Reliable Self-Deployment of Cloud
Applications

Xavier Etchevers!, Gwen Salain?, Fabienne Boyer3,
Thierry Coupaye’, Noel De Palma3

'Orange Labs, France

2Grenoble INP, Inria, France
SUJF-Grenoble 1, INRIA, France

”~

~
CON/ECS
\ .4; / L 1 G

Introduction

Cloud computing aims at delivering
resources and applications as a service
over a network (e.g., the Internet)

Cloud Computing

Cloud applications are complex distributed applications composed of
interconnected software components running on separate virtual
machines

Setting up, (re)configuring, and monitoring these applications are
complicated tasks, and involve complex management protocols

In this talk, we present a reliable self-deployment protocol automating the
configuration and start-up of distributed applications in the cloud

Outline

1. Self-Deployment Protocol
2. Verification

3. Implementation

4. Concluding Remarks

Application Model

An application model consists of a set of components and a set of
bindings connecting these components together

A component is composed of input and output ports, namely imports and
exports

An import can be either optional or mandatory

A binding connects an import of one component to an export of another
component

import export

C1 | s c2]

binding
component

Components are distributed over virtual machines, which are in charge of
their administration (local and remote bindings + start-up process)
4

Self-Deployment Protocol

This protocol (developed at Orange labs) for configuring distributed
applications is decentralized and loosely-coupled

Each virtual machine (VM) embeds the application model and a
configurator in charge of the component binding and application start-up

VM1 VM2

Apache 1 |

HTTP Server] | I

JOnAS
JEE Server

VM3

MySQL
DBMS

Web application
model

Configurators interact together through a Message Oriented Middleware

(MOM), which relies on message buffers

[Deployment Manager]

7] (o] [(o]
VM Configurator VM Configurator
VM1 VM2

Web Application Start-Up Scenario

DM

[]

VM3

| MySQL

VM1 VM2
m m
Apache 1 1 JOnAS 1
HTTP Server| | I JEE Server I
, . VM1
instantiate >|:|
, , VM2
instantiate E
, , VM3
instantiate

]

send binding msg

send binding msg

Bind Apache->JOnAS

Bind JOnAS->MySQL

Start MySQL

<

send start msg

Start JOnAS

send start msg

Start Apache

m—

I DBMS

Web application model

Reliable Self-Deployment

The self-deployment protocol also supports VM / configurator / network
failures, detected using a heartbeat mechanism

The deployment manager re-instantiates the failed VM and sends
messages to the other VMs to let them know of this failure / instantiation

Those VMs send a specific message to the new VM and may repeat parts
of the configuration protocol

send again export info.

VM1’ > SEEEE PR L : VM2

C1 i ¢I c2 |

Several failures may occur, either failures of different instances of a same
VM or failures of different VMs 7

DM

Failure Scenario

Web Applicati
VM1 VM2 VM3
Apache n|1 | JOnAS n|1 | MySQL
HTTP Server[T JEE Server [| I DBMS
VM1 VM2 VM3 Web application model
failure
, . VM2'
instantiate kl—l
g
alertfailure
>
alertfailure > Update VM2 ident.
Purge buffers
Update VM2 ident.
Purge buffers
Stop and Unbind Apache send ack
send ack o
> P send binding msg

send binding msg

send start msg

Bind Apache->JOnAS

Bind JOnAS->MySQL

Start JOnAS

send start msg

<

Start Apache

—

Outline

1. Self-Deployment Protocol
2. Verification

3. Implementation

4. Concluding Remarks

LNT and CADP

LOTOS NT (LNT) is a value-passing process algebra with user-friendly
syntax and operational semantics

LNT is an imperative-like language where you can specify data types,
functions (pattern matching and recursion), and processes

LNT is one of the input languages of the CADP toolbox, which provides
a large variety of verification techniques and tools

We particularly used branching temporal
logics and model checking techniques

10

Specification in LNT

The specification consists of at least 2,500 lines of code (data types,
functions, processes)

Data types describe the application model (components, ports, bindings,
buffers, etc.)

Functions are necessary for:
- extracting information from the application model
- describing buffers and basic operations on them
- keeping track of the started components to know when components can be started

Processes specify VMs (configurator, input and output buffer), the

communication layer (MOM), and the system architecture consisting of
VMs interacting through the MOM

11

Model Checking with CADP

= We identified and checked 15 safety and liveness properties that must be
preserved by the protocol

» These properties specify final objectives to be fulfilled (1), architectural
invariants (2), or ordering constraints (3, 4, 5)

1.

2.

3.

4.

5.

All components are eventually started

A component cannot be started before the components it depends on through
mandatory imports

After a VM fails, all other VMs are informed of that failure
Each VM failure is followed by a new creation of that VM

There is no sequence with two failures (same VM) without a VM creation between them

= They were specified in the MCL language and verified with the Evaluator
4.0 model checker

12

Tool Support

properties
input @ CADP tools
appli.Int selfconfig.py
scrlpt
selfconflg Int » Int.open
LNT if. output
spec resulting LTS diagnostics

rue/false

Experiments were conducted on about 170 application models

We were able to analyze up to 4 VMs with up to 5 failures in a few hours

A bug was found in the configurator start-up part of the protocol = it was

corrected in the Java implementation (Orange Labs)
13

Outline

1. Self-Deployment Protocol
2. Verification

3. Implementation

4. Concluding Remarks

14

VAMP Principles

VAMP: Virtual Applications Management Platform

VAMP first creates a new VM in which a deployment manager is
instantiated

The DM generates virtual images and instantiates them as VMs in one or
several Infrastructure-as-a-Service platforms

Each virtual image embeds the configurator (written in Java), which
encodes most of the self-deployment protocol

All the participants (DM and configurators) communicate through the AAA
asynchronous message-oriented middleware

15

Evaluation

= The evaluation process aims at measuring the time to deploy the 3-tier
Web application (running example) while randomly injecting failures

2,000 f- Mean time to deploy

the web application

y(z) = 35,245z +
84,106

1,000
Minimal time to de-

ploy the web applica-
tion

Elapsed time (s.)

— = = Maximal time to de-
ploy the web applica-
0 tion

0 20 40

Number of injected failures

= The time to deploy the Web application increases linearly with the number
of failures

16

Outline

1. Self-Deployment Protocol
2. Verification

3. Implementation

4. Concluding Remarks

17

Concluding Remarks

We propose and design an innovative, decentralized protocol to
automatically deploy cloud applications consisting of interconnected
software components hosted on several VMs

The deployment process is able to detect and handle VM and network
failures, and always succeeds in configuring the application

We verified that the protocol respects some key properties using formal
specification languages and model checking techniques

We implemented the protocol in Java and applied it to real-world
applications for evaluation purposes

Main perspective: dynamic reconfiguration of cloud applications

18

