Rigorous Design and Deployment of IoT Applications

Ajay Krishna | Michel Le Pallec | Radu Mateescu | Ludovic Noirie | Gwen Salaün

FormaliSE 2019: International Conference on Formal Methods in Software Engineering

27 May 2019, Montreal, QC, Canada

Context

Internet of Things (IoT) applications are heterogenous and concurrent

Difficult for end-users to build correct applications by composing various objects

Formal modeling and verification can help users build correct applications

Modelling behavior: Switch

Modelling behavior: Philips Hue Lamp

Interface-based Modeling

https://meethue.com/api/key/lights/1/state
{
 "on": false
 }
 "on": true
 "hue": 50000,
 "bri": 200 }

IoT Object Model

$$O = \langle I_{in}, I_{out}, LTS \rangle$$

$$LTS = \langle S, A, T, S_0 \rangle$$

$$A \subseteq I_{in} \cup I_{out} \cup \{\tau\}$$

$$A \subseteq I_{in} \cup I_{out} \cup \{\tau\} (s_1, a, s_2) \in T$$

$$s_0 \in S$$

$$I_{in} = \{S_ON, S_OFF, MOTION\}$$

$$I_{out} = \{ALERT\}$$

Bindings

Binding
$$\beta = (i_{out}^{O_1}, i_{in}^{O_2})$$

$$in(\beta) = i_{in}^{O_2}$$

$$\operatorname{out}(\beta) = i_{ou}^{O_1}$$

Notion of **Strong** and *Weak* Bindings

Strong : Functionally important *Weak*: Optional (can provide additional service)

Composition

Unbound
interface
$$(I_{in}^{U})$$

$$C = \langle B, \Sigma, I_{in}^{U}, I_{out}^{U}, LTS, W \rangle$$

$$B = \{ \beta_{1}, \beta_{2}, \dots, \beta_{n} \}$$

$$\Sigma = \{ O_{1}, O_{2}, \dots, O_{n} \}$$

$$I_{in}^{U} = (I_{in_{1}} \cup I_{in_{2}} \cup \dots \cup I_{in_{n}}) \setminus in(B)$$

$$I_{out}^{U} = (I_{out_{1}} \cup I_{out_{2}} \cup \dots \cup I_{out_{n}}) \setminus out(B)$$

$$LTS = ren_{\rho B}(LTS_{1}) \otimes_{B} \dots \otimes_{B} ren_{\rho B}(LTS_{n})$$

 $W \subseteq B$ //weak bindings

Compatibility: Intuition

A service composition is correct if all bindings can

effectively be executed and if all reachable actions

unbound in the composition do not prevent the bindings

to be executed

Compatibility: Example

$$hide_{(I_{in}^{U} \cup I_{out}^{U})(LTS)}(LTS) \equiv_{br} LTS \otimes_{A} chaos_{B}$$

Deployment

Bindings describe dependencies among the objects

A composition can be viewed as a directed graph. Objects as nodes and bindings as edges

Dependencies can be identified by inverse topological sorting

Discard weak bindings in case of cyclic dependencies

Deployment Plan

A deployment plan consists of sequence of steps involving 3 operations at network level (SDN)

ADD – Provisioning of connected objects

BIND – Network configuration to allow communication between app interfaces

START – Enables app interfaces

Tool Support: IoT Composer

LNT Specification

Composition

module mediadevice is process mediadevice_idle [on, video, aux, audio:any] is select on; mediadevice_video [on, video, aux, audio] aux; mediadevice_audio [on, video, aux, audio] end select end process process mediadevice_video [on, video, aux, audio:any] is video; mediadevice_exit [on, video, aux, audio] end process process mediadevice_audio [on, video, aux, audio: any] is audio; mediadevice_exit [on, video, aux, audio] end process process mediadevice_exit [on, video, aux, audio:any] is stop end process end module

```
module prodall (phone, mediadevice, speaker) is
process prod [on, video, aux, audio:any] is
par
on, video -> phone_idle[on, video]
||
on, video, audio -> mediadevice_idle[on, video, aux, audio]
||
audio -> speaker_idle[audio]
end par
end process
end module
```

13

SDN-based Deployment

Objects can interact with different IoT services but preserves network isolation and discovery properties

Experiments

			LTS	
Use case	Objs	Bind	States	Trans.
Media	3	3	5	4
Thermo	3	4	3	7
SmartDoor1	3	4	8	13
LightSense	4	6	4	8
SmartDoor2	4	6	6	7
BabyMonitor	4	6	13	17
SmartAccess	5	8	8	9
MultiDoor	6	6	6	7
MultiCase	10	12	36	154
MultiCase2	13	15	176	892
IndepCase1	16	18	876	5134
IndepCase2	20	24	10501	79886

Summary

Concluding Remarks

Formal modelling and analysis contributes to correct composition and deployment

Proposals implemented as a tool for end-users

Future work on Thing Description, QoS and performance analysis of IoT services, and reconfiguration scenarios.