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Context 

§  Designing and developing concurrent and distributed applications is a 
tedious and error-prone task 

§  Formal techniques and tools are of great help to specify and debug such 
systems and the corresponding models 

§  Here, we focus on value-passing process algebra as specification 
language and model checking as analysis technique 

§  Model checking: given a specification S and a property P, we check for a 
concrete input I whether S satisfies P:   

 
LTS(S,I) |= P 
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Issues 

§  Building the set of validation examples (inputs) and debugging the system 
is a real burden for at least three reasons  

-  Counterexamples provided by model checkers are the only feedback 
one may have, but their comprehension and analysis is often 
complicated 

-  We do not know whether the set of validation examples covers all the 
possible execution scenarios described in the specification  

-  The specification may contain errors (e.g., ill-formed decisions, non-
synchronizable actions, dead code), which are not necessarily found 
using model checking techniques  
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Contributions 

§  We propose to improve the quality of validation examples, and to debug 
process algebra specifications (LNT) through coverage analysis  

§  We define block, decision, and action coverage for specifications  

§  Collecting coverage information is achieved through probe insertion and 
follows a two-step methodology to reduce state space explosion problems 

§  We implemented these techniques as a tool built on top of the publicly 
available CADP verification toolbox 

§  We applied our tool to more than one hundred LNT specifications 
including six real-world systems 
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Outline 

1.  Overview of LNT 
2.  Coverage Analysis 
3.  Tool Support 
4.  Concluding Remarks 
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LOTOS NT 

§  LOTOS NT (LNT) is a value-passing process algebra with user-
friendly syntax and operational semantics 

§  LNT is an imperative-like language where you can specify data types, 
functions (pattern matching and recursion), and processes 

§  Excerpt of the LNT process grammar: 
 B  ::=  stop  |  G (!E, ?X) where E’     |  if E then B1 else B2 end if 
  |  x:=E  |  hide G in B end hide  |  while E loop B end loop 
  |  select B1 [] … [] Bn end select     |  B1 ; B2 
  |  par G in B1 || … || Bn end par       |  case V in V1 -> B1 | … end case

  
 
§  Verification using CADP through an automated translation to LOTOS 
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Construction and Analysis of Distributed 
Processes (CADP) 

§  Design of asynchronous systems 
–  Concurrent processes 
–  Message-passing communication 
–  Nondeterministic behaviors 

§  Formal approach rooted in concurrency theory: process calculi, 
Labeled Transition Systems, bisimulations, branching temporal logics 

§  Many verification techniques: simulation, model and equivalence 
checking, compositional verification, test case generation, 
performance evaluation, etc. 

§  Numerous real-world applications: avionics, hardware design, cloud 
computing, bioinformatics, etc. 
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Outline 

1.  Overview of LNT 
2.  Coverage Analysis 
3.  Tool Support 
4.  Concluding Remarks 
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Terminology 

§  We focus on three coverage criteria in this work: blocks, decisions, and 
actions 

§  A block is the largest sequence of instructions free of conditional, choice, 
and parallel constructs 

§  Given an LNT specification and a set of validation examples:  
-  A block / action is covered if it is executed by at least one example 
-  A decision is covered if both true and false outcomes are evaluated by one 

example (not necessarily the same one) 

§  Block / decision / action coverage is the percentage of the number of 
covered blocks / decisions / actions out of their total number 
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Probe Insertion (1/2) 

§  We instrument the LNT code with probes in order to collect structural 
coverage information 

§  Given an LNT specification and an example, we compile it into an LTS 
using CADP compilers  

 
 => After probe insertion, we analyze the LTS for retrieving coverage 
 information 

§  Block: we insert a probe at the end of each block 

§  Action: we insert a probe just after the target action (one different probe 
per action occurrence) 
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Probe Insertion (2/2) 

§  Decision: we equip the corresponding probe with this decision as its 
parameter  

§  Special attention must be taken when the LNT specification contains 
internal actions: critical blocks / decisions (see the paper for details) 

§  Behavior preservation: we proved that the original LNT specification is 
branching equivalent to the extended specification with probes hidden 
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Coverage Computing 

§  If we insert probes for all three coverage criteria, the corresponding LTSs 
would suffer from the state explosion problem  

§  To solve this, we first insert probes for blocks and decisions, and second 
we focus on actions (two-step analysis) 

§  A block whose entry is allowed is an executable block  

§  A block is partially covered if it is executable but not covered 
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Results Analysis 

§  Our approach returns the percentage of block / decision / action coverage 
+ the set of uncovered blocks / decision outcomes / actions 

§  Two reasons can explain why coverage percentages are lower than 100% 
-  lack of validation examples 
-  defects contained in the corresponding LNT specification 

§  The following types of errors may be the source of the uncovered parts  
-  Ill-formed decisions 
-  Unnecessary decision 
-  Non-synchronizable actions 
-  Dead code 
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Outline 

1.  Overview of LNT 
2.  Coverage Analysis 
3.  Tool Support 
4.  Concluding Remarks 
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Implementation 
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Experiments (1/2) 
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Experiments (2/2) 

§  Helped to improve the quality of the validation examples (Synchro2) and 
several kinds of errors (e.g., several ill-formed decisions in ReConfig) 

§  Naive approach vs. two-step methodology: up to half the number of 
probes, and reduction from 30 to 60% in terms of states/transitions 
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Outline 

1.  Overview of LNT 
2.  Coverage Analysis 
3.  Tool Support 
4.  Concluding Remarks 
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Concluding Remarks 

§  We propose a tool-supported approach for debugging value-passing 
process algebra, which relies on coverage analysis and probe insertion 

§  The obtained results can be considered as accurate guides to either 
complete validation examples or correct errors in the given specification 

§  It is worth pointing out that our approach could be applied to other value-
passing process algebra such as CSP/FDR2 or mCRL2 

§  Main perspective: extension to other criteria for coverage analysis, such 
as multiple condition coverage or some criteria based on data flow  

 


