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What is model checking? 

  

 “Model checking is the method by which a desired 
behavioral property of a reactive system is verified  
over a given system (the model) through exhaustive 
enumeration (explicit or implicit) of all the states 
reachable by the system and the behaviors that  
traverse through them.” 

Amir Pnueli 

Foreword to Model Checking 

[Clarke-Grumberg-Peled-00] 
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Basic model checking flow 
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Running example 
(action-based version) 

Two-cell buffer with 
unreliable transmission 
 
 
 
 
 
9 states, 20 transitions 
 

PUT 0/1 
Cell1 Cell2 

GET 0/1 

action-based setting 
(Labelled Transition System) 
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Running example 
(state-based version) 

Keep the contents of states 
and the transitions between 
them 

state-based setting 
(Kripke structure) 0 0 

_ _ 

1 0 

0 1 1 1 

0 _ 1 _ 

_ 1 

_ 0 

0/1/_     0/1/_ 



States   vs   actions 

State-based 

White box spec style 

Predicates on state 
variables 

Stuttering equivalence 

Partial order reductions 
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Action-based 

Black box spec style 

Predicates on 
actions/events 

Weak bisimulations 

Compositionality 
(congruences w.r.t. ||) 

Kripke transition systems (KTS) 
state variables and actions 



Specification of temporal properties 

Temporal logic [Pnueli-77]: 

formalism for describing evolutions of  
program states over (logical) time 

– Atomic propositions over states 

– Propositional logic operators (or, and, not, …) 

– Tense operators (neXt, Until, Previous, Since, Once, …) 

– Interpreted on state spaces 

High-level specification style: 

abstraction   and   modularity 
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Properties on states and branches 
(CTL – Computation Tree Logic) 

X ϕ, E [ϕ1 U ϕ2], A [ϕ1 U ϕ2] 
EF ϕ = E [true U ϕ] 
(potentiality) 

AG ϕ =  EF  ϕ 
(invariance) 

AF ϕ = A [true U ϕ] 
(inevitability) 

EG ϕ =  AF  ϕ 
(trajectory) 

AG (s0* => EF s*0)  ok 

AG (s0* => AF s*0)  ko 
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0 0 
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_ 0 



Properties on states and paths 
(LTL – Linear Temporal Logic) 

X ψ, ψ1 U ψ2 

 F ψ = true U ψ 
(eventually) 

 G ψ =  F ψ 
(globally) 

 ψ1 R ψ2 =  (ψ1 U ψ2) 
(release) 

GF (s0_ V s1_ V  
       s_0 V s_1)      ok 

FG s_ _       ko 

FMF - Model Checking - LAAS, 16/10/2014  9 

0 0 

_ _ 

1 0 

0 1 1 1 

0 _ 1 _ 

_ 1 

_ 0 



LTL   vs   CTL 
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A (FG p) 

AF AG p p 

AG p 

p 

A (GF p) 

AG EF p p 

GF p 

the two logics are uncomparable 



Linear-time   vs   branching-time 
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branching-time 

LTL 

CTL 

CTL* 

CTL 

TL 

pCTL 



Properties on actions 
(ACTL – Action-based CTL) 

AGtrue [PUT0]  
E [truetrue UGET0 true] 

 ok 

AGtrue [PUT0]  
A [truetrue UGET0 true] 

 ko 
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Properties on actions 
(L  – modal -calculus) 

“Assembly language” for temporal operators 

– Modalities and fixed point operators 

– Hierarchy of fragments Lk with alternation depth k 

– Captures virtually all existing TL operators 

 E [ϕ1 U ϕ2] = X . ϕ2 V (ϕ1 Λ < true > X) 

   (CTL) 
 

 AFG ϕ     = X . Y . (ϕ Λ X) V < true > Y 

   (LTL) 

FMF - Model Checking - LAAS, 16/10/2014  13 

L1 

L2 



State-based   vs   action-based 
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branching-time ACTL 

ACTL* F-LTL 

L 

HML 

HMLR 

-ACTL 

LTL 

CTL 

CTL* 

CTL 

TL 

pCTL 



Extensions with regular features 

Regular expressions / automata 

– Natural description of regular paths 

 Safety: FIFO buffer policy 
 

[true*.PUT0.(GET)*.PUT1.(PUT)*.GET1.(PUT)*.GET0]false 

  (PDL) 

X . ([PUT0] Y . (([PUT1] Z . (([GET1] W . ([GET0] false Λ 
[PUT] W) Λ [PUT] Z) Λ [GET0] Y) Λ [true] X) 

  (L1) 
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Extensions with data 

Handling of data values present in states/actions 

 Safety: capacity of (reliable) 2-buffer 

 [ true*. (PUT . (GET)*) {3} ] false 

 

Parametric formulas (stable w.r.t. model) 

 Response: fair reachability of message delivery 

 [ true*. {PUT ?m:nat} ] < true*. {GET !m} > true 
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variable propagation 

regexp with counter 



Ergonomic extensions 
(regular constructs and data handling) 
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branching-time ACTL 

ACTL* F-LTL 

L 

HML 

HMLR 

-ACTL 

LTL 
CTL* 

CTL CTL 

TL 

pCTL 

PDL 

PDL- 

MCL 

regular features 

PSL 

ETL RICO 

EAGLE 

MITL 

ECTL* 

FOL 

XTL 

RegCTL 

CTRL 

Sugar 

RCTL 

BRTL 



Expressiveness and complexity 
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LTL 
2|ϕ|·|M| 

PDL 
|ϕ|·|M| 

CTL* 
2|ϕ|·|M| 

L1 

|ϕ|·|M| 

L2 

|ϕ|2·|M|2 

PDL- 
|ϕ|·|M| 

CTL 
|ϕ|·|M| 



Quantitative properties 
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Time 
(TA, TPN) 

Rates 
(CTMC, MDP) 

Probabilities 
(DTMC) 
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Temporal logic zoo 
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branching-time ACTL 

ACTL* F-LTL 

L 

HML 

HMLR 

-ACTL 

LTL 
CTL* 

CTL CTL 

TL 

pCTL 

PDL 

PDL- 

MCL 

regular features 

PSL 

ETL RICO 

EAGLE 

MITL 

ECTL* 

FOL 

XTL 

RegCTL 

CTRL 

Sugar 

RCTL 

BRTL 

timed TCTL 

PCTL CSL 



How to choose the right TL? 

Nature of the system and its properties: 
     linear / branching      state / action 
      functional / quantitative      discrete / continuous 

Expressiveness vs model checking complexity 

– Tradeoff is often made in the available tools 

User-friendliness 

– Built-in ergonomic extensions (regexps, data) 

– Tools often provide libraries of derived operators 

– Use of property pattern libraries [Dwyer-et-al-99] 
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State space explosion 
Exponential growth of the state space with the number of 
parallel processes 
 

 
 
 
 
 
 
 

 
Model checking holy grail: 

(endless?) fight against state space explosion 



On-the-fly model checking 
 (linear-time, state-based – LTL/SPIN) 
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Büchi 
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see the BA zoo at 
www.spot.lip6.fr  

http://www.spot.lip6.fr/


On-the-fly model checking 
 (branching-time, action-based – MCL/CADP/Evaluator) 
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Symbolic model checking 
(branching-time, state-based logics – CTL/nuSMV) 
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Other ways to fight state explosion 

Bounded model checking 

– Symbolic partial exploration, use of SAT/SMT solvers 

Parallel and distributed model checking 

– Explicit / symbolic, linear / branching 

Compositional verification 

– Assume-guarantee / partial model checking 

Runtime verification 

– TL formulas  monitors  check execution traces 

Statistical model checking 

FMF - Model Checking - LAAS, 16/10/2014  27 



Model checkers landscape 
(partial view) 

FMF - Model Checking - LAAS, 16/10/2014  28 

LTL SPIN (explicit/parallel) 
SPOT (explicit/symbolic) 
DIVINE (explicit/distributed) 
LTSmin (explicit/distributed) 

CTLF nuSMV (symbolic) 

TLA TLA+ (symbolic) 

MCL CADP (explicit/distributed) 

Timed CTL UPPAAL (symbolic) 

PCTL 

CSL 

PRISM (explicit/symbolic) 
MRMC (explicit/symbolic) 
MODEST (explicit/symbolic) 

Timed LTL TINA (symbolic) 

-ACTL JACK (explicit/symbolic) 

F-LTL LTSA (explicit) 



Model checking in the design process 

Choose the right modeling language and TL 

Model the essential aspects of the system 

Start with on-the-fly (parallel) verification: 

– Fast detection of errors 

– Debug based on counterexamples 

When no more errors found / no memory left: 

– Use symbolic / compositional / distributed verification 

– Use abstraction whenever possible 

FMF - Model Checking - LAAS, 16/10/2014  29 



What to do next? 

Regular increase of model checking capabilities 

– Bounded model checking, SAT/SMT techniques 

Several stable tools (and many others!) 

– Industrial success stories for each method / tool 

Model checking interoperates with other techniques 
(static analysis, theorem proving, …)  

Ideally, one should be able to apply smoothly several 
verification techniques on the same system description 

  need for languages / models / tools interoperability 
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Some references 

[Schnoebelen-et-al-99] Vérification de logiciels 

 

[Clarke-Grumberg-Peled-00] Model Checking 

 

[Baier-Katoen-08] Principles of Model Checking 

 

 + many articles on the various model checkers 
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Thank you 
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