
Reliable Self-Deployment of Cloud
Applications

1

Xavier Etchevers1, Gwen Salaün2, Fabienne Boyer3,
Thierry Coupaye1, Noel De Palma3

1Orange Labs, France
2Grenoble INP, Inria, France

3UJF-Grenoble 1, INRIA, France

2

Introduction

§  Cloud applications are complex distributed applications composed of
interconnected software components running on separate virtual
machines

§  Setting up, (re)configuring, and monitoring these applications are
complicated tasks, and involve complex management protocols

§  In this talk, we present a reliable self-deployment protocol automating the
configuration and start-up of distributed applications in the cloud

§  Cloud computing aims at delivering
resources and applications as a service
over a network (e.g., the Internet)

Outline

1.  Self-Deployment Protocol
2.  Verification
3.  Implementation
4.  Concluding Remarks

3

4

Application Model
§  An application model consists of a set of components and a set of

bindings connecting these components together

§  A component is composed of input and output ports, namely imports and
exports

§  An import can be either optional or mandatory

§  A binding connects an import of one component to an export of another
component

§  Components are distributed over virtual machines, which are in charge of
their administration (local and remote bindings + start-up process)

C1 C2

import export

binding
component

5

Self-Deployment Protocol
§  This protocol (developed at Orange labs) for configuring distributed

applications is decentralized and loosely-coupled

§  Each virtual machine (VM) embeds the application model and a
configurator in charge of the component binding and application start-up

§  Configurators interact together through a Message Oriented Middleware
(MOM), which relies on message buffers

Web application
model

6

Web Application Start-Up Scenario

Web application model

7

§  The self-deployment protocol also supports VM / configurator / network
failures, detected using a heartbeat mechanism

§  The deployment manager re-instantiates the failed VM and sends
messages to the other VMs to let them know of this failure / instantiation

§  Those VMs send a specific message to the new VM and may repeat parts
of the configuration protocol

§  Several failures may occur, either failures of different instances of a same
VM or failures of different VMs

VM1’

C1

VM2

C2

Reliable Self-Deployment

send again export info.

8

Web Application Failure Scenario

Web application model

Outline

1.  Self-Deployment Protocol
2.  Verification
3.  Implementation
4.  Concluding Remarks

9

LNT and CADP

§  LOTOS NT (LNT) is a value-passing process algebra with user-friendly
syntax and operational semantics

§  LNT is an imperative-like language where you can specify data types,
functions (pattern matching and recursion), and processes

§  LNT is one of the input languages of the CADP toolbox, which provides
a large variety of verification techniques and tools

10

§  We particularly used branching temporal
logics and model checking techniques

11

Specification in LNT

§  The specification consists of at least 2,500 lines of code (data types,
functions, processes)

§  Data types describe the application model (components, ports, bindings,
buffers, etc.)

§  Functions are necessary for:
-  extracting information from the application model
-  describing buffers and basic operations on them
-  keeping track of the started components to know when components can be started

§  Processes specify VMs (configurator, input and output buffer), the
communication layer (MOM), and the system architecture consisting of
VMs interacting through the MOM

12

Model Checking with CADP

§  We identified and checked 15 safety and liveness properties that must be
preserved by the protocol

§  These properties specify final objectives to be fulfilled (1), architectural
invariants (2), or ordering constraints (3, 4, 5)

1.  All components are eventually started

2.  A component cannot be started before the components it depends on through
mandatory imports

3.  After a VM fails, all other VMs are informed of that failure

4.  Each VM failure is followed by a new creation of that VM

5.  There is no sequence with two failures (same VM) without a VM creation between them

§  They were specified in the MCL language and verified with the Evaluator
4.0 model checker

13

Tool Support

§  Experiments were conducted on about 170 application models

§  We were able to analyze up to 4 VMs with up to 5 failures in a few hours

§  A bug was found in the configurator start-up part of the protocol ⇒ it was
corrected in the Java implementation (Orange Labs)

selfconfig.lnt

appli.lnt
input

selfconfig.py

lnt.open

.svl

.bcg

.mcl

properties
CADP tools

script

resulting LTS LNT specif. diagnostics
true/false

output

Outline

1.  Self-Deployment Protocol
2.  Verification
3.  Implementation
4.  Concluding Remarks

14

15

VAMP Principles

§  VAMP: Virtual Applications Management Platform

§  VAMP first creates a new VM in which a deployment manager is
instantiated

§  The DM generates virtual images and instantiates them as VMs in one or
several Infrastructure-as-a-Service platforms

§  Each virtual image embeds the configurator (written in Java), which
encodes most of the self-deployment protocol

§  All the participants (DM and configurators) communicate through the AAA
asynchronous message-oriented middleware

16

Evaluation

§  The evaluation process aims at measuring the time to deploy the 3-tier
Web application (running example) while randomly injecting failures

§  The time to deploy the Web application increases linearly with the number
of failures

Outline

1.  Self-Deployment Protocol
2.  Verification
3.  Implementation
4.  Concluding Remarks

17

18

Concluding Remarks
§  We propose and design an innovative, decentralized protocol to

automatically deploy cloud applications consisting of interconnected
software components hosted on several VMs

§  The deployment process is able to detect and handle VM and network
failures, and always succeeds in configuring the application

§  We verified that the protocol respects some key properties using formal
specification languages and model checking techniques

§  We implemented the protocol in Java and applied it to real-world
applications for evaluation purposes

§  Main perspective: dynamic reconfiguration of cloud applications

