
SAT-Competition Benchmarks
Spawning from Concurrency Theory

Pierre Bouvier and Hubert Garavel
Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

{pierre.bouvier,hubert.garavel}@inria.fr

Abstract—We present an original approach for generating
Boolean formulas stemming from the decomposition of Petri
nets into automata networks. Carefully chosen examples of these
formulas have been proposed for the 2020 and 2021 editions of
the SAT Competition.

I. SCIENTIFIC CONTEXT

Interesting Boolean formulas can be generated as a by-
product of our recent work [1] on the decomposition of
Petri nets into networks of automata, a problem that has
been around since the early 70s. Concretely, we developed
a tool chain that takes as input a Petri net (which must be
ordinary, safe, and hopefully not too large) and produces as
output a network of automata that execute concurrently and
synchronize using shared transitions. Precisely, this network
is expressed as a Nested-Unit Petri Net (NUPN) [2], i.e., an
extension of a Petri net, in which places are grouped into sets
(called units) that denote sequential components. A NUPN
provides a proper structuring of its underlying Petri net, and
enables formal verification tools to be more efficient in terms
of memory and CPU time. Hence, the NUPN concept has
been implemented in many tools and adopted by software
competitions, such the Model Checking Contest1 [3], [4] and
the Rigorous Examination of Reactive Systems challenge2 [5],
[6], [7]. Each NUPN generated by our tool chain is flat,
meaning that its units are not recursively nested in each other,
and unit-safe, meaning that each unit has at most one execution
token at a time.

Our tool chain works by reformulating concurrency con-
straints on Petri nets as logical problems, which can be later
solved using third-party software, such as SAT solvers, SMT
solvers, and tools for graph coloring and finding maximal
cliques [1]. We applied our approach to a large collection of
more than 12,000 Petri nets from multiple sources, many of
which related to industrial problems, such as communication
protocols, distributed systems, and hardware circuits. We thus
generated a huge collection of Boolean formulas, from which
we carefully selected a subset of formulas matching the
requirements of the SAT Competition.

II. STRUCTURE OF FORMULAS

Each of our formulas was produced for a particular Petri
net. A formula depends on three factors:

1https://mcc.lip6.fr
2http://rers-challenge.org

• the set P of the places of the Petri net;
• a concurrency relation � defined over P such that p � p�

is the two places p and p� may simultaneously have an
execution token; and

• a chosen number n of units.
A formula expresses whether there exists a partition of P into
n subsets Pi (1 ≤ i ≤ n) such that, for each i, and for any
two places p and p� of Pi, p �= p� =⇒ ¬ (p � p�). A model
of this formula is thus an allocation of places into n units,
i.e., a valid decomposition of the Petri net. The value of n is
chosen large enough so that the formula is satisfiable, i.e., at
least one decomposition exists. This can also be seen as an
instance of the graph coloring problem, in which n colors are
to be used for the graph with vertices defined by the places
of P and edges defined by the concurrency relation.

More precisely, each formula was generated as follows. For
each place p and each unit u, we created a propositional
variable xpu that is true iff place p belongs to unit u. We
then added constraints over these variables:

• For each unit u and each two places p and p� such that
p � p� and #p < #p�, where #p is a bijection from
places names to the interval [1, card (P )], we added the
constraint ¬xpu ∨ ¬xp�u to express that two concurrent
places cannot be in the same unit.

• For each place p, we could have added the constraint�
u xpu to express that p belongs to at least one unit,

but this constraint was too loose and allowed n! similar
solutions, just by permuting unit names. We thus replaced
this constraint by a stricter one that breaks the symmetry
between units: for each place p, we added the refined
constraint

�
1≤#u≤min(#p,n) xpu, where #u is a bijection

from unit names to the interval [1, n].
Each formula is provided as a separate file, expressed in

Conjunctive Normal Form and encoded in the DIMACS-CNF
format3.

III. SELECTION OF BENCHMARKS

Using the approach presented in Sections I and II, we
previously published a test suite, named VLSAT1 [8], of
100 formulas. However, VLSAT1 only contains satisfiable for-
mulas, as it was designed for the Model Counting Competition,
which seeks formulas accepting a large number of models.

3http://www.satcompetition.org/2009/format-benchmarks2009.html

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

47



For the SAT Competition, we therefore undertook the pro-
duction of a different collection containing both satisfiable
and unsatisfiable formulas, depending on the number of units
chosen for a given Petri net. Figure 1 shows that, despite the
symmetry-breaking constraints mentioned in Sect. II, satisfi-
able formulas are often easier to solve than unsatisfiable ones.

For the SAT 2020 Competition, we submitted 36 formulas,
listed in Table I. All of them have been tagged as “interesting”
by the organizers of the competition, who selected 7 satisfiable
and 7 unsatisfiable formulas for the Main Track; the selected
formulas are those marked with a star in this table.

TABLE I
LIST OF 2020 FORMULAS

type variables clauses type variables clauses
SAT* 16,676 1,598,591 UNSAT 14,640 1,323,246
SAT 18,090 1,781,277 UNSAT* 15,440 1,409,906
SAT 20,868 2,204,462 UNSAT* 15,960 1,464,039
SAT 21,190 2,597,791 UNSAT 16,297 1,562,268
SAT 21,573 2,289,124 UNSAT 17,688 1,741,702
SAT* 24,450 2,770,239 UNSAT 20,424 2,157,568
SAT 26,606 3,191,844 UNSAT* 21,114 2,240,429
SAT 27,507 3,314,450 UNSAT 23,961 2,714,844
SAT 29,736 3,780,419 UNSAT 26,104 3,131,630
SAT* 30,744 3,925,645 UNSAT 26,988 3,251,923
SAT 33,040 4,437,242 UNSAT 29,205 3,712,921
SAT* 34,161 4,607,712 UNSAT* 30,195 3,855,554
SAT 36,518 5,166,057 UNSAT* 32,480 4,362,044
SAT* 37,758 5,364,539 UNSAT 33,582 4,529,625
SAT* 40,170 5,970,608 UNSAT* 35,929 5,082,743
SAT 41,535 6,200,014 UNSAT* 39,552 5,878,762
SAT* 57,038 10,572,502 UNSAT 40,896 6,104,639
SAT 71,816 14,478,832
SAT 83,334 20,350,783

For the SAT 2021 Competition, we submit 20 formulas,
10 satisfiable and 10 unsatisfiable ones, which are listed in
Table II. All of them have been checked by five solvers
(CaDiCal, MathSAT, MiniSAT, Kissat and Z3) in their most
recent versions. We used a machine with a Xeon E5-2630 v3
and 128 GB RAM. Each satisfiable formula takes at least
35 seconds with any of these solvers. Each unsatisfiable
formula takes at least 37 minutes with any of these solvers.

TABLE II
LIST OF 2021 FORMULAS

type variables clauses type variables clauses
SAT 11,130 1,186,888 UNSAT 1134 26,703
SAT 11,374 1,150,943 UNSAT 1155 42,917
SAT 19,565 3,665,001 UNSAT 4424 545,056
SAT 29,736 3,780,419 UNSAT 5152 824,642
SAT 37,758 5,364,539 UNSAT 5600 1,042,700
SAT 59,204 10,973,962 UNSAT 11,280 4,223,777
SAT 67,996 13,708,722 UNSAT 11,664 5,532,624
SAT 68,760 13,862,744 UNSAT 14,280 6,781,327
SAT 69,524 14,016,766 UNSAT 14,424 7,585,190
SAT 70,288 14,170,788 UNSAT 16,788 9,021,307

REFERENCES

[1] P. Bouvier, H. Garavel, and H. P. de León, “Automatic Decomposition
of Petri Nets into Automata Networks – A Synthetic Account,” in
Proceedings of the 41th International Conference on Application and

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0.01

0.1

1

10

100

1000

Number of units

R
es

o
lu

ti
o

n
 t

im
e,

 in
 lo

g
10

 (
se

co
n

d
s)

UNSAT SAT

Fig. 1. Resolution times for a given NUPN

Theory of Petri Nets and Concurrency (PETRI NETS’20), Paris, France,
ser. Lecture Notes in Computer Science, R. Janicki and N. Sidorova, Eds.
Springer, Jun. 2020.

[2] H. Garavel, “Nested-Unit Petri Nets,” Journal of Logical and Algebraic
Methods in Programming, vol. 104, pp. 60–85, Apr. 2019.

[3] F. Kordon, H. Garavel, L. M. Hillah, E. Paviot-Adet, L. Jezequel,
C. Rodrı́guez, and F. Hulin-Hubard, “MCC’2015 – The Fifth Model
Checking Contest,” Transactions on Petri Nets and Other Models of
Concurrency, vol. XI, pp. 262–273, 2016.

[4] F. Kordon, H. Garavel, L. Hillah, E. Paviot-Adet, L. Jezequel, F. Hulin-
Hubard, E. Amparore, M. Beccuti, B. Berthomieu, H. Evrard, P. G.
Jensen, D. Le Botlan, T. Liebke, J. Meijer, J. Srba, Y. Thierry-Mieg,
J. van de Pol, and K. Wolf, “MCC’2017 – The Seventh Model Checking
Contest,” Transactions on Petri Nets and Other Models of Concurrency,
vol. XIII, pp. 181–209, 2018.

[5] M. Jasper, M. Fecke, B. Steffen, M. Schordan, J. Meijer, J. van de Pol,
F. Howar, and S. F. Siegel, “The RERS 2017 Challenge and Workshop,” in
Proceedings of the 24th ACM SIGSOFT International SPIN Symposium
on Model Checking of Software (SPIN’17), Santa Barbara, CA, USA,
H. Erdogmus and K. Havelund, Eds. ACM, Jul. 2017, pp. 11–20.

[6] B. Steffen, M. Jasper, J. Meijer, and J. van de Pol, “Property-Preserving
Generation of Tailored Benchmark Petri Nets,” in Proceedings of the 17th
International Conference on Application of Concurrency to System Design
(ACSD’17), Zaragoza, Spain. IEEE Computer Society, Jun. 2017, pp.
1–8.

[7] M. Jasper, M. Mues, A. Murtovi, M. Schlüter, F. Howar, B. Steffen,
M. Schordan, D. Hendriks, R. R. H. Schiffelers, H. Kuppens, and
F. W. Vaandrager, “RERS 2019: Combining Synthesis with Real-World
Models,” in Proceedings of the 25th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’19),
Part III: TOOLympics, Prague, Czech Republic, D. Beyer, M. Huisman,
F. Kordon, and B. Steffen, Eds. Springer, Apr. 2019, pp. 101–115.

[8] P. Bouvier and H. Garavel, “The VLSAT-1 Benchmark Suite,” INRIA
Grenoble Rhône-Alpes, Tech. Rep., Nov. 2020.

48


