Partial Model Checking using Networks of Labelled Transition Systems and Boolean Equation Systems

Frédéric Lang and Radu Mateescu

INRIA and LIG / CONVECS

http://convecs.inria.fr

Motivation

Model-checking

- Network of (untimed) asynchronous communicating processes
 P₁ | | ... | P_n (e.g., process algebra)
- Modal mu-calculus formula
- Explicit state techniques: LTS (Labeled Transition System) exploration
- Compositional verification
 - Divide-and-conquer to palliate state explosion
 - Exploit the compositionality of parallel composition semantics
 - Tools for compositional verification are available in the CADP toolbox (http://cadp.inria.fr)

Compositional verification in CADP

Compositional LTS generation

[Graf-Steffen-90, Tai-Koppol-93, Cheung-Kramer-93, Krimm-Mounier-97, ...]

- Generate a reduced LTS incrementally
 - Generate individual process LTSs
 - Alternate composition of a subset of the LTSs (product) with hiding and reduction modulo an equivalence relation (strong, branching, safety, trace, weak trace, ...)
 - Possibly use interface constraints to restrict intermediate LTSs
- Then check
 on the reduced LTS

CADP tools for compositional verification

- Composition of LTSs: EXP.OPEN
 - Rich language: parallel composition (CCS, CSP, μCRL, LOTOS, E-LOTOS, LNT, etc., incl. m among n and synchronisation vectors)
 + generalized label hiding, renaming, and cutting
 - Internal representation: Network of LTSs (≈ sync. vectors)
 - C code generation (initial state, successor function, ...) for onthe-fly verification (OPEN/CAESAR implicit LTS)
- LTS generation with interface constraints: PROJECTOR
- LTS reduction: BCG_MIN and REDUCTOR
- Modal mu-calculus verification using a BES (Boolean Equation System): EVALUATOR
- Scripting and verification strategies: SVL

Alternative compositional approach

(not available in CADP)

Partial model checking [Andersen-95]

- Check formula ϕ on $P_1 \mid | \dots | | P_n$ incrementally:
 - 1. Compute a formula $\phi // P_1$ called **quotient** of ϕ by P_1
 - 2. Simplify $\phi // P_1$ to reduce its size
 - 3. If n > 1 then check $\phi // P_1$ on $P_2 || ... || P_n$ (back to step 1)
- Andersen-95: Modal mu-calculus and LTSs composed using CCS parallel composition and restriction
- Several extensions followed (state based, timed, synchronous, etc.) [Larsen-Peterson-Yi-95, Bodentien-et-al-99, Cassez-Laroussinie-00, Martinelli-03, Basu-Ramakrishnan-03, ...]

This talk

 Aim: Implement partial model checking for Networks of LTSs efficiently

Contributions

- Generalise quotienting to Networks of LTSs
- Reformulate quotienting as a synchronous product (another Network of LTSs) between a process LTS and an LTS representing the formula (formula graph)
- Reformulate formula simplification as a combination of LTS reductions and partial evaluation of the formula graph using a BES
- Prototype implementation using CADP and case-study

The modal mu-calculus

• Syntax:
$$\phi ::= \mathbf{ff} | \phi_1 \lor \phi_2 | < a > \phi_0 | \mu X.\phi_0 | X$$

$$| \mathbf{tt} | \phi_1 \land \phi_2 | [a] \phi_0 | \nu X.\phi_0 | \neg \phi_0$$

+ *Syntactic monotonicity*: even number of negations between a variable and its binder

Elimination of negations

$$\neg \mathbf{f} \mathbf{f} = \mathbf{t} \mathbf{t} \qquad \neg (\varphi_1 \lor \varphi_2) = \neg \varphi_1 \land \neg \varphi_2$$
$$\neg < \mathbf{a} \gt \varphi_0 = [\mathbf{a}] \neg \varphi_0 \qquad \neg \mu \mathsf{X}. \varphi_0 = \nu \mathsf{X}. \neg \varphi_0 [\neg \mathsf{X}/\mathsf{X}] \qquad ..$$

Alternation

- Maximum number of sign (μ or ν) switches between a variable and its binder
- Example formula of alternation 2: $\mu X.\nu Y.(\langle a \rangle X \vee [b] Y)$

Networks of LTSs

- Inspired by MEC and FC2
- Tuple ((P₁, ..., P_n), V) where:
 - $-P_1, ..., P_n = LTSs$ (of individual processes)
 - V = set of synchronization rules $(a_1, ..., a_n) \rightarrow a_0$ where
 - each a_i (i \in 1..n) is either a label (action) or the symbol (inaction)
 - a₀ is a label (resulting action)
- Operational semantics: LTS written Its ((P₁, ..., P_n), V)
 - State = vector $(s_1, ..., s_n)$ of individual LTS states
 - $-(s_1, ..., s_n) \xrightarrow{a_0} (s'_1, ..., s'_n) \text{ iff } (a_1, ..., a_n) \xrightarrow{a_0} \in V, \text{ and } (s_1, ..., s_n) \xrightarrow{a_0} (s'_1, ..., s'_n) \text{ iff } (a_1, ..., a_n) \xrightarrow{a_0} (s'_1, ..., s'_n) \text{ and } (s'_1, ..., s'_n) \xrightarrow{a_0} (s'_1, ..., s'_n) \text{ iff } (a_1, ..., a_n) \xrightarrow{a_0} (s'_1, ..., s'_n) \text{ and } (s'_1, ..., s'_n) \xrightarrow{a_0} (s'_1, ..., s'_n) \text{ iff } (a_1, ..., a_n) \xrightarrow{a_0} (s'_1, ..., s'_n) \text{ and } (s'_1, ..., s'_n) \xrightarrow{a_0} (s'_1, ..., s'_n) \text{ and } (s'_1, ..., s'_n) \xrightarrow{a_0} (s'_1, ..., s'_n) \xrightarrow{a_0}$
 - $S_i \longrightarrow a_i \longrightarrow S_i'$

(for each $i \in 1...n \text{ s.t. } a_i \neq \bullet$), and

• $S_i = S_i'$

(for each $i \in 1...n \text{ s.t. } a_i = \bullet$)

Example

$$\bullet \ \mathsf{N} = \left((\mathsf{P}_1, \, \mathsf{P}_2, \, \mathsf{P}_3), \, \left\{ \begin{matrix} (a, \, a, \, \bullet) \to a, & (a, \, \bullet, \, a) \to a, & (b, \, b, \, b) \to b, \\ (c, \, c, \, \bullet) \to \mathsf{T}, & (\bullet, \, \bullet, \, d) \to d \end{matrix} \right. \right\}$$

Network compositionality

- Given a network N = ((P₁, ..., P_n), V) and i ∈ 1..n
 one can automatically build
 - a network N_{i} consisting of the composition of all P_{i} but P_{i} and
 - a new set of rules V'

```
such that Its (N) = Its ((P_i, Its (N_{i})), V')
(generalisable to any subset I \subseteq 1..n)
```

 Standard equivalence relations are congruences for networks (strong, observational, branching, safety, trace, weak trace, ...), provided hidden labels are neither renamed, nor synchronised, nor cut

Example

•
$$N_{\setminus 3} = \left((P_1, P_2), \begin{cases} (a, a) \rightarrow a, & (a, \bullet) \rightarrow \alpha_a, \\ (b, b) \rightarrow \alpha_b, & (c, c) \rightarrow T \end{cases} \right)$$

$$V' = \left\{ (a, \bullet) \to a, \quad (\alpha_a, a) \to a, \\ (\alpha_b, b) \to b, \quad (\bullet, d) \to d \right\}$$

 α_a , α_b = new intermediate labels (glue)

Quotienting for networks

- Given $N = ((P_1, ..., P_n), V)$ and $i \in 1...n$, the quotient of φ by P_i is written $\varphi // P_i$
- ϕ is **true** on N iff ϕ // P_i is **true** on N_{i}
- Quotient introduces new variables of the form X_s where X_s is a variable of φ and S_s a state of P_i (product)
 - Intuitively: X is true on N iff X_s is true on N_{i} , when P_i is in state s
- Quotient progressively eliminates modalities
- (technical details in paper)

Example

$$\bullet \ \mathsf{N} = \left((\mathsf{P}_1, \, \mathsf{P}_2, \, \mathsf{P}_3), \, \left\{ \begin{matrix} (a, \, a, \, \bullet) \to a, & (a, \, \bullet, \, a) \to a, & (b, \, b, \, b) \to b, \\ (c, \, c, \, \bullet) \to \mathsf{T}, & (\bullet, \, \bullet, \, d) \to d \end{matrix} \right. \right\}$$

• $\phi = \mu X. \langle a \rangle tt \lor \langle b \rangle X$ (a sequence of **b** leads to an **a**) a b P_3

•
$$\phi$$
 // P_3 = $\mu X_{s0}.<\alpha> tt $\vee <\alpha_a> tt \vee <\alpha_b> \mu X_{s1}.<\alpha> tt $\vee ff$ (to be checked on $N_{\setminus 3}$)$$

Implementing the quotient

- Formulas are potentially very large
- Trees and pointers should be avoided
 - Waste of memory
 - Slow computation
- We use the similarity between quotienting and synchronous product:
 - Turn the formula to disjunctive form
 - Encode it as an LTS
 - Implement quotienting as a product using a network of LTS

LTS encoding of the formula

- Assumption: formula φ is in disjunctive form (with negations)
- LTS written enc (φ) and called formula graph
 - State: a subformula of φ
 - Label: a mu-calculus operator
- Transition relation

$$\begin{array}{lll}
\mathsf{X} \longrightarrow \mathsf{V} \to \mathsf{\phi}[\mathsf{X}] & \neg \mathsf{\phi}_0 \longrightarrow \neg \to \mathsf{\phi}_0 \\
< \mathsf{a} > \mathsf{\phi}_0 \longrightarrow < \mathsf{a} > \to \mathsf{\phi}_0 & \mu \mathsf{X}. \ \mathsf{\phi}_0 \longrightarrow \mu \to \mathsf{\phi}_0 \\
\mathsf{\phi}_1 \lor \mathsf{\phi}_2 \longrightarrow \lor \to \mathsf{\phi}_1 & \mathsf{\phi}_1 \lor \mathsf{\phi}_2 \longrightarrow \lor \to \mathsf{\phi}_2
\end{array}$$

(ff is a deadlock state : empty disjunction)

Example

• Formula: $\mu X. < a > \neg ff \lor < b > X$

Formula graph:

Quotienting using a network

- Individual processes: enc (φ) and P_i
- Synchronisation rules:

synchronise modalities on actions to which P_i contributes actively

$$\{ (\neg, \bullet) \rightarrow \neg, \quad (\lor, \bullet) \rightarrow \lor, \quad (\mu, \bullet) \rightarrow \mu \} \ \cup \\ \{ (\langle a_0 \rangle, \bullet) \rightarrow \langle a_0 \rangle & \mid (a_1, ..., a_n) \rightarrow a_0 \in V \land a_i = \bullet \} \cup \\ \{ (\langle a_0 \rangle, a_i) \rightarrow \langle \alpha \rangle & \mid (a_1, ..., a_n) \rightarrow a_0 \in V \land a_i \neq \bullet \land (\exists j \in 1..n \setminus \{i\}) \ a_j \neq \bullet \} \cup \\ \{ (\langle a_0 \rangle, a_i) \rightarrow \lor & \mid (a_1, ..., a_n) \rightarrow a_0 \in V \land a_i \neq \bullet \land (\forall j \in 1..n \setminus \{i\}) \ a_j = \bullet \} \\ \text{The glue } \alpha \text{ associated to } a_1, ..., a_n \rightarrow a_0$$

 The LTS of this network encodes the formula graph of the quotient

Example (1/2)

$$\bullet \ \mathsf{N} = \left((\mathsf{P}_1, \, \mathsf{P}_2, \, \mathsf{P}_3), \, \left\{ \begin{matrix} (a, \, a, \, \bullet) \to a, & (a, \, \bullet, \, a) \to a, & (b, \, b, \, b) \to b, \\ (c, \, c, \, \bullet) \to \mathsf{T}, & (\bullet, \, \bullet, \, d) \to d \end{matrix} \right. \right\}$$

φ // P₃
 is implemented by the network
 (enc (φ), P₃), with synchronisation rules

$$\begin{cases}
(\neg, \bullet) \to \neg, & (\lor, \bullet) \to \lor, & (\mu, \bullet) \to \mu, \\
(\langle a \rangle, \bullet) \to \langle a \rangle, & (\langle a \rangle, a) \to \langle \alpha_a \rangle, & (\langle b \rangle, b) \to \langle \alpha_b \rangle
\end{cases}$$

Example (2/2)

Resulting formula graph:

(encodes μX_{s0} . $<a>a>tt <math>\vee <a>a>tt \vee <a>b>\mu X_{s1}$. $<a>tt <math>\vee ff$)

Formula simplification (1/2)

- Applied directly to formula graphs
- Elimination of ∨-transitions (hiding and reduction modulo τ*.α equivalence)

Elimination of double negations

Elimination of useless μ-transitions (sufficient conditions)

Formula simplification (2/2)

- Partial evaluation of states
 - Identify states that denote constant sub-formulas (e.g. $\mu X. < a > < b > X \lor < b > ff = ff$) using a BES
 - Simplify the formula graph accordingly (constant propagation)
 - BES evaluates every formula graph without modalities to a constant
- Sharing of identical sub-formulas
 - By strong bisimulation reduction (requires tagging μ transitions with block numbers)
 - Implements similar reductions found in [Andersen-95, Basu-Ramakrishnan-03]

Example

The formula graph $<\alpha_b>$ <**a>**

is simplified into

Prototype implementation using CADP

- Restricted to alternation-free modal mu-calculus
- Reuse existing tools (less than 2000 new lines of code)
 - Minor extensions to EXP.OPEN and EVALUATOR
 - BCG_LABELS/REDUCTOR implement elimination of ∨-transitions
 - BCG_MIN implements sharing of identical sub-formulas
 - New prototype tool (C, 1000 lines): other simplification rules;
 uses the CÆSAR_SOLVE library for solving alternation-free BES
 - New script (Bourne shell, 300 lines): invocation of tools

Case study

- Application to a case-study in avionics: communication protocol based on TFTP/UDP [Garavel-Thivolle-09]
- Two instances of TFTP connected via UDP using a FIFO buffer
- Five scenarios, depending whether each instance can read and/or write a file
- 28 alternation-free mu-calculus properties checked
- Comparison between memory peaks: on-the-fly (EVALUATOR) vs partial model checking

Results

	Scenario A		Scenario B		Scenario C		Scenario D		Scenario E	
	1,963 ks		867 ks		35,024 ks		40,856 ks		19,436 ks	
Prop	fly	pmc	fly	pmc	fly	pmc	fly	pmc	fly	pmc
A01	199	6	89	6	2,947	24	3,351	27	1,530	23
A02	207	6	93	6	3,156	25	3,631	28	1,612	10
A03	182	6	80	6	2,737	6	3,162	6	1,386	6
A04	199	6	89	6	2,947	6	3,351	29	1,530	7
A05	10	6	7	6	7	6	7	6	10	10
A06	187	6	85	6	2,808	6	3,249	7	1,428	6
A07	187	6	85	6	2,808	6	3,249	6	1,428	6
A08	186	6	80	6	2,745	6	3,170	6	1,390	6
A09a							3,290	28	1,488	6
A09b					2,955	6				
A10					3,354	6			1,674	6
A11					3,206	6	4,444	7	1,711	6
A12					620	*	133	*	101	*
A13							4,499	*	2,094	*
A14	267	6			3.988	23			2,107	15
A15			118	15	521	*	156	*	1,524	59
A16									186	8
A17					667	*	569	2,702		
A18			85	6	476	11	255	6	1,391	6
A19			207	6	6,352	90	8,753	13	3,104	55
A20	31	9			837	21			261	25
A21	374	Û			4,958	25			2,817	25
A22			35	-			427	1,271	191	650
A23			170	6			6,909	9	3,039	40
A24	41	9			427	1,786				
A25	391	6			5,480	40				
A26	195	6			2,857	15			1,477	10
A27	228	6			3,534	6			1,871	6
A28			102	6	3,654	22	4,032	6	1,821	6

« = explosion

= 767

Best ratio

Conclusions

- Generalization of partial model checking to networks: enables application to various models (CCS, CSP, mCRL, LOTOS, m among n, synchronization vectors, ...)
- Original graph encoding of the formula (no need to decompile)
- Lightweight (prototype) implementation for alternationfree formulas
- Case study shows that memory peak may be reduced by several orders of magnitude
- Compositional LTS generation and partial model checking are complementary

Future work

- Improve the simplification strategy (e.g., order of rule applications)
- Generate a verification diagnostic
- Combine with other compositional techniques: interface constraints, tau-confluence, ...
- Consider logic with data
- Extend implementation to some mu-calculus formulas of alternation 2 (e.g., infinite repetition of regular sequences a*.b)
- Apply to equivalence checking, using characteristic formulas (alternation 2)

