
Debugging of Concurrent Systems using

Counterexample Analysis

Gianluca Barbon1, Vincent Leroy2, and Gwen Salaün1

1 Univ. Grenoble Alpes, CNRS, Inria, LIG, France
2 Univ. Grenoble Alpes, CNRS, LIG, France

Abstract. Model checking is an established technique for automatically
verifying that a model satisfies a given temporal property. When the
model violates the property, the model checker returns a counterexam-
ple, which is a sequence of actions leading to a state where the property
is not satisfied. Understanding this counterexample for debugging the
specification is a complicated task for several reasons: (i) the counterex-
ample can contain hundreds of actions, (ii) the debugging task is mostly
achieved manually, and (iii) the counterexample does not give any clue
on the state of the system (e.g., parallelism or data expressions) when
the error occurs. This paper presents a new approach that improves the
usability of model checking by simplifying the comprehension of coun-
terexamples. Our solution aims at keeping only actions in counterexam-
ples that are relevant for debugging purposes. To do so, we first extract
in the model all the counterexamples. Second, we define an analysis algo-
rithm that identifies actions that make the behaviour skip from incorrect
to correct behaviours, making these actions relevant from a debugging
perspective. Our approach is fully automated by a tool that we imple-
mented and applied on real-world case studies from various application
areas for evaluation purposes.

1 Introduction

Concurrent and distributed applications are used in various domains, such as
cyber-physical systems, software and middleware technologies, Service Oriented
Computing, cloud computing, or the Internet of Things. The design and devel-
opment of these applications is complex and cannot be achieved without intro-
ducing subtle bugs, which are defects of the software that prevent the correct
behaviour of the system. The process of finding and resolving bugs is commonly
called debugging. This process is a challenging task for a developer, since it is
difficult for a human being to understand the behaviour of all the possible execu-
tions of this kind of systems, and bugs can be hidden inside parallel behaviours.
There is a need for automatic techniques that can help the developer in detecting
and understanding those bugs.

Model checking [8] is an established technique for verifying concurrent sys-
tems. It takes as input a model and a property. A model describes all the possible
behaviours of a concurrent program and is produced from a specification of the

2 Gianluca Barbon, Vincent Leroy, and Gwen Salaün

system. In this paper, we adopt Labelled Transition Systems (LTS) as model
description language. A property represents the requirements of the system and
is usually expressed with a temporal logic. Given a model and a property, a
model checker verifies whether the model satisfies the property. When the model
violates the property, the model checker returns a counterexample, which is a
sequence of actions leading to a state where the property is not satisfied.

Although model checking techniques automatically find bugs in concurrent
systems, it is still difficult to interpret the returned counterexamples for sev-
eral reasons: (i) the counterexample can contain hundreds (even thousands) of
actions, (ii) the debugging task is mostly achieved manually (satisfactory auto-
matic debugging techniques do not yet exist), and (iii) the counterexample does
not give any clue on the state of the system (e.g., parallelism or data expressions)
when the error occurs.

This work aims at developing a new approach for simplifying the compre-
hension of counterexamples and thus favouring usability of model checking tech-
niques. In order to do this, we propose a method to produce all the counterexam-
ples from a given model and to compare them with the correct behaviours of the
model to better identify actions that caused the bug. The goal of our approach is
to return as result an abstraction of counterexamples, which contains only those
actions.

More precisely, we define a method that first extracts all the counterexamples
from the original model containing all the executions. This procedure is able to
collect all the counterexamples in a new LTS, maintaining a correspondence with
the original model. Second, we define an analysis algorithm that identifies actions
at the frontier between the new LTS and the original one. The frontier represents
the area where counterexamples and correct behaviours, that share a common
prefix, split in different paths. Actions at the frontier are relevant since they are
responsible for the choice between a correct behaviour and a counterexample.
We have implemented our approach in a tool and validated it on a set of real-
world case studies from various application areas. Our experiments show that our
approach is able to reduce the size of counterexamples by keeping only relevant
actions at the frontier, and thus making the debugging process easier.

The rest of this paper is organized as follows. Section 2 introduces LTS models
and model checking notions. Section 3 presents our counterexample abstraction
techniques, including the generation of the LTS containing all the counterex-
amples and the process for identifying relevant actions in counterexamples. In
Section 4, we describe our implementation and we apply it on real-word exam-
ples. Section 5 presents related work while Section 6 concludes this paper.

2 Preliminaries

In this work, we adopt Labelled Transition Systems (LTS) as behavioural mod-
els of concurrent programs. An LTS consists of states and labelled transitions
connecting these states.

Debugging of Concurrent Systems using Counterexample Analysis 3

Definition 1. (LTS) An LTS is a tuple M = (S, s0, Σ, T) where S is a finite
set of states; s0 ∈ S is the initial state; Σ is a finite set of labels; T ⊆ S×Σ×S
is a finite set of transitions.

A transition is represented as s
l
−→ s′ ∈ T , where l ∈ Σ. An LTS is produced

from a higher-level specification of the system described with a process algebra
for instance. Specifications can be compiled into an LTS using specific compilers.
In this work, we use LNT as specification language [7] and compilers from the
CADP toolbox [11] for obtaining LTSs from LNT specifications (see Section 4
for more details). However, our approach is generic in the sense that it applies
on LTSs produced from any specification language and any compiler/verification
tool. An LTS can be viewed as all possible executions of a system. One specific
execution is called a trace.

Definition 2. (Trace) Given an LTS M = (S, s0, Σ, T), a trace of size n ∈

N is a sequence of labels l1, l2, . . . , ln ∈ Σ such that s0
l1−→ s1 ∈ T, s1

l2−→

s2 ∈ T, . . . , sn−1
ln−→ sn ∈ T . The set of all traces of M is written as t(M).

Note that t(M) is prefix closed. One may not be interested in all traces of an
LTS, but only in a subset of them. To this aim, we introduce a particular label
δ, called final label, which marks the end of a trace, similarly to the notion of
accepting state in language automata. This leads to the concept of final trace.

Definition 3. (Final Trace) Given an LTS M = (S, s0, Σ, T), and a label δ,

called final label, a final trace is a trace l1, l2, . . . , ln ∈ Σ such that s0
l1−→ s1 ∈

T, s1
l2−→ s2 ∈ T, . . . , sn−1

ln−→ sn ∈ T , l1, l2, . . . , ln 6= δ and there exists a final

transition sn
δ
−→ sn+1. The set of final traces of M is written as tδ(M).

Note that the final transition characterized by δ does not occur in the final
traces and that tδ(M) ⊆ t(M). Moreover, if M has no final label then tδ(M) = ∅.

Model checking consists in verifying that an LTS model satisfies a given tem-
poral property ϕ, which specifies some expected requirement of the system. Tem-
poral properties are usually divided into two main families: safety and liveness
properties [2]. In this work, we focus on safety properties, which are widely used
in the verification of real-world systems. Safety properties state that “something
bad never happens”. A safety property is usually formalised using a temporal
logic (we use MCL [16] in Section 4). It can be semantically characterized by an
infinite set of traces tϕ, corresponding to the traces that violate the property ϕ
in an LTS. If the LTS model does not satisfy the property, the model checker
returns a counterexample, which is one of the traces characterised by tϕ.

Definition 4. (Counterexample) Given an LTS M = (S, s0, Σ, T) and a prop-
erty ϕ, a counterexample is any trace which belongs to t(M) ∩ tϕ.

Our solution for counterexample analysis presented in the next section relies
on a state matching algorithm, which takes its foundation into the notion of
preorder simulation between two LTSs [19].

4 Gianluca Barbon, Vincent Leroy, and Gwen Salaün

Definition 5. (Simulation Relation) Given two LTSs M1 = (S1, s
0
1, Σ1, T1) and

M2 = (S2, s
0
2, Σ2, T2), the simulation relation ⊑ between M1 and M2 is the largest

relation in S1×S2 such that s1 ⊑ s2 iff ∀s1
l
−→ s′1 ∈ T1 there exists s2

l
−→ s′2 ∈ T2

such that s′1 ⊑ s′2. M1 is simulated by M2 iff s01 ⊑ s02.

3 Counterexample Analysis

In this section, we describe our approach to simplify counterexamples. We first
introduce the procedure to build an LTS containing all counterexamples (coun-
terexample LTS), given a model of the system (full LTS) and a temporal prop-
erty. We then present a technique to match all states of the counterexample
LTS with states of the full LTS. This step allows us to identify transitions at
the frontier between the counterexample and the full LTS. The frontier is the
area where traces, that share a common prefix in the two LTSs, split in different
paths. We define a notion of neighbourhood to extract sets of relevant transitions
at the frontier and a procedure to collect the set of all neighbourhoods. Finally,
by keeping transitions in these neighbourhoods, we are able to provide an ab-
straction of a given counterexample. To sum up, our approach consists of the
four following steps, that we detail in the rest of this section:

1. Counterexample LTS generation
2. States matching
3. States comparison
4. Counterexample abstraction

3.1 Counterexample LTS Generation

The full LTS (MF) is given as input in our approach and is a model representing
all possible executions of a system. Given such an LTS and a safety property,
our goal in this subsection is to generate the LTS containing all counterexamples
(MC).

Definition 6. (Counterexample LTS) Given a full LTS MF = (SF , s
0
F , ΣF , TF),

where δ /∈ ΣF , and a safety property ϕ, a counterexample LTS MC is an LTS
such that tδ(MC) = t(MF)∩ tϕ, i.e., a counterexample LTS is a finite represen-
tation of the set of all traces of the full LTS that violate the property ϕ.

We use the set of final traces tδ(MC) instead of t(MC) since t(MC) is prefix
closed, but prefixes of counterexamples that belongs to t(MC) are not counterex-
amples. Moreover, traces in the counterexample LTS share prefixes with correct
traces in the full LTS. Given a full LTS MF and a safety property ϕ, the pro-
cedure for the generation of the counterexample LTS consists of the following
steps:

1. Conversion of the ϕ formula describing the property into an LTS called
Mϕ, using the technique that allows the encoding of a formula into a graph

Debugging of Concurrent Systems using Counterexample Analysis 5

Fig. 1. Full LTS and counterexample LTS

described in [12]. Mϕ is a finite representation of tϕ, using final transitions,
such that tδ(Mϕ) = tϕ ∩Σ∗F , where ΣF is the set of labels occurring in MF .
In this step, we also apply the subset construction algorithm defined in [1] in
order to determinise Mϕ. We finally reduce the size of Mϕ without changing
its behaviour, performing a minimisation based on strong bisimulation [17].
Those two transformations keep the set of final traces of Mϕ unchanged. The
LTS Mϕ obtained in this way is the minimal one that is deterministic and
accepts all the execution sequences that violates ϕ.

2. Synchronous product between MF and Mϕ with synchronisation on all the
labels of ΣF (thus excluding the final label δ). The result of this product is
an LTS whose final traces belong to t(MF)∩ tδ(Mϕ), thus it contains all the
traces of the LTSMF that violate the formula ϕ. Note that t(MF)∩tδ(Mϕ) =
t(MF) ∩ tϕ, because t(MF) ⊆ Σ∗F and tδ(Mϕ) = tϕ ∩Σ∗F .

3. Pruning of the useless transitions generated during the previous step. In
particular, we use the pruning algorithm proposed in [15] to remove the
traces produced by the synchronous product that are not the prefix of any
final trace.

Proposition: The LTS MC obtained by this procedure is a counterexample LTS
for MF and ϕ.

Let us illustrate this algorithm on the example given in Figure 1. The full
LTS on the left hand side represents a model of a simple protocol that performs
send and receive actions in a loop. The counterexample LTS on the right hand
side is generated with a property ϕ stating that no more than one send action
is allowed. Note that final transitions characterised by the δ label are not made
explicit in the examples.

3.2 States Matching

We now need to match each state belonging to the counterexample LTS with
the states from the full LTS. To do this, we define a matching relation between
each state of the two LTSs, by relying on the simulation relation introduced in

6 Gianluca Barbon, Vincent Leroy, and Gwen Salaün

Fig. 2. States matching

Section 2. In our context, we want to build such a relation between MC and MF ,
where a state x ∈ SC matches a state y ∈ SF when the first is simulated by the
latter, that is, when x ⊑ y. Since the LTS that contains the incorrect behaviours
is extracted from the full LTS, the full LTS always simulates the counterexample
LTS. The algorithm that we have implemented to build the simulation between
MC and MF relies on well-known graph traversal algorithms. More precisely,
it relies on Breadth-First Search (BFS) to explore the graph. The algorithm is
capable of performing backtracking steps in case it cannot match some states
(this may happen due to nondeterministic behaviours present in both LTSs).

Let us consider again the example described in Figure 1. Each state of the
counterexample LTS on the right hand side of the picture matches a state of the
full LTS on the left hand side as shown in Figure 2. Note that multiple states
of the counterexample LTS may correspond to a single state of the full LTS.
In the example of Figure 2, the property ϕ has become unsatisfied after several
iterations of the loop composed of Send and Recv actions, so that loop has been
partially rolled out in the counterexample LTS, resulting in a correspondence of
several states of the counterexample LTS to a single state of the full LTS.

It may also occur that a single state of the counterexample LTS may cor-
respond to multiple states of the full LTS. For instance, the example given in
Figure 3 shows a full LTS and a counterexample LTS produced with a property
that avoids Recv actions after a Send action. Thus, there exists a correspondence
of more than one state of the full LTS with a single state of the counterexample
LTS. In this specific case, the counterexample LTS can be described using a
single trace, since the two states with an exiting Send transition after the Init
transition simulate only one state in the counterexample LTS.

3.3 States Comparison

The result of the matching algorithm is then analysed in order to compare tran-
sitions outgoing from similar states in both LTSs. This comparison aims at iden-
tifying transitions that originate from matched states, and that appear in the
full LTS but not in the counterexample LTS. We call this kind of transition a
correct transition.

Debugging of Concurrent Systems using Counterexample Analysis 7

Fig. 3. Multiple matching

Definition 7. (Correct Transition) Given an LTS MF = (SF , s
0
F , ΣF , TF), a

property ϕ, the counterexample LTS MC = (SC , s
0
C , ΣC , TC) obtained from MF

and ϕ, and given two states s ∈ SF and s′ ∈ SC , such that s′ ⊑ s, we call a

transition s
l
−→ s′′ ∈ TF a correct transition if there is no transition s′

l
−→ s′′′ ∈ TC

such that s′′′ ⊑ s′′.

A correct transition is preceded by incoming transitions that are common to
the correct and incorrect behaviours. We call these transitions relevant predeces-
sors. Correct transitions allow us to introduce the notion of frontier. The frontier
is a set of states at the border between the counterexample LTS and the rest of
the full LTS, where for two matched states, there exists a correct transition in
the full LTS.

Definition 8. (Frontier) Given an LTS MF = (SF , s
0
F , ΣF , TF), a property ϕ,

the counterexample LTS MC = (SC , s
0
C , ΣC , TC) obtained from MF and ϕ, the

frontier is the set of states Sfr ⊆ SF such that for each s ∈ Sfr , there exists

s′ ∈ SC , such that s′ ⊑ s and there exists a correct transition s
l
−→ s′′ ∈ TF .

A given state in the frontier allows us in a second step to identify a neighbour-
hood in the corresponding counterexample LTS, which consists of all incoming
and outgoing transitions of that state.

Definition 9. (Neighbourhood) Given an LTS MF = (SF , s
0
F , ΣF , TF), a prop-

erty ϕ, the counterexample LTS MC = (SC , s
0
C , ΣC , TC), two states s ∈ Sfr

and s′ ∈ SC such that s′ ⊑ s, the neighbourhood of state s′ is the set of tran-

sitions Tnb ⊆ TC such that for each t ∈ Tnb, either t = s′′
l
−→ s′ ∈ TC or

t = s′
l
−→ s′′ ∈ TC .

Let us illustrate these notions on an example. Figure 4 shows a piece of a
full LTS and the corresponding counterexample LTS. The full LTS on the left
hand side of the figure represents a state that is at the frontier, thus it has been
matched by a state of the counterexample LTS on the right hand side and it has
correct transitions outgoing from it. The incoming and outgoing transitions for
this state in the counterexample LTS correspond to the neighbourhood.

8 Gianluca Barbon, Vincent Leroy, and Gwen Salaün

Fig. 4. Example of neighbourhood

3.4 Counterexample Abstraction

The final goal is to abstract a counterexample of the model in order to highlight
the source of the bug and thus favour the comprehension of its cause. Given the
counterexample LTS MC , produced from a model MF and a property ϕ, where
neighbourhoods have been identified in the previous subsection, and a coun-
terexample ce, produced from MF and ϕ, the procedure for the counterexample
abstraction consists of the following steps:

1. Matching between states of ce with states of MC .
2. Identification of states in ce that are matched to states in MC , which belong

to a neighbourhood.
3. Suppression of actions in ce, which do not represent incoming or outgoing

transitions of a neighbourhood.

For illustration purposes, let us consider the counterexample, produced by
a model checker from a model M and a property ϕ, given on the top side of
Figure 5. Once the set of neighbourhoods in the counterexample LTS is computed
using M and ϕ, we are able to locate sub-sequences of actions corresponding to
transitions in the neighbourhoods. We finally remove all the remaining actions
to obtain the simplified counterexample shown on the bottom side of the figure.
We will comment on the relevance and benefit of these results on real-world
examples in the next section.

4 Tool Support

In this section, we successively present the implementation of our approach,
illustrate it on a case study, and present experimental results on examples found
in the literature.

4.1 Implementation

Our tool is depicted in Fig. 6 and consists of two main parts. The first one imple-
ments the counterexample LTS generation step described in Section 3.1. It relies

Debugging of Concurrent Systems using Counterexample Analysis 9

Fig. 5. Counterexample abstraction

on the CADP toolbox [11], which enables one to specify and analyse concur-
rent systems using model and equivalence checking techniques. We particularly
make use of the LNT value passing process algebra [7] for specifying systems,
of the BCG binary format for representing LTSs, and of the MCL mu-calculus
logic [16] for describing safety temporal properties. The LNT specification is
automatically transformed into an LTS model in BCG format (the full LTS in
Section 3) using CADP compilers. The CADP model checker (Evaluator [16])
takes as input an MCL property and an input specification/model (LNT or
LTS), and returns a verdict (true or false + a counterexample if the property is
violated). The computation of the counterexample LTS is achieved by a script
we wrote using SVL [10], a scripting language that allows one to interface with
tools provided in the CADP toolbox. This script calls several tools: a specific
option of Evaluator for building an LTS from a formula following the algorithm
in [12]; EXP.OPEN for building LTS products; Reductor for minimizing LTSs;
Scrutator [15] for removing spurious traces in LTSs.

Fig. 6. Overview of the tool support

10 Gianluca Barbon, Vincent Leroy, and Gwen Salaün

The second part of our tool implements the algorithms for state matching (2),
state comparison (3) and counterexample abstraction (4), described from Sec-
tion 3.2 to Section 3.4. This part of the tool has been implemented in Java and
consists of about 2,500 lines of code. The tool takes as input the files contain-
ing the full and the counterexample LTS, converted into an intermediate ASCII
format called AUT (provided by CADP), and stores them in memory using a
Java graph modelling library. The matching step (2) is based on a BFS graph
search algorithm in order to build the simulation relation between the two LTSs.
The state matching is then stored into a map, used by the state comparison
step (3) to analyse outgoing transitions for each association of states between
the two LTSs. This allows us to retrieve the set of neighbourhoods. Finally, the
counterexample abstraction step (4) first produces the shortest counterexample
from the full LTS and the property by using the Evaluator model checker, and
second performs the counterexample reduction by locating and keeping actions
that correspond to neighbourhoods. The result retrieved by our tool consists of
the shortest counterexample abstracted in the form of a list of sub-sequences of
actions, accompanied by the list of all neighbourhoods.

4.2 Case Study

We now describe an example taken from a real-world case study [20]. The exam-
ple models a sanitary agency that aims at supporting elderly citizens in receiving
sanitary agency assistance from the public administration. The model involves
four different participants: (i) a citizen who requests services such as transporta-
tion or meal; the request can be accepted or refused by the agency; (ii) a sanitary
agency that manages citizens’ requests and provides public fee payment; (iii) a
bank that manages fees and performs payments; (iv) a cooperative that receives
requests from the sanitary agency, receives payments from the bank, and pro-
vides transportations and meal services. Figure 7 gives the LTS model for each
participant. We assume in this example that the participants interact together
asynchronously by exchanging messages via FIFO buffers.

For illustration purposes, we use an MCL safety property, which indicates
that the payment of a transportation service to the transportation cooperative
cannot occur after submission of a request by a citizen to the sanitary agency:

[true* . ’REQUEST EM’ . true* . ’PAYMENTT EM’ . true*] false

We applied our tool to the sanitary agency model with the aforementioned
property. Our tool was able to identify seven neighbourhoods in the couterex-
ample LTS. The shortest counterexample involves three neighbourhoods, and
this allows us to reduce its size from 19 actions to only 6 actions. Figure 8
shows (from left to right) the full LTS of the sanitary agency model, the short-
est counterexample, and the three neighbourhoods (+ correct transitions) for
this counterexample. The neighbourhoods and corresponding extracted actions
are relevant in the sense that they precisely identify choices that lead to the
incorrect behaviour. In particular, they identify the two causes of the property

Debugging of Concurrent Systems using Counterexample Analysis 11

Fig. 7. LTS models for the sanitary agency

violation and those causes can be observed on the shortest counterexample. The
first cause of violation is emphasized by the first neighbourhood and occurs when
the citizen request is accepted. In that case, the refusal of the request is a correct
transition and leads to a part of the LTS where the property is not violated. In-
deed, when a citizen request is refused by the sanitary agency, the execution skips
the part of the system behaviour where the transportation service and payment
appear. The two next neighbourhoods pinpoint the second reason of property
violation. They show that actions RECMONEYPOST EM and PROVT EM have
been performed, which correspond to triggering the request for payment of the
transportation service, that is not permitted by the property.

Our solution thus allows the developer to identify the cause of the property
violation by identifying specific actions in counterexamples via the notion of
neighbourhood. It is worth stressing that, since our approach applies on the
counterexample LTS and computes all the neighbourhoods, the returned solution
is able to pinpoint all the causes of the property violation, as we have shown
with the example above.

4.3 Experimental Results

We carried out experiments on about 20 real-world examples found in the liter-
ature. For each example, we use as input an LNT specification or an LTS model
as well as a safety property. Table 1 summarizes the results for some of these ex-
periments. The first two columns contain the name of the model, the reference
to the corresponding article, and the property. The third and fourth columns
show the size of the full and the counterexample LTSs, respectively, in terms of

12 Gianluca Barbon, Vincent Leroy, and Gwen Salaün

Fig. 8. Sanitary agency: full LTS and shortest counterexample

number of states, transitions and labels. The following columns give the number
of identified neighbourhoods, the size of the shortest (retrieved with breadth
first search techniques) and of the abstracted counterexample, respectively. Fi-
nally, the last two columns detail the execution time for the counterexample LTS
production, and for the matching and comparison algorithms (in seconds).

Example ϕ LF (s/t/l) LC (s/t/l) |N | |Ce| |Cer| tLF
tN

sanitary agency [20] ϕsa1 227 / 492 / 31 226 / 485 / 31 6 17 2 6.3s 0.3s
sanitary agency [20] ϕsa2 142 / 291 / 31 492 / 943 / 31 18 64 6 5.7s 0.2s
ssh protocol [14] ϕsp1 23 / 25 / 23 20 / 20 / 19 2 14 3 4.9s 0.2s
ssh protocol [14] ϕsp2 23 / 25 / 23 35 / 35 / 19 4 29 7 4.8s 0.1s
client supplier [6] ϕcs1 35 / 45 / 26 29 / 33 / 24 3 18 5 4.6s 0.1s
client supplier [6] ϕcs2 35 / 45 / 26 25 / 25 / 24 4 19 6 4.9s 0.1s
client supplier [6] ϕcs3 35 / 46 / 26 33 / 41 / 24 2 15 2 4.8s 0.2s
train station [21] ϕts 39 / 66 / 18 26 / 34 / 18 1 6 2 5.2s 0.2s
selfconfig [22] ϕac 314 / 810 / 27 159 / 355 / 27 30 14 5 5.6s 0.3s
online stock broker [9] ϕosb 1331 / 2770 / 13 2653 / 5562 / 13 61 23 23 4.9s 0.7s

Table 1. Experimental results

First of all, we can see a clear gain in length between the original coun-
terexample and the abstracted one, which keeps only relevant actions using our
approach. There is one case (online stock broker, last row) in which our so-
lution was not able to reduce the counterexample. This may occur in specific
cases when the counterexample (the shortest here) does not exhibit any actions
corresponding to transitions in a neighbourhood. In that particular situation,

Debugging of Concurrent Systems using Counterexample Analysis 13

our abstraction techniques cannot help the developer in the identification of the
cause of the property violation.

As far as computation time is concerned, the table shows that, for these
examples, the time for producing counterexample LTSs is slightly longer than
the time for computing the matching/comparison algorithms, which is very low
(less than a second). The script for counterexample LTS computation is longer
because it calls several CADP tools in sequence, which takes time.

5 Related Work

In this section, we survey related papers providing techniques for supporting
the debugging of specifications and programs. LocFaults [5] is a flow-driven and
constraint-based approach for error localization. It takes as input a faulty pro-
gram for which a counterexample and a postcondition are provided. This ap-
proach makes use of constraint based bounded model checking combined with
a minimal correction set notion to locate errors in the faulty program. This
work focuses on programs with numerical statements and relies on a constraint
programming framework allowing the combination of Boolean and numerical
constraints. In addition, the authors do not explicitly describe the capacity of
their solution for analysing concurrent programs.

Concurrency is explicitly taken into account in [3, 4]. In [3], the authors choose
the Halpern and Pearl model to define causality checking. In particular, they
analyse traces of counterexamples generated by bounded model checking to lo-
calise errors in hardware systems. In [4], sequential pattern mining is applied to
execution traces for revealing unforeseen interleavings that may be a source of
error, through the adoption of the well-known mining algorithm CloSpan [24].
This work deals with various typical issues in the analysis of concurrent models,
for instance the problem of increasing length of traces and the introduction of
spurious patterns when abstraction methods are used. CloSpan is also adopted
in [13], where the authors applied sequential pattern mining to traces of coun-
terexamples generated from a model using the SPIN model checker. By doing
so, they are able to reveal unforeseen interleavings that may be a source of er-
ror. The approach presented in [13] is able to analyse concurrent systems and
to extract sequences of events for identifying bugs, thus representing one of the
closest results to our work. Reasoning on traces as achieved in [3, 4, 13] induces
several issues. The handling of looping behaviours is non-trivial and may result
in the generation of infinite traces or of an infinite number of traces. Coverage is
another problem, since a high number of traces does not guarantee to produce all
the relevant behaviours for analysis purposes. As a result, we decided to work
on the debugging of LTS models, which represent in a finite way all possible
behaviours of the system.

Another solution for localization of faults in failing programs consists in us-
ing testing techniques. As an example, [18] presents a mutation-based fault lo-
calization approach and suggests the use of a sufficient mutant set to locate
effectively the faulty statements. This mutation analysis approach applies on

14 Gianluca Barbon, Vincent Leroy, and Gwen Salaün

C programs under validation using testing techniques whereas we focus on for-
mal specifications and models being analysed using model checking techniques.
In [23], the authors propose a new approach for debugging value-passing process
algebra through coverage analysis. The authors define several coverage notions
before showing how to instrument the specification without affecting original
behaviours. This approach helps one to find errors such as ill-formed decisions
or dead code, but does not help to understand why a property is violated during
analysis using model checking techniques.

6 Conclusion

In this paper, we have proposed a new method for debugging concurrent sys-
tems based on the analysis of counterexamples produced by model checking
techniques. First, we have defined a procedure to obtain an LTS containing all
the counterexamples given a full LTS and a safety property. Second, we have
introduced the notion of neighbourhoods corresponding to the junction of cor-
rect and erroneous transitions in the LTS, as well as an algorithm for computing
them by comparing the full LTS and the LTS consisting of all counterexamples.
Finally, we have implemented our approach as a tool and evaluated it on real-
world case studies, showing the advantage of the counterexample abstraction in
practice when adopting the neighbourhood approach.

As far as future improvements are concerned, a first perspective of this work
is to extend our approach to focus on probabilistic specifications and models,
and refine our LTS analysis techniques for handling those models. Another per-
spective is to increase the scope of system requirements that we can take into
account. Indeed, although safety properties already allow us to define most re-
quirements for real-world systems, we would like to consider liveness properties
as well. Finally, we plan to investigate the introduction of code colouring in the
specification by highlighting code portions that correspond to the source of the
problem according to our approach.

Acknowledgements. We would like to thank Frédéric Lang and Radu Ma-
teescu for their valuable suggestions to improve the paper.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, 1986.
2. C. Baier and J. Katoen. Principles of Model Checking. MIT Press, 2008.
3. A. Beer, S. Heidinger, U. Kühne, F. Leitner-Fischer, and S. Leue. Symbolic Causal-

ity Checking Using Bounded Model Checking. In Proc. of SPIN’15, volume 9232
of LNCS. Springer, 2015.

4. M. T. Befrouei, C. Wang, and G. Weissenbacher. Abstraction and Mining of Traces
to Explain Concurrency Bugs. In Proc. of RV’14, volume 8734 of LNCS. Springer,
2014.

Debugging of Concurrent Systems using Counterexample Analysis 15

5. M. Bekkouche, H. Collavizza, and M. Rueher. LocFaults: A New Flow-driven and
Constraint-based Error Localization Approach. In Proc. of SAC’15. ACM, 2015.

6. J. Cámara, J. A. Mart́ın, G. Salaün, C. Canal, and E. Pimentel. Semi-Automatic
Specification of Behavioural Service Adaptation Contracts. Electr. Notes Theor.

Comput. Sci., 264(1):19–34, 2010.
7. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, F. Lang, C. McKinty,

V. Powazny, W. Serwe, and G. Smeding. Reference Manual of the LOTOS NT to
LOTOS Translator (Version 6.1). INRIA/VASY, 131 pages, 2014.

8. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 2001.
9. X. Fu, T. Bultan, and J. Su. Conversation Protocols: A Formalism for Specification

and Verification of Reactive Electronic Services. Theoretical Computer Science,
328(1-2):19–37, 2004.

10. H. Garavel and F. Lang. SVL: A Scripting Language for Compositional Verifica-
tion. In Proc. of FORTE’01, volume 197 of IFIP Conference Proceedings. Kluwer,
2001.

11. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. STTT, 15(2):89–107, 2013.

12. F. Lang and R. Mateescu. Partial Model Checking using Networks of Labelled
Transition Systems and Boole an Equation Systems. Logical Methods in Computer

Science, 9(4), 2013.
13. S. Leue and M. T. Befrouei. Mining Sequential Patterns to Explain Concurrent

Counterexamples. In Proc. of SPIN’13, volume 7976 of LNCS. Springer, 2013.
14. J. A. Mart́ın and E. Pimentel. Contracts for Security Adaptation. J. Log. Algebr.

Program., 80(3-5), 2011.
15. R. Mateescu, P. Poizat, and G. Salaün. Adaptation of Service Protocols Using

Process Algebra and On-the-Fly Reduction Techniques. IEEE Trans. Software

Eng., 38(4):755–777, 2012.
16. R. Mateescu and D. Thivolle. A Model Checking Language for Concurrent Value-

Passing Systems. In Proc. of FM’08, volume 5014 of LNCS. Springer, 2008.
17. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
18. M. Papadakis and Y. L. Traon. Effective Fault Localization via Mutation Analysis:

A Selective Mutation Approach. In Proc. of SAC’14. ACM, 2014.
19. D. M. R. Park. Concurrency and Automata on Infinite Sequences. In Proc. of

the 5th Theoretical Computer Science Conference, volume 104 of LNCS. Springer,
1981.

20. G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Ser-
vices using Process Algebra. In Proc. of ICWS’04. IEEE Computer Society, 2004.

21. G. Salaün, T. Bultan, and N. Roohi. Realizability of Choreographies Using Pro-
cess Algebra Encodings. IEEE Transactions on Services Computing, 5(3):290–304,
2012.

22. G. Salaün, X. Etchevers, N. D. Palma, F. Boyer, and T. Coupaye. Verification
of a Self-configuration Protocol for Distributed Applications in the Cloud. In
Assurances for Self-Adaptive Systems, pages 60–79. Springer, 2013.

23. G. Salaün and L. Ye. Debugging Process Algebra Specifications. In Proc. of

VMCAI’15, volume 8931 of LNCS. Springer, 2015.
24. X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential Patterns in

Large Databases. In Proc. of SDM’03. SIAM, 2003.

