
Verification of a Management Protocol
for Cloud Applications

1

Gwen Salaün
Grenoble INP, Inria, France

joint work with

Rim Abid1,2, Francesco Bongiovanni2, Noel De Palma2

1Inria, Grenoble, France
2UJF-Grenoble 1, France

2

Introduction

§  Cloud applications are often complex distributed applications composed
of multiple software running on separate virtual machines

§  Setting up, (re)configuring, and monitoring these applications are difficult
tasks, and involve complex management protocols

§  In this talk, we present the verification of an innovative reconfiguration
protocol, which automates the management of cloud applications running
over several virtual machines

§  Cloud computing aims at delivering
resources and applications as a service
over a network (e.g., the Internet)

Outline

1.  Reconfiguration Protocol
2.  LNT and CADP
3.  Specification in LNT
4.  Verification with CADP
5.  Concluding Remarks

3

4

Application Model
§  An application model consists of a set of components distributed over

several virtual machines

§  Each component requires or provides services through imports (optional
or mandatory) and exports, respectively

§  Ports are typed and match when they share the same type

§  Bindings connect one import to one export with the same type, locally
(same VM) or remotely

5

Participants
§  The deployment manager (DM) guides the reconfiguration by

instantiating/destroying VMs

§  Each VM is equipped with a configuration agent in charge of (dis)
connecting ports and starting/stopping components

§  Communications between DM/VM and VMs are handled by a publish-
subscribe (PS) messaging system

6

VM Instantiation (1/2)
§  When a VM is instantiated, the agent is in charge of starting all the

components

§  A component without imports or optional imports only can be started
immediately

§  Otherwise, each mandatory import requires an export with the same type

§  The PS is used to resolve compatible dependencies and exchange start-
up information

§  A component can be started when all its mandatory imports are bound to
started components

7

VM Instantiation (2/2)

8

VM Destruction (1/2)
§  All components on a VM to be destroyed need to be properly stopped as

well as all components bound on them through mandatory imports

§  A component that does not provide any service can be immediately
stopped

§  Shutting down a component implies a backward propagation of “ask to
unbind” messages via the PS

§  A forward propagation of “unbind confirmed” messages lets the
components know that disconnection has been achieved

§  When a component has received such messages for all its mandatory
imports, it can stop itself

9

VM Destruction (2/2)

Outline

1.  Reconfiguration Protocol
2.  LNT and CADP
3.  Specification in LNT
4.  Verification with CADP
5.  Concluding Remarks

10

LOTOS NT

§  LOTOS NT (LNT) is a value-passing process algebra with user-
friendly syntax and operational semantics

§  LNT is an imperative-like language where you can specify data types,
functions (pattern matching and recursion), and processes

§  Excerpt of the LNT process grammar:
 B ::= stop | G(!E, ?X) where E’ | if E then B1 else B2 end if
 | x:=E | hide G in B end hide | P [G1,...,Gm] (E1,...,En)
 | select B1 [] … [] Bn end select | B1 ; B2
 | par G in B1 || … || Bn end par

§  Verification using CADP through an automated translation to LOTOS

11

Construction and Analysis of Distributed
Processes (CADP)

§  Design of asynchronous systems
–  Concurrent processes
–  Message-passing communication
–  Nondeterministic behaviours

§  Formal approach rooted in concurrency theory: process calculi,
Labeled Transition Systems, bisimulations, branching temporal logics

§  Many verification techniques: simulation, model and equivalence
checking, compositional verification, test case generation,
performance evaluation, etc.

§  Numerous real-world applications: avionics, embedded systems,
hardware design, middleware and software architectures, etc.

12

Outline

1.  Reconfiguration Protocol
2.  LNT and CADP
3.  Specification in LNT
4.  Verification with CADP
5.  Concluding Remarks

13

14

Specification in LNT (1/2)
§  The specification consists of three parts: data types (200 lines), functions

(800 lines), processes (1200 lines)

§  Data types describe the application model (VMs, components, ports) and
the communication model (messages, buffers, topics)

§  Functions apply on to data expressions for, e.g., extracting information
from the application model or adding/retrieving messages from buffers

 function add (m: TMessage, q: TBuffer): TBuffer is
 case q in
 var hd: TMessage, tl: TBuffer in
 nil -> return cons(m,nil)
 | cons(hd,tl) -> return cons(hd,add(m,tl))
 end case
 end function

15

Specification in LNT (2/2)
§  Processes specify the participants of the protocol: the deployment

manager, the PS messaging system, and one agent per VM

§  Actions correspond either to interactions between processes or specific
moments of the protocol execution (useful for verification purposes)

 par INSTANTIATEVM, DESTROYVM in
 DM [INSTANTIATEVM, DESTROYVM] (appli)

 ||
 par AGENTtoPS1, PStoAGENT1, ... in
 par
 Agent [INSTANTIATEVM, AGENTtoPS1, PStoAGENT1, DESTROYVM,
 STARTCOMPO, BINDCOMPO, STOPCOMPO, UNBINDCOMPO] (vm1)

 ||
 Agent [...] (vm2)

 end par
 ||
 PS [AGENTtoPS1, ..., PStoAGENT2] (!?ListBuffers)

 end par
 end par

Outline

1.  Reconfiguration Protocol
2.  LNT and CADP
3.  Specification in LNT
4.  Verification with CADP
5.  Concluding Remarks

16

17

Properties
§  We identified and checked 35 safety and liveness properties that must be

preserved by the protocol

§  Properties were specified in the MCL language (mu-calculus) and verified
using the Evaluator 4.0 model checker

-  A component cannot be started before the components it depends on for mandatory
imports

 [true* . “STARTCOMPO !Apache !VM1” .

 true* . “STARTCOMPO !Tomcat !VM2”] false

–  A component hosted on a VM eventually stops after that VM receives a destruction
request from the DM

 (< true* . {DESTROYVM ?vm:String} .

 true* . {STOPCOMPO ?cid:String !vm} > true)

18

Verification

§  Experiments were conducted on more than 600 hand-crafted examples
(application model + reconfiguration scenario)

§  Considering an application model with 4 VMs, 8 components, 7 imports to
be bound, and 8 reconfiguration operations

 ⇒ the corresponding LTS consists of a few million states and transitions
 ⇒ the LTS generation and the verification of the 35 prop. takes a few hours

reconfig.lnt

appli.lnt
input

reconfig.py

lnt.open

SVL scripts

LTS

MCL prop.
CADP tools

LNT specif. diagnostics
true/false

output

19

Problems Found
§  Correction of several specific issues in the protocol, e.g., adding some

acknowledgement messages after effectively binding ports

§  Replacing the component start-up/shutdown driven by the deployment
manager with a distributed start-up/shutdown delegated to VM agents

 ⇒ reduction of the messages transmitted to and from the DM

§  Detection of a bug in the VM destruction process thanks to a property
stating that “a component cannot be started and connected through an
import to another component if that component is not started”

 ⇒ corrected by stopping components in the right order

Outline

1.  Reconfiguration Protocol
2.  LNT and CADP
3.  Specification in LNT
4.  Verification with CADP
5.  Concluding Remarks

20

21

Concluding Remarks
§  We have presented the specification and verification of a reconfiguration

protocol involving components distributed over several VMs

§  The experience was successful because we detected several issues that
were corrected in the corresponding Java implementation

Perspectives:

§  Extension with finer-grained reconfiguration operations: addition and
removal of components on already deployed VMs

§  Extending the protocol to take VM failures into account: this implies
restoring a consistent state for the application and possibly repairing it

