Adaptation of Asynchronously
Communicating Software

Carlos Canal
University of Malaga, Spain

Gwen Salaun
Grenoble INP, Inria, France

y

CONVE (‘?'E; enosi b)) A
4

Software Adaptation

Direct reuse and composition of existing services is often impossible
because their interfaces are incompatible

Software adaptation aims at automatically generating adaptors enabling
non-intrusive composition of black-box services

composition

compatible?

adaptor

All the messages pass through the adaptor which acts as an orchestrator,
and makes the services involved work correctly together by compensating
for mismatches

Several levels of interoperability on service interface models: signature,
behaviour, semantics, quality of service

Our Approach

Most solutions assume that peers interact synchronously (rendez-vous)

Asynchronous communication (FIFO buffers) is omnipresent but highly
complicates the adapter generation process (infinite systems)

We want to avoid imposing any kind of bounds on buffers, cyclic
behaviour, or the number of participants

Our solution for generating asynchronous adapters combines

- the synchronizability property for “characterizing” the system
behaviour, and

- synchronous techniques for generating adapters

W=

Outline

Synchronous Adaptation
Synchronizability
Asynchronous Adaptation
Concluding Remarks

Models and Mismatch

Buyer b:purchase!
b:request! [FACSO?]
s:price? s:type?

Supplier s:price?

s:reply!

Name mismatch: purchase! vs buy?
Mismatching number of messages: request! vs type? and price?

Independent evolution: stop!

Adaptation Contract

= \ectors define correspondences between messages

= Adaptation contract for the running example:
Vieq = <b:request!, s:type?>
Viorice = <b:€, s:price?>
Viepy = <b:reply!, s:reply?>
Viuy = <b:purchase!, s:buy?>
V, o = <b:ack?, s:ack!>

where for instance

— Vp,, solves the name mismatch
- V., and V_ ... solve the mismatching number of messages

req price

Adapter Generation

Inputs: a set of services LTSs and an adaptation contract
Output: an adapter LTS (generation of BPEL code possible too)

Approach: encoding into process algebra and reduction techniques
[TSE12]

Full automation using the Itaca toolset [ICSE09]

b:ack! s:ack?

%b:requesté s:type! C s:price!

s:buy!

b:purchase?

s:price!

b:request?

W=

Outline

Synchronous Adaptation
Synchronizability
Asynchronous Adaptation
Concluding Remarks

Synchronizability

A set of peers is synchronizable iff the 1-bounded asynchronous system
observationally behaves as the synchronous one [POPL12 FACS13]

If this is the case, the system remains the same for any buffer size:
LTS, =, LTS,! < forall k21 LTS k=, LTS **

Synchronizability only considers the ordering of send actions (observable
on the network) and ignore the ordering of receive actions (private info.)

Synchronizability can be verified using equivalence checking techniques

Synchronizability checking involves finite state spaces, yet the system
can be infinite if unbounded (buffer explosion + message consumption)

9

Well-formedness

= A set of peers is well-formed iff every send message is eventually
received [POPL12,FACS13]

= A synchronizable system consisting of deterministic peers is well-formed

synchronous asynchronous
peer 1 peer 2 peer 3 composition composition

c?
a? a
b?
b! b
c!
a?
b!

c!

al

é a al
b?

b b!
10

c?

=

Outline

Synchronous Adaptation
Synchronizability
Asynchronous Adaptation
Concluding Remarks

11

Methodology

n LTSs adaptation
contract !

contract
writing

adaptor
generation

yes synchroni

success
zable?

adaptor LTS

N]

12

Case Study

= The synchronizability check (peer and adapter LTSs) returns false
b:request!, s:type!, s:price!, s:reply!, b:reply!, and b:stop!

where b:stop! appears in the asynchronous system but not in the
synchronous one

= Stop!is not captured by any vector wmmp V,, = <b:stop!, s:e>

s:buy!

b:ack! s:ack?

%b:requesté s:typ%s:price!

* The system is synchronizable and this adapter can be used in
asynchronous environments

b:purchase?

b:stop?

s:rep%b:reply!

s:price!

b:request?

13

Tool Support

» |taca toolset for generating synchronous adapters

» Encoding into process algebra and equivalence checking (CADP
toolbox) for synchronizability checking

Example IP|+1 | |S|/|T| || LTS (|S|/|T|) | Synchro. | Time
FTP Transfer [4] 3 | 20/17 13/15 X 52s
Client /Server [10] 3 14/13 8/7 Vv 54s
Mars Explorer [6] 3 | 34/34 19/22 > 49s
Online Computer Sale [13]|| 3 26/26 11/12 Vv 53s
E-museum [11] 3 | 33/40 47/111 X 53s
Client/Supplier [8] 3 31/33 17/19 vV 49s
Restaurant service [29] 3 15/16 10/12 Vv 55s
Travel Agency [27] 3 32/38 18/21 Vv 52s
Vending Machine [16] 3 15/14 8/8 Vv 49s
Client/Server [28] 4 19/24 18/32 X 64s
SQL Server [26] 4 32/38 20/27 X 62s
Booking System [20)] 5 45/53 27/35 X 85s

=

Outline

Synchronous Adaptation
Synchronizability
Asynchronous Adaptation
Concluding Remarks

15

Concluding Remarks

Most existing approaches assume synchronous communication for
generating adapters

Our approach combines synchronous adaptation techniques and the
synchronizability property for iteratively generating asynchronous
adapters

Our solution is fully supported by several tools

Main perspective: avoiding the iterative approach, e.g., by guiding the
designer to build synchronizable systems by construction

16

