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Communication is Everywhere!

Software applications and users are widely distributed (via networks)

Web applications are adopted instead of desktop applications

Complex client requests are fulfilled thanks to software composition to
better meet costs and deadline constraints

Technology evolution led to SOC, Cyber-Physical and Pervasive
Systems

=⇒ A lot of heterogeneous physical and computational devices or
components (peers) are integrated together to implement common
functionalities

=⇒ Checking the interaction of distributed peers is mandatory to ensure
correct composition, i.e. compatibility checking
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Can Peers be REUSED directly?

Peers are accessible through their public interfaces (signature and
interaction protocol)

Peers interfaces often present mismatches, e.g. missing messages,
missing parameters, or deadlocks⇒ the reused peers are said
incompatible

Peer incompatibility forbids the successful communication and the built
system cannot meet its requirements

The compatibility is crucial to ensure the correct peer reuse and
composition

But, how software compatibility can be defined and how peer interfaces
can be checked?
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Some Compatibility Definitions

Two peers are considered compatible if:

They can at least engage one communication sequence until reaching a
global final state (One-Path)

Their interaction does not deadlock (Deadlock-Freeness)

All reachable emissions can be received (Unspecified-Receptions)

They have opposite behaviors (Opposite-Behaviors)

. . .
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A Brief Look at Existing Work

Brand and Zafiropulo claimed the undecidability issue for FSMs
interacting asynchronously over unbounded buffers

De Alfaro and Henzinger introduce an optimistic and pessimistic
compatibility for open and closed systems modelled with I/O automata

Bauer el al. came up with undecidable result in the general case due to
the buffering mechanism for I/O automata

Petri Net community yielded solutions for k-bounded systems

There are restrictions on the upper buffer bound and the number of
participants or communication cycles ( Bouajjani and Emmi)

. . .

5 / 22
Compatibility Checking for Asynchronously Communicating Software

N



Contribution

The compatibility is checked for distributed systems communicating
asynchronously over unbounded FIFO buffers

There is no restriction on the number of participants and communication
cycles

A class of branching synchronizable systems (BSSs) is defined

A sufficient condition enables to check BSSs

A generic framework for verifying the compatibility of BSSs (different
notions are considered)

Implementation using process algebra-based tool-box (CADP)
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Software Model

Labelled Transition System (LTS)

Definition

A peer LTS is a tuple P = (S, s0,Σ,T ) consisting of:
S: a finite set of states

s0
∈ S: the initial state

Σ = Σ!
∪Σ?

∪ {τ}: finite alphabet partitioned into a set of send
messages, receive messages, and the internal action τ

T ⊆ S ×Σ × S: a transition relation.

The LTS is very convenient for formal description and verification of
service behaviors

This model can be easily be derived from existing platform languages,
e.g., WF, BPEL for Web services
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Graphical Presentation
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Synchronizability and Well-Formedness

(A)synchronous Communication
Synchronous Composition

Communication based on hand shaking
If one peer is able to send a message there must be a peer in a
state expecting that message
Communicating peers can evolve independently through τ
LTSs = (Ss, s0

s ,Σs,Ts)

Asynchronous Composition
Communication based on mailing box
A peer can send a message to receiving buffer whenever this
peer is in a sending state
A peer Pi can consume a message if that message is received
in its buffer Qi

Communicating peers can evolve independently through τ
LTSa = (Sa, s0

a ,Σa,Ta) where ∀Pi ,Qi is unbounded
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Synchronizability and Well-Formedness

Branching Synchronizability
Definition

A system is synchronizable if and only if its behaviors are identical for
asynchronous and synchronous communication

An
�� ��equivalence relation can be used to check the synchronizability

In peer composition, the LTSa might hold branches of τ actions =⇒
Branching equivalence ≡br is considered

Theorem

LTSs ≡br LTS1
a ⇔ LTSs ≡br LTSa
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Synchronizability and Well-Formedness

Well-Formedness

Definition

A system, LTSa, is well-formed if and only if every send message is
eventually received

Theorems

LTSa is well-formed⇔ LTS1
a is well-formed

∀LTSa composed of P1, . . . ,Pn where LTSa is synchronizable and
P1, . . . ,Pn are deterministic, LTSa is well-formed
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Asynchronous Compatibility
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Asynchronous Compatibility

Synchronous Definition

Unspecified Receptions
Each reachable emission must be received by a peer, and the
system must be deadlock-free

Illustration Example
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Asynchronous Compatibility

Compatibility Verification

Sufficient Condition

LTSa composed of P1, . . . ,Pn

LTSa is branching synchronizable

LTSa is well-formed

LTSs is compatible

Result
=⇒ LTSa is asynchronously compatible

Theorem
LTSa is branching synchronizable, well-formed, and synchronously
compatible⇒ LTSa is asynchronously compatible
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Asynchronous Compatibility

Example
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Tool Support
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Tool Support

Implementation

Automated Verification

Automatic generation of peers and buffers LTSs in LOTOS (abstract
formal language) with python script

The verification is performed with CADP tool-box
LTSs and LTS1

a are automatically computed using LOTOS parallel
composition

The synchronizability is automatically checked with the branching
equivalence between LTSs and LTS1

a

Automatic checking of compatibility using deadlock-freedom or model
checking of MCL properties ( LTL, CTL)

Experiments

=⇒ 160 communicating systems (real world and handcrafted
examples)
=⇒ 5 out of 96 real-world examples are NOT branching
synchronizable
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Conclusions and Perspectives
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Conclusions and Perspectives

Conclusions and Perspectives

Model and Semantics

Distributed peers are described with LTSs and interact asynchronously
through unbounded FIFO buffers

Verification Assumptions

There is no restriction on the number of participants and communication
cycles

Verification Result

Branching synchronizable systems can be analysed under a sufficient
condition
Asynchronous compatibility can be checked using tools and techniques
existing for synchronous models
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Conclusions and Perspectives

Forward Challenges
Short Term Perspectives

Formal (mathematical) proofs of branching synchronizability and
asynchronous compatibility

Benchmark and

Applications of branching synchronizability to realizability issues

Long Term Perspectives

Enforcement of asynchronous compatibility

Can the compatibility condition be necessary?

Is there a class of equivalences for which the compatibility can be
decidable?

Is there a larger class for which the compatibility of asynchronous
systems can be checked?
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Thank you

Software engineers want to be real engineers

Real engineers use mathematics

Formal methods are the mathematics of
software engineering

Therefore, software engineers should use
formal methods

Mike Holloway, NASA
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