
Using LNT Formal Descriptions
for Model-Based Diagnosis

Birgit Hofer1, Radu Mateescu2, Wendelin Serwe2,
and Franz Wotawa1

1TU Graz, Institute for Software Technology
2Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG

wotawa@ist.tugraz.at

Context

• Modeling is an issue in model-based diagnosis

– Modeling languages (strength, access,
availability,...)

– Modeling is not that easy

• Observation: There are other areas where
modeling is needed, e.g., model-based testing
or formal verification.

Objective

• Using models from testing/verification for
diagnosis

• In particular: Focus on LNT

• Why?

– Availability of tools (CADP)

– LNT is a follow-up of the ISO/IEC standard E-LOTOS
(2001)

Rationale for the design of LNT

• Design challenges
– Combine sequential and concurrent programming

– Design a language for engineers, not theoreticians

• Same syntax for processes and functions

• Symmetric sequential composition (no action prefix)

• Ordinary variables
– Write-many variables

– Static analysis checks (variable initialization, no shared variables)

• Only tail recursion in processes
– Non-tail recursion could be eliminated automatically

– Arbitrary recursion in functions

Overview of LNT constructs

• LNT specification = set of modules

• Each module may contain:

– types:
• predefined: bool, nat, int, real, char, string

• free constructors, including enumerations, records, unions

• combinators: ranges, arrays, lists, sets, predicate subtypes

– functions: either mathematical or procedural
• predefined: arithmetical, logical, relational operators

• generated automatically / handwritten by the user

– channels: gate types, including none and any

– processes: concurrent agents communicating via gates

Algorithmic constructs of LNT

• 70% of familiar-looking Ada-like constructs

– if-then-else (with elsif), case with pattern matching

– while … loop, for … loop, forever loop with break

– functions with return statement

• Constructs from concurrency theory

– nondeterministic assignment: X := any T where P (X)

– nondeterministic choice: select … [] … [] … end select

– parallel composition: par … ||… || … end par

– hiding: hide … end hide

– multiway rendezvous: G (O1, …, On)

• Functions and processes have many constructs in common

Dynamic semantics of LNT

• LNT functions:

– state = memory store (mapping: variable  value)

– LNT instructions: transitions between states (store updates)

• LNT processes:

– Labelled Transition Systems

– LTS state = <process term, memory store>

– SOS rules define transitions between LTS states

– static semantics restrictions

• Implementation of LNT in CADP:

– LNT2LOTOS translator (funded by Bull)

– reuse of the LOTOS compilers and verification tools of CADP

Impact of LNT so far
• 17 case studies done with LNT [21 publications]

– avionics: 2

– cloud computing: 3

– distributed algorithms: 4

• 9 translators to LNT [11 publications]
– AADL: 1 Toulouse-Sfax
– applied π-calculus: 1 Grenoble
– BPEL-WSDL: 2 MIT-Tsinghua, Bucharest-Grenoble
– BPMN: 2 Nantes, Paris
– DFT: 1 Twente
– EB3: 1 Paris-Grenoble
– GRL: 1 Grenoble

 – a hardware design: 4

 – human/computer interfaces: 2

 – other industrial systems: 2

Basic idea

• Using d74 circuit as example

Adder component
• Behavior (if correct; not AB)

Correct behavior in LNT

process ADDER [IN1, IN2, SUM: NAT_C] is
 var in1, in2, result: Nat in
 loop
 par
 IN1 (?in1)
 || IN2 (?in2)
 end par;
 result := in1 + in2;
 SUM (result)
 end loop
 end var
end process

Basic idea (cont.)
Have to introduce means for stating that a component is not working as
expected!

Use a wrapper!

If faulty then
else

ADDER

ALL
BEHAVIORS

INPUT

OUTPUT

Wrapper in LNT

process ADDER_WRAP_ND [IN1, IN2, SUM: NAT_C]
(faulty: Bool) is
 if faulty then
 loop
 par
 IN1 (?any Nat)
 || IN2 (?any Nat)
 end par;
 SUM (?any Nat)
 end loop
 else
 ADDER [IN1, IN2, SUM]
 end if
end process

Faulty behavior

Correct behavior

System modeling with Wrappers
process MAIN [IN1, IN2, IN3, IN4, IN5, OUT1, OUT2: NAT_C]
(f1, f2, f3, f4, f5: Bool, i1, i2, i3, i4, i5: Nat) is
 hide C1, C2, C3: NAT_C in
 par
 IN1, IN2, IN3, IN4, IN5 ->
 IN1 (i1); IN2 (i2); IN3 (i3);
 IN4 (i4); IN5 (i5); stop
 || IN1, IN3, C1 -> (* M1 *)
 MULTI_WRAP [IN1, IN3, C1] (f1)
 || IN2, IN4, C2 -> (* M2 *)
 MULTI_WRAP [IN2, IN4, C2] (f2)
 || IN3, IN5, C3 -> (* M3 *)
 MULTI_WRAP [IN3, IN5, C3] (f3)
 || C1, C2 -> (* A1 *)
 ADDER_WRAP [C1, C2, OUT1] (f4)
 || C2, C3 -> (* A2 *)
 ADDER_WRAP [C2, C3, OUT2] (f5)
 end par
 end hide
end process

Bringing it all together

1. model the system structure SD and the behavior of individual
components COMP in LNT using wrappers

2. instantiate the system, specifying a component C as faulty (via the
corresponding parameter) if and only if C belongs to 

3. represent the observations OBS as temporal formulas (in MCL
[16]) or sequences of events (i.e., a particular kind of LTS), and

4. determine the presence of observations in the considered system
configuration using on-the-fly verification techniques, e.g., model
checking (with EVALUATOR) or checking inclusion modulo
equivalence relations (with BISIMULATOR).

Consistency-based diagnosis in CADP:

Bringing it all together

• Input sequence:
"IN1 !2"

"IN2 !3"

"IN3 !3"

"IN4 !2"

"IN5 !2"

"OUT1 !10"

"OUT2 !12"

• Checking for diagnosis {M2;M3} :
% I1=2; I2=3; I3=3; I4=2; I5=2

branching comparison

"obs.seq" <= "MAIN(false,false,false,

false,false,$I1,$I2,$I3,$I4,$I5)" ;

branching comparison

"obs.seq" <= "MAIN(false,true,true,

false,false,$I1,$I2,$I3,$I4,$I5)" ;

Diagnosis using LNT

• Use wrappers for components

• Set health status of component such that the
system behaves like expected

• Diagnosis = search for health assignments (like
always)

Case study DES

Case study DES (cont.)

• Introduce fault in one of the S-boxes
• Use a simplified calculation scheme (only one

iteration)

• Use script for diagnosis including minimization
steps from CADP

• S-Box was always correctly identified as being
faulty

• Whole diagnosis took 11 minute on a Intel Core i5
M560 CPU at 2.67 Ghz and 8 MB of RAM.

Case study DES (cont.)

• Testing for correctness took only seconds

• Why?

– Huge state space of the corresponding LTS used.

Conclusions

• Are able to use LNT models for diagnosis

• Make use of wrapper components introducing
the health state

• Diagnosis feasible for smaller models

• Make use of LNT models (almost) directly

• Rich set of tools and models available

Conclusions

• Able to introduce fault models as well

• Models of behavior including time

• But there is a need to improve diagnosis
computation

Thank you for your attention!

QUESTIONS?

