatibility. Our approach is parameterized by
a compatibility notion, that is, we measure howmuch
the two interfaces are far from being compatible wrt.
this compatibility notion. So far, we have carried
out experiments for several notions, such as unspec-
ified receptions (UR) [2] or unidirectional comple-
mentarity (UC) [26]. The UR compatibility requires
that if one service can send a message at a reachable
state, then the other service must receive that emis-
sion. Furthermore, one service can be able to receive
messages that cannot be sent by the other service,
i.e., there might be additional unmatched receptions.
Two services are compatible with respect to UC no-
tion if and only if there is one service which is able
to receive (send, respectively) all messages that its
partner expects to send (receive, respectively) at all
reachable states. Hence, the “bigger” service may
send and receive more messages than the “smaller”
one. Additionally, for both compatibility notions,
services must be free of deadlocks. We will use the
UR compatibility notion for illustration purposes in
the rest of this section.
Our approach consists in computing first a set of

static compatibility measures, and use them in a sec-

ond step for computing the behavioural compatibility
degree for all global states in S1 × S2.

Static Compatibility. We use three auxiliary
static compatibility measures, namely state nature,
labels, and exchanged parameters.
State Nature. The comparison of state nature as-

signs 1 to each pair of states which have the same
nature, i.e., both states are initial, final or none of
them. Otherwise, the measure is equal to 0.
Parameters. The compatibility degree of two pa-

rameter lists pl1 and pl2 depends on three auxiliary
measures, namely: (i) the compatibility of parameter
number comparing the list sizes; (ii) the compatibil-
ity of parameter order measuring the number of types
which does not appear in the same order, and (iii) the
compatibility of parameter type using the set of un-
shared types in both lists. These measures must be
set to 1 if these lists are empty.
Labels. Protocol synchronisation requires that

compatible labels must have opposite directions.
Therefore, given a pair (l1, l2) ∈ A1 × A2, the la-
bel compatibility – lab-comp(l1, l2) – is measured as
0 if these labels have same directions. Otherwise,
the computation of this measure uses the semantic
distance between message names and the parameter
compatibility degree presented above. Here, mes-
sage names are compared using the Wordnet simi-

19



larity package [27].

Behavioural Compatibility. We consider a flood-
ing algorithm which performs an iterative measuring
of behavioural compatibility for every global state
in S1 × S2. This algorithm incrementally propagates
the compatibility between neighbouring states using
backward and forward processing. The compatibil-
ity propagation is based on the intuition that two
states are compatible if their backward and forward
neighbouring states are compatible, where the back-
ward and forward neighbours of global state (s ′1, s

′
2)

in transition relations T1 = {(s1, l1, s ′1), (s ′1, l ′1, s ′′1 )}
and T2 = {(s2, l2, s ′2), (s ′2, l ′2, s ′′2 )} are the states (s1, s2)
and (s ′′1 , s

′′
2 ), respectively. The flooding algorithm re-

turns a matrix denoted COMPk
CN,D where each en-

try COMPk
CN,D[s1, s2] stands for the compatibility

measure of global state (s1, s2) at the k th iteration.
The parameter CN refers to the considered com-
patibility notion which must be checked according
to D , that is, a bidirectional (↔) protocol analy-
sis in this article. COMP0

CN,D represents the ini-
tial compatibility matrix where all states are sup-
posed to be perfectly compatible, i.e., ∀(s1, s2) ∈
S1 × S2, COMP0

CN,D[s1, s2] = 1. Then, in order to
compute COMPk

CN,D[s1, s2], we consider the obser-
vational compatibility function, obs-compkCN ,D , and
the state compatibility function, state-compkCN ,D ,
which combines the forward and backward propaga-
tions. In this article, we only present the forward
compatibility for lack of space, the backward com-
patibility can be handled in a similar way based upon
incoming rather than outgoing transitions.
Unspecified Receptions. For every global state

(s1, s2): (i) obs-compkUR,↔ returns 1 if and only if ev-
ery outgoing emission at state s1 (and s2) perfectly
matches an outgoing reception at state s2 (and s1) and
all synchronisations on those emissions lead to com-
patible states; (ii) obs-compkUR,↔ returns 0 if there is
a deadlock; (iii) otherwise, obs-compkUR,↔ measures
the best compatibility of every outgoing emission at
s1 with the outgoing receptions at s2, leading to the
neighbouring states which have the highest compati-
bility degree, and vice-versa.
Forward Propagation. The compatibility is com-

puted from both services point of view. The func-
tion fw-propagkCN,↔((s1, s2)) propagates to (s1, s2)

the compatibility degrees obtained for the forward
neighbours of state s1 with those of state s2, and vice-
versa. For each τ transition, fw-propagkCN,↔ must
be checked on the target state. Observable tran-
sitions going out from (s1, s2) are compared using
obs-compkCN ,↔((s1, s2)).
State Compatibility. The function

state-compkCN ,D ((s1, s2)) computes the weighted
average of three measures: the forward and back-
ward compatibilities, and the value returned by the
function comparing state natures.
Compatibility Flooding. As a final measuring

step, COMPk
CN,D[s1, s2] is computed as the average

of its previous value COMPk−1
CN,D[s1, s2] and the cur-

rent state compatibility degree. Our iterative pro-
cess terminates when the Euclidean difference εk =

‖COMPk
CN,D − COMPk−1

CN,D‖ converges.
The interested reader can find more details in [28].

Application to Contract Design. As far as the
interactive contract design is concerned, the afore-
mentioned compatibility measure can be used first to
automatically generate port bindings for labels that
perfectly match. Furthermore, the user can also se-
lect a transition label l in one protocol (we call s its
source state in the rest of this paragraph), and we re-
turn the best label matching in the other protocol.
So far, we have implemented two functions which:
(i) labels all states in the other protocol with compat-
ibility measures between s and every state in the part-
ner interface, and (ii) seeks the highest value (s , sj )
in the matrix (where sj is a partner state) and returns
the label going out from sj the most compatible with
l . These functions can be completed with other alter-
natives such as returning the best label matching for
each state in the partner, or for each state whose com-
patibility measure with respect to s is higher than a
threshold t . To highlight these results in the graphi-
cal interface, we do not only display the compatibil-
ity measures but also color in red the best matchings.

Example. Compatibility measures first help to de-
tect port bindings for labels that perfectly match, sav-
ing time to the developer who would otherwise have
to relate manually ports which are obviously com-
patible. For instance, the input port reqDoc on the
Serverdoc interface perfectly matches with the out-
put port reqDoc on the Client interface, so they can
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be automatically bound together based on that infor-
mation. As far as best matching computations are
concerned, while connecting the external interface
of the MedService composite with the ports on the
Client interface, one can for instance click on the out-
put port reqDoc corresponding to a Serverdoc ac-
tion. In such a case, the best label matching (sec-
ond function presented above) returns the Client in-
put port replyD with a value of 0.50 (see Figure 18).
Therefore, we can choose to bind these ports and this
corresponds to vector vreqdoc2 in the contract we pre-
sented in Section 3.

6. Validation and Verification of Adaptation Con-
tracts

In this section, we propose a set of validation and
verification techniques to check that an adaptation
contract makes the involved services work correctly.
In this sense, it is worth observing that even if there
are several adaptation contracts defined at different
levels of the service hierarchy, we can obtain a sin-
gle contract from them by applying Algorithm 1.
These techniques are intended to help the designer
in understanding potential problematic behaviours
of the system which are not obvious (even to the
trained eye) just by observing service interaction pro-
tocols and adaptation contracts. Indeed, contracts
are only abstract specifications that express message
and data correspondences between interfaces (vec-
tors), as well as partial order on the interactions to
be carried out in the composition (VLTS). As such,
contracts do not provide an explicit representation of
the actual behaviour of the composition, which has
to be generated using state-space exploration tech-
niques in order to assess whether the application of
the contract results in a composition that complies
with the designer’s intentions.
We considered as an alternative to the techniques

presented in this section the use of a model-checker
(such as CADP or MuCRL2) for verification. How-
ever, we decided to develop our own tools for a num-
ber of reasons. Firstly, we developed exactly what
we need for analysing contracts, and this relies on a
single algorithm (simulation) from which we can an-
imate the system under construction and also check
temporal properties on the set of traces generated

from simulation. Secondly, using an existing model
checker would require a translation from one lan-
guage to another is far from easy because (i) the
translation must preserve the semantics of the orig-
inal language, and (ii) we also need to translate back
the results of the verification in the original language
if we want the user to understand them. If we con-
sider this last argument, we think that our solution
was not more costly (in time and complexity) than
the alternative solution of reusing an existing model
checker. Finally, we also wanted a self-contained
framework, with the additional advantage of having
everything available in Acide. This avoids the instal-
lation and configuration of other tools in order to use
our solution.
These techniques are completely automated, and

include four kinds of checks: (i) static checks on
the contract wrt. STS service interfaces involved,
(ii) simulation of the system execution, (iii) trace-
checking to find potential deadlocking executions
and infinite loops, and (iv) verification of temporal
logic formulas.

6.1. Static Checks

In the first place, our approach implements a set
of static checks on the contract under specification.
These include determining if all labels used in vec-
tors are defined in service interfaces, finding out if all
service identifiers appearing in vectors belong to one
of the interfaces involved in the composition, check-
ing if connected parameters have the same type, etc.
Although these checks will detect all common errors
that occur when a contract is manually written, they
are not enough since they do not focus on the inter-
actions between the services and the adaptor defined
by the contract, missing out the behavioural issues
that might be raised during execution.

6.2. Simulation

In order to be able to also detect behavioral issues,
our approach includes a set of algorithms to perform
simulation that are inspired in the composition en-
gine we presented in [29]. However, this new set of
algorithms are extended with value-passing, taking
into account data consumption and data synthesis.
Furthermore, these new mechanism enables message
reordering, simulating the execution of the system
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step-by-step and determining how the different be-
havioural interfaces evolve as different vectors in the
contract are executed.
This section introduces successively two parts.

The first one deals with the search for the existence
of a correct termination state for the system using
depth-first search. The second one includes an al-
gorithm that simulates the behaviour of the system
according to a specification given in an adaptation
contract, making use of the mechanisms described in
the first part.

6.2.1. Existence of Final States
Algorithm 3 takes as input the current state of the

system N , and determines if the set of service STSs
involved in the composition can reach a correct ter-
mination state for the execution under the current
adaptation contract. Please observe that for the sake
of clarity, we assume in the rest of this section that
the different functions and algorithms defined have
access to the set of service interfaces STSi∈{1,...,n} =
(Ai , Si , Ii ,Fi ,Ti ), as well as to the adaptation con-
tract C = (D ,V ,VLTS = (Ac , Sc , Ic ,Fc ,Tc)), even
if these are not explicitly passed as input parameters.
The global state of the system at each step of the

execution includes the current states of the different
STSs, the current state sc of the vector LTS in the
contract, the set of vectors currently under execution
RV (initially empty), and a data environment E (ini-
tially empty). This algorithm relies on a depth-first
search traversal of the state-space of the system, and
stops as soon as a final state for the whole system
has been found (i.e., the states in all the STSs and the
VLTS are final, and all vectors have finished execu-
tion). The main idea is that communication actions
that belong to the vectors in the contract are applied
going in depth until a final state is reached (end of
the algorithm), or a deadlock state is found (no fur-
ther communication actions can be executed). In the
latter case, we backtrack and try another path. The
algorithm keeps track of already traversed states to
avoid endless execution.
Now, we formally define the different functions

used in Algorithm 3:

• Function goal determines if the current state of
the system is a correct termination state of the

Algorithm 3 exist final
tests if a final state of the system may be reached from the cur-
rent state of the system N.
inputs state of the system N = (states , sc ,RV ,E )
output a boolean
1: OPEN := [] // list of open nodes
2: CLOSED := [] // list of visited nodes
3: current := N
4: OPEN := push(current ,OPEN )
5: while OPEN � ∅ do
6: current := pop(OPEN )
7: if goal (current) then
8: return True
9: else
10: CLOSED := push(current ,CLOSED)
11: for all n ∈ successors(current), n � CLOSED do
12: CLOSED := push(n ,CLOSED)
13: end for
14: end if
15: end while
16: return goal (current)

execution:
goal (N = (states , sc ,RV ,E )) = states[1] ∈ F1 ∧ . . . ∧
states[n] ∈ Fn ∧ sc ∈ Fc ∧ RV = ∅

• Functions push and pop insert and remove and
return the last element of a list, using it as a
stack:
push(e ,L = [e1, . . . , en ]) = [e1 . . . , en , e]
pop(L = [e1, . . . , en−1, en ]) = en , L = [c1, . . . , cn−1]

• Function successors obtains the set of reachable
system states through the execution of one com-
munication action from the current system state.
The result of this function is computed by Algo-
rithm 4.

The different functions used in Algorithm 4 are de-
fined as follows:

• Functions enabledEM and enabledREC de-
termine whether an emission (or a reception,
respectively) in vector v can be fired from the
current state of the system:

enabledEM (N , v ) = ∃ l ∈ v , (s , l , s ′) ∈ Ti , s ∈
states ∧ em(l ) � ∅

enabledREC (N , v ) = ∃ l ∈ v , (s , l , s ′) ∈ Ti , s ∈
states ∧ rec(l ) � ∅
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Algorithm 4 successors
generates the set of successor states from the current state of
the system N.
inputs state of the system N = (states , sc ,RV ,E )
output set of successor states Nn

1: Nn := ∅
2: for all v ∈ V do
3: if enabledEM (N , v ) ∨ enabledREC (N , v ) then
4: successor := successor (N , v )
5: if successor � Nn then
6: Nn := Nn ∪ {successor }
7: end if
8: end if
9: end for
10: return Nn

with:

em(l ) =

⎧
⎪⎪⎨
⎪⎪⎩

e if l = e!([p1, . . . , pn ])
∅ otherwise

rec(l ) =

⎧
⎪⎪⎨
⎪⎪⎩

r if l = r?([p1, . . . , pn ])
∅ otherwise

• Function successor obtains the state reachable
through the execution of a communication ac-
tion in vector v . It is worth observing that for
any given state of the system, only one commu-
nication action in a vector can be fired (either
an emission or a reception). We keep track of
this with the inclusion of the set of vectors un-
der execution (RV ) in the current state of the
system in each node representing an execution
state. If a vector is contained in RV , it means
that its emission has already been executed, and
only the reception remains to be processed.

successor (N = (states , sc ,RV ,E ), v ) =
(next states(states , v ),next(sc , v ),
extendRV (RV , v ), extendDATA(N , v ))

where:

– Functions next states and next compute
the next states of the involved STS and
the VLTS respectively, from their current
states and a vector by executing the emis-
sion in v (if v ∈ RV ), or its reception oth-
erwise:
next states([s1, . . . , sn ], v ) = [s ′1, . . . , s

′
n ],

∀ i ∈ {1, . . . ,n} (si , li , s ′i ) ∈ Ti

next(sc , v ) = s ′ where (s , v , s ′) ∈ Tc

– Function extendRV updates the set of
running vectors whose execution has
started with vector v :

extendRV (RV , v ) =

⎧
⎪⎪⎨
⎪⎪⎩

RV \{v } if v ∈ RV
RV ∪ {v } otherwise

– Function extendDATA updates the data
store E with the set of placeholder vari-
ables received from the emission that is
being executed from vector v . The result
of this function is computed using Algo-
rithm 5. Function consume determines if
the data value is to be consumed in the re-
ception (this corresponds to placeholders
p# in the contract, as we saw in Section 3).

Algorithm 5 extendDATA
updates the placeholders available in the data store after the
execution of an action in v at state N .
inputs state of the system N = (states , sc ,RV ,E ), vector v
output updated data store En

1: En := E
2: for all l = (m , d ,PL) ∈ v , p ∈ PL do
3: if em(l ) then
4: En := En ∪ {p}
5: else
6: if rec(l ) ∧ consume(p) then
7: En := En\{p}
8: end if
9: end if
10: end for
11: for all def = (nph , IPH , f ) ∈ D do
12: if IPH ∩ En = IPH then
13: En := En ∪ {nph}
14: end if
15: end for
16: return En

6.2.2. Composition Algorithm
This section presents an algorithm that manages

the composition between several service STSs with
respect to a given adaptation contract. Moreover, the
proposed approach does not always need to respect
the sequential interactions described within vectors
of the adaptation contract, that is, events specified in
different vectors can be interleaved. Such an inter-
leaving is interesting in cases where sequential inter-
actions as described in the vectors are not enough to
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reach a correct termination state of the system, and
event reordering is required.
To perform the composition of the involved ser-

vices, Algorithm 6 applies successively actions in
vectors that can be fired with respect to the current
state of the system. For each vector, first receptions
in the adaptation engine are executed (correspond-
ing to emissions in the services), followed by emis-
sions (corresponding to receptions in the services).
The algorithm ends when the system has reached a
global final state (i.e., the states in all the STSs and
the VLTS are final, and all vectors have finished their
execution). Since the selection of an applicable vec-
tor also relies on the final state existence algorithm
presented in Section 6.2.1, we engage the first time
in the while loop only if there exists a global final
state for the system, otherwise the composition is not
launched.

Algorithm 6 composition
composes a set of service STSs with respect to an adaptation
contract
inputs services STSi∈{1,...,n} = (Ai ,Si , Ii ,Fi ,Ti ), Adaptation
contract C = (V ,VLTS = (Ac ,Sc , Ic ,Fc ,Tc))
1: states := [I1, . . . , In ] // current states in STSi

2: E := ∅ // data store
3: sc := Ic // current state in the vector LTS
4: RV := ∅
5: current := (states , sc ,RV ,E )
6: first := True
7: v := select vector(current)
8: while (¬goal (current) ∨ first) ∧ v � v⊥ do
9: first := False
10: current := successor (current , v )
11: v := select vector(current)
12: end while

The selection of the vector to start executing at
each step is performed by function select vector :

select vector (N = (states , sc ,RV ,E )) =⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v if enabledEM (N ) ∨ enabledREC (N ), v � v⊥,
exist final (successor (N , v ))

v⊥ otherwise

Simulation can be run in two different modes:

• Safe mode. Only safe vectors (i.e., a vector for
which a global termination state of the system
exists after its execution) can be selected at each
step of the simulation.

• Unsafe mode. All applicable vectors can be se-
lected. Although this allows the application of
vectors leading to deadlock states, this possibil-
ity is interesting in order to observe and under-
stand potential flaws in the contract under spec-
ification.

6.3. Trace-checking
We also propose some automated techniques to

check execution traces. The basic idea is to generate
many execution traces using our engine that we will
use in a second step to evaluate the adaptation con-
tract. In order to obtain all possible execution traces,
and above all the erroneous ones, the final state exis-
tence test is turned off. Moreover, we make sure that
all traces are finite, making use of bounded loops (the
maximum number of allowed loop iterations can be
configured by the user in the engine). From such a
set of traces, we extract the following information
that can be used by the designer to refine and if nec-
essary correct the contract:

• Unreachable states allows the designer to iden-
tify which states of the vector LTS in the con-
tract cannot be visited.

• Unreachable transitions identify the transitions
which cannot ever be fired in the vector LTS,
preventing access in some cases to a specific
state or branch of the composition. It is worth
observing that the different behavioural inter-
faces may prevent the execution of vectors in
some cases.

• Deadlock traces are particular sequences of ap-
plied vectors that lead to a deadlock situation.
This information is not obvious at all and the
potential number of vector sequences to apply
is usually huge. In non-trivial cases, it is impos-
sible for the engineer to check all these potential
deadlock situations manually.

• Livelock traces are sequences of vector exe-
cutions that lead to a livelock situation. We
may recall that these situations are similar to
a deadlock, but in these cases the different ser-
vice STSs and the vector LTS constantly change
their state with respect to one another, although
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none of them progress. Hence, the overall sys-
tem is not able to reach a global final state.

6.4. Trace-Based Verification of Temporal Logic
Formulas

We now describe how the trace generation tech-
nique described in the previous section can be used in
order to verify user-defined safety and liveness prop-
erties on the interaction of different services which
must be satisfied by every possible execution trace
of the system. In order to express such properties,
we make use of linear temporal logic (LTL). In par-
ticular, we use the next-free variant of LTL (LTL-
X ), which denotes the class of LTL formulas with-
out the next temporal operator and is guaranteed to
be insensitive to stuttering [30]. Moreover, we use a
LTL finite-trace semantics similar to the one defined
in [31], commonly used in run-time verification. In
our approach, LTL atomic propositions correspond
to communication actions in vectors. Since our sim-
ulation algorithm executes these actions one after an-
other in order to make the system evolve, we can as-
sume that the execution of a! is synonymous to the
proposition a! in a temporal logic formula.
Defining Composition Properties Using Temporal
Logic. When the designer is defining how services
must interact in the context of the system, it is inter-
esting to specify:

• Safety properties, declaring what should not
happen while services are interacting. Hence,
no state of the execution path of the system
should violate any of the safety properties. Fol-
lowing with our running example, the designer
can specify for instance a safety property stat-
ing that the client should not in any case obtain
an appointment with a specialist doctor if there
is no prior appointment with the general prac-
titioner. This can be expressed by the formula
�(¬c : reqSpec! U c : replyDoc?). This for-
mula implies that any trace containing the exe-
cution of c : reqSpec! (request for an appoint-
ment with the specialist doctor), would have
to be preceded at some point by the reception
of an appointment with a general practitioner
(c : reqDoc!). Otherwise, the trace would vi-
olate the property.

• Liveness properties, stating what should even-
tually happen while the service interacts with
the rest of the system. As a consequence, the
property must hold at some point of the exe-
cution path to be satisfied. In our example, an
interesting liveness property would be for in-
stance ensuring that an appointment is going to
be made at some point either with a specialist or
with a general practitioner (�(c : replyDoc? ∨
c : replySpec?)). Hence, any trace needs to
contain at least one execution of any of the two
actions in the formula in order to satisfy this
property.

Some other interesting liveness properties, such
as responsiveness, can be enforced in the com-
position too. Clients or services very often send
requests that have to be acknowledged (or re-
sponded to) by other services. For such sys-
tems we are interested in the responsiveness
property (e.g., whether every request is eventu-
ally acknowledged). In our example we can for
instance make sure that the information about
availability requested by the specialist service
to the database (se : availability!) is going to
have a response (d : availability!). Hence, we
can express this responsiveness constraint in the
formula:

�(se : availability!→ �d : availability!)

Properties are verified on the execution of the sys-
tem in two steps:

• Trace generation. Traces are obtained with the
final state existence test turned off, if the de-
signer is not interested in general properties
covered by trace checking, such as deadlock-
freedom, and wants to focus on the specified
properties. In contrast, traces can also be gener-
ated in safe mode, hence guaranteeing general
properties.

• Trace verification. Each trace is run against
observer automata built from the LTL formu-
las specified (see [31] for further details). In
particular, for a safety property of the form �φ
(¬�¬φ), we build the automaton As for �¬φ
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and the trace violates the property if at the end
of the trace, As has reached an acceptance state.
For a liveness property of the form�φ, we build
its automaton Al , and the property is satisfied if
at the end of the trace, Al has reached an accep-
tance state.

Both trace checks and verification of temporal
logic formulas can help to quickly identify undesir-
able situations in the composition, and be used in
conjunction with simulation in order to understand
the behaviour of the system.

7. Tool Support and Experimental Results

7.1. Tool Support

The different contributions we have presented in
the preceding sections are fully implemented in a
prototype tool named ACIDE (Adaptation Contract
Interactive Design Environment). ACIDE has been
implemented in Python, using thewxWidgets toolkit
technology for the development of the user interface
and a custom-made graphics library built on top of
OpenGLTM in order to visualise the different inputs
of the tool. Interfaces and contract are described us-
ing an XML-based format specific to the tool.

ACIDE aims at helping the designer in specify-
ing a contract, reducing the risk of errors introduced
by manual specification. In contrast with using tex-
tual notations where the designer can write any (cor-
rect or incorrect) statement, our tool uses the graph-
ical notation presented in Section 5 which enables
interactive and incremental construction, as well as
checks on the contract (see Figure 18). Thus, any
contract produced with the tool is syntactically cor-
rect and consistent (e.g., all port and data port names
in the contract exist on the interfaces involved in
the composition, all vector labels in the VLTS cor-
respond to actual vector definitions in the contract,
etc.).

ACIDE has been validated on many real-world ex-
amples such as a travel agency, rate finder services,
on-line computer material store, library management
systems, a SQL server, and other systems.

7.2. Experimental Results for Protocol Compatibil-
ity

This measure is computed automatically by a pro-
totype tool we implemented and validated on more
than 100 examples, e.g., a car rental, a travel book-
ing system, or an online email service. Table 1 sum-
marises the experimental results of some of the ex-
amples of our database. Experiments have been car-
ried out on a Mac OS machine running on a 2.53
GHz Intel dual core processor with 4 GB of RAM.
In this table, we give successively the number of
states and transitions for both service protocols, the
compatibility notion used (Unspecified Receptions
or Unidirectional Complementarity, see Section 5.2),
the global measure of compatibility (between 0 and
1, 1 meaning that services are compatible), the time
required to automatically perform this check, and the
number of iterations necessary to obtain this result.
Experiments show that small examples with few

states and transitions (e.g., Ex9, Ex44, Ex71) require
a negligible time for measuring their compatibility,
whereas bigger examples (e.g., Ex90, Ex101) need
more time (see Table 1). The computation time in-
creases with respect to the number of τ branchings
and loops. For instance, Ex85 is quite big but con-
sists of protocols with sequential structure and in-
cluding very few loops, therefore the computation
time does not exceed two minutes. On the other
hand, protocols involving many loops (e.g., Ex9) re-
quire more time (and iterations) than those having
only few loops (e.g., Ex85). To sum up, experi-
ments have shown that our prototype tool computes
the compatibility degree of quite large systems (e.g.,
services with more than 200 states and transitions) in
a reasonable time (many iterations are performed in
a few minutes). In addition, the returned compatibil-
ity measures were very satisfactory. As an example,
each time a couple of states in two protocols presents
several mismatches, this corresponds to a low value
in the matrix and vice-versa. The reader may refer
to [32] for some case studies illustrating the precise-
ness of our compatibility measure.

7.3. Experimental Results for Specification and Ver-
ification of Contracts

With the assistance of a group of volunteers,
we conducted a small experimental study which
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Figure 18: Hierarchical contract specification for the Online Medical System in ACIDE

helped us to determine how our approach to adap-
tation contract specification behaves in terms of re-
quired development effort and accuracy, compared
to manual contract specification. Our volunteers
were categorized in three groups (expert, average,
novice) according to their expertise and familiarity
with behavioural interfaces and software composi-
tion. Specifically, tests were conducted by handing
over to users adaptation problems which consisted
of the graphical description of the behavioural inter-
faces to be reused in the composition, and a short
specification in natural language of what was the in-
tended functionality of the system. Users were asked
to perform contract specification either by:

• Manual contract specification (M). The user had
to directly type on a text file or write down on
a piece of paper the contract without further as-
sistance.

• Interactive contract specification (I). Volunteers
made use of our interactive environment for

contract specification (ACIDE). Users were in-
troduced to the graphical specification of con-
tracts, simulation, and trace checks. Out of the
twelve volunteers who participated in the exper-
iment, eight of them (66%) decided to use sim-
ulation to check the result, whereas only three
of them (25%) used trace checks. The pro-
cess followed to solve all adaptation problems
was incremental construction, combining par-
tial specification of the contract with simulation
runs to assess the behaviour of the system. In
the case of volunteers who decided to perform
trace checks, these were used to directly obtain
problematic traces and replicate their behaviour
in the simulator in order to understand the prob-
lem and fix the contract specification.

In order to avoid obtaining biased results in the
experiments: (i) the same number of users from each
of the three levels of expertise were assigned to each
of the two approaches, and (ii) case studies were ar-
ranged in such a way that no user could be handed
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Example States Transitions Comp. global Time (mn) Iterations

Ex9 8/5 8/5 UR 0.29 0m0.415s 8
UC 0.18 0m10.581s 8

Ex44 20/22 19/21 UR 1 0m4.440s 8
UC 0.81 0m13.860s 3

Ex71 20/4 19/3 UR 1 0m4.112s 8
UC 1 0m5.848s 9

Ex85 59/59 64/75 UR 0.70 1m1.717s 4
UC 0.69 0m47.513s 3

Ex90 86/86 90/90 UR 0.72 8m15.806s 7
UC 0.74 2m48.400s 3

Ex101 124/86 135/90 UR 0.69 19m0.575s 10
UC 0.70 8m0.460s 6

Table 1: Compatibility degree - some experimental results (t = 0.7).

over the same adaptation problem more than once
(each user solved different problems using different
approaches to prevent previous user knowledge of a
particular case study).

For our study we used different adaptation prob-
lems that were either borrowed from research papers,
or obtained from our own archive of adaptation prob-
lems. In particular, we chose a set of problems which
ranged from simple protocols and small sets of ser-
vices, to more complex problems in order to test the
scalability of the approach and quantify its benefits
with different levels of complexity. Table 2 summa-
rizes the problems used for our study, which are or-
ganized according to increasing size and complexity.
We also include the number of interfaces involved
and ports to connect, as well as the overall size of the
protocols as a total number of states and transitions.
The table also includes the experimental results (time
required to solve the problem and number of errors in
the specified contract) for each of the examples using
manual (M) and interactive (I) contract specification.

7.3.1. Efficiency

Figure 19 shows the results of our experiments. As
it can be observed on the left part of the figure, there
is a substantial difference in the amount of time re-
quired to solve the different problems between man-
ual and interactive specification, which showed a re-
duction of 53% on the time required, compared to
manual specification.

7.3.2. Accuracy
We measure as errors those of a semantic nature

in the construction of contracts, i.e., the number of
bindings created between ports which were either
wrong or useless for the resulting contract, as well
as the incorrect connections between data ports on
interfaces. In the case of manual specification, it is
worth observing that there is a remarkable amount
of syntactic errors, although we did not include them
for comparison with the interactive approach. In par-
ticular, in some cases our volunteers would not even
respect the syntax defined for contracts, whereas our
approach avoids syntactic errors, and this would have
resulted in a distortion of the results obtained by the
experiments. It is worth observing that the number of
errors appearing in Table 2 is averaged over the vol-
unteers who participated in the experiments. In Fig-
ure 19 (right), it can be noticed that the number of er-
rors in problem solutions is lower in our approach (a
reduction of 59% in the number of errors compared
to manual specification). This difference is negligi-
ble for small cases, but increases with the complexity
of the problem. It is worth pointing out that there is
a small difference between the two approaches in the
case of easyrest-005. This is explained by the low
number of mismatches this problem presents relative
to its size, something that makes the manual specifi-
cation for this particular problem less prone to errors.

8. Related Work

In this section, we survey a few key related works
which give some solutions to the behavioural adap-
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Time (s) Errors
Problem Interf. Ports States Trans. M I M I
ftp-002 2 9 11 11 338 222 1.77 1.5

client-sup-002 2 12 15 16 480 248 0.33 0.5
which-004 2 17 16 19 486 146 2.95 0.75

online-med-003 3 15 16 17 531 189 5 0
easyrest-005 4 17 22 24 689 310 3 1.66

pda-001 6 46 37 48 2160 1152 27.6 10.66

Table 2: Problem size and experimental results for the two tested approaches.
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Figure 19: Experimental results: Time elapsed and accuracy

tation of software components and services. In par-
ticular, we focus on approaches using a mapping or
contract notation in order to guide either the process
or the designer (or both) to work out mismatch cases.

Inverardi et al. [33, 4] address the enforcement
of behavioral properties out of a set of components.
Starting from the specification with Message Se-
quence Charts of the components to be assembled
and of LTL properties (liveness or safety) that the
resulting system should verify, they automatically
derive the adaptor glue code for the set of compo-
nents in order to obtain a property-satisfying system.
The set of aforementioned properties has to be given
as input to the adaptation process. With respect to
adaptor verification, their solution is an alternative to
what we propose in this paper. They build an adap-
tor which ensures by construction the set of proper-

ties given as input whereas we advocate model-based
verification techniques to check a priori that the con-
tract specifies exactly what we expect from the forth-
coming adaptor.

Nezhad et al. [5] present some techniques in or-
der to provide semi-automatic support for the identi-
fication and resolution of mismatches between Web
services at their signature and protocol levels. First,
the authors describe some techniques for signature
matching based on XML schema matching [34]. Af-
ter applying interface matching techniques, the au-
thors use the protocol definitions expressed using Fi-
nite State Machines to find all mismatch situations at
the protocol level. While unspecified receptions are
dealt with automatically, deadlock resolution is tack-
led through the generation of mismatch trees, which
present to the developer potential execution scenar-
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ios where the services deadlock. This approach deals
with some kinds of mismatch automatically, but re-
quires user input to overcome others. The situations
which can be adapted are quite limited. In particular,
correspondences between operations are static, and
1-0 correspondences (operations with no match on
the counterpart interface) are not supported. [5] does
not enable the user to write a contract giving an ab-
stract specification of the adaptation (operations and
parameter correspondences, etc.), but presents each
mismatch case not automatically solvable between
two interfaces (mismatch tree), and this can help the
user to specify an adaptation contract. In [21], the
authors extend the static matching presented in [5]
to support one-to-many correspondences. Further-
more, they improve the protocol matching proposed
in [5] using depth-based comparison and flooding al-
gorithms similarly to the approach given in [35].
Brogi et al. [6] present a methodology for be-

havioural adaptation where component behaviors are
specified with a subset of the π-calculus and com-
position specifications with name correspondences.
An adaptor generation algorithm is used to refine the
given specification into a concrete adaptor which is
able to accommodate both message name and proto-
col mismatch. More recently, [1, 9] proposed state-
of-the-art adaptation approaches that support adap-
tation policies and system properties described by
means of regular expressions or LTSs of vectors.
However, in these works, no support is proposed to
help the designer during the contract specification
task, which is therefore achieved manually.
Concerning interactive contract specification, [7]

introduces an approach to service interface adapta-
tion using a visual language based on an algebra over
behavioural interfaces. A graphical editor taking as
input pairs of behavioural interfaces allows to link
them through interface transformation expressions.
The output of this tool can be used as input for a
service mediation engine which interprets the infor-
mation in order to perform composition. Although
this approach provides the means to define interface
transformation expressions graphically, it does not
support the incremental specification of adaptation
since it only considers pairs of provided-required in-
terfaces. Moreover, our approach provides system-
atic contract verification mechanisms and protocol

compatibility measures which help to guide the spec-
ification of adaptation using the graphical notation.
In [23], the authors focus on systems where com-

ponents or services may enter and leave at any time,
such as pervasive ones, and propose an incremental
approach for the integration and adaptation of soft-
ware components. This proposal simplifies the de-
sign process by building the system incrementally,
and thus avoids the costly computation of global
adaptors. Two algorithms are proposed respectively
for the addition and suppression of a component. In
the first case, a local adaptor is generated, and in
the second case, some reconfigurations are applied
to preserve the consistency of the system. This work
shares some similarities with our proposal, such as
the incremental process and the generation of local
adaptors. However, [23] relies on a very simple
model (LTS without value passing), and advocates
for a manual writing of the adaptation contract.
To sum up, our solution to design graphically

adaptation contracts goes far beyond existing related
work, since we combine in a unique environment
new protocol compatibility results (presented in Sec-
tion 5) to guide the construction, hierachical struc-
turing to divide the composition and adaptation in
smaller pieces, and verification techniques to detect
possible design errors. Last but not least, our pro-
posal is completely supported by a prototype tool we
implemented.

9. Concluding Remarks

Manual specification of adaptation contracts is a
cumbersome and error-prone task which can be sim-
plified by assisting the designer. In this article, we
have presented an interactive approach which speeds
up the contract specification process and reduces the
risk of mistakes in the specification. Our approach
relies on compositional and hierarchical techniques,
a graphical notation, and different verification and
validation techniques. Moreover, our proposal is
fully supported by a prototype tool we implemented.
We also provided some experimental results that we
obtained from the application of our approach to dif-
ferent case studies.
These results showed a reduction both in the

amount of effort that the designer has to put into
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building the contract, as well as in the number of er-
rors present in the final result (noticeably higher in
the case of manual specification). Since the test cases
used for our experimental study were of a small-
medium size and complexity, we think that the dif-
ficulty of specifying contracts for bigger systems in-
volving dozens of components or services would be
not manageable by the designer by using just manual
specification. This puts forward the importance of
providing support to the development of adaptation
contracts, since their incorrect specification induces
erroneous executions of the system. To the best of
our knowledge, such support has not been provided
by any other approaches so far, and hence we con-
sider the techniques described in this paper as an im-
portant contribution to the area of behavioural soft-
ware adaptation.
Concerning future work, we plan to extend our so-

lution to take goal-oriented adaptation into account.
Our interactive environment would accept the graph-
ical specification of temporal properties to be used as
guidance for the adaptation process. Moreover, we
intend to propose techniques to dynamically evalu-
ate such properties. Thus, once a formula is spec-
ified, the user is informed about the satisfaction of
this property during the contract construction (e.g.,
the environment should be able to inform about the
violation of a safety property caused by the binding
of two ports as the user is connecting them).

Acknowledgements. The authors would like to
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Appendix A: Placeholder Reuse

Placeholders in a contract are reused whenever we
add a vector that contains parameters already asso-
ciated to a placeholder in the current (partial) con-
tract. Specifically, during the contract specification
process, we incrementally build a binary relation
R ⊆ PN ×PH (initially empty) over the set of possi-
ble parameter names PN and placeholder names PH
that enables us to tell which parameter names are al-
ready associated to a placeholder name in the current
(partial) contract.
Furthermore, we also make use of data bindings

specified by the designer to keep track of which argu-
ments should be substituted by the same placeholder
in different labels:

Definition 10 (Data Binding). A data binding de-
fined over two labels lA = (MA,DA,PLA) and lB =
(MB ,DB ,PLB ) is a couple (a, b) such that a ∈ PLA
and b ∈ PLB .

Let us remark that data bindings are specified by
the designer according to the particular semantics of
the example at hand. Further details about the speci-
fication of data bindings can be found in Section 5.

Algorithm 7 substitutes parameters by placeholder
names in parameter lists PLA and PLB associated to
labels in a vector lA and lB , respectively, returning
the associated lists of placeholders for both labels
PL′A and PL′B . If the vector contains only one la-
bel, we use as input an empty list for PLB , and the
algorithm will output an empty placeholder list PL′B .
Moreover, if two parameter lists are used as input, we
assume that lA corresponds always to the emission,
and lB to the reception.
The algorithm works by processing all parameters

in PLA first, and checking if they are already asso-
ciated to a placeholder using relation R. If this is
the case, the placeholder in use is added to the place-
holder list. If the parameter is not associated to a
placeholder, we extract a new placeholder name from
the pool of placeholders PH , and add it to the place-
holder list, extending relation R with the new place-
holder at the same time. Once all parameters in PLA
are processed, the algorithm starts processing param-
eters in PLB . The process is analogous, but in this
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case, we first check if there is a data binding relating
the parameter with another parameter in PLA. If this
is the case, we obtain the placeholder already asso-
ciated to the bound parameter in PLA and use it to
extend the list PL′B .

Algorithm 7 sub ph
substitutes a set of parameter names with placeholder names
for a vector with two labels lA = (MA,DA,PLA), lB =

(MB ,DB ,PLB )
inputs parameter list for labels PLA and PLB , current binary
relationR, current placeholder set PH , current set of data bind-
ings B
1: PL′A := []
2: PL′B := []
3: while PLA � [] do
4: p := extract first(PLA)
5: if ∃ ph : (p, ph) ∈ R then
6: append (PL′A, ph)
7: else
8: ph := extract(PH )
9: R := R ∪ {(p, ph)}
10: append (PL′, ph)
11: end if
12: end while
13: while PLB � [] do
14: p := extract first(PLB )
15: if ∃(q , p) ∈ B then
16: append (PL′B , ph) : (q , ph) ∈ R
17: else if ∃ ph ∈ PH : (p, ph) ∈ R then
18: append (PL′B , ph)
19: else
20: ph := extract(PH )
21: R := R ∪ {(p, ph)}
22: append (PL′B , ph)
23: end if
24: end while
25: return PL′A,PL

′
B

Let us formalize the set of functions we apply in
the algorithm:

• Function append adds a new element at the end
of a list append ([e1, . . . , en], e) = [e1, . . . , en , e]

• Function extract first returns and re-
moves the first element of a list
extract first([e1, e2, . . . , en]) = [e2, . . . , en]

• Function extract returns a random element er
from a set E = {e1, . . . , er , . . . , en}, and removes
it from the set (E := E\{er }).
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