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Introduction 

§  Cloud applications are often complex distributed applications composed 
of multiple software running on separate virtual machines 

§  Setting up, (re)configuring, and monitoring these applications is a burden, 
and involves complex management protocols 

§  In this talk, we present the verification of an innovative self-configuration 
protocol which automates the configuration of distributed applications 
consisting of interacting virtual machines  

§  Cloud computing aims at delivering 
resources and applications as a service 
over a network (e.g., the Internet) 
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Application Model 
§  An application model consists of a set of components and a set of 

bindings connecting these components together 

§  A component is composed of input and output ports, namely imports and 
exports 

§  An import can be either optional or mandatory 

§  A binding connects an import of one component to an export of another 
component 

§  Components are distributed over virtual machines, which are in charge of 
their administration (local and remote bindings) 

C1 C2 

import export 

wire 
component 
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Self-configuration Protocol 
§  This protocol (developed at Orange labs) for configuring distributed 

applications is decentralized and loosely-coupled 

§  Each virtual machine (VM) embeds the application model and a 
configurator that manages the component binding configuration and the 
application start-up 

§  Configurators interact together through a Message Oriented Middleware 
(MOM), which relies on message buffers 
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Configurator Workflow 
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LOTOS NT 

§  LOTOS NT (LNT) is a value-passing process algebra with user-
friendly syntax and operational semantics 

§  LNT is an imperative-like language where you can specify data types, 
functions (pattern matching and recursion), and processes 

§  Excerpt of the LNT process grammar: 
 B  ::=  stop  |  G(!E, ?X) where E’      |  if E then B1 else B2 end if 
  |  x:=E  |  hide G in B end hide  |  P [G1,...,Gm] (E1,...,En)   
  |  select B1 [] … [] Bn end select     |  B1 ; B2 
  |  par G in B1 || … || Bn end par   

 
§  Verification using CADP through an automated translation to LOTOS 
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Construction and Analysis of Distributed 
Processes (CADP) 

§  Design of asynchronous systems 
–  Concurrent processes 
–  Message-passing communication 
–  Nondeterministic behaviours 

§  Formal approach rooted in concurrency theory: process calculi, 
Labeled Transition Systems, bisimulations, branching temporal logics 

§  Many verification techniques: simulation, model and equivalence 
checking, compositional verification, test case generation, 
performance evaluation, etc. 

§  Numerous real-world applications: avionics, embedded systems, 
hardware design, middleware and software architectures, etc. 
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CADP 
(INRIA/VASY) 
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Specification in LNT (1/2) 
§  The specification consists of three parts: data types (300 lines), functions 

(1000 lines), processes (700 lines) 

§  Data types describe the application model (components, ports, bindings, 
buffers, etc.) 

§  Functions are necessary for:  
-  extracting information from the application model 
-  describing buffers and basic operations on them 
-  keeping track of the started components to know when components can be started 

 function add (m: TMessage, q: TBuffer): TBuffer is  
  case q in  
  var hd: TMessage, tl: TBuffer in 
   nil -> return cons(m,nil)  
  |  cons(hd,tl) -> return cons(hd,add(m,tl)) 
  end case  
 end function 
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Specification in LNT (2/2) 
§  Processes specify VMs (configurator, input and output buffer), the 

communication layer (MOM), and the system architecture consisting of 
VMs interacting through the MOM 

§  Labels in transition systems generated from this specification correspond 
to local interactions (configurator-buffers), remote interactions between 
VMs through the MOM, and some information we need for verification 
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Main LNT Process (Excerpt) 
process SELFCONFIG [CREATEVM: any, SEND: any, ..] is 
     var appli: TApplication in 

 appli:=appli();  
 CHECKCYCLE (!check_cycle_mandatory(appli));  
 CHECKMANDATORY (!check_mandatory_connected(..));  
 par BINDMSG1, BINDMSG2, STARTMSG1, STARTMSG2, .. in   
       MOM [..] (vmbuffer(VM1,nil),vmbuffer(VM2,nil)) 
 ||  
       par CREATEVM in  
             par   (* virtual machine deployer *) 
  CREATEVM (!VM1) || CREATEVM (!VM2) 
             end par 
       || 
             par SEND, RECEIVE in   (* first machine, VM1 *) 
  configurator [..] (VM1,appli)  
  || bufferOut [SEND,BINDMSG1,..](nil) || bufferIn[RECEIVE,BINDMSG2,..](..) 
             end par 
       ||     ...  (* second virtual machine, VM2 *) 

end par end par end var end process 
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Three Kinds of Verification (1/2) 
§  We verify that each input application respects a few structural properties, 

such as: 
 

-   No cycle of bindings through mandatory imports 
-   All mandatory imports are connected 

§  We check that each VM behaviour for a given input application respects 
the correct ordering of actions (pre-order) 



16 

Three Kinds of Verification (2/2) 
§  We identify and check 14 safety and liveness properties that must be 

preserved by the protocol, such as:  
 

-  A STARTMSG2 message cannot appear before a STARTMSG1 message with the 
same parameters 

[ true*.STARTMSG2 ?vm:String ?cx:String ?cy:String.  

true*.STARTMSG1 !vm !cx !cy ] false 

 

-  A component cannot be started before the components it depends on 

[ true* . ’STARTCOMPO !.* !C1’ . true* . 

 ’STARTCOMPO !.* !C2’ ] false 

 

-  All components are eventually started 

( mu X . ( <true> true and [ not ’STARTCOMPO !.* !C1’ ] X ) )  

and  

( mu X . ( < true > true and [ not ’STARTCOMPO !.* !C2’ ] X ) )  

and ... 
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Tool Support 

§  Experiments were conducted on more than 100 application models 

§  Issues identified: 
-  A bug was found in the configurator start-up part of the protocol ⇒ it was corrected in 

the Java implementation (Orange Labs) 
-  Experiments on how communication among VMs can be implemented ⇒ using a single 

buffer in the MOM may generate deadlocks 

selfconfig.lnt 

appli.lnt 
input 

selfconfig.py 

lnt.open 

.svl 

.bcg 

.bcg, .mcl 
grammars & prop. 

CADP tools script 

resulting LTS 

LNT specif. diagnostics 
true/false 

output 
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Concluding Remarks 
§  We have presented the specification and verification of a self-

configuration protocol involving components distributed over several VMs 

§  The experience was successful because we have detected a major bug 
which was corrected in the corresponding Java implementation 

 

Main Perspective:  
 

§  Extending the protocol to take component failures into account 

§  A component failure may impact the whole application, yet we want our 
protocol to keep on starting and configuring as many VMs and 
components as possible 

§  The extended protocol will be extensively validated using analysis tools to 
check some new properties, e.g., “a component connected through a 
mandatory import to a failed component will never be started” 


