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Introduction 

§  Cloud applications are often complex distributed applications composed 
of multiple software running on separate virtual machines 

§  Setting up, (re)configuring, and monitoring these applications are difficult 
tasks, and involve complex management protocols 

§  In this talk, we present the verification of an innovative reconfiguration 
protocol, which automates the management of cloud applications running 
over several virtual machines  

§  Cloud computing aims at delivering 
resources and applications as a service 
over a network (e.g., the Internet) 
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Application Model 
§  An application model consists of a set of components distributed over 

several virtual machines 
 

§  Each component requires or provides services through imports (optional 
or mandatory) and exports, respectively 

 

§  Ports are typed and match when they share the same type 

§  Bindings connect one import to one export with the same type, locally 
(same VM) or remotely 
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Participants 
§  The deployment manager (DM) guides the reconfiguration by 

instantiating/destroying VMs 
 

§  Each VM is equipped with a configuration agent in charge of (dis)
connecting ports and starting/stopping components 

 

§  Communications between DM/VM and VMs are handled by a publish-
subscribe (PS) messaging system 
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VM Instantiation (1/2) 
§  When a VM is instantiated, the agent is in charge of starting all the 

components 

§  A component without imports or optional imports only can be started 
immediately 

§  Otherwise, each mandatory import requires an export with the same type 

§  The PS is used to resolve compatible dependencies and exchange start-
up information 

§  A component can be started when all its mandatory imports are bound to 
started components 
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VM Instantiation (2/2) 



8 

VM Destruction (1/2) 
§  All components on a VM to be destroyed need to be properly stopped as 

well as all components bound on them through mandatory imports 

§  A component that does not provide any service can be immediately 
stopped 

§  Shutting down a component implies a backward propagation of “ask to 
unbind” messages via the PS  

§  A forward propagation of “unbind confirmed” messages lets the 
components know that disconnection has been achieved 

§  When a component has received such messages for all its mandatory 
imports, it can stop itself  
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VM Destruction (2/2) 
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LOTOS NT 

§  LOTOS NT (LNT) is a value-passing process algebra with user-
friendly syntax and operational semantics 

§  LNT is an imperative-like language where you can specify data types, 
functions (pattern matching and recursion), and processes 

§  Excerpt of the LNT process grammar: 
 B  ::=  stop  |  G(!E, ?X) where E’      |  if E then B1 else B2 end if 
  |  x:=E  |  hide G in B end hide  |  P [G1,...,Gm] (E1,...,En)   
  |  select B1 [] … [] Bn end select     |  B1 ; B2 
  |  par G in B1 || … || Bn end par   

 
§  Verification using CADP through an automated translation to LOTOS 
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Construction and Analysis of Distributed 
Processes (CADP) 

§  Design of asynchronous systems 
–  Concurrent processes 
–  Message-passing communication 
–  Nondeterministic behaviours 

§  Formal approach rooted in concurrency theory: process calculi, 
Labeled Transition Systems, bisimulations, branching temporal logics 

§  Many verification techniques: simulation, model and equivalence 
checking, compositional verification, test case generation, 
performance evaluation, etc. 

§  Numerous real-world applications: avionics, embedded systems, 
hardware design, middleware and software architectures, etc. 
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Specification in LNT (1/2) 
§  The specification consists of three parts: data types (200 lines), functions 

(800 lines), processes (1200 lines) 

§  Data types describe the application model (VMs, components, ports) and 
the communication model (messages, buffers, topics) 

§  Functions apply on to data expressions for, e.g., extracting information 
from the application model or adding/retrieving messages from buffers 

 function add (m: TMessage, q: TBuffer): TBuffer is  
  case q in  
  var hd: TMessage, tl: TBuffer in 
   nil -> return cons(m,nil)  
  |  cons(hd,tl) -> return cons(hd,add(m,tl)) 
  end case  
 end function 
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Specification in LNT (2/2) 
§  Processes specify the participants of the protocol: the deployment 

manager, the PS messaging system, and one agent per VM 

§  Actions correspond either to interactions between processes or specific 
moments of the protocol execution (useful for verification purposes) 

 

 par INSTANTIATEVM, DESTROYVM in 
       DM [INSTANTIATEVM, DESTROYVM] (appli) 

 || 
       par AGENTtoPS1, PStoAGENT1, ... in 
             par 
                  Agent [INSTANTIATEVM, AGENTtoPS1, PStoAGENT1, DESTROYVM,  
            STARTCOMPO, BINDCOMPO, STOPCOMPO, UNBINDCOMPO]  (vm1) 

             || 
                  Agent [...] (vm2)  

             end par 
       || 
             PS [AGENTtoPS1, ..., PStoAGENT2] (!?ListBuffers) 

       end par  
 end par 
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Properties 
§  We identified and checked 35 safety and liveness properties that must be 

preserved by the protocol 

§  Properties were specified in the MCL language (mu-calculus) and verified 
using the Evaluator 4.0 model checker 

 

-  A component cannot be started before the components it depends on for mandatory 
imports 

 

 [ true* . “STARTCOMPO !Apache !VM1” .  

   true* . “STARTCOMPO !Tomcat !VM2” ] false 
 

 

–  A component hosted on a VM eventually stops after that VM receives a destruction 
request from the DM 

 

 ( < true* . {DESTROYVM ?vm:String} .  

     true* . {STOPCOMPO ?cid:String !vm} > true ) 
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Verification 

§  Experiments were conducted on more than 600 hand-crafted examples 
(application model + reconfiguration scenario) 

§  Considering an application model with 4 VMs, 8 components, 7 imports to 
be bound, and 8 reconfiguration operations 

 ⇒ the corresponding LTS consists of a few million states and transitions 
 ⇒ the LTS generation and the verification of the 35 prop. takes a few hours 

reconfig.lnt 

appli.lnt 
input 

reconfig.py 

lnt.open 

SVL scripts 

LTS 

MCL prop. 
CADP tools 

LNT specif. diagnostics 
true/false 

output 
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Problems Found 
§  Correction of several specific issues in the protocol, e.g., adding some 

acknowledgement messages after effectively binding ports 

§  Replacing the component start-up/shutdown driven by the deployment 
manager with a distributed start-up/shutdown delegated to VM agents 

 ⇒ reduction of the messages transmitted to and from the DM 
 

§  Detection of a bug in the VM destruction process thanks to a property 
stating that “a component cannot be started and connected through an 
import to another component if that component is not started” 

 ⇒ corrected by stopping components in the right order 
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Concluding Remarks 
§  We have presented the specification and verification of a reconfiguration 

protocol involving components distributed over several VMs 

§  The experience was successful because we detected several issues that 
were corrected in the corresponding Java implementation 

 
 

Perspectives: 
 

§  Extension with finer-grained reconfiguration operations: addition and 
removal of components on already deployed VMs 

§  Extending the protocol to take VM failures into account: this implies 
restoring a consistent state for the application and possibly repairing it 


