Mu-Calculus Property-Dependent Reductions for Divergence-Sensitive Branching Bisimilarity

Radu Mateescu¹ and Anton Wijs² ¹Inria Grenoble – Rhône-Alpes / Convecs ²Eindhoven University of Technology

Context

Concurrent systems

- Process algebraic languages (LNT)
- -Value-passing communication
- Interleaving semantics, action-based setting (LTSs)
- Equivalence relations (e.g., bisimulations)
- Branching-time temporal logics (e.g., μ-calculus)
- Explicit-state verification
 - Enumeration of individual states and transitions
 - Forward and backward exploration
 - Diagnostic generation

• CADP toolbox:

http://cadp.inria.fr

Labeled Transition Systems

- Two-place FIFO lossy buffer
- Stream of 0/1 messages

Adequacy of Temporal Logics with Equivalence Relations

- Logic L is *adequate* with equivalence relation \approx_{R} iff for any LTSs M₁, M₂ and formula φ of L: M₁ \approx_{R} M₂ iff (M₁ $\vdash \varphi \Leftrightarrow M_2 \vdash \varphi$)
- Examples of adequacy results:

Temporal logic	Equivalence relation
modal μ-calculus (Lμ)	strong bisimulation
ACTL\X	divergence-sensitive branching bisimulation
weak Lµ	weak bisimulation
selective Lµ	$\tau^*.a$ bisimulation
BSL	safety equivalence

Using Adequacy to Improve Model Checking

- Theoretical interest:
 - Reason using either logic, or equivalence
 - Characteristic formulas for equivalences
- Practical interest:
 - Reduce the LTS modulo $\approx_{_{R}}$ before checking ϕ
 - Improve verification performance for complex formulas
 - Reduce once, then check several formulas of L
 - If \approx_{R} is a congruence for ||, use compositional LTS generation
 - Objective: improve this approach further by specializing it for a given formula

informatics mathematics

Model Checking Language

(dataless fragment)

- Action formulas:
 - $\alpha ::= \mathsf{false} \mid \tau \mid a \mid \neg \alpha \mid \alpha_1 \lor \alpha_2$
- Regular formulas:
 - $\beta ::= \alpha \mid \beta_1.\beta_2 \mid \beta_1 \mid \beta_2 \mid \beta^*$
- State formulas:

 $\varphi ::= false | _{7} \varphi | \varphi_{1} \lor \varphi_{2}$ $| < \beta > \varphi | [\beta] \varphi |$ $| < \beta > @ | [\beta] - |$ $| \Upsilon | \mu \Upsilon . \varphi | \lor \Upsilon . \varphi$

boolean op.

regular op.

boolean op. modal op. fairness op. fixed point op.

Property-Dependent Reduction

[Mateescu-Wijs-14]

- Input: LTS M = (S, A, T, s_0) and Lµ formula ϕ
- Step 1: Maximal hiding modulo φ
 - Determine h (ϕ) = set of actions that can be hidden in M without changing the interpretation of ϕ on M
 - Hide h (ϕ) in M
- Step 2: Reduction of M preserving φ
 - strong bisimulation: full L $\!\mu$
 - ds-branching bisimulation: Lµ-dsbr fragment

• Step 3: Verification of φ on reduced M

Lossy Buffer

(hide "PUT !1" and "GET !1")

Minimized modulo strong bisimulation:

Lossy Buffer (hide "PUT !1" and "GET !1")

Minimized modulo ds-branching bisimulation:

Formula ϕ_1

(nested regular modalities - response)

- [true* . "PUT !0"] < true* . "GET !0" > true
- Witness in LTS minimized modulo \approx_{dsbr} :

Formula ϕ_2 (fairness operators – cycle)

- < true* . "PUT !0" . true* . "GET !0" > @
- Witness in LTS minimized modulo \approx_{dsbr} :

Formula ϕ_3

(fixed point operators - inevitability)

• [true* . "PUT !0"]

mu Y . (< true > true and [not "GET !0"] Y)

• Counterexample in LTS minimized modulo \approx_{dsbr} :

What Actions Can I Hide for my Formula?

•
$$h(\alpha) = \begin{cases} [[\alpha]] & \text{if } \tau \vdash \alpha \\ A \setminus [[\alpha]] & \text{if } \tau \not\vdash \alpha \end{cases}$$

• $[\text{ true*. "PUT !0"} \cdot (\text{not "GET !0"})^* \cdot "PUT !0"] \text{ false} \\ A \setminus \{\text{"PUT !0"}\} \cap A \setminus \{\text{"GET !0"}\} \cap A \setminus \{\text{"PUT !0"}\} \end{cases}$

Rule of Thumb #1: For an Lµ formula φ without occurrences of τ , hide all actions but those occurring in φ .

What about Constant Action Formulas?

- Actions formulas "false" can be eliminated: < false > φ = false
 - [false] ϕ = true

Rule of Thumb #2: For an Lµ formula ϕ with only constant action formulas, hide *all* actions.

Lµ-dsbr Fragment

[Mateescu-Wijs-14]

 \bullet Replace strong modalities of L μ with:

 $< \alpha_1^* > \varphi \qquad ultra weak modality$ $< \alpha_1^* \cdot \alpha_2 > \varphi \qquad weak modality$ $< \alpha_1 > @ \qquad weak infinite looping$ where $\alpha_1 \vdash \tau$ and $\alpha_2 \not\vdash \tau$

• Lµ-dsbr is adequate with \approx_{dsbr}

Formulas ϕ_1 , ϕ_2 , ϕ_3 Revisited

- [true* . "PUT !0"] < true* . "GET !0" > true
- < true* . "PUT !0" . true* . "GET !0" > @
- = nu Y . < true* . "PUT !0" > < true* . "GET !0" > Y
- [true* . "PUT !0"]
 - mu Y . (< true > true and [not "GET !0"] Y)
- = [true* . "PUT !0"]
 - ([(not "GET !0")*] not deadlock
 and [not "GET !0"] -|)
- deadlock = [true*. not τ] false and [τ] -

Rule of Thumb #3: Any strong modality in the formula φ must be preceded by a weak modality capturing a sequence of 0 or more τ -transitions.

ACTL (Action-Based CTL)

[DeNicola-Vaandrager-92]

Lµ-dsbr and µ-ACTL\X

- μ-ACTL [Fantechi-Gnesi-Ristori-94]
 - Extension of ACTL with fixed point operators
 - Adequate with strong bisimulation

• L μ -dsbr is equally expressive to μ -ACTL\X

$$< \alpha_1^* > \varphi = E [true_{\alpha_1} U \varphi]$$

$$< \alpha_1^* \cdot \alpha_2 > \varphi = E [true_{\alpha_1} U_{\alpha_2} \varphi]$$

$$< \alpha_1 > @ = vY \cdot E [true_{false} U_{\alpha_1} Y]$$

• Lµ-dsbr adequate with \approx_{dsbr} → µ-ACTL\X adequate with \approx_{dsbr}

Lµ-dsbr and Selective Lµ

- Selective Lµ [Barbuti-et-al-96]
 - Special modalities indexed by sets of visible actions
 - For a formula ϕ , hide all actions but those in ϕ
 - Minimize the LTS modulo $\tau^*.a$
 - Selective Lµ equally expressive to Lµ
 → but reductions only when hiding is possible!
- ${\color{black}\bullet}$ Selective L ${\color{black}\mu}$ modalities translated in L ${\color{black}\mu}$ -dsbr

$$< \alpha_1 >_{\alpha_2} \phi = < (\neg(\alpha_1 \lor \alpha_2))^*. \alpha_1 > \phi$$

when $\alpha_1 \vee \alpha_2 \neq \text{true}$

L μ -dsbr and Selective L μ

Advantages of Lμ-dsbr w.r.t. selective Lμ:

- Allows one to use τ in action formulas (more flexible)
- Adequate with \approx_{dsbr}
 - Stronger than τ*.*a* bisimulation (captures deadlocks and livelocks)
 - Suitable for compositional LTS construction (\approx_{dsbr} is a congruence w.r.t. parallel composition, whereas $\tau^*.a$ not)
- Lµ-dsbr subsumes the interesting fragment of selective Lµ (formulas which make hiding possible)

Informatics / mathematics

Lµ-dsbr and Weak Lµ

- Weak Lμ [Stirling-01]
 - L $\!\mu$ fragment adequate with weak bisimulation
 - Weak modalities, no τ actions in formulas
 - Does not express inevitability properties
- ${\color{black}\bullet}$ Weak L ${\color{black}\mu}$ modalities translated in L ${\color{black}\mu}$ -dsbr

$$<< \alpha >> \phi = < \tau^* . \alpha > < \tau^* > \phi$$

 $<<>> \phi = < \tau^* > \phi$

 Weak modalities (over regular formulas) are directly available in MCL

informatics mathematics

 $\begin{array}{l} \mathsf{E}\left[\phi_{1} \ \mathsf{U}_{\alpha 1} \ \phi_{2}\right] & \mathsf{A}\left[\phi_{1} \ \mathsf{U}_{\alpha 1} \ \phi_{2}\right] \\ \mathsf{E}\left[\phi_{1 \ \alpha 1} \ \mathsf{U}_{\alpha 2} \ \phi_{2}\right] & \mathsf{A}\left[\phi_{1 \ \alpha 1} \ \mathsf{U}_{\alpha 2} \ \phi_{2}\right] \\ \mathsf{ACTL} \setminus \mathsf{X} \text{ operators} \end{array} \left\{ \begin{array}{l} <\alpha_{1}^{*} > \phi & <\alpha_{1}^{*} . \ \alpha_{2} > \phi & <\alpha_{1} > @ \\ [\alpha_{1}^{*}] \ \phi & [\alpha_{1}^{*} . \ \alpha_{2}] \ \phi & [\alpha_{1}^{*}] - [\\ \mathsf{L}\mu \text{-dsbr modalities} \end{array} \right\}$

true false not or and

Boolean operators

Experimental Results

(strong bisimulation minimization)

- Alternating Bit Protocol
- Characteristic property: maximal hiding → strong bisimulation minimization using BCG_MIN → model checking using EVALUATOR 4.0

Experimental Results

(on-the-fly τ -confluence reduction)

- Erathosthene's sieve
- Characteristic property: maximal hiding → on-the-fly τ-confluence reduction → model checking using EVALUATOR 4.0

Experimental Results

(ds-branching bisimulation reduction)

- DTD (Dynamic Task Dispatcher) [Lantreibecq-Serwe-13]
- Property P₂: maximal hiding → reduction modulo ≈_{dsbr} using BCG_MIN → model checking using EVALUATOR 4.0

Ongoing and Future Work

- Develop an MCL library containing all operators adequate with $\approx_{\rm dsbr}$
- Automate maximal hiding:
 - Option -labels of EVALUATOR 4.0 (rules of thumb 1+2)
 - \rightarrow Extend to the general case
- Automate adequacy detection:
 - Determine the weakest equivalence relation adequate with an MCL formula (e.g., rule of thumb 3)
 - Integrate within SVL
- Handle MCL formulas with data

Thank you

For more information: http://cadp.inria.fr

