
On Benefits of Modeling the HPDcache in LNT
Zachary Assoumani1∗, César Fuguet2, Radu Mateescu1, and Wendelin Serwe1

1Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP,† LIG, 38000 Grenoble, France
2Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP,† TIMA, 38000 Grenoble, France

Abstract

Stepping from natural language towards modern formal languages such as LNT is beneficial for specifying
hardware architectures. We illustrate this on the HPDcache, the informal specification of which contains
numerous fragments in pseudo-code. Due to the syntactical similarities between the latter and LNT, modeling
the HPDcache’s informal specification in LNT was greatly facilitated. The CADP tools supporting LNT enabled
us to spot an error in the informal specification of the HPDcache, which might have led to a violation of the
memory consistency rules of the RISC-V.

1 Introduction
To reduce costs in hardware design, it is crucial to
spot any unwanted behaviours early in the design
process of complex architectures, starting with the
informal specifications, which are particularly prone
to ambiguities and oversights. Formal methods are
suitable vehicles to describe, simulate, and also verify
specifications of architectures.

We illustrate these steps on the High-Performance
Data Cache (HPDcache) [1], a non-blocking L1 data
cache for RISC-V cores and accelerators. Starting
from its informal specification, we produced a formal
model of the HPDcache in the LNT language [2]. We
also formally expressed the memory consistency rules
of the RISC-V specification [3] as MCL [4] formulas.
The CADP tools [5] supporting LNT and MCL al-
lowed us to uncover a possible violation of the memory
consistency rules by the informal specification. The
remaining sections present these steps in more detail.

This is not the first illustration of the benefits of
formal verification in hardware design, but it high-
lights that modern languages, such as LNT and MCL,
substantially reduce the cost of formal verification
due to their syntactical similarities with the informal
specifications.

2 Description of the HPDcache
The most prominent features of this cache are:

• Highly configurable to match the Performance-
Power-Area (PPA) requirements of different ap-
plication domains (from low-energy to high-
performance embedded systems)

• Support of overlapping of a high number of re-
quests to hide the memory latency
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Figure 1: Overview of the HPDcache

• Pipelined architecture to reach high-clock frequen-
cies in advanced technology nodes

• Support of Atomic Memory Operations (AMOs)
and Cache Management Operations (CMOs) to
enable multi-core processor integration

• Hybrid write-policy: It implements both write-
through and write-back policies, which are either
supported simultaneously at cacheline granularity
(at runtime) or separately (statically configured
at synthesis time)

The HPDcache has been integrated into the
OpenHW CVA6 RISC-V core, and became its offi-
cial cache. Different companies (e.g., Bosch or Thales)
and academic institutions (e.g., BSC, CEA, ETH-Z,
Inria, UCSB) use it for their products or research.

The natural-language (informal) specification and
the RTL model in SystemVerilog (SV) of the HPD-
cache are available in open-source1 and hosted by the
OpenHW Foundation.

3 Formal Model
We translated the English specification of the HPD-
cache into the LNT formal language [2], totaling
around 1, 200 lines of code. The LNT model follows

1 https://github.com/openhwgroup/cv-hpdcache

RISC-V Summit Europe, Paris, 12-15th May 2025 1

mailto:zachary.assoumani@inria.fr


int rtab_find_ready (int last) {
int i = (last + 1) mod % RTAB_NENTRIES ;
for (;;) {

if (rtab[i]. valid && rtab[i]. ll_head &&
(rtab[i]. deps == 0))

return i;
if (i == last)

return -1;

i := (i + 1) % RTAB_NENTRIES ;
}

}

function rtab_find_ready (rtab: RTAB_Array , last:int ): int is
var i:int in i := (last + 1) mod RTAB_NENTRIES ;

loop
if rtab[Nat (i)]. valid and rtab[Nat (i)]. ll_head and

(rtab[Nat (i)]. deps == NoDeps ) then
return i

elsif i == last then
return -1

end if;
i := (i + 1) mod RTAB_NENTRIES

end loop
end var end function

Figure 2: Pseudo-code (left) and its translation to LNT (right)

the cache architecture on Fig. 1, i.e., the parallel com-
position of one process per component, each one with
its own local data structure. All components synchro-
nize on a dedicated gate to give the arbiter an atomic
access to all local states. Fig. 2 shows the translation
of a HPDcache routine from pseudo-code to LNT.

Our model also includes the processor generating
requests and the main memory, each communicating
with the cache through a dedicated load/store inter-
face.

The correct functioning of the cache is defined by
memory consistency rules [3, chapter 14.1]: safety (a
read request of an address returns the last written
value) and liveness (every request is eventually exe-
cuted). We formalized these properties in MCL [4]
and verified them on the HPDcache LNT model using
CADP. For instance, the safety memory consistency
rule is specified using the MCL formula below:
[ true *.

{REQ ?any ?any ?s:nat ?t1:nat ?a: string }.
not ({ RSP_W ?any !s !t1} or { RSP_R ?any !s !t1 })*.
{REQ ?any ?any !s ?t2:nat !a where t1 <> t2 }.
not ({ RSP_W ?any !s !t1} or { RSP_R ?any !s !t1 })*.
{ RSP_W ?any !s !t2} or { RSP_R ?any !s !t2}

] false

The modality “[...] false” forbids the wrong execu-
tion sequences consisting of two consecutive requests
(transactions t1 and t2) made by a source s on the
same address a, followed by a response to the second
request.

To avoid combinatorial explosion, we limited the
LNT model to two different data values and two mem-
ory locations. Using CADP, we generated the corre-
sponding state space (814, 479 states and 2, 919, 608
transitions, reduced for strong bisimulation).

Attempting to verify the consistency property above,
it turned out to not hold. Investigating the counterex-
ample sequence of 37 transitions provided by CADP,
we uncovered an error in the specification, for which we
created an issue2 in the official HPDcache repository,
which has been fixed (the SV code was not affected).

In a nutshell, the problem was that attempting to
reply a request from the replay table modified the
internal state of the replay table, and these changes
2 https://github.com/openhwgroup/cv-hpdcache/issues/60

were not undone when the request due to a conflict
could not be executed and had to be rolled back.

4 Conclusion
Using formal languages brings the benefits of auto-
mated verification and simulation already in early
design stages. We showed that for the modern formal
language LNT this benefit comes with little cost, the
formal specification being very close to the pseudo-
code often present in informal specifications. For the
HPDcache, our model enabled to detect and fix an er-
ror in the informal specification. The formal modeling
task was carried out in less than two months, in the
context of a training exercise to learn LNT.

It is planned to include our formal model in the offi-
cial repository as additional reference and enable mod-
eling of further, and future, features of the HPDcache.
We believe that this provides a valuable example for
other designers of similar hardware architectures in-
volving several parallel, interacting components.
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