
Debugging Process Algebra
Specifications

1

Gwen Salaün
Grenoble INP, Inria, France

Lina Ye

Supélec, France

Context

§  Designing and developing concurrent and distributed applications is a
tedious and error-prone task

§  Formal techniques and tools are of great help to specify and debug such
systems and the corresponding models

§  Here, we focus on value-passing process algebra as specification
language and model checking as analysis technique

§  Model checking: given a specification S and a property P, we check for a
concrete input I whether S satisfies P:

LTS(S,I) |= P

2

Issues

§  Building the set of validation examples (inputs) and debugging the system
is a real burden for at least three reasons

-  Counterexamples provided by model checkers are the only feedback
one may have, but their comprehension and analysis is often
complicated

-  We do not know whether the set of validation examples covers all the
possible execution scenarios described in the specification

-  The specification may contain errors (e.g., ill-formed decisions, non-
synchronizable actions, dead code), which are not necessarily found
using model checking techniques

3

Contributions

§  We propose to improve the quality of validation examples, and to debug
process algebra specifications (LNT) through coverage analysis

§  We define block, decision, and action coverage for specifications

§  Collecting coverage information is achieved through probe insertion and
follows a two-step methodology to reduce state space explosion problems

§  We implemented these techniques as a tool built on top of the publicly
available CADP verification toolbox

§  We applied our tool to more than one hundred LNT specifications
including six real-world systems

4

Outline

1.  Overview of LNT
2.  Coverage Analysis
3.  Tool Support
4.  Concluding Remarks

5

LOTOS NT

§  LOTOS NT (LNT) is a value-passing process algebra with user-
friendly syntax and operational semantics

§  LNT is an imperative-like language where you can specify data types,
functions (pattern matching and recursion), and processes

§  Excerpt of the LNT process grammar:
 B ::= stop | G (!E, ?X) where E’ | if E then B1 else B2 end if
 | x:=E | hide G in B end hide | while E loop B end loop
 | select B1 [] … [] Bn end select | B1 ; B2
 | par G in B1 || … || Bn end par | case V in V1 -> B1 | … end case

§  Verification using CADP through an automated translation to LOTOS

6

Construction and Analysis of Distributed
Processes (CADP)

§  Design of asynchronous systems
–  Concurrent processes
–  Message-passing communication
–  Nondeterministic behaviors

§  Formal approach rooted in concurrency theory: process calculi,
Labeled Transition Systems, bisimulations, branching temporal logics

§  Many verification techniques: simulation, model and equivalence
checking, compositional verification, test case generation,
performance evaluation, etc.

§  Numerous real-world applications: avionics, hardware design, cloud
computing, bioinformatics, etc.

7

CADP
(Inria/Convecs)

Outline

1.  Overview of LNT
2.  Coverage Analysis
3.  Tool Support
4.  Concluding Remarks

8

Terminology

§  We focus on three coverage criteria in this work: blocks, decisions, and
actions

§  A block is the largest sequence of instructions free of conditional, choice,
and parallel constructs

§  Given an LNT specification and a set of validation examples:
-  A block / action is covered if it is executed by at least one example
-  A decision is covered if both true and false outcomes are evaluated by one

example (not necessarily the same one)

§  Block / decision / action coverage is the percentage of the number of
covered blocks / decisions / actions out of their total number

9

Probe Insertion (1/2)

§  We instrument the LNT code with probes in order to collect structural
coverage information

§  Given an LNT specification and an example, we compile it into an LTS
using CADP compilers

 => After probe insertion, we analyze the LTS for retrieving coverage
 information

§  Block: we insert a probe at the end of each block

§  Action: we insert a probe just after the target action (one different probe
per action occurrence)

10

Probe Insertion (2/2)

§  Decision: we equip the corresponding probe with this decision as its
parameter

§  Special attention must be taken when the LNT specification contains
internal actions: critical blocks / decisions (see the paper for details)

§  Behavior preservation: we proved that the original LNT specification is
branching equivalent to the extended specification with probes hidden

11

Coverage Computing

§  If we insert probes for all three coverage criteria, the corresponding LTSs
would suffer from the state explosion problem

§  To solve this, we first insert probes for blocks and decisions, and second
we focus on actions (two-step analysis)

§  A block whose entry is allowed is an executable block

§  A block is partially covered if it is executable but not covered

12

set of partially
covered blocks

+ ac!on coverage
analysisRAC

block & decision
coverage analysis

 LTSs
 LNT spe. (blocks &
 decisions) + examples

 LNT spe. (ac!ons)
 + examples LTSs

STEP 1 STEP 2

RBC RDC

Results Analysis

§  Our approach returns the percentage of block / decision / action coverage
+ the set of uncovered blocks / decision outcomes / actions

§  Two reasons can explain why coverage percentages are lower than 100%
-  lack of validation examples
-  defects contained in the corresponding LNT specification

§  The following types of errors may be the source of the uncovered parts
-  Ill-formed decisions
-  Unnecessary decision
-  Non-synchronizable actions
-  Dead code

13

Outline

1.  Overview of LNT
2.  Coverage Analysis
3.  Tool Support
4.  Concluding Remarks

14

Implementation

15

2nd step
LNT2LOTOS

CADP
compilerINSTRUMENTER

ANALYSER

LNT specification

Coverage
results

Set of explicit
LTSs

CAL CADP

Dataset of
validation examples

extended
specification

Coverage
 criteria

Experiments (1/2)

16

Experiments (2/2)

§  Helped to improve the quality of the validation examples (Synchro2) and
several kinds of errors (e.g., several ill-formed decisions in ReConfig)

§  Naive approach vs. two-step methodology: up to half the number of
probes, and reduction from 30 to 60% in terms of states/transitions

17

Outline

1.  Overview of LNT
2.  Coverage Analysis
3.  Tool Support
4.  Concluding Remarks

18

19

Concluding Remarks

§  We propose a tool-supported approach for debugging value-passing
process algebra, which relies on coverage analysis and probe insertion

§  The obtained results can be considered as accurate guides to either
complete validation examples or correct errors in the given specification

§  It is worth pointing out that our approach could be applied to other value-
passing process algebra such as CSP/FDR2 or mCRL2

§  Main perspective: extension to other criteria for coverage analysis, such
as multiple condition coverage or some criteria based on data flow

