
Adaptation of Asynchronously
Communicating Software

1

Carlos Canal
University of Málaga, Spain

Gwen Salaün

Grenoble INP, Inria, France

Software Adaptation

§  Direct reuse and composition of existing services is often impossible
because their interfaces are incompatible

§  Software adaptation aims at automatically generating adaptors enabling
non-intrusive composition of black-box services

§  All the messages pass through the adaptor which acts as an orchestrator,
and makes the services involved work correctly together by compensating
for mismatches

§  Several levels of interoperability on service interface models: signature,
behaviour, semantics, quality of service

2

composition

compatible?

adaptor

Our Approach

§  Most solutions assume that peers interact synchronously (rendez-vous)

§  Asynchronous communication (FIFO buffers) is omnipresent but highly
complicates the adapter generation process (infinite systems)

§  We want to avoid imposing any kind of bounds on buffers, cyclic
behaviour, or the number of participants

§  Our solution for generating asynchronous adapters combines
-  the synchronizability property for “characterizing” the system

behaviour, and
-  synchronous techniques for generating adapters

3

Outline

1.  Synchronous Adaptation
2.  Synchronizability
3.  Asynchronous Adaptation
4.  Concluding Remarks

4

Models and Mismatch

5

Buyer

Supplier

[FACS07]

§  Name mismatch: purchase! vs buy?

§  Mismatching number of messages: request! vs type? and price?

§  Independent evolution: stop!

Adaptation Contract

6

§  Vectors define correspondences between messages

§  Adaptation contract for the running example:

 Vreq = <b:request!, s:type?>
 Vprice = <b:ε, s:price?>
 Vreply = <b:reply!, s:reply?>
 Vbuy = <b:purchase!, s:buy?>
 Vack = <b:ack?, s:ack!>

where for instance

–  Vbuy solves the name mismatch
–  Vreq and Vprice solve the mismatching number of messages

Adapter Generation

7

§  Inputs: a set of services LTSs and an adaptation contract

§  Output: an adapter LTS (generation of BPEL code possible too)

§  Approach: encoding into process algebra and reduction techniques
[TSE12]

§  Full automation using the Itaca toolset [ICSE09]

Outline

1.  Synchronous Adaptation
2.  Synchronizability
3.  Asynchronous Adaptation
4.  Concluding Remarks

8

Synchronizability

§  A set of peers is synchronizable iff the 1-bounded asynchronous system
observationally behaves as the synchronous one [POPL12,FACS13]

§  If this is the case, the system remains the same for any buffer size:
LTSs ≈br LTSa

1 ó forall k≥1 LTSa
k ≈br LTSa

k+1

§  Synchronizability only considers the ordering of send actions (observable

on the network) and ignore the ordering of receive actions (private info.)

§  Synchronizability can be verified using equivalence checking techniques

§  Synchronizability checking involves finite state spaces, yet the system
can be infinite if unbounded (buffer explosion + message consumption)

9

Well-formedness

§  A set of peers is well-formed iff every send message is eventually
received [POPL12,FACS13]

§  A synchronizable system consisting of deterministic peers is well-formed

10

b!

c?

a?
c!

a!

b?

peer 1 peer 2 peer 3

b

c

a

synchronous
composition

b!

c!

a!

asynchronous
composition

c!

b!

c!

a?
c?

a!

b?

b

c

a

b!

c!

a!

Outline

1.  Synchronous Adaptation
2.  Synchronizability
3.  Asynchronous Adaptation
4.  Concluding Remarks

11

Methodology

12

Case Study

13

§  The synchronizability check (peer and adapter LTSs) returns false

 b:request!, s:type!, s:price!, s:reply!, b:reply!, and b:stop!

where b:stop! appears in the asynchronous system but not in the
synchronous one

§  Stop! is not captured by any vector Vstop = <b:stop!, s:ε>

§  The system is synchronizable and this adapter can be used in
asynchronous environments

Tool Support

14

§  Itaca toolset for generating synchronous adapters

§  Encoding into process algebra and equivalence checking (CADP
toolbox) for synchronizability checking

Outline

1.  Synchronous Adaptation
2.  Synchronizability
3.  Asynchronous Adaptation
4.  Concluding Remarks

15

16

Concluding Remarks

§  Most existing approaches assume synchronous communication for
generating adapters

§  Our approach combines synchronous adaptation techniques and the
synchronizability property for iteratively generating asynchronous
adapters

§  Our solution is fully supported by several tools

§  Main perspective: avoiding the iterative approach, e.g., by guiding the
designer to build synchronizable systems by construction

