
Introduction to Model Checking

Radu Mateescu

Inria – Univ. Grenoble Alpes – LIG

What is model checking?

 “Model checking is the method by which a desired
behavioral property of a reactive system is verified
over a given system (the model) through exhaustive
enumeration (explicit or implicit) of all the states
reachable by the system and the behaviors that
traverse through them.”

Amir Pnueli

Foreword to Model Checking

[Clarke-Grumberg-Peled-00]

FMF - Model Checking - LAAS, 16/10/2014 2

Basic model checking flow

FMF - Model Checking - LAAS, 16/10/2014 3

model checker

property

verdict & diagnostic

translation

encoding and

resolution of the

verification problem

system

description

compilation

model

(state space)

intermediate

form

FMF - Model Checking - LAAS, 16/10/2014 4

Running example
(action-based version)

Two-cell buffer with
unreliable transmission

9 states, 20 transitions

PUT 0/1
Cell1 Cell2

GET 0/1

action-based setting
(Labelled Transition System)

FMF - Model Checking - LAAS, 16/10/2014 5

Running example
(state-based version)

Keep the contents of states
and the transitions between
them

state-based setting
(Kripke structure) 0 0

_ _

1 0

0 1 1 1

0 _ 1 _

_ 1

_ 0

0/1/_ 0/1/_

States vs actions

State-based

White box spec style

Predicates on state
variables

Stuttering equivalence

Partial order reductions

FMF - Model Checking - LAAS, 16/10/2014 6

Action-based

Black box spec style

Predicates on
actions/events

Weak bisimulations

Compositionality
(congruences w.r.t. ||)

Kripke transition systems (KTS)
state variables and actions

Specification of temporal properties

Temporal logic [Pnueli-77]:

formalism for describing evolutions of
program states over (logical) time

– Atomic propositions over states

– Propositional logic operators (or, and, not, …)

– Tense operators (neXt, Until, Previous, Since, Once, …)

– Interpreted on state spaces

High-level specification style:

abstraction and modularity

FMF - Model Checking - LAAS, 16/10/2014 7

Properties on states and branches
(CTL – Computation Tree Logic)

X ϕ, E [ϕ1 U ϕ2], A [ϕ1 U ϕ2]
EF ϕ = E [true U ϕ]
(potentiality)

AG ϕ =  EF  ϕ
(invariance)

AF ϕ = A [true U ϕ]
(inevitability)

EG ϕ =  AF  ϕ
(trajectory)

AG (s0* => EF s*0) ok

AG (s0* => AF s*0) ko

FMF - Model Checking - LAAS, 16/10/2014 8

0 0

_ _

1 0

0 1 1 1

0 _ 1 _

_ 1

_ 0

Properties on states and paths
(LTL – Linear Temporal Logic)

X ψ, ψ1 U ψ2

 F ψ = true U ψ
(eventually)

 G ψ =  F ψ
(globally)

 ψ1 R ψ2 =  (ψ1 U ψ2)
(release)

GF (s0_ V s1_ V
 s_0 V s_1) ok

FG s_ _ ko

FMF - Model Checking - LAAS, 16/10/2014 9

0 0

_ _

1 0

0 1 1 1

0 _ 1 _

_ 1

_ 0

LTL vs CTL

FMF - Model Checking - LAAS, 16/10/2014 10

A (FG p)

AF AG p p

AG p

p

A (GF p)

AG EF p p

GF p

the two logics are uncomparable

Linear-time vs branching-time

FMF - Model Checking - LAAS, 16/10/2014 11

branching-time

LTL

CTL

CTL*

CTL

TL

pCTL

Properties on actions
(ACTL – Action-based CTL)

AGtrue [PUT0]
E [truetrue UGET0 true]

 ok

AGtrue [PUT0]
A [truetrue UGET0 true]

 ko

FMF - Model Checking - LAAS, 16/10/2014 12

Properties on actions
(L – modal -calculus)

“Assembly language” for temporal operators

– Modalities and fixed point operators

– Hierarchy of fragments Lk with alternation depth k

– Captures virtually all existing TL operators

 E [ϕ1 U ϕ2] = X . ϕ2 V (ϕ1 Λ < true > X)

 (CTL)

 AFG ϕ = X . Y . (ϕ Λ X) V < true > Y

 (LTL)

FMF - Model Checking - LAAS, 16/10/2014 13

L1

L2

State-based vs action-based

FMF - Model Checking - LAAS, 16/10/2014 14

branching-time ACTL

ACTL* F-LTL

L

HML

HMLR

-ACTL

LTL

CTL

CTL*

CTL

TL

pCTL

Extensions with regular features

Regular expressions / automata

– Natural description of regular paths

 Safety: FIFO buffer policy

[true*.PUT0.(GET)*.PUT1.(PUT)*.GET1.(PUT)*.GET0]false

 (PDL)

X . ([PUT0] Y . (([PUT1] Z . (([GET1] W . ([GET0] false Λ
[PUT] W) Λ [PUT] Z) Λ [GET0] Y) Λ [true] X)

 (L1)

FMF - Model Checking - LAAS, 16/10/2014 15

Extensions with data

Handling of data values present in states/actions

 Safety: capacity of (reliable) 2-buffer

 [true*. (PUT . (GET)*) {3}] false

Parametric formulas (stable w.r.t. model)

 Response: fair reachability of message delivery

 [true*. {PUT ?m:nat}] < true*. {GET !m} > true

FMF - Model Checking - LAAS, 16/10/2014 16

variable propagation

regexp with counter

Ergonomic extensions
(regular constructs and data handling)

FMF - Model Checking - LAAS, 16/10/2014 17

branching-time ACTL

ACTL* F-LTL

L

HML

HMLR

-ACTL

LTL
CTL*

CTL CTL

TL

pCTL

PDL

PDL-

MCL

regular features

PSL

ETL RICO

EAGLE

MITL

ECTL*

FOL

XTL

RegCTL

CTRL

Sugar

RCTL

BRTL

Expressiveness and complexity

FMF - Model Checking - LAAS, 16/10/2014 18

LTL
2|ϕ|·|M|

PDL
|ϕ|·|M|

CTL*
2|ϕ|·|M|

L1

|ϕ|·|M|

L2

|ϕ|2·|M|2

PDL-
|ϕ|·|M|

CTL
|ϕ|·|M|

Quantitative properties

FMF - Model Checking - LAAS, 16/10/2014 19

Time
(TA, TPN)

Rates
(CTMC, MDP)

Probabilities
(DTMC)

FMF - Model Checking - LAAS, 16/10/2014 20

E<> s_1 && (c == 1) (c
o

u
rt

e
s
y
 o

f
W

e
n

d
e
li

n
 S

e
rw

e
)

Temporal logic zoo

FMF - Model Checking - LAAS, 16/10/2014 21

branching-time ACTL

ACTL* F-LTL

L

HML

HMLR

-ACTL

LTL
CTL*

CTL CTL

TL

pCTL

PDL

PDL-

MCL

regular features

PSL

ETL RICO

EAGLE

MITL

ECTL*

FOL

XTL

RegCTL

CTRL

Sugar

RCTL

BRTL

timed TCTL

PCTL CSL

How to choose the right TL?

Nature of the system and its properties:
 linear / branching state / action
 functional / quantitative discrete / continuous

Expressiveness vs model checking complexity

– Tradeoff is often made in the available tools

User-friendliness

– Built-in ergonomic extensions (regexps, data)

– Tools often provide libraries of derived operators

– Use of property pattern libraries [Dwyer-et-al-99]

FMF - Model Checking - LAAS, 16/10/2014 22

FMF - Model Checking - LAAS, 16/10/2014 23

State space explosion
Exponential growth of the state space with the number of
parallel processes

Model checking holy grail:

(endless?) fight against state space explosion

On-the-fly model checking
 (linear-time, state-based – LTL/SPIN)

FMF - Model Checking - LAAS, 16/10/2014 24

Büchi

automaton

Aφ

product BA

L (KS × Aφ) =

L (KS) ∩ L (Aφ)

LTL

formula (φ)

verdict & counterexample (lasso)

negation and

translation

synchronous product

emptiness check

Promela

program

compilation

implicit

KS

partial order

reduction

see the BA zoo at
www.spot.lip6.fr

http://www.spot.lip6.fr/

On-the-fly model checking
 (branching-time, action-based – MCL/CADP/Evaluator)

FMF - Model Checking - LAAS, 16/10/2014 25

parameterized

HMLR

parameterized

BES

MCL

formula

verdict & diagnostic

translation

optimisation

encoding

instantiation & resolution

LNT

specification

On-the-fly

activities

compilation

implicit

LTS

Open/Caesar environment

Caesar_Solve

Symbolic model checking
(branching-time, state-based logics – CTL/nuSMV)

FMF - Model Checking - LAAS, 16/10/2014 26

L encoding

(predicate

transformer)

CTL

formula

verdict & diagnostic

translation

symbolic fixed point iteration

formal

description

compilation

symbolic

KS

(BDD) dynamic

variable

reordering

fairness

constraint

handling

Other ways to fight state explosion

Bounded model checking

– Symbolic partial exploration, use of SAT/SMT solvers

Parallel and distributed model checking

– Explicit / symbolic, linear / branching

Compositional verification

– Assume-guarantee / partial model checking

Runtime verification

– TL formulas  monitors  check execution traces

Statistical model checking

FMF - Model Checking - LAAS, 16/10/2014 27

Model checkers landscape
(partial view)

FMF - Model Checking - LAAS, 16/10/2014 28

LTL SPIN (explicit/parallel)
SPOT (explicit/symbolic)
DIVINE (explicit/distributed)
LTSmin (explicit/distributed)

CTLF nuSMV (symbolic)

TLA TLA+ (symbolic)

MCL CADP (explicit/distributed)

Timed CTL UPPAAL (symbolic)

PCTL

CSL

PRISM (explicit/symbolic)
MRMC (explicit/symbolic)
MODEST (explicit/symbolic)

Timed LTL TINA (symbolic)

-ACTL JACK (explicit/symbolic)

F-LTL LTSA (explicit)

Model checking in the design process

Choose the right modeling language and TL

Model the essential aspects of the system

Start with on-the-fly (parallel) verification:

– Fast detection of errors

– Debug based on counterexamples

When no more errors found / no memory left:

– Use symbolic / compositional / distributed verification

– Use abstraction whenever possible

FMF - Model Checking - LAAS, 16/10/2014 29

What to do next?

Regular increase of model checking capabilities

– Bounded model checking, SAT/SMT techniques

Several stable tools (and many others!)

– Industrial success stories for each method / tool

Model checking interoperates with other techniques
(static analysis, theorem proving, …)

Ideally, one should be able to apply smoothly several
verification techniques on the same system description

  need for languages / models / tools interoperability

FMF - Model Checking - LAAS, 16/10/2014 30

Some references

[Schnoebelen-et-al-99] Vérification de logiciels

[Clarke-Grumberg-Peled-00] Model Checking

[Baier-Katoen-08] Principles of Model Checking

 + many articles on the various model checkers

FMF - Model Checking - LAAS, 16/10/2014 31

Thank you

FMF - Model Checking - LAAS, 16/10/2014 32

