Verification of a Self-configuration Protocol
for Distributed Applications in the Cloud

Gwen Salaun
Grenoble INP, INRIA, France

joint work with
Xavier Etchevers', Noel de Palma?, Fabienne Boyer?, Thierry Coupaye’
'Orange Labs, France
2UJF-Grenoble 1, INRIA, France

>

A

\ s
C 0 NJE d§ Grenobl L)l NIP ‘ informatics g¥mathematics ‘
=z / | L 1 G

Introduction

Cloud computing aims at delivering
resources and applications as a service
over a network (e.g., the Internet)

Cloud Computing

Cloud applications are often complex distributed applications composed
of multiple software running on separate virtual machines

Setting up, (re)configuring, and monitoring these applications is a burden,
and involves complex management protocols

In this talk, we present the verification of an innovative self-configuration
protocol which automates the configuration of distributed applications
consisting of interacting virtual machines

o ~wbdh-~

Outline

The Self-configuration Protocol
LNT and CADP

Specification in LNT
Verification with CADP
Concluding Remarks

Application Model

An application model consists of a set of components and a set of
bindings connecting these components together

A component is composed of input and output ports, namely imports and
exports

An import can be either optional or mandatory

A binding connects an import of one component to an export of another
component

import export

C1 | s c2]

wire
component

Components are distributed over virtual machines, which are in charge of
their administration (local and remote bindings)
4

Self-configuration Protocol

This protocol (developed at Orange labs) for configuring distributed
applications is decentralized and loosely-coupled

Each virtual machine (VM) embeds the application model and a
configurator that manages the component binding configuration and the
application start-up

VM1 VM2

start start start
o1 i L >|_e o3 vms vmz vm1

\
S VM1 4 4
LI vM2_| v
; 4 wirec3e ¢ startc3

C2 C4 VM3 v
wire C4.e start C4

Configurators interact together through a Message Oriented Middleware

(MOM), which relies on message buffers 5

Configurator Workflow

|

VM1

CREATEVM] CREATECOMPO LOCALBIND SEND
J (bind msg)
2,4,5,7,9 3,5,7,9
4,7,9
5 5,6 5,7,9
REMOTEBIND [RECEIVE SEND [STARTCOMPO
l (start msg) l
' [FINISH
VM2
start start start
C1 % =|' ecs VM3 VM2 VM1
i i g Pl
—+ - VM1 — : Y, <
Y VM3 Y VM2 v
: 4 wirec3e Y startcs
e (] :
C2 C4 VM3 v
wire C4.e start C4

o ~wbdh -~

Outline

The Self-configuration Protocol
LNT and CADP

Specification in LNT
Verification with CADP
Concluding Remarks

LOTOS NT

LOTOS NT (LNT) is a value-passing process algebra with user-
friendly syntax and operational semantics

LNT is an imperative-like language where you can specify data types,
functions (pattern matching and recursion), and processes

Excerpt of the LNT process grammar:

stop | G('E, ?X)where E' | if E then B1 else B2 end if
x:=E | hide G in B end hide | P [G1,...,Gm] (E1,...,En)
select B1[] ... [] Bnend select | B1; B2

par GinB1]|| ...]| Bn end par

Verification using CADP through an automated translation to LOTOS

8

Construction and Analysis of Distributed
Processes (CADP)

-
e

Design of asynchronous systems

— Concurrent processes
— Message-passing communication
— Nondeterministic behaviours

CADP
(INRIA/VASY)

‘f,j?:“ﬁ
Formal approach rooted in concurrency theory: process calculi,
Labeled Transition Systems, bisimulations, branching temporal logics

Many verification techniques: simulation, model and equivalence
checking, compositional verification, test case generation,
performance evaluation, etc.

Numerous real-world applications: avionics, embedded systems,
hardware design, middleware and software architectures, etc.

o ~wbdh-~

Outline

The Self-configuration Protocol
LNT and CADP

Specification in LNT
Verification with CADP
Concluding Remarks

10

Specification in LNT (1/2)

The specification consists of three parts: data types (300 lines), functions
(1000 lines), processes (700 lines)

Data types describe the application model (components, ports, bindings,
buffers, etc.)

Functions are necessary for:
- extracting information from the application model
- describing buffers and basic operations on them
- keeping track of the started components to know when components can be started

function add (m: TMessage, g: TBuffer): TBuffer is
case J 1in
var hd: TMessage, tl: TBuffer in
nil -> return cons (m,nil)
| cons (hd,tl) -> return cons (hd,add(m,tl))
end case

end function 1

Specification in LNT (2/2)

Processes specify VMs (configurator, input and output buffer), the
communication layer (MOM), and the system architecture consisting of

VMs interacting through the MOM

Labels in transition systems generated from this specification correspond
to local interactions (configurator-buffers), remote interactions between
VMs through the MOM, and some information we need for verification

VM1

configurator

O

O
bufferOut

RECEIVE
bufferin
O O

BINDMSGll ’

STARTMSG1

BINDMSG2

STARTMSG2

VMn

configurator

O
bufferOut

RECEIVE

bufferin

e

BINDMSG1

STARTMSG1

BINDMSG

2

-

STARTMSG2

o 60
buffer VMn

buffer VM1

12

Main LNT Process (Excerpt)

process SELFCONFIG [CREATEVM: any, SEND: any, ..] is
var appli: TApplication in
appli:=appli();
CHECKCYCLE (!check _cycle _mandatory(appli));
CHECKMANDATORY (!check _mandatory connected(..));
par BINDMSG1, BINDMSG2, STARTMSG1, STARTMSG2, .. in
MOM [..] (vmbuffer(VM1,nil),vmbuffer(VM2,nil))

| ~N
par CREATEVM in Aoblicati
par (* virtual machine deployer ¥) modpeﬁ :ﬁ\a, Olﬁl?ng
CREATEVM ('VM1) || CREATEVM (IVM2) two virtual
end par machines
(VM1 and VM2)

|)

par SEND, RECEIVE in (* first machine, VM1 *)
configurator [..] (VM1,appli)
|| bufferOut [SEND,BINDMSGH1,..](nil) || bufferInl[RECEIVE,BINDMSGZ2,..](..)
end par
I ... (* second virtual machine, VM2 *) 13
end par end par end var end process

o ~wbdh-~

Outline

The Self-configuration Protocol
LNT and CADP

Specification in LNT
Verification with CADP
Concluding Remarks

14

Three Kinds of Verification (1/2)

We verify that each input application respects a few structural properties,
such as:

- No cycle of bindings through mandatory imports
- All mandatory imports are connected

We check that each VM behaviour for a given input application respects
the correct ordering of actions (pre-order)

o [2)
CREATEVM CREATECOMPO

REMOTEBIND

LOCALBIND

SEND
(bind msg)

STARTCOMPO

SEND
(start msg)

RECEIVE

o
FINISH

15

Three Kinds of Verification (2/2)

We identify and check 14 safety and liveness properties that must be
preserved by the protocol, such as:

- A STARTMSG2 message cannot appear before a STARTMSG1 message with the
same parameters

[true*.STARTMSGZ2 ?vm:String ?cx:String ?cy:String.
true*.STARTMSGl !vm !cx !cy] false

- A component cannot be started before the components it depends on

[true* . ’STARTCOMPO !.* IC1l" . true* .
"STARTCOMPO !.* IC2’] false

- All components are eventually started

((mu X . (<true> true and [not ’'STARTCOMPO !.* IC1l"] X))
and
(mu X . (< true > true and [not ’'STARTCOMPO !.* !C2"] X))

and ...

16

Tool Support

input
appli.Int \/A[efconfg.py
» Int.open

selfconflg In

script CADP tools

l output
grammars & prop. rue/false

= Experiments were conducted on more than 100 application models

LNT speC|f.

= |ssues identified:

- A bug was found in the configurator start-up part of the protocol = it was corrected in
the Java implementation (Orange Labs)

- Experiments on how communication among VMs can be implemented = using a single
buffer in the MOM may generate deadlocks

17

o ~wbdh-~

Outline

The Self-configuration Protocol
LNT and CADP

Specification in LNT
Verification with CADP
Concluding Remarks

18

Concluding Remarks

= We have presented the specification and verification of a self-
configuration protocol involving components distributed over several VMs

» The experience was successful because we have detected a major bug
which was corrected in the corresponding Java implementation

Main Perspective:

= Extending the protocol to take component failures into account

= A component failure may impact the whole application, yet we want our
protocol to keep on starting and configuring as many VMs and
components as possible

» The extended protocol will be extensively validated using analysis tools to
check some new properties, e.g., “a component connected through a

mandatory import to a failed component will never be started” .

