
CADP Tutorial

Hubert Garavel, Frédéric Lang,
Radu Mateescu, Gwen Salaün,

Wendelin Serwe

Inria Grenoble – Rhône-Alpes

2 CADP Tutorial - FM 2012, Paris

I. INTRODUCTION

3 CADP Tutorial - FM 2012, Paris

CADP
(Construction and Analysis of Distributed Processes)

A modular toolbox for asynchronous systems

At the crossroads between:

– concurrency theory

– formal methods

– computer-aided verification

– compiler construction

A long-run effort:

– development of CADP started in the mid 80s

– initially: only 2 tools (CÆSAR and ALDEBARAN)

– last stable version: CADP 2006

– today: nearly 50 tools in CADP 2010 (close to stable)

4 CADP Tutorial - FM 2012, Paris

CADP: main features

Specification languages
– Formal semantics
– Based on process calculi
– User-friendly syntax

Verification paradigms
– Model checking

(modal μ-calculus)
– Equivalence checking

(bisimulations)
– Visual checking

(graph drawing)

Verification techniques
– Reachability analysis
– On-the-fly verification
– Compositional verification
– Distributed verification
– Static analysis

Other features
– Step-by-step simulation
– Rapid prototyping
– Test-case generation
– Performance evaluation

5 CADP Tutorial - FM 2012, Paris

CADP w.r.t. other model checkers

Parallel programs (rather than sequential programs)

Message passing (rather than shared memory)

Languages with a formal semantics (process calculi)

Dynamic data structures (records, lists, trees…)

Explicit-state (rather than symbolic)

Action-based (rather than state-based)

Branching-time logic (rather than linear-time logic)

6 CADP Tutorial - FM 2012, Paris

Application domains

Not restricted to a particular application domain

Case studies cover the following domains:
 avionics, bioinformatics, business processes, cognitive systems, communi-

cation protocols, component-based systems, constraint programming, control
systems, coordination architectures, critical infrastructures, cryptography,
database protocols, distributed algorithms, distributed systems, e-commerce,
e-democracy, embedded software, grid services, hardware design,
hardware/software co-design, healthcare, human-computer interaction,
industrial manufacturing systems, middleware, mobile agents, model-driven
engineering, networks, object-oriented languages, performance evaluation,
planning, radiotherapy equipments, real-time systems, security, sensor
networks, service-oriented computing, software adaptation, software
architectures, stochastic systems, systems on chip, telephony, transport
safety, Web services

list of case studies: http://cadp.inria.fr/case-studies

http://cadp.inria.fr/case-studies
http://cadp.inria.fr/case-studies
http://cadp.inria.fr/case-studies

7 CADP Tutorial - FM 2012, Paris

Plan

I. Introduction

II. Architecture and verification technology

III. Modeling languages (LNT tutorial)

IV. From languages to models

V. Functional verification

VI. Performance evaluation

VII. Script Verification Language (SVL tutorial)

VIII. Conclusion

8 CADP Tutorial - FM 2012, Paris

RUNNING EXAMPLE: MCS QUEUE LOCK

9 CADP Tutorial - FM 2012, Paris

MCS queue lock

mutual exclusion protocol for shared memory
multiprocessor architectures with coherent caches

guarantees FIFO ordering, uses “local spinning”

original pseudo-code [Mellor-Crummey-Scott-91]

proc release_lock (L : ^lock, I : ^qnode)
 if I->next = nil // no known successor
 if compare_and_swap (L, I, nil)
 // true if and only if swapped
 return
 repeat while I->next = nil // spin
 I->next->locked := false

type qnode = record
 next : ^qnode
 locked : Boolean
type lock = ^qnode

proc acquire_lock (L : ^lock, I : ^qnode)
 I->next := nil
 predecessor : ^qnode := fetch_and_store (L, I)
 if predecessor != nil
 I->locked := true
 predecessor->next := I
 repeat while I->locked // spin

shared variable
(atomic operations)

locally accessible variable in
shared memory

10 CADP Tutorial - FM 2012, Paris

II. ARCHITECTURE AND
 VERIFICATION TECHNOLOGY

11 CADP Tutorial - FM 2012, Paris

II.1 LTS (LABELED TRANSITION SYSTEM)

12 CADP Tutorial - FM 2012, Paris

Labeled Transition Systems
State-transition graph
no information attached to states (except the initial state)
information ("labels" or "actions") attached to transitions

13 CADP Tutorial - FM 2012, Paris

Two kinds of LTS

Explicit LTS (enumerative, global)

– comprehensive sets of states, transitions, labels

– BCG: a file format for storing large LTSs

– a set of tools for handling BCG files

– CADP 2010: BCG limits extended from 229 to 244

Implicit LTS (on-the-fly, local)

– defined by initial state and transition function

– Open/Cæsar: a language-independent API

– many languages connected to Open/Cæsar

– many tools developed on top of Open/Cæsar

14 CADP Tutorial - FM 2012, Paris

II.2 BES (BOOLEAN EQUATION SYSTEM)

15 CADP Tutorial - FM 2012, Paris

Boolean Equation Systems
least () and greatest () fixed point equations

DAG (directed acyclic graph) of equation blocks
(no cycles – alternation-free)

x1 = x2  x3

x2 = x3  x4

x3 = x2  x7
M1

x4 = x5  x6

x5 = x8  x9

x6 = F M2

x7 = x8  x9

x8 = T

x9 = F
M3

16 CADP Tutorial - FM 2012, Paris

Support for BES

BES can be given:
– explicitly (stored in a file)
– or implicitly (generated on the fly)

CÆSAR_SOLVE: a solver for implicit BES
– works on the fly: explores while solving
– translates dynamically BES into Boolean graphs
– implements 9 resolution algorithms A0-A8

(general vs specialized)
– generates diagnostics (witnesses or counterexamples)
– fully documented API

BES_SOLVE: a solver for explicit BES

17 CADP Tutorial - FM 2012, Paris

III. MODELING LANGUAGES
 (LNT TUTORIAL)

18 CADP Tutorial - FM 2012, Paris

Modeling languages

formal languages for modeling and specification

CADP 2006: LOTOS only

CADP 2010: numerous languages

– wide spectrum from abstract calculi to automata

– translations to benefit from existing optimized tools

here: focus on LNT

19 CADP Tutorial - FM 2012, Paris

Languages supported by CADP

SystemC
TLM

AADL

LOTOS

Fiacre LOTOS NT FSP BIP 1

SAM EB3 WSDL-BPEL

EXP

CHP

π-calculus SDL

Open/Cæsar

20 CADP Tutorial - FM 2012, Paris

Support for LOTOS
LOTOS (ISO standard 8807):
– Types/functions: algebraic data types
– Processes: process algebra based on CCS and CSP

Tools: CÆSAR, CÆSAR.ADT, CÆSAR.OPEN, etc.
Features:
– Optimal implementation of natural numbers
– Bounded hash tables to canonically store structured types

(tuples, unions, lists, trees, strings, sets, etc.)
– Numerous optimizations of the intermediate Petri net model

extended with data
– Dynamically resizable state tables
– Code specialization according to the amount of available RAM
– Rapid prototyping and code generation

21 CADP Tutorial - FM 2012, Paris

Support for FSP

FSP (Finite State Processes) [Magee-Kramer]

– A simple, concise process calculus

– Supported by the LTSA tool

Tools: FSP2LOTOS and FSP.OPEN

– Translation from FSP to LOTOS + EXP + SVL

– On-the-fly state space generation for FSP

– Benefits with respect to LTSA:

• Non-guarded process recursion is handled

• 64-bit support for larger state spaces

• Easy interfacing with all other CADP tools

22 CADP Tutorial - FM 2012, Paris

Motivation behind LNT

Advantages of process algebras:
– Appropriate to model asynchronous systems formally
– Equipped with formal verification tools (took years)

But unpopular in industry due to
– Steep learning curve
– Lack of trained designers/engineers

Need for new formal description techniques
– more appropriate for industry (e.g., imperative style)
– enable reuse of existing tools at minimal cost

 LNT:
– subset of E-LOTOS proposed by VASY (since 1995)
– uniform language:

e.g., functions are a particular case of processes

23 CADP Tutorial - FM 2012, Paris

Short history of LOTOS NT & LNT
1995-1998: participation to the standardization of E-LOTOS
definition of LOTOS NT by Sighireanu and Garavel

2000: release of TRAIAN

– data part of LOTOS NT into C

– since then, compiler development of VASY based on TRAIAN:
SVL, Exp.Open 2.0, Evaluator 3.0, NTIF, chp2lotos, lnt2lotos, ...

2004-2007: FormalFamePlus Contract (VASY – Bull)

– use of LOTOS NT to model critical parts of Bull's high-end servers

– funding for the development of a LOTOS NT to LOTOS translator

2006: release of lnt2lotos (data part of LOTOS NT)

2008: release of lnt2lotos (full LOTOS NT)

2010: integration into CADP (release of lnt.open)

2011: renaming of LOTOS NT to LNT

24 CADP Tutorial - FM 2012, Paris

LNT tutorial: Plan

LNT: Language overview
– Modules

– Types

– Functions

– Processes

Running example: MCS queue lock

 More information in the reference manual:
http://vasy.inria.fr/Publications/Champelovier-Clerc-Garavel-et-al-10.pdf
(regularly updated as $CADP/doc/pdf/Champelovier-Clerc-Garavel-et-al-10.pdf)

25 CADP Tutorial - FM 2012, Paris

III.1 LNT MODULES

26 CADP Tutorial - FM 2012, Paris

LNT modules

Compilation unit

One module = one file (of the same name)

Modules can import other modules:
currently: no difference between interface and
implementation

Principal module containing the root process
(by default, called “MAIN”)

Case insensitive module names, but
– all modules in the same directory

– no two files differing only by case

27 CADP Tutorial - FM 2012, Paris

Sample LNT modules

module PLAYER is

 ... file “PLAYER.lnt”

end module

module Team (PLAYER) is

 ... file “TEAM.lnt”

end module or (one of):
• “Team.lnt”
• “team.lnt”
• “TeAm.lnt”
• …

list of imported
modules

28 CADP Tutorial - FM 2012, Paris

Module Imports: Naming Conventions

Problem: LNT case insensitive, but not the OS
(except Windows®)

Chosen approach:
– all identifiers are converted into upper case

– for all but the principal module:
all generated filenames are in uppercase

– for principal module:
keep case of case as input file

– search of imported modules (LNT source):
• first with the case as in the import line

• then converted into upper case

29 CADP Tutorial - FM 2012, Paris

III.2 LNT TYPES

30 CADP Tutorial - FM 2012, Paris

LNT types
Inductive types
– set of constructors with named and typed parameters

– special cases: enumerations, records, unions, trees, etc.

– shorthand notations for arrays, (sorted) lists, and sets

– subtypes: range types and predicate types

– automatic definition of standard functions:
"==", "<=", "<", ">=", ">" , field selectors and updaters

– pragmas to control the generated names in C and LOTOS

Notations for constants (C syntax):
– natural numbers: 123, 0xAD, 0o746, 0b1011

– integer numbers: -421, -0xFD, -0o76, -0b110

– floating point numbers: 0.5, 2E-3, 10.

– characters: 'a', '0', '\n' , '\\', '\‘'

– character strings: “hello world”, “hi!\n”

31 CADP Tutorial - FM 2012, Paris

Sample LNT types

Enumerated type
type Weekday is (* LOTOS-style comment *)
 Mon, Tue, Wed, Thu, Fri, Sat, Sun
end type

Record type
type Date is -- ADA-style comment (to the end of the line)
 date (day: Nat, weekday: Weekday, month: Nat, year: Nat)
end type

Inductive Type
type Nat_Tree is
 leaf (value: Nat),
 node (left: Nat_Tree, right: Nat_Tree)
end type

32 CADP Tutorial - FM 2012, Paris

Sample LNT types
Control of generated LOTOS & C names
type BYTE is
 !representedby “LOTOS_BYTE"
 !implementedby “C_BYTE"
 !printedby "PRINT_BYTE"
 BYTE (B0, B1, B2, B3, B4, B5, B6, B7)
end type

Implementation by external C types
type INT_32 is -- record type
 !external
 !implementedby "int"
end type

33 CADP Tutorial - FM 2012, Paris

Sample LNT types
Shorthand notation
type Nat_List is type Nat_List is
 list of Nat nil,
end type cons (head: Nat, tail: Nat_List)
 end type

Automatic definition of standard functions
type Num is
 one, two, three
 with "==", "<=", "<", ">=", ">“
end type
type Date is
 date (d: Nat, wd: Weekday, month: Nat, year: Nat)‏
 with "get", "set" (* for selectors X.D, ... and updaters X.{D => E} *)
end type

instead of

34 CADP Tutorial - FM 2012, Paris

Sample LNT types
One-dimensional array
type Vector is -- four-dimensional vector
 array [0 .. 3] of Int
end type

Two-dimensional array
type Matrix is -- four-dimensional square-matrix
 array [0 .. 3] of Vector
end type

Array of records
type Date_Array is
 array [0 .. 1] of DATE
end type

35 CADP Tutorial - FM 2012, Paris

Sample LNT types
Range types (intervals)
type Index is
 range 0 .. 5 of Nat
 with “==“, “!=“
end type

Predicate types
type EVEN is
 n: NAT where n mod 2 == 0
end type
type PID is
 i: Index where i != 0
end type

further automatically
definable functions:
first, last, card

36 CADP Tutorial - FM 2012, Paris

MCS queue lock: data types

type Qnode is
 Qnode (next: Index, locked: Bool)
 with "get", "set"
end type

type Memory is
 array [1 .. 5] of Qnode
end type

type Index is
 range 0 .. 5 of Nat
 with "==", "!="
end type

type Pid is
 pid: Index where pid != 0
 with "==", "!="
end type

type Operation is
 Read_next, Read_locked,
 Write_next, Write_locked,
 Fetch_and_Store, Compare_and_Swap
end type

type qnode = record
 next : ^qnode
 locked : Boolean
type lock = ^qnode

37 CADP Tutorial - FM 2012, Paris

LNT Module Pragmas
Automatic generation of predefined functions
module M with “get”, “set”, “card” is …

Width and range of predefined types
module M is !nat_bits 3 …

– nat_bits/int_bits:
bits for storing Nat/Int type

– nat_inf/int_inf & nat_sup/int_sup:
lower & upper bound of Nat/Int type

– nat_check/int_check:
(de)activate bound checks for Nat/Int type

– string_card:
maximum number of strings (size of the hash table)

more functions:
see type definition

0: deactivate
1: activate (default)

38 CADP Tutorial - FM 2012, Paris

III.3 LNT FUNCTIONS

39 CADP Tutorial - FM 2012, Paris

LNT functions

Pure functions (without side effects) in imperative syntax
ensured by type checking and initialization analysis

Functions defined using standard algorithmic statements:
– Local variable declarations and assignments: “var”
– Sequential composition: “;”
– Breakable loops: “while” and “for”
– Conditionals: “If-then-else”
– Pattern matching: “case”
– (Uncatchable) exceptions: “raise”

Three parameter passing modes:
– “in” (call by value)
– “out” and “inout” (call by reference)

Function overloading

Support for external implementations (LOTOS and C)

call syntax requires
“eval” keyword

40 CADP Tutorial - FM 2012, Paris

Sample LNT functions

Constants
function pi: Real is
 return 3.14159265
end function

Field access

– function get_weekday (d: Date): Weekday is
 return d.wd
end function

– function set_weekday (inout d: Date, new_wd: Weekday) is
 d := d.{wd => new_wd}
end function

41 CADP Tutorial - FM 2012, Paris

Sample LNT functions

Update of the element (i,j) of a matrix M
function update (inout M: Matrix, i, j: Nat, new_e: Nat) is
 var v: Vector in
 v := M[i];
 v[j] := new_e;
 M[i] := v
 end var
end function

Access to the first element of a list L
function get_head (L: Nat_List) : Nat raises Empty_List: none is
 case L in var head: Nat in
 nil -> raise Empty_List
 | cons (head, any Nat_List) -> return head
 end case
end function

42 CADP Tutorial - FM 2012, Paris

Sample LNT functions

function reset_diagonal_elements (M: Matrix) : Matrix is
 var
 result: Matrix,
 i: Nat
 in
 result := M;
 for i := 0 while i < 3 by i := i + 1 loop
 eval update (!?result, i, i, 0)
 end loop;
 return result
 end var
end function

43 CADP Tutorial - FM 2012, Paris

MCS queue lock: functions

function nil: Index is (* constant definition *)
 return Index (0)
end function

function Nat (pid: Pid) : Nat is (* explicit type cast *)
 return Nat (Index (pid))
end function

function _!=_ (p: Pid, i: Index) : Bool is (* infix comparison *)
 return (Index (p) != i)
end function

44 CADP Tutorial - FM 2012, Paris

III.4 LNT PROCESSES

45 CADP Tutorial - FM 2012, Paris

LNT processes
Processes are a superset of functions (except return):
– symmetric sequential composition

– variable assignment, “if-then-else”, “case”, “loop”, etc.

Additional operators:
– communication: rendezvous with value communication

– parallel composition: “par”

– gate hiding: “hide”

– nondeterministic choice: “select”

– “disrupt”, etc.

Static semantics constraints
– variable initialization

– typed channels (with polymorphism and “any” type)

LOTOS style
(see next slide)

46 CADP Tutorial - FM 2012, Paris

LNT rendezvous

 G (O1, …, On≥0) where V

 Oi ::= V | !V | ?P

Polymorphic channel types

Exchange of several values (offers Oi)

Combination of inputs and outputs

Value matching / constraint solving

Pattern matching

For short: LOTOS-style rendezvous plus
– pattern matching

– polymorphic gate typing (channel)

47 CADP Tutorial - FM 2012, Paris

Sample LNT channels

channel None is
 ()
end channel

channel C1 is
 (Nat)
end channel

channel C2 is
 (Signal, Nat),
 (Signal, Nat, Nat)
end channel

predefined channel:
 any
rendezvous without
type-check for offers
(LOTOS style)

48 CADP Tutorial - FM 2012, Paris

MCS queue lock: channels
channel Resource_Access is
 (Pid)
end channel

channel Memory_Access is
 (Operation, Pid, Index, Pid), -- read/write field next
 (Operation, Pid, Bool, Pid) -- read/write field locked
end channel

channel Lock_Access is
 (Operation, Index, Index, Pid), -- fetch-and-store
 (Operation, Index, Index, Bool, Pid) -- compare-and-swap
end channel

channel Latency is
 (Pid),
 (Operation)
end channel

49 CADP Tutorial - FM 2012, Paris

“Hello, world!”

without channel typing
 module hello_world is

process MAIN [G:any] is
 G (”Hello, world!\n”)
end process
end module

with channel typing
module hello_world is
channel String_channel is (String) end channel
process MAIN [G:String_channel] is
 G (”Hello, world!\n”)
end process
end module

50 CADP Tutorial - FM 2012, Paris

Sample LNT process
type option is none, some (x: Nat) end type

channel option_channel is (o: Option) end channel

channel nat_channel is (n: Nat) end channel

process FILTER [GET: option_channel, PUT: nat_channel] (b: Nat) is
 var opt: Option in
 loop L in
 GET (?opt) ;
 case opt in var x: Nat in
 | none -> null
 | some (x) where x > b -> PUT (x)
 end case
 end loop
 end var

end process

FILTER (b) GET PUT

51 CADP Tutorial - FM 2012, Paris

MCS queue lock: competing process

process P [NCS, CS_Enter, CS_Leave: Resource_Access,
process P [L: Lock_Access, M: Memory_Access]
process P (pid: Pid) is
 loop
 NCS (pid);
 acquire_lock [L, M] (pid);
 CS_Enter (pid); CS_Leave (pid);
 release_lock [L, M] (pid)
 end loop
end process

52 CADP Tutorial - FM 2012, Paris

MCS queue lock: acquire_lock
process acquire_lock [L: Lock_Access, M: Memory_Access] (pid: Pid) is
 var predecessor: Index, locked: Bool in
 M (W_next, pid, nil of Index, pid);
 L (Fetch_and_Store, ?predecessor, Index (pid), pid);
 if (predecessor != nil) then
 M (W_locked, pid, true, pid);
 M (W_next, Pid (predecessor), Index (pid), pid);
 loop L in
 M (R_locked, pid, ?locked, pid);
 if not (locked) then break L end if
 end loop
 end if
 end var
end process

proc acquire_lock (L : ^lock, I : ^qnode)
 I->next := nil
 predecessor : ^qnode :=
 fetch_and_store (L, I)
 if predecessor != nil
 I->locked := true
 predecessor->next := I
 repeat while I->locked // spin

53 CADP Tutorial - FM 2012, Paris

MCS queue lock: release_lock
process release_lock [L: Lock_Access, M: Memory_Access] (pid: Pid) is
 var next: Index, swap: Bool in
 M (R_next, pid, ?next, pid);
 if next == nil then
 L (Compare_and_Swap, Index (pid), nil of Index, ?swap, pid);
 if swap == false then
 loop L in
 M (R_next, pid, ?next, pid);
 if next != nil then break L end if
 end loop;
 M (W_locked, Pid (next), false, pid)
 end if
 else
 M (W_locked, Pid (next), false, pid)
 end if
 end var
end process

proc release_lock (L : ^lock, I : ^qnode)
 if I->next = nil // no known successor
 if compare_and_swap (L, I, nil)
 // true iff swapped
 return
 repeat while I->next = nil // spin
 I->next->locked := false

54 CADP Tutorial - FM 2012, Paris

MCS queue lock: Global variable
process Lock [L: Lock_Access] is
 var i, new_i, j: Index in
 i := nil;
 loop select

 L (Fetch_and_Store, i, ?new_i, ?any Pid);
 i := new_i
 []
 L (Compare_and_Swap, ?j, ?new_i, true, ?any Pid) where i == j;
 i := new_i
 []
 L (Compare_and_Swap, ?j, ?new_i, false, ?any Pid) where i != j
 -- ignore new_i
 end select end loop
 end var
end process

55 CADP Tutorial - FM 2012, Paris

MCS queue lock: Shared variables
process Memory [M: Memory_Access] is
 var m: Memory, pid: Pid, next: Index, locked: Bool in
 m := Memory (Qnode (nil, false));
 loop select
 [] M (Read_next, ?pid, ?next, ?any Pid)
 [] where next == m[Nat (pid)].next
 [] M (Read_locked, ?pid, ?locked, ?any Pid)
 [] where locked == m[Nat (pid)].locked
 [] M (Write_next, ?pid, ?next, ?any Pid);
 [] m[Nat (pid)] := m[Nat (pid)].{next => next}
 [] M (Write_locked, ?pid, ?locked, ?any Pid);
 [] m[Nat (pid)] := m[Nat (pid)].{locked => locked}

 end select end loop
end var end process

56 CADP Tutorial - FM 2012, Paris

MCS queue lock for five processes

process Protocol [NCS, CS_Enter, CS_Leave: Resource_Access,
process Protocol [L: Lock_Access, M: Memory_Access] is
 par M, L in
 par
 || P [NCS, CS_Enter, CS_Leave, L, M] (Pid (1))
 || P [NCS, CS_Enter, CS_Leave, L, M] (Pid (2))
 || P [NCS, CS_Enter, CS_Leave, L, M] (Pid (3))
 || P [NCS, CS_Enter, CS_Leave, L, M] (Pid (4))
 || P [NCS, CS_Enter, CS_Leave, L, M] (Pid (5))
 end par
 ||
 par Lock [L] || Memory [M] end par
 end par
end process

57 CADP Tutorial - FM 2012, Paris

MCS queue lock: service (1/3)
type Pid_list is
 list of Pid with "==", "!="
end type

function _is_in_ (pid: Pid, fifo: Pid_list) : Bool is
 -- return true iff pid is in the list fifo
 case fifo in
 var head: Pid, tail: Pid_list in
 nil -> return false
 | cons (head, tail) -> if (head == pid) then
 return true
 else
 return pid is_in tail
 end if
 end case
end function

58 CADP Tutorial - FM 2012, Paris

MCS queue lock: service (2/3)
function pop (inout fifo: Pid_list, out pid: Pid)
raises Empty_list: none
is -- remove last element of the list fifo
 case fifo in
 var head: Pid, tail: Pid_list in
 {} ->
 raise Empty_list
 | { head } ->
 pid := head; fifo := {}
 | cons (head, tail) ->
 eval pop (!?tail, ?pid); fifo := cons (head, tail)
 end case
end function

59 CADP Tutorial - FM 2012, Paris

MCS queue lock: service (3/3)
process Service [CS_Enter, CS_Leave: Resource_Access] is
 var pid: Pid, fifo: Pid_list, current: Index in
 fifo := nil; current := nil;
 loop select
 pid := any Pid where (not (pid is_in fifo)) and (pid != current);
 fifo := cons (pid, fifo); i
 []
 if (current == nil) and (fifo != nil) then
 eval pop (!?fifo, ?pid); CS_Enter (pid); current := Index (pid)
 else stop end if
 []
 if current != nil then
 CS_Leave (Pid (current)); current := nil
 else stop end if
 end select end loop
end var end process

60 CADP Tutorial - FM 2012, Paris

Check of semantic constraints
Semantic checks performed by lnt2lotos
– Correct declaration (variables, gates)
– Correct initialization (variables / parameters)
– Non-ambiguous overloading
– Breaks inside matching loops
– Path constraints (e.g., presence of a return)
– Parameters usage

Semantic checks performed by Cæsar(.adt) / CC
– Type constraints (expressions and gates)
– Availability of used types, functions, and processes
– Exhaustiveness of case statements
– Availability of external code (LOTOS, C)
– Range/overflow checks for numbers

See the reference manual for details!

by lnt_check on
the C code

generated by
Cæsar(.adt)

61 CADP Tutorial - FM 2012, Paris

IV. FROM LANGUAGES TO MODELS

62 CADP Tutorial - FM 2012, Paris

IV.1 BCG (BINARY CODED GRAPH)

63 CADP Tutorial - FM 2012, Paris

BCG format

Text-based formats are not satisfactory to store
large LTSs in computer files

– disk space consuming (Gbytes)

– slow (read/write operations are costly)

BCG (Binary-Coded Graphs):

– a compact file format for storing LTSs

– a set of APIs

– a set of software libraries

– a set of tools (binary programs and scripts)

64 CADP Tutorial - FM 2012, Paris

BCG libraries and APIs

BCG_WRITE
API to create a BCG file

BCG_READ
API to read a BCG file

BCG_TRANSITION
API to store a transition relation in memory:

– successor function, or

– predecessor function, or

– successor and predecessor functions

65 CADP Tutorial - FM 2012, Paris

Basic BCG tools

bcg_info: extract info from a BCG file

bcg_io: convert BCG from and to other formats

bcg_labels: hide and/or rename labels

bcg_draw, bcg_edit: visualize LTSs

bcg_graph: generation of particular BCG graphs
(chaos automata, FIFO buffers, bag automata)

bcg_open: connection to Open/Cæsar applications

66 CADP Tutorial - FM 2012, Paris

IV.2 OPEN/CÆSAR API

67 CADP Tutorial - FM 2012, Paris

Motivations

Most model checkers dedicated to one particular

input language (e.g. Spin, SMV, …)

They can't be reused easily for other languages

Idea: introduce modularity by separating

– language-dependent aspects:

compiling language into LTS model

– language-independent algorithms:

algorithms for LTS exploration

68 CADP Tutorial - FM 2012, Paris

OPEN/CÆSAR

Open/Cæsar API

LOTOS LTS
communicating

LTSs … LOTOS NT

implicit LTS

FSP

caesar.open bcg_open exp.open fsp.open lnt.open …

LTS generation
interactive simulation
random execution
on the fly verification
partial verification
test generation

Open/Cæsar
librairies

SystemC
/TLM

tlm.open

69 CADP Tutorial - FM 2012, Paris

OPEN/CÆSAR API

Primitives to represent an implicit LTS

– Opaque type for the representation of a state

– Initial state function

– Successor function

– etc.

Provided by Open/Cæsar compilers

Used by Open/Cæsar compliant tools

70 CADP Tutorial - FM 2012, Paris

OPEN/CÆSAR libraries

A set of predefined data structures
– EDGE: list of transitions (e.g., successor lists)

– HASH: catalog of hash functions

– STACK_1: stacks of states and/or labels

– DIAGNOSTIC_1: set of execution paths

– TABLE_1: hash table for states, labels, strings, etc.

– BITMAP: Holzmann’s "bit state" tables

– RENAME_1: handling of label renaming options

Specific primitives for on the fly verification
– possibility to attach additional information to states

– stack or table overflow => backtracking

– etc.

71 CADP Tutorial - FM 2012, Paris

Some OPEN/CÆSAR applications
EXECUTOR: random walk

OCIS: interactive simulation (graphical)

GENERATOR: exhaustive LTS generation

REDUCTOR: LTS generation with reduction

PROJECTOR: LTS generation with constraints

TERMINATOR: Holzmann's bit-space algorithm

EXHIBITOR: search paths defined by reg. expr.

EVALUATOR: evaluation of mu-calculus formulas

TGV: test sequence generation

DISTRIBUTOR: distributed state space generation

CUNCTATOR: Markov chain steady-state simulator

…

72 CADP Tutorial - FM 2012, Paris

Example: GENERATOR (1/2)
#include "caesar_graph.h"

#include "caesar_edge.h"

#include "caesar_table_1.h"

#include "bcg_user.h"

int main (int argc, char *argv[]) {

 char *filename;

 CAESAR_TYPE_TABLE_1 t; CAESAR_TYPE_STATE s1, s2;

 CAESAR_TYPE_EDGE e1_en, e; CAESAR_TYPE_LABEL l;

 CAESAR_TYPE_INDEX_TABLE_1 n1, n2, initial_state ; CAESAR_TYPE_POINTER dummy;

 filename = argv[0];

 CAESAR_INIT_GRAPH ();

 CAESAR_INIT_EDGE (CAESAR_FALSE, CAESAR_TRUE, CAESAR_TRUE, 0, 0);

 CAESAR_CREATE_TABLE_1 (&t, 0, 0, 0, 0, TRUE, NULL, NULL, NULL, NULL);

 if (t == NULL) CAESAR_ERROR ("not enough memory for table");

 CAESAR_START_STATE ((CAESAR_TYPE_STATE) CAESAR_PUT_BASE_TABLE_1 (t));

 CAESAR_PUT_TABLE_1 (t);

 initial_state = CAESAR_GET_INDEX_TABLE_1 (t);

 BCG_INIT (); BCG_IO_WRITE_BCG_BEGIN (filename, initial_state, 2, "", 0);

73 CADP Tutorial - FM 2012, Paris

Example: GENERATOR (2/2)
 while (!CAESAR_EXPLORED_TABLE_1 (t)) {

 s1 = (CAESAR_TYPE_STATE) CAESAR_GET_BASE_TABLE_1 (t);

 n1 = CAESAR_GET_INDEX_TABLE_1 (t);

 CAESAR_GET_TABLE_1 (t);

 CAESAR_CREATE_EDGE_LIST (s1, &e1_en, 1);

 if (CAESAR_TRUNCATION_EDGE_LIST () != 0)

 CAESAR_ERROR ("not enough memory for edge lists");

 CAESAR_ITERATE_LN_EDGE_LIST (e1_en, e, l, s2) {

 CAESAR_COPY_STATE ((CAESAR_TYPE_STATE) CAESAR_PUT_BASE_TABLE_1 (t), s2);

 (void) CAESAR_SEARCH_AND_PUT_TABLE_1 (t, &n2, &dummy);

 BCG_IO_WRITE_BCG_EDGE (n1, CAESAR_STRING_LABEL (l), n2);

 }

 CAESAR_DELETE_EDGE_LIST (&e1_en);

 }

 BCG_IO_WRITE_BCG_END ();

 return (0)

}

74 CADP Tutorial - FM 2012, Paris

IV.3 TOOLS FOR STATE SPACE
 GENERATION

75 CADP Tutorial - FM 2012, Paris

State space generation

Motivation: generate an explicit LTS (BCG) from
an implicit one (Open/Cæsar), for verification

Use GENERATOR for direct generation

Problem: possible state explosion, e.g. when the
number of concurrent processes grows

Several solutions to fight against state explosion:
– Compositional verification

– Distributed state space generation

– (Combined with static analysis, partial order
reductions, ...)

76 CADP Tutorial - FM 2012, Paris

Compositional verification

"Divide and conquer" to fight state explosion
– Partition the system into subsystems

– Minimize each subsystem modulo a strong or weak
bisimulation preserving the properties to verify

– Recombine the subsystems to get a system equivalent to
the initial one

Refined compositional verification:
– Tightly-coupled processes constrain each other

– Separating them may lead to explosion

– "Interfaces" used to model synchronization constraints

SVL (Script Verification Language) provides high-level
support for compositional verification (see later)

77 CADP Tutorial - FM 2012, Paris

Minimization tools
Aldebaran
– no longer supported after July 2008 (64-bit issue)

– functionalities retained with Aldebaran 7.0 script

BCG_MIN
– minimization of explicit LTSs

– strong and branching bisimulation

– new signature-based algorithm

– supports LTS with 109 – 1010 states

Reductor
– on-the-fly (partial) reduction of implicit LTSs

– 8 equivalence relations supported:
strong, branching, tau*.a, safety, trace (aka automata determinization),
weak trace, tau-confluence, tau-compression, and tau-divergence

78 CADP Tutorial - FM 2012, Paris

EXP.OPEN 2.0

A language for describing networks of LTS

– LTS encoded in AUT or BCG format

– synchronization vectors + parallel composition
operators (LOTOS, CCS, CSP, mCRL, etc.)

– label hiding, renaming, cutting (using regexps)

– "priority" operator

An Open/Cæsar compiler

– on-the-fly partial order reductions (branching eq., weak
trace eq., stochastic/probabilistic eq.)

79 CADP Tutorial - FM 2012, Paris

PROJECTOR 3.0

To achieve refined compositional verification

Implements ideas of Graf & Steffen, Krimm &
Mounier

Computes on the fly the restriction of an LTS
modulo interface constraints

– Interface = LTS understood as a set of traces

– Eliminates states and transitions of a process never

reached while following all traces of its interface

– User-given interfaces involve predicate generation to

check their correctness

80 CADP Tutorial - FM 2012, Paris

Distributed state space generation

Exploit workstation networks, clusters and grids

Cumulate CPU and RAM across the network

GCF (Grid Configuration File) to configure:
– number and names of machines

– local directories

– CADP installation directories

– communication protocols, addresses

Socket-based internal communication library
(SSH connections, TCP sockets)

81 CADP Tutorial - FM 2012, Paris

DISTRIBUTOR
Distributed state space generation
Generates distributed BCG fragments referenced in a
PBG (Partitioned BCG graph) file
Enables tau-compression and tau-confluence (partial
order) reductions preserving branching bisimulation

program to
be verified

DISTRIBUTOR
@ node 1

DISTRIBUTOR
@ node n

BCG
fragment #1

BCG
fragment #n

PBG file

. . .
. . .

82 CADP Tutorial - FM 2012, Paris

Tools to handle PBG files

pbg_info:

– compute global state space information by
combining state space information of the fragments

– check consistency of the PBG file

pbg_cp, pbg_mv, and pbg_rm:

– convenient handling

– single command to modify all fragments of a PBG

pbg_open: connection to the Open/Cæsar API

83 CADP Tutorial - FM 2012, Paris

BCG_MERGE

Merges a distributed state space produced by
DISTRIBUTOR into a monolithic labelled transition system

Same functionality as pbg_open/generator but more
efficient

BCG

BCG
fragment #1

BCG
fragment #n

PBG file

. . .

84 CADP Tutorial - FM 2012, Paris

V. FUNCTIONAL VERIFICATION

85 CADP Tutorial - FM 2012, Paris

V.1 VISUAL CHECKING

86 CADP Tutorial - FM 2012, Paris

OCIS (Open/Cæsar Interactive Simulator)

OCIS Open/Cæsar API

source program

Open/Cæsar compiler

visualization

commands scenarios
(BCG)

save-
reload

87 CADP Tutorial - FM 2012, Paris

OCIS (Open/Cæsar Interactive Simulator)

language-independent

tree-like scenarios

save/load scenarios

source code access

dynamic recompile

88 CADP Tutorial - FM 2012, Paris

Bcg_Draw and Bcg_Edit

View BCG graph

Edit postscript interactively

Applicable to small LTSs
(e.g., after hiding internal
 actions & minimization)

89 CADP Tutorial - FM 2012, Paris

V.2 EQUIVALENCE CHECKING

90 CADP Tutorial - FM 2012, Paris

BISIMULATOR

On-the-fly comparison of an implicit LTS
(Open/Cæsar graph) and an explicit LTS (BCG
graph)

Uses Boolean Equation Systems (CÆSAR_SOLVE)

Checks equivalence (=) or inclusion ( or )

Seven equivalence relations supported
(strong, branching, observational, tau*.a, safety,
trace, and weak trace)

Generates counterexamples
(common LTS fragments leading to differences)

91 CADP Tutorial - FM 2012, Paris

V.3 MODEL CHECKING WITH MCL

92 CADP Tutorial - FM 2012, Paris

MCL language

Extended temporal logic

 Alternation-free mu-calculus

+ Regular sequences

+ Fairness operators (alternation 2)

+ Data handling

+ Libraries of derived operators

Supported by the EVALUATOR 4.0 tool

– BES resolution (CÆSAR_SOLVE)

– Several optimized resolution algorithms

– Tau-confluence reduction

– Diagnostic generation

93 CADP Tutorial - FM 2012, Paris

MCL examples (1/4)

Deadlock freeness

 [true*] < true > true

Mutual exclusion

 [true* .
 { CS !"ENTER" ?i:Nat } .
 (not { CS !"LEAVE" !i })* .
 { CS !"ENTER" ?j:Nat where j <> i }
] false

94 CADP Tutorial - FM 2012, Paris

MCL examples (2/4)

Independent progress (N == number of processes)

 (if a process stops in its non-critical section, the other
processes can still access their critical sections)

 [true*] forall j:Nat among { 1 .. N } . (
 < { NCS !j } > true
 implies
 [(not { ... !j })*] forall i:Nat among { 1 .. N } . (
 (i <> j) implies
 < (not { ... !j })* > < { ... !i }* . { CS ... !i } > @
)
)

95 CADP Tutorial - FM 2012, Paris

MCL examples (3/4)

Bounded overtaking
(process j overtakes process i exactly max times)

 < true* . { NCS !i } .
 (not { ?G:String ... !i where (G <> "NCS") and (G <> "CS") })* .
 { ?G:String ... !i where (G <> "NCS") and (G <> "CS") } .
 (for k:nat from 0 to n-1 do
 (not { CS ... !i })* .
 { ?G:String ... !k where (k = i) implies (G <> "CS") }
 end for .
 (not { CS ?any !i })* . { CS !"ENTER" !j }
) { max }
> true

96 CADP Tutorial - FM 2012, Paris

MCS examples (4/4)

Livelock freedom

 (there is no cycle in which each process executes an
instruction but no one enters its critical section)

 [true* . { NCS ?j:Nat } .
 (not { ?any ?"READ"|"WRITE" ... !j })* .
 { ?any ?"READ"|"WRITE" ... !j }
] not < for j:Nat from 0 to n − 1 do
 (not { CS ... })* .
 { ?G:String ... !j where G <> "CS" }
 end for
 > @

complex cycle
containing a set of
events (generalized
Büchi automaton)

97 CADP Tutorial - FM 2012, Paris

MCL summary

Characterization of finite trees using cascading of
(strong/weak) regular modalities

Characterization of infinite trees using infinite
looping operator < R > @ and the dual saturation
operator [R] -|

Subsumes HML, ACTL, PDL, temporal patterns of
Dwyer, and Transition-Based Generalized Büchi
Automata (for LTL verification)

Allows simulation of pushdown automata
(context-free properties)

98 CADP Tutorial - FM 2012, Paris

 Lµ2

Lµ1

PDL



 CTL

Expressiveness and complexity

MCL

linear-time complexity
LTS size × formula size

quadratic-time complexity
(LTS size × formula size)2

99 CADP Tutorial - FM 2012, Paris

The quest for a powerful TL

data variables and parameters

re
g

u
la

r
ex

p
re

ss
io

n
s

linear-time branching-time

ETL
[Wolper-83]

ForSpec
[Vardi-et-al-02]

Eagle
[Barringer-Havelund-et-al-04]

BRTL
[Hamaguchi-et-al-90]

Regular µ-calculus
[Mateescu-Sighireanu-00,03]

extended µ-calculi
[Dam-94]
[Rathke-Hennessy-96]
[Groote-Mateescu-99]

QRE
[Olender-Osterweil-90]

extended CTL*
[Thomas-89]

XTL
[Mateescu-Garavel-98]

PSL
[www.pslsugar.org]

MCL
[Mateescu-Thivolle-08]

PDL-delta
[Streett-82]

Sugar
[Eisner-et-al-01]

RICO
[Garavel-89]

µ-calculus
[Kozen-83]

PDL
[Fischer-
Ladner-79]

100 CADP Tutorial - FM 2012, Paris

VI. PERFORMANCE EVALUATION

101 CADP Tutorial - FM 2012, Paris

Performance evaluation

Answer to quantitative questions such as:

– Is the system efficient? (performance estimation)

– Which probability for a failure? (dependability)

Use extended Markovian models combining

– Functional models specified in high-level languages
(e.g., LOTOS or LNT)

– Performance data based on Markov chains

102 CADP Tutorial - FM 2012, Paris

The initial picture

functional verification performance evaluation

functional
models

performance
models

state spaces
(LTS, Kripke, etc.)

Markov
chains

model checkers
(Boolean results)

solvers
(numeric results)

103 CADP Tutorial - FM 2012, Paris

Extended
Markovian model

Extended Markovian models

Extended Markovian model =
 LTS (Labeled Transition System)
 +
 probabilistic transitions ("prob 0.8")
 +
 stochastic transitions ("rate 3.1")

performance
data

functional
model

+

model checkers
(Boolean results)

solvers
(numeric results)

104 CADP Tutorial - FM 2012, Paris

BCG: supported Markovian transitions

ordinary transitions
a

stochastic transitions

"rate r" (r  R+)

labeled stochastic transitions

"a; rate r" (r  R+)

probabilistic transitions
"prob p" (p ]0, 1])

labeled probabilistic transitions
"a; prob p" (p ]0, 1])

105 CADP Tutorial - FM 2012, Paris

Markovian models supported by CADP

Model
LTS

transitions
Stochastic
transitions

Probabilistic
transitions

LTS (Labeled Transition System)   
CTMC
(Continuous Time Markov Chain)   
DTMC
(Discrete Time Markov Chain)   
IMC (Interactive Markov Chain)
[Hermanns 02]   
IPC (Interactive Probabilistic Chain)
[Coste 10]   
Extended Markovian models
[CADP]   

Models subsumed by CADP's extended Markovian models (among others)

106 CADP Tutorial - FM 2012, Paris

Performance evaluation techniques

Technique #1:

– Generation of a Markovian model

– Analysis using a Markovian solver

 State explosion sometimes occurs!

Technique #2:

– Random simulation and on-the-fly analysis

107 CADP Tutorial - FM 2012, Paris

VI.1 MARKOVIAN MODEL
 GENERATION TOOLS

108 CADP Tutorial - FM 2012, Paris

High-level Markovian models

Functional model (e.g. in LNT)

Two ways to model performance aspects

– Symbolic rate transitions with ordinary labels,
later on instantiated (i.e., renamed) with actual rates

– Constraint-oriented compositional delay insertion

 Example: insert between successive actions A and B a delay
represented by the red CTMC

1.23

4.56

7.89

0.01 1.10

A

B

abc

def
ghi

B

A |[A, B]|

109 CADP Tutorial - FM 2012, Paris

MCS queue lock: delay insertion (1/2)

compositionnal delay-insertion between operations

process Main [NCS, CS_Enter, CS_Leave: Resource_Access,
process Main [L: Lock_Access, M: Memory_Access,
process Main [Lambda, Mu, Nu: Latency]
is
 par NCS, CS_Enter, CS_Leave, L, M in
 Protocol [NCS, CS_Enter, CS_Leave, L, M]
 ||
 Latency [NCS, CS_Enter, CS_Leave, L, M, Lambda, Mu, Nu]
 end par
end process

110 CADP Tutorial - FM 2012, Paris

MCS queue lock: delay insertion (2/2)

process Latency [NCS, CS_Enter, CS_Leave: Resource_Access,
process Latency [L: Lock_Access, M: Memory_Access,
process Latency [Lambda, Mu, Nu: Latency] is
 var pid: Pid, op: Operation in
 loop select
 [] NCS (?pid); Lambda (pid)
 [] L (?op, ?any Index, ?any Index, ?any Pid); Mu (op)
 [] L (?op, ?any Index, ?any Index, ?any Bool, ?any Pid); Mu (op)
 [] M (?op, ?any Pid, ?any Index, ?any Pid); Mu (op)
 [] M (?op, ?any Pid, ?any Bool, ?any Pid); Mu (op)
 [] CS_Enter (?pid); Nu (pid)
 [] CS_Leave (?any Pid) -- no delay
 end select end loop
end var end process

111 CADP Tutorial - FM 2012, Paris

Extensions of EXP.OPEN and BCG_MIN

BCG_MIN:
– stochastic and probabilistic equivalences:

strong and branching bisimulation + lumpability

– recent improvements (for extended Markovian models):
• 500 times faster and 4 times less memory than BCG_MIN 1.0

• minimization of graphs up to 107 states and 108 transitions

EXP.OPEN:
– parallel composition of extended Markovian models

– no synchronization on "rate"/"prob" transitions

– on-the-fly reduction for stochastic and probabilistic equivalences

BCG_MIN
rate 1.3 rate 2.1 rate 3.4

112 CADP Tutorial - FM 2012, Paris

DETERMINATOR

On-the-fly Markov chain generation
– local transformations to remove stochastic non-determinism

– determinacy check ("well specified" stochastic process)

– algorithm: variant of [Deavours-Sanders-99]

Input:

– On-the-fly extended Markovian model

Output:

– either BCG graph (extended CTMC)

– or an error message

113 CADP Tutorial - FM 2012, Paris

VI.2 NUMERICAL ANALYSIS OF
 EXTENDED MARKOVIAN
 MODELS

114 CADP Tutorial - FM 2012, Paris

BCG_TRANSIENT

Numerical solver for Markov chains
Transient analysis
Inputs:
– Extended Markovian model in the BCG format
– List of time instants

Outputs:
– Numerical data usable by Excel, Gnuplot…

Method:
– BCG graph converted into a sparse matrix
– Uniformisation method to compute Poisson probabilities
– Fox-Glynn algorithm [Stewart-94]

115 CADP Tutorial - FM 2012, Paris

BCG_STEADY

Numerical solver for Markov chains
Steady-state analysis (equilibrium)
Inputs:
– Extended Markovian model in the BCG format
– No deadlock allowed

Outputs:
– Numerical data usable by Excel, Gnuplot…

Method:
– BCG graph converted into a sparse matrix
– Computation of a probabilistic vector solution
– Iterative algorithm using Gauss-Seidel [Stewart-94]

116 CADP Tutorial - FM 2012, Paris

VI.3 ON-THE-FLY SIMULATION OF
 EXTENDED MARKOVIAN MODELS

117 CADP Tutorial - FM 2012, Paris

CUNCTATOR

A steady-state random simulator for IMCs
On-the-fly label hiding and renaming to produce a
(labeled) CTMC with internal actions
On-the-fly exploration of a sequence:

Compute the throughput of each stochastic action
“a; rate r”
Different scheduling strategies for internal acions
Save/restore context of simulation
Caching of internal sequences of transitions

. . .
s0 s1 s2 sk sk+1

b0 b1 b2 bk

118 CADP Tutorial - FM 2012, Paris

VII. SVL (SCRIPT VERIFICATION
 LANGUAGE)

119 CADP Tutorial - FM 2012, Paris

Interface: Graphics vs Scripts

CADP code libraries and APIs

CADP command-line tools

graphical user-interface
EUCALYPTUS

scripting language
SVL

120 CADP Tutorial - FM 2012, Paris

Why Scripting ?
Verification scenarios can be complex
They can be repetitive
Many objects/formats to handle:
– High-level process descriptions (e.g., LNT, FSP, LOTOS)
– Networks of communicating LTSs
– Explicit and implicit LTSs

Many operations to perform:
– LTS generation of a process, a network of LTSs
– Label hiding, label renaming
– LTS minimization/comparison modulo equivalences
– Verification (deadlock, livelock, temporal logic formula)

Various verification techniques:
– enumerative, on-the-fly, compositional, etc.

121 CADP Tutorial - FM 2012, Paris

What is SVL?

An acronym: Script Verification Language

A language for describing (compositional)
verification scenarios

A compiler (SVL 2.1) for executing scenarios
writen in this language

A software component of CADP

122 CADP Tutorial - FM 2012, Paris

SVL Components

Two types of components can be mixed

SVL verification statements (written S)

– Compute and store an LTS or network of LTSs in a file

– Verify temporal properties

– Compare LTSs, etc.

Bourne shell constructs (lines starting with %)

– Variables, functions, conditionals, loops, …

– All Unix commands

123 CADP Tutorial - FM 2012, Paris

SVL Behaviours

Algebraic expressions used in statements

Several operators

– Parallel composition

– LTS generation and minimization

– Label hiding and renaming, etc.

Several types of behaviours

– LTSs (several formats)

– Networks of communicating LTSs

– LNT, LOTOS, and FSP descriptions

– Particular processes in LNT, LOTOS, and FSP descriptions

124 CADP Tutorial - FM 2012, Paris

Abstract Syntax of Behaviours
B ::= "F.bcg" | "F.aut" | "F.seq" | "F.exp"

 | "F.lnt" | "F.lnt" : P [G1, …, Gn]

 | "F.lotos" | "F.lotos" : P [G1, …, Gn]

 | "F.lts" | "F.lts" : P [G1, …, Gn]

 | B1 |[G1, …, Gn]| B2 | B1 ||| B2 | B1 || B2

 | par G1, …, Gn in
 [G0,1, …, G0,m1 ] B0 || ... || [Gp,1, …, Gp,mp ] Bp end par

 | generation of B0

 | R reduction [with T] of B0

 | [S] hide [all but] L1, …, Ln in B0

 | [S] rename L1  L1’, …, Ln  Ln’ in B0

 | [user] abstraction B1 [sync G1, …, Gn] of B2

125 CADP Tutorial - FM 2012, Paris

Explicit LTSs

States and transitions listed exhaustively

LTSs in several formats

 B ::= "F.bcg" Binary Coded Graphs

 | "F.aut" Aldébaran ASCII format

 | "F.seq" Set of traces

Format conversions are fully automatic

126 CADP Tutorial - FM 2012, Paris

Implicit LTSs

LNT, LOTOS, or FSP descriptions ("F.lnt", "F.lotos",
"F.lts")

Particular LNT, LOTOS, or FSP processes
("F.lnt" : P [G1, …, Gn], ...)

Networks of communicating automata ("F.exp")

127 CADP Tutorial - FM 2012, Paris

Explicit vs Implicit LTSs

SVL principles:

Keep LTSs implicit as long as possible

– Explicit LTS generation is expensive (state explosion)

– Not all properties necessitate to explore the whole LTS

Explicit LTS generation is done only if required explicitly

by the user

128 CADP Tutorial - FM 2012, Paris

LTS Generation

Conversion from an implicit LTS to an explicit LTS

B ::= generation of B0

Examples

– generation of "spec.lnt"
 Use LNT.OPEN and GENERATOR

– generation of "spec.lnt" : P [G]
 Use LNT.OPEN (option –root) and GENERATOR

– generation of "spec.exp"
 Use EXP.OPEN and GENERATOR

– generation of par G1 in "spec1.bcg" || "spec2.aut" end par
 Use EXP.OPEN and Generator

129 CADP Tutorial - FM 2012, Paris

Parallel Composition

 B ::= B1 |[G1, …, Gn]| B2

 | B1 ||| B2 | B1 || B2

 | par G1, …, Gn in [G0,1, …, G0,m0 ] B0

 || ...|| [Gp,1, …, Gp,mp ] Bp

 end par

LOTOS and LNT operators

B1 , B2, ... can be LTSs, but also any SVL behaviour

Generation of intermediate EXP.OPEN files

LOTOS

LNT

130 CADP Tutorial - FM 2012, Paris

Label Hiding
 B ::= [M] hide L1, …, Ln in B0

 | [M] hide all but L1, …, Ln in B0

An extension of LOTOS hiding, where
– L is either
 a gate name
 a label string (e.g. "G !3.14 !TRUE")
 a regular expression (e.g. "G !.* !TRUE")
– M ::= gate | total | partial is a matching semantics for regular

expressions
– all but means complementation of the set of labels

Tools used: BCG_LABELS or EXP.OPEN

131 CADP Tutorial - FM 2012, Paris

Label Hiding: Examples
[gate] hide G, H in "test.bcg"

 invokes BCG_LABELS (-hide) and returns an LTS in

 which labels whose gate is G or H are hidden

total hide "G ![AB].*" in "test.bcg"

 invokes BCG_LABELS and returns an LTS in
 which labels matching "G ![AB].*" are hidden

partial hide G in "test.bcg"
 invokes BCG_LABELS and returns an LTS in
 which labels containing G are hidden

132 CADP Tutorial - FM 2012, Paris

Label Renaming

B ::= [M] rename L1  L1’, …, Ln  Ln’ in B0

where

– each L  L’ is a Unix-like substitution containing regular
expressions

– M is a matching semantics

M ::= gate | total | single | multiple

Tools used: BCG_LABELS or EXP.OPEN

133 CADP Tutorial - FM 2012, Paris

Label Renaming: Examples

[gate] rename G  H, H  G in "test.bcg"

 invokes BCG_LABELS (-rename) and returns LTS

 in which gate G is renamed into H and H into G

total rename "G !A !TRUE"  "A_TRUE" in "test.bcg"

 invokes BCG_LABELS and returns an LTS in which

 label "G !A !TRUE" is renamed into A_TRUE

total rename "G !\(.*\) !\(.*\)"  "G \2 \1" in "test.bcg"

 invokes BCG_LABELS and returns an LTS in which

 offers of labels whose gate is G are swapped

134 CADP Tutorial - FM 2012, Paris

Reduction (Minimization)

 LTS Minimization modulo an equivalence relation

B ::= R reduction [with T] of B0

Several relations R
 [probabilistic|stochastic] strong, branching,
 safety, tau*.a, (weak) trace, tau- confluence,
 tau-compression, tau-divergence, etc.

Several tools T
 bcg_min, reductor

Tools used: BCG_MIN or REDUCTOR

135 CADP Tutorial - FM 2012, Paris

Reduction: Examples

strong reduction of "test.bcg" [with bcg_min]
invokes BCG_MIN (default tool for strong bisimulation)
and returns an LTS minimized for strong bisimulation

stochastic branching reduction of "test.bcg"
invokes BCG_MIN (default tool for branching
bisimulation) and returns an LTS minimized for stochastic
branching bisimulation

trace reduction of "test.bcg" [with reductor]
invokes BCG_OPEN/REDUCTOR and returns an LTS
minimized for trace equivalence

136 CADP Tutorial - FM 2012, Paris

Abstraction

LTS generation of B2 abstracted w.r.t. interface B1

 B ::= abstraction B1 of B2

 | user abstraction B1 of B2

Equivalent syntax

 B ::= B2 -|| B1

 | B2 -||? B1

where ? has the same meaning as user

Invokes PROJECTOR

Detailed in Section on Compositional verification (later)

137 CADP Tutorial - FM 2012, Paris

Other operators

Priorities between transitions (invokes EXP.OPEN)

Transition cutting (invokes EXP.OPEN)

Particular automata (invokes BCG_GRAPH):

– stop (empty automaton)

– chaos automaton (parameterized by a set of labels)

– FIFO or bag buffer (parameterized by a size and
receive/send sets of labels)

138 CADP Tutorial - FM 2012, Paris

Abstract Syntax of Statements

S ::= "F.E" = B0

 | "F.E" = R comparison B1 [== | <= | >=] B2

 | "F.E" = deadlock [with T] of B0

 | "F.E" = livelock [with T] of B0

 | ["F1.E" =] verify "F2.mcl" in B0

139 CADP Tutorial - FM 2012, Paris

Assignment Statement

S ::= "F.E" = B0

Computes B0 and stores it in file "F.E"

Extension E tells the format for "F.E"
(aut, bcg, exp, or seq, but not lnt, lotos, lts)

Principles:

– Format conversions are implicit (BCG_IO)

 e.g. "spec.bcg" = "spec.aut" is permitted

– No implicit LTS generation

 If E is an explicit LTS format (i.e. all but exp)
then B0 must not denote an implicit LTS
 generation must be used explicitly (otherwise a warning is issued)

140 CADP Tutorial - FM 2012, Paris

Comparison of Behaviours

 S ::= "F.E" = R comparison B1 == B2

 | "F.E" = R comparison B1 <= B2

 | "F.E" = R comparison B1 >= B2

Compares B1 and B2 and stores the distinguishing path(s)
(if any) in "F.E"

Equivalence or preorders

Several relations R

Invokes BISIMULATOR

141 CADP Tutorial - FM 2012, Paris

Deadlock and Livelock Checking

S ::= "F.E" = deadlock [with T] of B0

| "F.E" = livelock [with T] of B0

Detects deadlocks or livelocks using tool T
(exhibitor or evaluator)

Results in a (set of) paths leading to deadlock or livelock
states (if any) and stored in "F.E"

Verification may be on-the-fly
(EXHIBITOR or EVALUATOR with OPEN/CÆSAR)

142 CADP Tutorial - FM 2012, Paris

Temporal Property Verification

S ::= ["F1.E" =] verify "F2.mcl" in B0

Checks whether B0 satisfies the temporal logic property
contained in "F2.mcl"

May generate a diagnostic and store it in "F1.E" (example

or counter-example which explains the resulting truth value)

Verification may be on-the-fly
(OPEN/CAESAR and EVALUATOR)

143 CADP Tutorial - FM 2012, Paris

Shell Constructs in SVL Scripts

 Shell commands can be inserted (%)

– Direct call to Unix commands (“echo”...)

– Setting of SVL shell variables
• % DEFAULT_REDUCTION_RELATION=branching

• % GENERATOR_OPTIONS=-monitor

– Enables the use of all shell control structures

• "if-then-else" conditional

• "for" loop

• function definitions

• etc.

144 CADP Tutorial - FM 2012, Paris

Compositional Verification
(key features)

Support for basic compositional verification
Example: alternating bit protocol

Script Simplification using meta-operations

Support for refined compositional verification
Example: rel/REL protocol

Support for smart heuristics

Compositional Performance Evaluation
Examples: SCSI-2 and Mutual Exclusion Protocols

145 CADP Tutorial - FM 2012, Paris

Meta-operations

 B ::= leaf R reduction [with T] of B0

 | root leaf R reduction [with T] of B0

 | node R reduction [with T] of B0

Three "static" compositional verification
strategies:
– Reduction of LTSs at the leaves of parallel

compositions in B0

– Reduction of LTSs at the leaves of parallel composition
in B0 and then reduction of the whole behaviour

– Reduction at every node of B0

Meta-operations expand to basic SVL behaviours

146 CADP Tutorial - FM 2012, Paris

The Abstraction Behaviour
Implements refined compositional verification
The LTS of a behaviour B may be larger than the LTS of a
behaviour containing B because of context constraints
Example

 par G in
 par in "User1.bcg" || "User2.bcg" end par
 || "Medium.bcg"
 end par
 "Medium.bcg" may constrain the interleaving

Restrict the interleaving using abstraction:
 par in "User1.bcg" || "User2.bcg" end par

 -|[G]| "Medium.bcg"

147 CADP Tutorial - FM 2012, Paris

Smart heuristics

 B ::= smart R reduction [with T] of B0

Compositional verification strategy determined by a
metric on B0

Incrementally select the subset of concurrent processes
to compose and minimize, that:
– yield as much internal transitions as possible (likely eliminated

by reduction) and

– are as tightly coupled as possible (less interleaving)

Necessarily approximate
– the heuristics consider both reachable and unreachable

transitions

Most often: good results, especially on large networks

148 CADP Tutorial - FM 2012, Paris

SVL example: verification of MCS
% DEFAULT_PROCESS_FILE="mcs.lnt"
% DEFAULT_SMART_LIMIT=7

"mcs.bcg" = smart branching reduction of
 hide all but CS_ENTER, CS_LEAVE in
 par M, L in
 par in P1 || P2 || P3 || P4 || P5 end par
 ||
 par in Lock || Memory end par
 end par;

"mcs_diag_branching.bcg" = branching comparison
 "mcs.bcg" == Service;

149 CADP Tutorial - FM 2012, Paris

VIII. CONCLUSION

150 CADP Tutorial - FM 2012, Paris

Further features of CADP

Cosimulation and rapid prototyping
(EXEC/CÆSAR framework)

Test generation (TGV)

XTL query language on BCG graphs

Distributed BES resolution (work in progress)

151 CADP Tutorial - FM 2012, Paris

Distribution of CADP

Commercial license for industrial users

Free distribution to academic users

– Until July 2011:

• signed paper contract with the academic organization

• one license per machine

– Since July 2011:

• personal license for each CADP user, authenticated by valid
academic email address and academic web page

• license terms available in French and in English

http://cadp.inria.fr/registration

http://cadp.inria.fr/registration

152 CADP Tutorial - FM 2012, Paris

Some figures about CADP
Wide dissemination
–  441 academic license contracts

– CADP installed on 613 machines in 2011

–  139 published case studies using CADP since 1990
(http://cadp.inria.fr/case-studies)

–  57 third-party tools connected to CADP since 1996
(http://cadp.inria.fr/software)

–  196 users and  1300 messages in the CADP forum since 2007
(http://cadp.inria.fr/forum.html)

Various supported architectures
– processors: Itanium, PowerPC, Sparc, x86, x64

– operating systems: Linux, MacOS X, Solaris, Windows

– C compilers: gcc3, gcc4, Intel, Sun

Significant testing effort (Contributor tool)

http://cadp.inria.fr/case-studies
http://cadp.inria.fr/case-studies
http://cadp.inria.fr/case-studies
http://cadp.inria.fr/software
http://cadp.inria.fr/forum.html

153 CADP Tutorial - FM 2012, Paris

A promising future

Ubiquitous concurrency
– Hardware: multi-/many-core CPUs, clusters, grids, clouds

– Software: concurrency required to exploit new hardware

Industry awareness
– Increasing need for hardware and software reliability

– Models (even non-formal) become standard practice

"Applied concurrency" starts being effective

154 CADP Tutorial - FM 2012, Paris

For more information...

CADP Web site:
 http://cadp.inria.fr

CADP forum:
 http://cadp.inria.fr/forum.html
 http://cadp.forumotion.com

CADP on-line manual pages:
 http://cadp.inria.fr/man

http://vasy.inria.fr/cadp
http://cadp.forumotion.com/
http://cadp.forumotion.com/
http://cadp.inria.fr/man

