
Gwen Salaün
Grenoble INP, INRIA, France

joint work with

Xavier Etchevers1, Noel de Palma2, Fabienne Boyer2, Thierry Coupaye1

1Orange Labs, France
2UJF-Grenoble 1, INRIA, France

Verification of a Self-configuration Protocol
for Distributed Applications in the Cloud

1

2

Introduction

§  Cloud applications are often complex distributed applications composed
of multiple software running on separate virtual machines

§  Setting up, (re)configuring, and monitoring these applications is a burden,
and involves complex management protocols

§  In this talk, we present the verification of an innovative self-configuration
protocol which automates the configuration of distributed applications
consisting of interacting virtual machines

§  Cloud computing aims at delivering
resources and applications as a service
over a network (e.g., the Internet)

Outline

1.  The Self-configuration Protocol
2.  LNT and CADP

3.  Specification in LNT
4.  Verification with CADP
5.  Concluding Remarks

3

4

Application Model
§  An application model consists of a set of components and a set of

bindings connecting these components together

§  A component is composed of input and output ports, namely imports and
exports

§  An import can be either optional or mandatory

§  A binding connects an import of one component to an export of another
component

§  Components are distributed over virtual machines, which are in charge of
their administration (local and remote bindings)

C1 C2

import export

wire
component

5

Self-configuration Protocol
§  This protocol (developed at Orange labs) for configuring distributed

applications is decentralized and loosely-coupled

§  Each virtual machine (VM) embeds the application model and a
configurator that manages the component binding configuration and the
application start-up

§  Configurators interact together through a Message Oriented Middleware
(MOM), which relies on message buffers

6

Configurator Workflow

Outline

1.  The Self-configuration Protocol
2.  LNT and CADP

3.  Specification in LNT
4.  Verification with CADP
5.  Concluding Remarks

7

LOTOS NT

§  LOTOS NT (LNT) is a value-passing process algebra with user-
friendly syntax and operational semantics

§  LNT is an imperative-like language where you can specify data types,
functions (pattern matching and recursion), and processes

§  Excerpt of the LNT process grammar:
 B ::= stop | G(!E, ?X) where E’ | if E then B1 else B2 end if
 | x:=E | hide G in B end hide | P [G1,...,Gm] (E1,...,En)
 | select B1 [] … [] Bn end select | B1 ; B2
 | par G in B1 || … || Bn end par

§  Verification using CADP through an automated translation to LOTOS

8

Construction and Analysis of Distributed
Processes (CADP)

§  Design of asynchronous systems
–  Concurrent processes
–  Message-passing communication
–  Nondeterministic behaviours

§  Formal approach rooted in concurrency theory: process calculi,
Labeled Transition Systems, bisimulations, branching temporal logics

§  Many verification techniques: simulation, model and equivalence
checking, compositional verification, test case generation,
performance evaluation, etc.

§  Numerous real-world applications: avionics, embedded systems,
hardware design, middleware and software architectures, etc.

9

CADP
(INRIA/VASY)

Outline

1.  The Self-configuration Protocol
2.  LNT and CADP

3.  Specification in LNT
4.  Verification with CADP
5.  Concluding Remarks

10

11

Specification in LNT (1/2)
§  The specification consists of three parts: data types (300 lines), functions

(1000 lines), processes (700 lines)

§  Data types describe the application model (components, ports, bindings,
buffers, etc.)

§  Functions are necessary for:
-  extracting information from the application model
-  describing buffers and basic operations on them
-  keeping track of the started components to know when components can be started

 function add (m: TMessage, q: TBuffer): TBuffer is
 case q in
 var hd: TMessage, tl: TBuffer in
 nil -> return cons(m,nil)
 | cons(hd,tl) -> return cons(hd,add(m,tl))
 end case
 end function

12

Specification in LNT (2/2)
§  Processes specify VMs (configurator, input and output buffer), the

communication layer (MOM), and the system architecture consisting of
VMs interacting through the MOM

§  Labels in transition systems generated from this specification correspond
to local interactions (configurator-buffers), remote interactions between
VMs through the MOM, and some information we need for verification

13

Main LNT Process (Excerpt)
process SELFCONFIG [CREATEVM: any, SEND: any, ..] is
 var appli: TApplication in

 appli:=appli();
 CHECKCYCLE (!check_cycle_mandatory(appli));
 CHECKMANDATORY (!check_mandatory_connected(..));
 par BINDMSG1, BINDMSG2, STARTMSG1, STARTMSG2, .. in
 MOM [..] (vmbuffer(VM1,nil),vmbuffer(VM2,nil))
 ||
 par CREATEVM in
 par (* virtual machine deployer *)
 CREATEVM (!VM1) || CREATEVM (!VM2)
 end par
 ||
 par SEND, RECEIVE in (* first machine, VM1 *)
 configurator [..] (VM1,appli)
 || bufferOut [SEND,BINDMSG1,..](nil) || bufferIn[RECEIVE,BINDMSG2,..](..)
 end par
 || ... (* second virtual machine, VM2 *)

end par end par end var end process

Outline

1.  The Self-configuration Protocol
2.  LNT and CADP

3.  Specification in LNT
4.  Verification with CADP
5.  Concluding Remarks

14

15

Three Kinds of Verification (1/2)
§  We verify that each input application respects a few structural properties,

such as:

-  No cycle of bindings through mandatory imports
-  All mandatory imports are connected

§  We check that each VM behaviour for a given input application respects
the correct ordering of actions (pre-order)

16

Three Kinds of Verification (2/2)
§  We identify and check 14 safety and liveness properties that must be

preserved by the protocol, such as:

-  A STARTMSG2 message cannot appear before a STARTMSG1 message with the
same parameters

[true*.STARTMSG2 ?vm:String ?cx:String ?cy:String.

true*.STARTMSG1 !vm !cx !cy] false

-  A component cannot be started before the components it depends on

[true* . ’STARTCOMPO !.* !C1’ . true* .

 ’STARTCOMPO !.* !C2’] false

-  All components are eventually started

(mu X . (<true> true and [not ’STARTCOMPO !.* !C1’] X))

and

(mu X . (< true > true and [not ’STARTCOMPO !.* !C2’] X))

and ...

17

Tool Support

§  Experiments were conducted on more than 100 application models

§  Issues identified:
-  A bug was found in the configurator start-up part of the protocol ⇒ it was corrected in

the Java implementation (Orange Labs)
-  Experiments on how communication among VMs can be implemented ⇒ using a single

buffer in the MOM may generate deadlocks

selfconfig.lnt

appli.lnt
input

selfconfig.py

lnt.open

.svl

.bcg

.bcg, .mcl
grammars & prop.

CADP tools script

resulting LTS

LNT specif. diagnostics
true/false

output

Outline

1.  The Self-configuration Protocol
2.  LNT and CADP

3.  Specification in LNT
4.  Verification with CADP
5.  Concluding Remarks

18

19

Concluding Remarks
§  We have presented the specification and verification of a self-

configuration protocol involving components distributed over several VMs

§  The experience was successful because we have detected a major bug
which was corrected in the corresponding Java implementation

Main Perspective:

§  Extending the protocol to take component failures into account

§  A component failure may impact the whole application, yet we want our
protocol to keep on starting and configuring as many VMs and
components as possible

§  The extended protocol will be extensively validated using analysis tools to
check some new properties, e.g., “a component connected through a
mandatory import to a failed component will never be started”

